WO2020258937A1 - 一种坐标系对齐的方法及装置、电子设备和存储介质 - Google Patents

一种坐标系对齐的方法及装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2020258937A1
WO2020258937A1 PCT/CN2020/080467 CN2020080467W WO2020258937A1 WO 2020258937 A1 WO2020258937 A1 WO 2020258937A1 CN 2020080467 W CN2020080467 W CN 2020080467W WO 2020258937 A1 WO2020258937 A1 WO 2020258937A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
terminal
map information
alignment
initial
Prior art date
Application number
PCT/CN2020/080467
Other languages
English (en)
French (fr)
Inventor
谢卫健
钱权浩
王楠
章国锋
Original Assignee
浙江商汤科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江商汤科技开发有限公司 filed Critical 浙江商汤科技开发有限公司
Priority to JP2021564707A priority Critical patent/JP2022530821A/ja
Priority to SG11202112243SA priority patent/SG11202112243SA/en
Publication of WO2020258937A1 publication Critical patent/WO2020258937A1/zh
Priority to US17/452,988 priority patent/US20220049960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0072Transmission between mobile stations, e.g. anti-collision systems

Definitions

  • the present disclosure relates to the field of positioning technology, and in particular to a method and device for coordinate system alignment, electronic equipment, and storage medium.
  • simultaneous localization and mapping is a robot moving from an unknown location in an unknown environment. Start to move, and perform self-positioning according to the position estimation and map during the movement, so as to realize the autonomous positioning and map sharing of the robot.
  • the present disclosure proposes a technical solution for coordinate system alignment.
  • a method of coordinate system alignment including:
  • the second terminal When the second terminal triggers the alignment of the coordinate system, obtain the map information stored in the cloud, or obtain the map information from the first terminal; the second terminal transforms the second coordinate system of the second terminal to the cloud storage Under the initial coordinate system corresponding to the map information of, or transformed to the initial coordinate system corresponding to the map information obtained from the first terminal; or, the initial coordinate system corresponding to the map information stored in the cloud or obtained from the first terminal
  • the initial coordinate system corresponding to the map information is transformed to the second coordinate system of the second terminal itself; the initial coordinate system is used to locate the first terminal and the second terminal when the map information is in a shared state The positional relationship.
  • the first terminal and the second terminal are aligned to the same coordinate system. If multiple terminals are sharing the map Medium motion and positioning, that is, multiple terminals sharing a map in the same coordinate system (referred to as a shared map), can lay a foundation for realizing accurate positioning between multiple terminals.
  • the second terminal transforming the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information stored in the cloud includes:
  • the second terminal establishes its own second coordinate system according to the initial coordinate system
  • the second terminal establishes map information based on its own second coordinate system according to the map information.
  • the second terminal originally did not establish its own coordinate system, but established its own coordinate system according to the initial coordinate system corresponding to the map information obtained from the cloud, thereby aligning the first terminal and the second terminal to the same coordinate system under.
  • the second terminal transforming the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information stored in the cloud includes:
  • the second terminal corrects its own second coordinate system according to the relative transformation relationship
  • the second terminal establishes map information corrected based on its own second coordinate system.
  • the second terminal has originally established its own coordinate system, and transforms its own coordinate system according to the initial coordinate system corresponding to the map information obtained from the cloud, thereby aligning the first terminal and the second terminal to the same coordinate Tie down.
  • the second terminal transforms the initial coordinate system corresponding to the map information stored in the cloud to the second coordinate system of the second terminal itself, including:
  • the second terminal corrects the initial coordinate system according to the relative transformation relationship of the second terminal's pose in different coordinate systems
  • the second terminal establishes map information corrected based on the initial coordinate system according to the map information.
  • the second terminal has already established its own coordinate system originally, and obtains the initial coordinate system correction corresponding to the map information from the cloud to transform it to its own coordinate system, thereby aligning the first terminal and the second terminal to Under the same coordinate system.
  • the method further includes:
  • the relative transformation relationship is used to characterize the relative transformation relationship from the initial coordinate system to the second coordinate system of the second terminal itself.
  • the relative transformation relationship is obtained according to the change of the pose of the second terminal in different coordinate systems, so as to align the first terminal and the second terminal to the same coordinate system according to the relative transformation relationship.
  • a method of coordinate system alignment including:
  • the first terminal determines the map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system, wherein the initial coordinate system is used to locate the first terminal when the map information is in a shared state
  • the positional relationship with the second terminal the first terminal uploads the map information to the cloud or sends it to the second terminal, so that the second terminal triggers the alignment of the coordinate system according to the map information.
  • the first terminal uploads map information to the cloud or sends it to the second terminal, and aligns the first terminal and the second terminal to the same coordinate system. If multiple terminals move and locate in the shared map, there will be more Two terminals share a map in the same coordinate system (referred to as a shared map), which can lay a foundation for realizing precise positioning between multiple terminals.
  • a method of coordinate system alignment including:
  • the server acquires map information uploaded by the first terminal, where the map information is determined based on the first coordinate system of the first terminal;
  • the map information is sent to the second terminal, so that the second terminal triggers the alignment of the coordinate system according to the map information.
  • the server obtains the map information uploaded by the first terminal and sends the map information to the second terminal, so that the second terminal triggers the alignment of the coordinate system according to the map information.
  • the first terminal and The second terminal is aligned to the same coordinate system. If multiple terminals move and locate in the shared map, that is, multiple terminals share the map in the same coordinate system (referred to as shared map). Lay the foundation for precise positioning.
  • a coordinate system alignment device comprising:
  • the acquiring unit is configured to acquire map information stored in the cloud when the second terminal triggers alignment of the coordinate system, or acquire map information from the first terminal;
  • the alignment unit is used to transform the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information stored in the cloud or to the initial coordinate system corresponding to the map information obtained from the first terminal Or, transform the initial coordinate system corresponding to the map information stored in the cloud or the initial coordinate system corresponding to the map information obtained from the first terminal to the second coordinate system of the second terminal itself;
  • the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • the alignment unit is further configured to:
  • map information based on the own second coordinate system is established.
  • the alignment unit is further used for:
  • map information corrected based on the own second coordinate system is established.
  • the alignment unit is further used for:
  • map information corrected based on the initial coordinate system is established.
  • the device further includes:
  • the first pose obtaining unit is configured to obtain the first pose of the second terminal in the initial coordinate system
  • a second pose obtaining unit configured to obtain the second pose of the second terminal in its own second coordinate system
  • a processing unit configured to obtain the relative transformation relationship according to the first pose and the second pose
  • the relative transformation relationship is used to characterize the relative transformation relationship from the initial coordinate system to the second coordinate system of the second terminal itself.
  • a coordinate system alignment device comprising:
  • the determining unit is configured to determine map information based on a first coordinate system, and use the first coordinate system as an initial coordinate system, wherein the initial coordinate system is used to locate the first coordinate system when the map information is in a shared state The positional relationship between a terminal and a second terminal;
  • the sending unit is configured to upload the map information to the cloud or send to the second terminal, so that the second terminal triggers the alignment of the coordinate system according to the map information.
  • a coordinate system alignment device comprising:
  • An acquiring unit configured to acquire map information uploaded by the first terminal, the map information being determined based on the first coordinate system of the first terminal;
  • the alignment unit is configured to send the map information to the second terminal, so that the second terminal triggers the alignment of the coordinate system according to the map information.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • the processor is configured to execute the above-mentioned coordinate system alignment method.
  • a computer-readable storage medium having computer program instructions stored thereon, and when the computer program instructions are executed by a processor, the above-mentioned coordinate system alignment method is realized.
  • a computer program wherein the computer program includes computer-readable code, and when the computer-readable code runs in an electronic device, a processor in the electronic device executes To achieve the above-mentioned coordinate system alignment method.
  • the second terminal when the coordinate system alignment is triggered by the second terminal, the map information stored in the cloud is acquired, or the map information is acquired from the first terminal; the second terminal sets the second terminal's own second The coordinate system is transformed to the initial coordinate system corresponding to the map information stored in the cloud or transformed to the initial coordinate system corresponding to the map information obtained from the first terminal; or, the initial coordinate system corresponding to the map information stored in the cloud Or transform the initial coordinate system corresponding to the map information obtained from the first terminal to the second coordinate system of the second terminal itself; the initial coordinate system is used to locate the map information when the map information is in a shared state The positional relationship between the first terminal and the second terminal.
  • multiple terminals can be aligned to the same coordinate system. If multiple terminals move and locate in a shared map, that is, multiple terminals share the map in the same coordinate system. (Called a shared map), which can lay the foundation for realizing accurate positioning of multiple terminals with each other.
  • Fig. 1 shows a flowchart of a method for alignment of a coordinate system according to an embodiment of the present disclosure.
  • Fig. 2 shows a flowchart of a method for alignment of a coordinate system according to an embodiment of the present disclosure.
  • Fig. 3 shows a flowchart of a method for alignment of a coordinate system according to an embodiment of the present disclosure.
  • Fig. 4 shows a flowchart of a method for alignment of a coordinate system according to an embodiment of the present disclosure.
  • Fig. 5 shows a schematic diagram of a process of uploading a map to the cloud in a coordinate system alignment method according to an embodiment of the present disclosure.
  • Fig. 6 shows a schematic diagram of the coordinate alignment process of scheme one in the coordinate system alignment method according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of the anchor point alignment process of scheme one in the coordinate system alignment method according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of a two-coordinate alignment process in a coordinate system alignment method according to an embodiment of the present disclosure.
  • Fig. 9 shows a schematic diagram of the anchor point alignment process of solution two in the coordinate system alignment method according to an embodiment of the present disclosure.
  • Fig. 10 shows a schematic diagram of a three-coordinate alignment process in a coordinate system alignment method according to an embodiment of the present disclosure.
  • Fig. 11 shows a block diagram of a coordinate system alignment device according to an embodiment of the present disclosure.
  • FIG. 12 shows a block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 13 shows a block diagram of an electronic device according to an embodiment of the present disclosure.
  • the SLAM problem can be described as: the robot starts to move from an unknown position in an unknown environment, and locates itself according to the position estimation and the map during the movement, and at the same time Build incremental maps on the basis of self-positioning to realize autonomous positioning and navigation of robots.
  • the cloud sharing function is an important functional module in augmented reality, virtual reality and other applications, and it is the basis for supporting multi-user collaboration.
  • AR Augmented Reality
  • the AR cloud can connect single-point AR experiences to copy a real world for the storage, presentation and sharing of AR information. Perhaps this is the future world described by science fiction movies. Look like.
  • multiple terminals based on SLAM technology can determine each other's poses to complete collaborative work.
  • the alignment of the coordinate system needs to be completed.
  • Each terminal device generates a local coordinate system when running the SLAM algorithm.
  • the pose output by the SLAM system is the pose in the local coordinate system, and this pose can not be parsed and utilized directly sent to other devices. Therefore, the alignment of the coordinate system needs to be completed in cloud sharing.
  • the present disclosure takes the SLAM system as an example, and is a coordinate system alignment solution based on the SLAM system. It includes the following three schemes, which can be used for the alignment of different SLAM system coordinate systems. These three schemes can be applied to different system architectures according to different application scenarios. For the convenience of explanation, a concept is defined here as anchor points. In the SLAM coordinate system, 3D points with special meaning are called anchor points. Taking AR application as an example, at least one AR effect is to set a 3D object or 3D animation at the anchor point.
  • Solution 1 A terminal determines an initial coordinate system, and uploads the generated map data to the cloud.
  • the SLAM coordinate system corresponding to at least one other terminal is all aligned to the initial coordinate system corresponding to the cloud map. At least one The anchor points are naturally registered under this initial coordinate system.
  • Solution 2 A terminal determines an initial coordinate system and uploads the generated map data to the cloud. At least one anchor point is registered under this initial coordinate system. When the coordinate system is aligned, the initial coordinate system is aligned to The local SLAM coordinate system of each terminal, and then at least one anchor point is respectively transformed to each local SLAM coordinate system.
  • Solution 3 Different terminals communicate with each other, and transmit the local coordinate system and anchor point information to other terminals. Each terminal aligns the coordinate system of other devices to the local SLAM coordinate system and registers the anchor point to the local coordinate system. .
  • anchor point registration is that the anchor point can be directly set in the existing coordinate system, without the need for anchor point transformation during the sharing process.
  • the coordinate system alignment method of the embodiment of the present disclosure is applicable to scenarios including interaction between multiple terminals and the cloud, or direct interaction between multiple terminals (not involving the cloud), as long as the first terminal and the second terminal can be aligned to Under the same coordinate system, all are within the protection scope of this disclosure.
  • the second terminal When the second terminal triggers the alignment of the coordinate system, obtain the map information stored in the cloud, or obtain the map information from the first terminal; the second terminal transforms the second coordinate system of the second terminal to the cloud storage Under the initial coordinate system corresponding to the map information of, or transformed to the initial coordinate system corresponding to the map information obtained from the first terminal; or, the initial coordinate system corresponding to the map information stored in the cloud or obtained from the first terminal
  • the initial coordinate system corresponding to the map information is transformed to the second coordinate system of the second terminal itself; the initial coordinate system is used to locate the first terminal and the second terminal when the map information is in a shared state
  • the positional relationship If multiple terminals move and locate in a shared map, that is, multiple terminals share a map in the same coordinate system (referred to as a shared map), it can lay a foundation for realizing accurate positioning between multiple terminals.
  • Fig. 1 shows a flowchart of a coordinate system alignment method according to an embodiment of the present disclosure.
  • the coordinate system alignment method is applied to a coordinate system alignment device.
  • the coordinate system alignment device can be executed by a terminal device or a server or other processing equipment.
  • the terminal device may be a user equipment (UE, User Equipment), mobile device, cellular phone, cordless phone, personal digital assistant (PDA, Personal Digital Assistant), handheld device, computing device, vehicle-mounted device, wearable device, etc.
  • the coordinate system alignment method can be implemented by a processor calling computer-readable instructions stored in a memory. As shown in Figure 1, the process includes:
  • Step S101 The first terminal determines map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system.
  • the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • Step S102 The first terminal uploads the map information to the cloud.
  • step S103 when the second terminal triggers the alignment of the coordinate system, transform the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information stored in the cloud.
  • step S103 There are two possible implementation modes for the processing flow of step S103 as follows:
  • the second terminal does not establish a coordinate system, and directly uses the initial coordinate system as its own coordinate system after triggering the alignment of the coordinate system. After triggering the alignment of the coordinate system, the second terminal acquires the map information and anchor point information, and establishes map information based on its own second coordinate system according to the initial coordinate system. The second terminal sets anchor point information in the map information based on its own second coordinate system according to the interactive operation.
  • the second terminal establishes its own coordinate system and then triggers the coordinate system alignment process.
  • the second terminal triggers the alignment of the coordinate system, acquires map information and anchor point information, and the relative transformation relationship between the second terminal and the first terminal in the initial coordinate system.
  • the second terminal modifies its second coordinate system according to the relative transformation relationship, and establishes map information corrected based on the second coordinate system.
  • the second terminal sets anchor point information in the map information after the correction of the second coordinate system according to the interactive operation.
  • a terminal determines an initial coordinate system, uploads the map information generated by the first terminal to the cloud, and aligns all the SLAM coordinate systems corresponding to at least one other terminal to the cloud map information
  • the anchor points in the corresponding initial coordinate system and the SLAM coordinates corresponding to at least one other terminal are naturally registered in this initial coordinate system.
  • the local SLAM coordinate system is aligned to the cloud SLAM coordinate system.
  • the registration of the anchor point is to directly set the anchor point in the coordinate system, and no anchor point transformation is required during the sharing process.
  • FIG. 2 shows a flowchart of a coordinate system alignment method according to an embodiment of the present disclosure.
  • the coordinate system alignment method is applied to a coordinate system alignment device.
  • the coordinate system alignment device can be executed by a terminal device or a server or other processing equipment.
  • the terminal device may be a user equipment (UE, User Equipment), mobile device, cellular phone, cordless phone, personal digital assistant (PDA, Personal Digital Assistant), handheld device, computing device, vehicle-mounted device, wearable device, etc.
  • the coordinate system alignment method can be implemented by a processor calling computer-readable instructions stored in the memory. As shown in Figure 2, the process includes:
  • Step S201 The first terminal determines the map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system.
  • the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • Step S202 The first terminal uploads the map information to the cloud.
  • Step S203 When the second terminal triggers the alignment of the coordinate system, transform the initial coordinate system corresponding to the map information stored in the cloud to the second coordinate system of the second terminal itself.
  • step S203 may be implemented as follows:
  • the second terminal triggers the alignment of the coordinate system, aligns the initial coordinate system to the second coordinate system of the second terminal itself, and synchronously transforms the anchor point information based on the initial coordinate system to the second coordinate of the second terminal itself. Tie down. Specifically, the second terminal triggers the alignment of the coordinate system, obtains the pose of the second terminal in its own second coordinate system given by the second terminal, and obtains the position of the second terminal in the initial coordinate system obtained by the positioning unit. According to the pose, the relative transformation relationship from the initial coordinate system to the second terminal coordinate system is obtained based on the two poses.
  • the coordinate system is transformed (from the initial coordinate system to the coordinate system based on the second terminal), and the anchor point information in the initial coordinate system is synchronously transformed to the same transformation method (the relative transformation relationship) Based on the coordinate system of the second terminal.
  • a terminal determines an initial coordinate system and uploads the generated map information to the cloud. At least one anchor point is registered in this initial coordinate system.
  • the coordinate system is aligned, Align the initial coordinate system to the local SLAM coordinate system of the respective terminal, and then transform at least one anchor point to each local SLAM coordinate system. In other words, it is to align the cloud SLAM coordinate system to the local SLAM coordinate system.
  • the registration of the anchor point is to directly set the anchor point in the coordinate system, without the need to perform anchor point transformation, and only when sharing, the coordinate transformation is performed and shared according to the relative transformation relationship between the coordinate systems.
  • the positioning unit is used for positioning based on the shared map.
  • the global map data that contains at least one key frame of the image collected by the first terminal can be extracted from the global map data associated with the key frame.
  • Local map data obtain the current frame in the image collected by the second terminal; perform feature matching between the current frame and the local map data, and obtain the positioning result of the current frame according to the matching result; obtain the first frame according to the positioning result.
  • performing feature matching between the current frame and the local map data, and obtaining the positioning result of the current frame according to the matching result includes: performing feature point 2D feature matching between the current frame and at least one key frame in the local map data, Obtain the 2D feature matching results; from the 2D feature matching results, filter out the 2D feature matching results containing 3D information and extract 3D information; obtain the pose of the current frame according to the 3D information, and use the pose of the current frame as the positioning result.
  • 2D feature matching results containing 3D information referred to as screening results
  • the pose of the current frame can be obtained according to the screening results.
  • FIG. 3 shows a flowchart of a coordinate system alignment method according to an embodiment of the present disclosure.
  • the coordinate system alignment method is applied to a coordinate system alignment device.
  • the coordinate system alignment device can be executed by a terminal device or a server or other processing equipment.
  • the terminal device may be a user equipment (UE, User Equipment), mobile device, cellular phone, cordless phone, personal digital assistant (PDA, Personal Digital Assistant), handheld device, computing device, vehicle-mounted device, wearable device, etc.
  • the coordinate system alignment method can be implemented by a processor calling computer-readable instructions stored in a memory. As shown in Figure 3, the process includes:
  • Step S301 The first terminal determines the map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system.
  • the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • Step S302 When the second terminal triggers the coordinate system alignment, transform the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information obtained from the first terminal.
  • step S302 has the following two possible implementation modes:
  • the second terminal does not establish a coordinate system, and directly uses the initial coordinate system as its own coordinate system after triggering the alignment of the coordinate system. After triggering the alignment of the coordinate system, the second terminal acquires the map information and anchor point information, and establishes map information based on its own second coordinate system according to the initial coordinate system. The second terminal sets anchor point information in the map information based on its own second coordinate system according to the interactive operation.
  • the second terminal establishes its own coordinate system and then triggers the coordinate system alignment process.
  • the second terminal triggers the alignment of the coordinate system, acquires map information and anchor point information, and the relative transformation relationship between the second terminal and the first terminal in the initial coordinate system.
  • the second terminal modifies its own second coordinate system according to the relative transformation relationship, and establishes map information corrected based on the second coordinate system.
  • the second terminal sets anchor point information in the map information after the correction of the second coordinate system according to the interactive operation.
  • a terminal determines an initial coordinate system, uploads the map information generated by the first terminal to the cloud, and aligns all the SLAM coordinate systems corresponding to at least one other terminal to the cloud map information
  • the anchor points in the corresponding initial coordinate system and the SLAM coordinates corresponding to at least one other terminal are naturally registered in this initial coordinate system.
  • the local SLAM coordinate system is aligned to the cloud SLAM coordinate system.
  • the registration of the anchor point is to directly set the anchor point in the coordinate system, and no anchor point transformation is required during the sharing process.
  • FIG. 4 shows a flowchart of a coordinate system alignment method according to an embodiment of the present disclosure.
  • the coordinate system alignment method is applied to a coordinate system alignment device.
  • the coordinate system alignment device can be executed by a terminal device or a server or other processing equipment.
  • the terminal device may be a user equipment (UE, User Equipment), mobile device, cellular phone, cordless phone, personal digital assistant (PDA, Personal Digital Assistant), handheld device, computing device, vehicle-mounted device, wearable device, etc.
  • the coordinate system alignment method can be implemented by a processor calling computer-readable instructions stored in a memory. As shown in Figure 4, the process includes:
  • Step S401 The first terminal determines the map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system.
  • the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • step S402 when the second terminal triggers the coordinate system alignment, the initial coordinate system corresponding to the map information obtained from the first terminal is transformed to the second coordinate system of the second terminal itself.
  • step S402 has the following possible implementation modes:
  • the second terminal triggers the alignment of the coordinate system, aligns the initial coordinate system to the second coordinate system of the second terminal itself, and synchronously transforms the anchor point information based on the initial coordinate system to the second coordinate of the second terminal itself. Tie down. Specifically, the second terminal triggers the alignment of the coordinate system, obtains the pose of the second terminal in its own second coordinate system given by the second terminal, and obtains the position of the second terminal in the initial coordinate system obtained by the positioning unit. According to the pose, the relative transformation relationship from the initial coordinate system to the second terminal coordinate system is obtained based on the two poses.
  • the coordinate system is transformed (from the initial coordinate system to the coordinate system based on the second terminal), and the anchor point information in the initial coordinate system is synchronously transformed to the same transformation method (the relative transformation relationship) Based on the coordinate system of the second terminal.
  • a terminal determines an initial coordinate system and uploads the generated map information to the cloud. At least one anchor point is registered in this initial coordinate system.
  • the coordinate system is aligned, Align the initial coordinate system to the local SLAM coordinate system of the respective terminal, and then transform at least one anchor point to each local SLAM coordinate system. In other words, it is to align the cloud SLAM coordinate system to the local SLAM coordinate system.
  • the registration of the anchor point is to directly set the anchor point in the coordinate system, without the need to perform anchor point transformation, and only when sharing, the coordinate transformation is performed and shared according to the relative transformation relationship between the coordinate systems.
  • the SLAM system is only an example, and the present disclosure is not limited to vision-based SLAM systems and visual SLAM algorithms.
  • the above-mentioned various embodiments are applicable to various system architectures, and are not limited to supporting a specific architecture, and are universal.
  • the method includes: the first terminal determines map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system, wherein the initial coordinate system is When the map information is in a shared state, the positional relationship between the first terminal and the second terminal is located.
  • the first terminal uploads the map information to the cloud.
  • the second terminal triggers the alignment of the coordinate system, the map information stored in the cloud is acquired; the second terminal transforms the second coordinate system of the second terminal itself to the initial corresponding to the map information stored in the cloud.
  • the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • determining the map information based on the first coordinate system by the first terminal includes: the first terminal performs image collection on the target scene based on the first coordinate system to obtain the image collection result; The first terminal obtains the map information according to the image collection result.
  • the second terminal transforming the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information stored in the cloud includes: The initial coordinate system establishes its own second coordinate system so that the second coordinate system is based on the initial coordinate; the second terminal establishes map information based on its own second coordinate system according to the map information.
  • the method further includes: the second terminal sets anchor point information in the map information based on the second coordinate system of the second terminal according to an interactive operation.
  • the second terminal transforming the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information stored in the cloud includes: the second terminal acquires the The relative transformation relationship between the second terminal and the first terminal in the initial coordinate system; the second terminal modifies its own second coordinate system according to the relative transformation relationship, so that the second coordinate system is corrected based on the initial coordinates; According to the map information, the second terminal establishes map information corrected based on its own second coordinate system.
  • the method further includes: the second terminal sets anchor point information in the map information corrected based on its own second coordinate system according to an interactive operation.
  • the method includes: the first terminal determines map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system, wherein the initial coordinate system is When the map information is in a shared state, the positional relationship between the first terminal and the second terminal is located.
  • the first terminal uploads the map information to the cloud.
  • the second terminal triggers the coordinate system alignment, the map information stored in the cloud is acquired; the second terminal transforms the initial coordinate system corresponding to the map information stored in the cloud to the second coordinate system of the second terminal itself Down;
  • the initial coordinate system is used to locate the position relationship between the first terminal and the second terminal when the map information is in a shared state.
  • determining the map information based on the first coordinate system by the first terminal includes: the first terminal performs image collection on the target scene based on the first coordinate system to obtain the image collection result; The first terminal obtains the map information according to the image collection result.
  • the second terminal transforms the initial coordinate system corresponding to the map information stored in the cloud to the second coordinate system of the second terminal itself, including: the second terminal according to the first coordinate system The relative transformation relationship between the poses of the two terminals in different coordinate systems is corrected, and the initial coordinate system is corrected so that the corrected initial coordinate system is based on the second coordinate system of the second terminal itself; the second terminal establishes according to the map information Map information corrected based on the initial coordinate system.
  • the anchor point is transformed in the same coordinate system as the above-mentioned coordinate system, that is, synchronously transformed to the coordinate system based on the second terminal according to the above-mentioned relative transformation relationship.
  • the second terminal transforms the initial coordinate
  • the anchor point information under the system is synchronized to the map information corrected based on the initial coordinate system according to the relative transformation relationship.
  • the method further includes: obtaining the first pose of the second terminal in the initial coordinate system (obtained by the positioning unit); obtaining the second terminal in its own second coordinate system The second pose (given by the second terminal); the relative transformation relationship is obtained according to the first pose and the second pose; the relative transformation relationship is used to characterize the initial coordinate system to the second terminal The relative transformation relationship of its own second coordinate system.
  • the method includes: the first terminal determines map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system, wherein the initial coordinate system is When the map information is in a shared state, the positional relationship between the first terminal and the second terminal is located.
  • the first terminal uploads the map information to the cloud.
  • the second terminal triggers the alignment of the coordinate system
  • the map information is obtained from the first terminal;
  • the second terminal transforms the second coordinate system of the second terminal into the map information obtained from the first terminal Under the corresponding initial coordinate system; the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • determining the map information based on the first coordinate system by the first terminal includes: the first terminal performs image collection on the target scene based on the first coordinate system to obtain the image collection result; The first terminal obtains the map information according to the image collection result.
  • the second terminal transforms the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information obtained from the first terminal, including: the second The terminal establishes its own second coordinate system according to the initial coordinate system, so that the second coordinate system is based on the initial coordinate; the second terminal establishes map information based on the own second coordinate system according to the map information.
  • the method further includes: the second terminal sets anchor point information in the map information based on the second coordinate system of the second terminal according to an interactive operation.
  • the second terminal transforms the second coordinate system of the second terminal itself to the initial coordinate system corresponding to the map information obtained from the first terminal, including: the second The terminal obtains the relative transformation relationship between the second terminal and the first terminal in the initial coordinate system; the second terminal modifies its own second coordinate system according to the relative transformation relationship, so that the second coordinate system is corrected based on the initial Under coordinates; the second terminal establishes map information corrected based on its own second coordinate system according to the map information.
  • the method further includes: the second terminal sets anchor point information in the map information corrected based on its own second coordinate system according to an interactive operation.
  • the method includes: the first terminal determines map information based on the first coordinate system, and uses the first coordinate system as the initial coordinate system, wherein the initial coordinate system is When the map information is in a shared state, the positional relationship between the first terminal and the second terminal is located.
  • the first terminal uploads the map information to the cloud.
  • the second terminal triggers the alignment of the coordinate system
  • the map information is obtained from the first terminal;
  • the second terminal transforms the initial coordinate system corresponding to the map information obtained from the first terminal to the second terminal's own In the second coordinate system; the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • determining the map information based on the first coordinate system by the first terminal includes: the first terminal performs image collection on the target scene based on the first coordinate system to obtain the image collection result; The first terminal obtains the map information according to the image collection result.
  • the second terminal transforms the initial coordinate system corresponding to the map information obtained from the first terminal to the second coordinate system of the second terminal itself, including: the second terminal according to The relative transformation relationship of the second terminal's pose in different coordinate systems is corrected, and the initial coordinate system is corrected so that the initial coordinate system is based on the second coordinate system of the second terminal itself; the relative transformation relationship includes the initial coordinate system The relative transformation relationship to the second coordinate system of the second terminal itself; the second terminal establishes map information corrected based on the initial coordinate system according to the map information.
  • the method further includes: the second terminal synchronizes the anchor point information in the initial coordinate system to the map information corrected based on the initial coordinate system according to the relative transformation relationship in.
  • the method further includes: obtaining the first pose of the second terminal in the initial coordinate system (obtained by the positioning module); obtaining the second terminal in its own second coordinate system The second pose of (given by the second terminal); According to the first pose and the second pose, the relative transformation relationship is obtained.
  • the first solution involves coordinate system transformation, and does not involve anchor point transformation.
  • the anchor point is automatically registered, and the next anchor point is set; there are two possibilities: one, the second terminal does not establish a coordinate system and triggers the coordinate After the system is aligned, the initial coordinate system is directly used as its own coordinate system; secondly, the second terminal establishes its own coordinate system and then triggers the coordinate system alignment processing.
  • the second solution (aligned from the cloud to the local) involves synchronous transformation of the coordinate system and the anchor point.
  • the third scheme is the interconnection and communication between the terminal and the terminal. This is different from solution one-two (the terminal communicates with the terminal through the central server in the cloud). Scheme 3 can reuse the contents of Scheme 1 and Scheme 2.
  • FIG. 5 shows a schematic diagram of the map uploading process to the cloud in the coordinate system alignment method according to an embodiment of the present disclosure.
  • the processing process includes: a terminal device scans a scene, constructs map information according to the scanned scene, and uploads the map information to the cloud for map information Sharing among multiple terminals.
  • the algorithm for building the map and the map data are replaceable. It can be a sparse point cloud constructed by a sparse SLAM based on vision, a dense point cloud reconstructed by a dense SLAM algorithm, or a non-visual algorithm such as a point collected by a radar device. Cloud map.
  • FIG. 6 shows a schematic diagram of the coordinate alignment process of scheme one in the coordinate system alignment method according to an embodiment of the present disclosure, and the processing process includes the following contents:
  • the terminal device scans the scene and generates map information. This is a replaceable module.
  • the specific replacement scheme depends on the device and the SLAM scheme. Normally, the visual scheme needs to contain at least one key frame information; for the non-visual scheme, the required map component is at least able to meet the corresponding
  • the minimum data requirement that the positioning algorithm can run is configured according to the data size required to execute the positioning algorithm.
  • the positioning pose [R c t c ].
  • the positioning is performed according to the local map information obtained in step 1 and the map information uploaded to the cloud according to the process of Figure 5 above.
  • the positioning algorithm depends on the SLAM scheme.
  • the usual method of vision-based schemes is to perform feature matching and establish 2D-3D matching to estimate the pose. Now there are also positioning methods that use deep learning to directly estimate the pose.
  • the positioning scheme is also very different. Taking the point cloud-based positioning scheme as an example, the common method is to use the ICP algorithm (in short, the ICP algorithm continuously searches for the nearest point through iteration and search. The definition A threshold and finally complete the integration of multiple views) to solve.
  • Step 2 obtains the positioning pose [R c t c ], where R c is a rotation matrix, indicating the orientation of the device 2 in the cloud coordinate system, and t c is a three-dimensional vector, indicating that the device 2 is in the cloud coordinate system s position.
  • step 1 itself contains the pose in the local coordinate system [R l t l ], where R l is a rotation matrix that represents the orientation of the device 2 in the local coordinate system, and t l is a three-dimensional vector that represents the device Second, the position in the local coordinate system can align the local coordinate system to the cloud coordinate system.
  • the relative transformation between the two coordinate systems can be defined as [dR dt], where dR is a rotation matrix, dt Is a three-dimensional vector, they represent the transformation matrix that aligns the cloud coordinate system to the local coordinate system.
  • dR is a rotation matrix
  • dt Is a three-dimensional vector
  • the device scans and uploads the map information to the cloud, and then applies this relative transformation [dR dt] to the coordinate system of the device two, the alignment of the device two coordinate system to the device one is completed.
  • X c is a point in the cloud coordinate system
  • X l is a point in the local coordinate system. Is the transpose of R c .
  • FIG. 7 shows a schematic diagram of the anchor point alignment process of Scheme 1 in the coordinate system alignment method according to an embodiment of the present disclosure, including: querying and acquiring anchor point information in a database, and transmitting the anchor point information back to the terminal. Since at least one terminal is aligned to the cloud coordinate system, and the anchor points are also in the cloud coordinate system, no other coordinate transformation is required in the process of anchor point sharing.
  • FIG. 8 shows a schematic diagram of the two-coordinate alignment process of the scheme in the coordinate system alignment method according to an embodiment of the present disclosure.
  • the processing process includes the following contents:
  • the terminal device scans the scene and generates map information. This is a replaceable module.
  • the specific replacement scheme depends on the device and the SLAM scheme. Normally, the visual scheme needs to contain at least one key frame information; for the non-visual scheme, the required map component is at least able to meet the corresponding The minimum data requirement that the positioning algorithm can run, and the pose of the current frame [R l t l ].
  • the positioning pose [R c t c ] is obtained, where R c is a rotation matrix, indicating the orientation of the device 2 in the cloud coordinate system, and t c is a three-dimensional vector, indicating that the device 2 is in The position in the cloud coordinate system.
  • the positioning is performed according to the local map information obtained in step 1 and the map information uploaded to the cloud according to the above-mentioned flow in Figure 5.
  • the positioning algorithm depends on the SLAM scheme.
  • the usual method of vision-based schemes is to perform feature matching and establish 2D-3D matching to estimate the pose. Now there are also positioning methods that use deep learning to directly estimate the pose.
  • the positioning scheme is also very different. Taking the point cloud-based positioning scheme as an example, the common method is to use the ICP algorithm (in short, the ICP algorithm continuously searches for the nearest point through iteration and search. The definition A threshold and finally complete the integration of multiple views) to solve.
  • Step 2 obtains the positioning pose [R c t c ], combined with step 1 itself contains the pose in the local coordinate system [R l t l ] (where R l is a rotation matrix, indicating that the device is in Orientation in the local coordinate system, t l is a three-dimensional vector, indicating the position of the device 2 in the local coordinate system), the cloud coordinate system can be aligned to the local coordinate system.
  • the transformation matrix between the two coordinate systems can be defined as [dR dt], where dR is a rotation matrix and dt is A three-dimensional vector, they represent the transformation matrix that aligns the local coordinate system to the cloud coordinate system.
  • dR is a rotation matrix
  • dt is A three-dimensional vector
  • X c is a point in the cloud coordinate system
  • X l is a point in the local coordinate system. Is the transpose of R l .
  • FIG. 9 shows a schematic diagram of the anchor point alignment process of solution two in the coordinate system alignment method according to an embodiment of the present disclosure, including the following content:
  • the queried anchor points are stored according to the cloud coordinate system, and the transformation formula for aligning the cloud coordinate system to the local coordinate system calculated in Figure 8 is needed to transform the cloud anchor point coordinates to the local coordinate system in the same way.
  • Solution 3 is different from the above solution. It does not depend on the cloud architecture, and directly interconnects between terminals to complete the coordinate system alignment.
  • the processing process is shown in FIG. 10, which shows the coordinate system alignment method according to an embodiment of the present disclosure.
  • a schematic diagram of the three-coordinate alignment process of the scheme including the following:
  • the transmission method can have multiple schemes, such as Bluetooth, LAN and so on.
  • the positioning pose [R c t c ] is obtained, where R c is a rotation matrix, indicating the orientation of the device 2 in the cloud coordinate system, and t c is a three-dimensional vector, indicating that the device 2 is in The position in the cloud coordinate system.
  • the positioning is performed according to the local map information obtained in step 1 and the map information uploaded to the cloud according to the above-mentioned flow in Figure 5.
  • the positioning algorithm depends on the SLAM scheme.
  • the usual method of vision-based schemes is to perform feature matching and establish 2D-3D matching to estimate the pose. Now there are also positioning methods that use deep learning to directly estimate the pose.
  • the positioning scheme is also very different. Taking the point cloud-based positioning scheme as an example, the common method is to use the ICP algorithm (in short, the ICP algorithm continuously searches for the nearest point through iteration and search. The definition A threshold and finally complete the integration of multiple views) to solve.
  • the alignment scheme can adopt step 3 in scheme one or step 3 in scheme two.
  • step 3 for the specific scheme, please refer to the above and will not be repeated.
  • Scheme 1 and Scheme 2 can be applied to a system architecture with a central server, and the shared map is stored in the cloud.
  • Solution 1 will have an overall transformation of the local coordinate system, which may have some impact during the operation of the local SLAM algorithm. It is suitable for systems where the local SLAM system can synchronize this overall transformation at a relatively small cost, or The cloud data needs to be downloaded to the local architecture for analysis.
  • a coordinate system transformation operation needs to be added, which will bring some extra calculations, but in general, this extra calculation amount is negligible.
  • Scheme 3 no longer depends on the role of the central server, no need to upload data to the cloud, and is suitable for a system architecture where terminal devices can be directly interconnected.
  • the player can scan a scene and add his favorite AR effect to the scene, such as drawing a smiling face, uploading and sharing the map with his friends, which is called the player two.
  • player two can see the smiling face drawn by player one after aligning the two coordinate systems through the positioning module, and then player two can also draw a smiling face next to the smiling face, and the newly generated smiling face is also Will be synchronized to player one's terminal.
  • this sharing can also be shared with more terminal devices.
  • the writing order of the steps does not mean a strict execution order but constitutes any limitation on the implementation process.
  • the specific execution order of each step should be based on its function and possibility.
  • the inner logic is determined.
  • the present disclosure also provides coordinate system alignment devices, electronic equipment, computer-readable storage media, and programs.
  • the foregoing can be used to implement any coordinate system alignment method provided in the present disclosure.
  • the corresponding technical solutions and descriptions and refer to the methods Part of the corresponding records will not be repeated.
  • the coordinate system alignment device of the embodiment of the present disclosure may be located in a terminal.
  • the applicable scenarios include interaction between multiple terminals and the cloud, or direct interaction between multiple terminals (not involving the cloud), as long as the first terminal and the second terminal can be connected
  • the alignment of the two terminals to the same coordinate system is within the protection scope of the present disclosure.
  • the device includes: an acquiring unit, configured to acquire map information stored in the cloud or acquiring map information from the first terminal when the coordinate system alignment is triggered by the second terminal;
  • the second coordinate system of the terminal itself is transformed to the initial coordinate system corresponding to the map information stored in the cloud or transformed to the initial coordinate system corresponding to the map information obtained from the first terminal; or, the map information stored in the cloud is transformed
  • the corresponding initial coordinate system or the initial coordinate system corresponding to the map information obtained from the first terminal is transformed into the second coordinate system of the second terminal itself; the initial coordinate system is used when the map information is in a shared state Locating the positional relationship between the first terminal and the second terminal. If multiple terminals move and locate in a shared map, that is, multiple terminals share a map in the same coordinate system (referred to as a shared map), it can lay a foundation for realizing accurate positioning between multiple terminals.
  • FIG. 11 shows a block diagram of a coordinate system alignment device according to an embodiment of the present disclosure.
  • the coordinate system alignment device in an embodiment of the present disclosure includes: a determining unit 31 for determining a coordinate system based on the first coordinate system For map information, the first coordinate system is used as an initial coordinate system, where the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state; a sending unit 32, used for uploading the map information to the cloud; the alignment unit 33, used for triggering the coordinate system alignment, transform the second coordinate system of the second terminal itself to the corresponding map information stored in the cloud Under the initial coordinate system.
  • the device includes: a determining unit, configured to determine map information based on a first coordinate system, and use the first coordinate system as an initial coordinate system, wherein the initial coordinate system is used for When the map information is in a shared state, locate the positional relationship between the first terminal and the second terminal; a sending unit, used to upload the map information to the cloud; an alignment unit, used to trigger the coordinate system alignment Next, transform the initial coordinate system corresponding to the map information stored in the cloud to the second coordinate system of the second terminal itself.
  • the device includes: a determining unit configured to determine map information based on a first coordinate system, and use the first coordinate system as an initial coordinate system, wherein the initial coordinate Is used to locate the positional relationship between the first terminal and the second terminal when the map information is in the shared state; the alignment unit is used to trigger the alignment of the coordinate system to set the second terminal of the second terminal itself The coordinate system is transformed to the initial coordinate system corresponding to the map information obtained from the first terminal.
  • the device includes: a determining unit configured to determine map information based on a first coordinate system, and use the first coordinate system as an initial coordinate system, wherein the initial coordinate Is used to locate the positional relationship between the first terminal and the second terminal when the map information is in the shared state; the alignment unit is used to trigger coordinate system alignment, the map information obtained from the first terminal The corresponding initial coordinate system is transformed to the second coordinate system of the second terminal itself.
  • the device includes: a determining unit configured to determine map information based on a first coordinate system, and use the first coordinate system as an initial coordinate system, wherein the initial coordinate It is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state; the sending unit is used to upload the map information to the cloud.
  • the determining unit is further configured to: perform image collection on the target scene based on the first coordinate system to obtain an image collection result; and obtain the map information according to the image collection result.
  • the device includes: an acquiring unit configured to acquire map information stored in the cloud when the coordinate system is aligned; an alignment unit configured to combine the second terminal's own The second coordinate system is transformed to the initial coordinate system corresponding to the map information stored in the cloud; the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state .
  • the alignment unit is further configured to: establish its own second coordinate system according to the initial coordinate system; according to the map information, establish map information based on its own second coordinate system.
  • the device further includes: an anchor point setting unit, configured to set anchor point information in the map information based on the second coordinate system of itself according to interactive operations.
  • the alignment unit is further configured to: obtain a relative transformation relationship of the second terminal with respect to the first terminal in the initial coordinate system; and modify its own second coordinate according to the relative transformation relationship System; According to the map information, establish a revised map information based on its own second coordinate system.
  • the device further includes: an anchor point setting unit, configured to set anchor point information in the map information corrected based on the second coordinate system of itself according to interactive operations.
  • the device includes: an acquisition unit configured to acquire map information stored in the cloud when the coordinate system alignment is triggered; an alignment unit configured to correspond to the map information stored in the cloud
  • the initial coordinate system of is transformed to the second coordinate system of the second terminal itself; the initial coordinate system is used to locate the positional relationship between the first terminal and the second terminal when the map information is in a shared state.
  • the alignment unit is further configured to: modify the initial coordinate system according to the relative transformation relationship of the second terminal's pose in different coordinate systems; Map information after coordinate system correction.
  • the device further includes: an anchor point transformation unit, configured to synchronize the anchor point information in the initial coordinate system to the corrected information based on the initial coordinate system according to the relative transformation relationship. Map information.
  • the device further includes: a first pose obtaining unit, configured to obtain the first pose of the second terminal in the initial coordinate system; a second pose obtaining unit, configured to obtain The second pose of the second terminal in its own second coordinate system; a processing unit, configured to obtain the relative transformation relationship according to the first pose and the second pose; the relative transformation relationship It is used to characterize the relative transformation relationship from the initial coordinate system to the second coordinate system of the second terminal itself.
  • the device includes: an acquiring unit configured to acquire map information from a first terminal when the coordinate system alignment is triggered; an alignment unit configured to connect the second terminal itself The second coordinate system is transformed to the initial coordinate system corresponding to the map information obtained from the first terminal; the initial coordinate system is used to locate the first terminal and the second terminal when the map information is in a shared state The location of the terminal.
  • the device includes: an acquisition unit configured to acquire map information from a first terminal when the coordinate system alignment is triggered; an alignment unit configured to acquire map information from the first terminal
  • the initial coordinate system corresponding to the map information is transformed to the second coordinate system of the second terminal itself; the initial coordinate system is used to locate the first terminal and the second terminal when the map information is in a shared state. Positional relationship.
  • the functions or modules contained in the device provided in the embodiments of the present disclosure can be used to execute the methods described in the above method embodiments.
  • the functions or modules contained in the device provided in the embodiments of the present disclosure can be used to execute the methods described in the above method embodiments.
  • the embodiment of the present disclosure also proposes a computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the above-mentioned coordinate system alignment method is realized.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium.
  • An embodiment of the present disclosure also proposes an electronic device, including: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to perform the above coordinate system alignment method.
  • the electronic device can be provided as a terminal, server or other form of device.
  • An embodiment of the present disclosure also provides a computer program, wherein the computer program includes computer-readable code, and when the computer-readable code runs in an electronic device, the processor in the electronic device executes the above The method of coordinate system alignment.
  • Fig. 12 is a block diagram showing an electronic device 800 according to an exemplary embodiment.
  • the electronic device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and other terminals.
  • the electronic device 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, and a sensor component 814 , And communication component 816.
  • the processing component 802 generally controls the overall operations of the electronic device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the electronic device 800. Examples of these data include instructions for any application or method operated on the electronic device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the electronic device 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the electronic device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the electronic device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the electronic device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the electronic device 800 with various aspects of state evaluation.
  • the sensor component 814 can detect the on/off status of the electronic device 800 and the relative positioning of the components.
  • the component is the display and the keypad of the electronic device 800.
  • the sensor component 814 can also detect the electronic device 800 or the electronic device 800.
  • the position of the component changes, the presence or absence of contact between the user and the electronic device 800, the orientation or acceleration/deceleration of the electronic device 800, and the temperature change of the electronic device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the electronic device 800 and other devices.
  • the electronic device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the electronic device 800 can be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field A programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field A programmable gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • a non-volatile computer-readable storage medium such as the memory 804 including computer program instructions, which can be executed by the processor 820 of the electronic device 800 to complete the foregoing method.
  • Fig. 13 is a block diagram showing an electronic device 900 according to an exemplary embodiment.
  • the electronic device 900 may be provided as a server.
  • the electronic device 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform the aforementioned methods.
  • the electronic device 900 may also include a power supply component 926 configured to perform power management of the electronic device 900, a wired or wireless network interface 950 configured to connect the electronic device 900 to a network, and an input output (I/O) interface 958 .
  • the electronic device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-volatile computer-readable storage medium such as the memory 932 including computer program instructions, which can be executed by the processing component 922 of the electronic device 900 to complete the foregoing method.
  • the present disclosure may be a system, method, and/or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used herein is not interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission medium (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or in one or more programming languages.
  • Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to access connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • the computer-readable program instructions are executed to realize various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine such that when these instructions are executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner, so that the computer-readable medium storing instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more functions for implementing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Electromagnetism (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

一种坐标系对齐的方法及装置、电子设备和存储介质;其中,该方法包括第一终端确定基于第一坐标系的地图信息,将第一坐标系作为初始坐标系(S101);第一终端将地图信息上传到云端(S102);第二终端触发坐标系对齐的情况下,将第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下(S103)。采用该方法能将多个终端对齐到同一个坐标系下。

Description

一种坐标系对齐的方法及装置、电子设备和存储介质
本公开要求在2019年06月28日提交中国专利局、申请号为201910577448.2、申请名称为“一种坐标系对齐的方法及装置、电子设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及定位技术领域,尤其涉及一种坐标系对齐的方法及装置、电子设备和存储介质。
背景技术
多个终端可以在各自的坐标体系中运动及进行自身定位。随着定位技术的发展,基于共享地图的定位技术有广阔的应用场景,比如,一个应用场景中,即时定位与地图构建(SLAM,simultaneous localization and mapping),是机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和地图进行自身定位,以实现机器人的自主定位和地图共享。
如果多个终端共享同一个地图,即多个终端在共享地图中运动及定位,若要实现多个终端间彼此精准的定位,需要将多个终端对齐到同一个坐标系下。然而,对于坐标系的对齐,相关技术中未存在有效的解决方案。
发明内容
本公开提出了一种坐标系对齐的技术方案。
根据本公开的一方面,提供了一种坐标系对齐的方法,所述方法包括:
第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
采用本公开,通过多个终端与云端的交互,或者多个终端间的直接交互(不涉及云端),将第一终端和第二终端对齐到同一个坐标系下,若多个终端在共享地图中运动及定位,即多个终端共享同一个坐标系下的地图(称为共享地图),可以为实现多个终端间彼此精准的定位奠定基础。
可能的实现方式中,所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下,包括:
所述第二终端根据所述初始坐标系建立自身的第二坐标系;
所述第二终端根据所述地图信息,建立基于自身第二坐标系的地图信息。
采用本公开,第二终端原本没建立自身的坐标系,是根据从云端获取地图信息对应的初始坐标系来建立自身的坐标系,从而,将第一终端和第二终端对齐到同一个坐标系下。
可能的实现方式中,所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下,包括:
所述第二终端获取在所述初始坐标系下第二终端相对于第一终端的相对变换关系;
所述第二终端根据所述相对变换关系修正自身的第二坐标系;
所述第二终端根据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
采用本公开,第二终端原本已经建立好自身的坐标系,是根据从云端获取地图信息对应的初始坐标系来变换自身的坐标系,从而,将第一终端和第二终端对齐到同一个坐标系下。
可能的实现方式中,所述第二终端将云端存储的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下,包括:
所述第二终端根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系;
所述第二终端根据所述地图信息,建立基于初始坐标系修正后的地图信息。
采用本公开,第二终端原本已经建立好自身的坐标系,是从云端获取地图信息对应的初始坐标系修正,以变换到自身的坐标系下,从而,将第一终端和第二终端对齐到同一个坐标系下。
可能的实现方式中,所述方法还包括:
获得所述第二终端在初始坐标系下的第一位姿;
获得所述第二终端在自身第二坐标系下的第二位姿;
根据所述第一位姿和所述第二位姿,得到所述相对变换关系;
所述相对变换关系用于表征初始坐标系到第二终端自身第二坐标系的相对变换关系。
采用本公开,根据第二终端在不同坐标系中的位姿变化得到相对变换关系,以根据相对变换关系将第一终端和第二终端对齐到同一个坐标系下。
根据本公开的一方面,提供了一种坐标系对齐的方法,所述方法包括:
第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;第一终端将所述地图信息上传到云端或者发送至所述第二终端,以便所述第二终端根据所述地图信息触发坐标系的对齐。
采用本公开,第一终端将地图信息上传到云端或发送到第二终端,将第一终端和第二终端对齐到同一个坐标系下,若多个终端在共享地图中运动及定位,即多个终端共享同一个坐标系下的地图(称为共享地图),可以为实现多个终端间彼此精准的定位奠定基础。
根据本公开的一方面,提供了一种坐标系对齐的方法,所述方法包括:
服务器获取第一终端上传的地图信息,所述地图信息基于所述第一终端的第一坐标系进行确定;
将所述地图信息发送至第二终端,以便所述第二终端根据所述地图信息触发坐标系的对齐。
采用本公开,服务器获取第一终端上传的地图信息,将地图信息发送给第二终端,以便第二终端根据地图信息触发坐标系的对齐,通过多个终端与云端的交互,将第一终端和第二终端对齐到同一个坐标系下,若多个终端在共享地图中运动及定位,即多个终端共享同一个坐标系下的地图(称为共享地图),可以为实现多个终端间彼此精准的定位奠定基础。
根据本公开的一方面,提供了一种坐标系对齐的装置,所述装置包括:
获取单元,用于第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;
对齐单元,用于将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;
所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
可能的实现方式中,其特征在于,所述对齐单元,进一步用于:
根据所述初始坐标系建立自身的第二坐标系;
根据所述地图信息,建立基于自身第二坐标系的地图信息。
可能的实现方式中,所述对齐单元,进一步用于:
获取在所述初始坐标系下第二终端相对于第一终端的相对变换关系;
根据所述相对变换关系修正自身的第二坐标系;
据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
可能的实现方式中,所述对齐单元,进一步用于:
根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系;
根据所述地图信息,建立基于初始坐标系修正后的地图信息。
可能的实现方式中,所述装置还包括:
第一位姿获得单元,用于获得所述第二终端在初始坐标系下的第一位姿;
第二位姿获得单元,用于获得所述第二终端在自身第二坐标系下的第二位姿;
处理单元,用于根据所述第一位姿和所述第二位姿,得到所述相对变换关系;
所述相对变换关系用于表征初始坐标系到第二终端自身第二坐标系的相对变换关系。
根据本公开的一方面,提供了一种坐标系对齐的装置,所述装置包括:
确定单元,用于确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;
发送单元,用于将所述地图信息上传到云端或者发送至所述第二终端,以便第二终端根据所述地图信息触发坐标系的对齐。
根据本公开的一方面,提供了一种坐标系对齐的装置,所述装置包括:
获取单元,用于获取第一终端上传的地图信息,所述地图信息基于所述第一终端的第一坐标系进行确定;
对齐单元,用于将所述地图信息发送至第二终端,以便所述第二终端根据所述地图信息触发坐标系的对齐。
根据本公开的一方面,提供了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行上述坐标系对齐的方法。
根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述坐标系对齐的方法。
根据本公开的一方面,提供了一种计算机程序,其中,所述计算机程序包括计算机可读代码,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行用于实现上述坐标系对齐的方法。
在本公开实施例中,第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。采用本公开,能将多个终端(第一终端和第二终端)对齐到同一个坐标系下,若多个终端在共享地图中运动及定位,即多个终端共享同一个坐标系下的地图(称为共享地图),可以为实现多个终端间彼此精准的定位奠定基础。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1示出根据本公开实施例的坐标系对齐的方法的流程图。
图2示出根据本公开实施例的坐标系对齐的方法的流程图。
图3示出根据本公开实施例的坐标系对齐的方法的流程图。
图4示出根据本公开实施例的坐标系对齐的方法的流程图。
图5示出根据本公开实施例的坐标系对齐方法中地图上传云端过程的示意图。
图6示出根据本公开实施例的坐标系对齐方法中方案一坐标对齐过程的示意图。
图7示出根据本公开实施例的坐标系对齐方法中方案一锚点对齐过程的示意图。
图8示出根据本公开实施例的坐标系对齐方法中方案二坐标对齐过程的示意图。
图9示出根据本公开实施例的坐标系对齐方法中方案二锚点对齐过程的示意图。
图10示出根据本公开实施例的坐标系对齐方法中方案三坐标对齐过程的示意图。
图11示出根据本公开实施例的坐标系对齐的装置的框图。
图12示出根据本公开实施例的电子设备的框图。
图13示出根据本公开实施例的电子设备的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
以即时定位与地图构建(SLAM,simultaneous localization and mapping)为例,SLAM问题可以描述为:机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和地图进行自身定位,同时在自身定位的基础上建造增量式地图,实现机器人的自主定位和导航。
云共享功能是增强现实,虚拟现实等应用中重要的功能模块,它是支持多用户协作的基础。以增强现实(AR,Augmented Reality)云为例,AR云可以将单点的AR体验串联起来,拷贝一个真实世界,用于AR信息的存储呈现和共享,也许这就是科幻电影描述的未来世界的样子。不单单如此,通过云共享功能,以SLAM技术为基础的多个终端就可以确定彼此的位姿,从而完成协同作业。
而云共享功能中需要完成坐标系的对齐。每个终端设备在运行SLAM算法时都会生成一个本地的坐标系,SLAM系统输出的位姿都是本地坐标系下的位姿,而这个位姿直接发送给其他设备是无法被解析和利用的。所以云共享中需要完成坐标系的对齐。
本公开以基于SLAM系统为例,是基于SLAM系统的坐标系对齐方案。包括如下三种方案,可以用于不同SLAM系统坐标系的对齐,这三种方案根据应用场景的不同可以分别适用于不同的系统架构下。为了便于说明,这里定义一个概念叫做锚点,在SLAM坐标系下,具有特殊意义的3D点称之为锚点。以AR应用为例,至少一种AR效果便是在锚点位置设定一个3D物体或者3D动画。
方案一:由一个终端确定一个初始的坐标系,并将生成的地图数据上传到云端,至少一个其他终端所对应的SLAM坐标系全部对齐到这个云地图所对应的初始坐标系下,至少一个的锚点自然也都注册到这个初始坐标系下。
方案二:由一个终端确定一个初始的坐标系,并将生成的地图数据上传到云端,至少一个的锚点都注册到这个初始的坐标系下,在坐标系对齐时,将初始坐标系对齐到各自终端的本地SLAM坐标系,然后将至少一个的锚点都分别变换到各个本地SLAM坐标系下。
方案三:不同终端互相通信,将本地坐标系及锚点的信息传送给其他终端,由各终端自行将其他设备的坐标系对齐到本地SLAM坐标系下,并将锚点注册到本地坐标系下。
需要指出的是;锚点注册的含义是在已有坐标系中可以直接设置锚点,不需要在共享过程中进行锚点变换。
本公开实施例的坐标系对齐的方法,适用场景包括通过多个终端与云端的交互,或者多个终端间的直接交互(不涉及云端),只要能实现将第一终端和第二终端对齐到同一个坐标系下,都在本公开的保护范围之内。第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。若多个终端在共享地图中运动及定位,即多个终端共享同一个坐标系下的地图(称为共享地图),可以为实现多个终端间彼此精准的定位奠定基础。
图1示出根据本公开实施例的坐标系对齐的方法流程图,该坐标系对齐的方法应用于坐标系对齐的装置,例如,坐标系对齐的装置可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(UE,User Equipment)、移动设备、蜂窝电话、无绳电话、个人数字处理(PDA,Personal Digital Assistant)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该坐标系对齐的方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图1所示,该流程包括:
步骤S101、第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系。
所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
步骤S102、第一终端将所述地图信息上传到云端。
步骤S103、第二终端触发坐标系对齐的情况下,将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下。
上述步骤S103的处理流程有如下两种可能的实现方式:
其一,第二终端不建立坐标系,触发坐标系对齐后直接用初始坐标系作为自身坐标系。第二终端触发坐标系的对齐后,获取所述地图信息及锚点信息,根据所述初始坐标系建立基于自身第二坐标系的地图信息。第二终端根据交互操作在基于自身第二坐标系的地图信息中,设置锚点信息。
其二,第二终端建立自己的坐标系再触发坐标系对齐处理。第二终端触发坐标系的对齐,获取地图信息及锚点信息,及在初始坐标系下第二终端相对于第一终端的相对变换关系。第二终端根据该相对变换关系修正自身的第二坐标系,建立基于第二坐标系修正后的地图信息。第二终端根据交互操作在所述第二坐标系修正后的地图信息中,设置锚点信息。
一示例中,以SLAM为例,由一个终端确定一个初始的坐标系,并将第一终端所生成的地图信息上传到云端,将至少一个其他终端所对应的SLAM坐标系全部对齐到云端地图信息所对应的初始坐标系下,且至少一个其他终端所对应的SLAM坐标中的锚点自然也都注册到这个初始坐标系下,换言之,是将本地SLAM坐标系对齐到云端SLAM坐标系中。其中,锚点的注册,是在坐标系中直接设置锚点,在共享过程中不需要进行锚点变换。
图2示出根据本公开实施例的坐标系对齐的方法流程图,该坐标系对齐的方法应用于坐标系对齐的装置,例如,坐标系对齐的装置可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(UE,User Equipment)、移动设备、蜂窝电话、无绳电话、个人数字处理(PDA,Personal Digital Assistant)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该坐标系对齐的方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图2所示,该流程包括:
步骤S201、第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系。
所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和所述第二终端的位置关系。
步骤S202、第一终端将所述地图信息上传到云端。
步骤S203、第二终端触发坐标系对齐的情况下,将云端存储的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下。
上述步骤S203的处理流程有如下可能实现方式:
第二终端触发坐标系的对齐,将所述初始坐标系对齐到第二终端自身的第二坐标系,将基于所述 初始坐标系的锚点信息也同步变换到第二终端自身的第二坐标系下。具体的,第二终端触发坐标系的对齐,获得由第二终端给出的第二终端在自身第二坐标系下的位姿,获得由定位单元求得的第二终端在初始坐标系下的位姿,根据这两个位姿求得初始坐标系到第二终端坐标系的相对变换关系。根据该相对变换关系进行坐标系变换(从初始坐标系变换到基于第二终端的坐标系下),且将初始坐标系下的锚点信息根据相同的变换方式(该相对变换关系)同步变换到基于第二终端的坐标系下。
一示例中,以SLAM为例,由一个终端确定一个初始的坐标系,并将生成的地图信息上传到云端,至少一个的锚点都注册到这个初始的坐标系下,在坐标系对齐时,将初始坐标系对齐到各自终端的本地SLAM坐标系,然后将至少一个的锚点都分别变换到各个本地SLAM坐标系下。换言之,是将云端SLAM坐标系对齐到本地SLAM坐标系中。其中,锚点的注册,是在坐标系中直接设置锚点,不需要进行锚点变换,只有在共享时才根据各坐标系之间的相对变换关系进行坐标转换并共享。
就定位单元而言,定位单元用于基于共享地图进行定位,一示例中,可以从第一终端所采集图像的包含至少一个关键帧的全局地图数据中,提取出与所述关键帧相关联的局部地图数据;获得第二终端所采集图像中的当前帧;将所述当前帧与所述局部地图数据进行特征匹配,根据匹配结果得到当前帧的定位结果;根据所述定位结果得到所述第一终端和所述第二终端共享所述全局地图数据情况下彼此的位置关系。其中,将所述当前帧与所述局部地图数据进行特征匹配,根据匹配结果得到当前帧的定位结果,包括:将当前帧与局部地图数据中的至少一个关键帧进行特征点2D的特征匹配,得到2D特征匹配结果;从2D特征匹配结果中,筛选出含有3D信息的2D特征匹配结果并提取出3D信息;根据3D信息得到当前帧的位姿,将当前帧的位姿作为定位结果。具体来说,进行特征点2D到2D的特征匹配后,可以筛选得到含有3D信息的2D特征匹配结果(简称筛选结果),根据该筛选结果可以求得当前帧的位姿。
图3示出根据本公开实施例的坐标系对齐的方法流程图,该坐标系对齐的方法应用于坐标系对齐的装置,例如,坐标系对齐的装置可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(UE,User Equipment)、移动设备、蜂窝电话、无绳电话、个人数字处理(PDA,Personal Digital Assistant)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该坐标系对齐的方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图3所示,该流程包括:
步骤S301、第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系。
所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
步骤S302、第二终端触发坐标系对齐的情况下,将所述第二终端自身的第二坐标系,变换到从第一终端获取的地图信息所对应的初始坐标系下。
本公开不涉及终端与云端的交互,而是在多个终端间互联并进行通信,不依赖于云端。上述步骤S302的处理流程有如下两种可能的实现方式:
其一,第二终端不建立坐标系,触发坐标系对齐后直接用初始坐标系作为自身坐标系。第二终端触发坐标系的对齐后,获取所述地图信息及锚点信息,根据所述初始坐标系建立基于自身第二坐标系的地图信息。第二终端根据交互操作在基于自身第二坐标系的地图信息中,设置锚点信息。
其二,第二终端建立自己的坐标系再触发坐标系对齐处理。第二终端触发坐标系的对齐,获取地图信息及锚点信息,及在初始坐标系下第二终端相对于第一终端的相对变换关系。第二终端根据该相对变换关系修正自身的第二坐标系,建立基于第二坐标系修正后的地图信息。第二终端根据交互操作在所述第二坐标系修正后的地图信息中,设置锚点信息。
一示例中,以SLAM为例,由一个终端确定一个初始的坐标系,并将第一终端所生成的地图信息上传到云端,将至少一个其他终端所对应的SLAM坐标系全部对齐到云端地图信息所对应的初始坐标系下,且至少一个其他终端所对应的SLAM坐标中的锚点自然也都注册到这个初始坐标系下,换言之,是将本地SLAM坐标系对齐到云端SLAM坐标系中。其中,锚点的注册,是在坐标系中直接设置锚点,在共享过程中不需要进行锚点变换。
图4示出根据本公开实施例的坐标系对齐的方法流程图,该坐标系对齐的方法应用于坐标系对齐的装置,例如,坐标系对齐的装置可以由终端设备或服务器或其它处理设备执行,其中,终端设备可以为用户设备(UE,User Equipment)、移动设备、蜂窝电话、无绳电话、个人数字处理(PDA,Personal Digital Assistant)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该坐标系对齐的方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图4所示,该流程包括:
步骤S401、第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系。
其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
步骤S402、第二终端触发坐标系对齐的情况下,将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下。
本公开不涉及终端与云端的交互,而是在多个终端间互联并进行通信,不依赖于云端。上述步骤S402的处理流程有如下可能实现方式:
第二终端触发坐标系的对齐,将所述初始坐标系对齐到第二终端自身的第二坐标系,将基于所述初始坐标系的锚点信息也同步变换到第二终端自身的第二坐标系下。具体的,第二终端触发坐标系的对齐,获得由第二终端给出的第二终端在自身第二坐标系下的位姿,获得由定位单元求得的第二终端在初始坐标系下的位姿,根据这两个位姿求得初始坐标系到第二终端坐标系的相对变换关系。根据该相对变换关系进行坐标系变换(从初始坐标系变换到基于第二终端的坐标系下),且将初始坐标系下的锚点信息根据相同的变换方式(该相对变换关系)同步变换到基于第二终端的坐标系下。
一示例中,以SLAM为例,由一个终端确定一个初始的坐标系,并将生成的地图信息上传到云端, 至少一个的锚点都注册到这个初始的坐标系下,在坐标系对齐时,将初始坐标系对齐到各自终端的本地SLAM坐标系,然后将至少一个的锚点都分别变换到各个本地SLAM坐标系下。换言之,是将云端SLAM坐标系对齐到本地SLAM坐标系中。其中,锚点的注册,是在坐标系中直接设置锚点,不需要进行锚点变换,只有在共享时才根据各坐标系之间的相对变换关系进行坐标转换并共享。
需要指出的是,SLAM系统仅仅为示例,本公开并不局限于基于视觉的SLAM系统和视觉SLAM算法。上述多种实施例适用于各种不同的系统架构上,不局限于支持某种特定架构,具备通用性。
根据本公开实施例的坐标系对齐的方法,所述方法包括:第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。第一终端将所述地图信息上传到云端。相应的,第二终端触发坐标系对齐的情况下,获取云端存储的地图信息;所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
本公开可能的实现方式中,所述第一终端确定基于第一坐标系的地图信息,包括:所述第一终端基于第一坐标系,对目标场景进行图像采集,得到图像采集结果;所述第一终端根据所述图像采集结果得到所述地图信息。
本公开可能的实现方式中,所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下,包括:所述第二终端根据所述初始坐标系建立自身的第二坐标系,使第二坐标系基于初始坐标下;所述第二终端根据所述地图信息,建立基于自身第二坐标系的地图信息。
本公开可能的实现方式中,所述方法还包括:所述第二终端根据交互操作,在所述基于自身第二坐标系的地图信息中,设置锚点信息。
本公开可能的实现方式中,所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下,包括:所述第二终端获取在所述初始坐标系下第二终端相对于第一终端的相对变换关系;所述第二终端根据所述相对变换关系修正自身的第二坐标系,使第二坐标系修正后基于初始坐标下;所述第二终端根据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
本公开可能的实现方式中,所述方法还包括:所述第二终端根据交互操作,在所述基于自身第二坐标系修正后的地图信息中,设置锚点信息。
根据本公开实施例的坐标系对齐的方法,所述方法包括:第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。第一终端将所述地图信息上传到云端。相应的,第二终端触发坐标系对齐的情况下,获取云端存储的地图信息;所述第二终端将云端存储的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状 态时,定位所述第一终端和第二终端的位置关系。
本公开可能的实现方式中,所述第一终端确定基于第一坐标系的地图信息,包括:所述第一终端基于第一坐标系,对目标场景进行图像采集,得到图像采集结果;所述第一终端根据所述图像采集结果得到所述地图信息。
本公开可能的实现方式中,所述第二终端将云端存储的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下,包括:所述第二终端根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系,使初始坐标系修正后基于第二终端自身的第二坐标系下;所述第二终端根据所述地图信息,建立基于初始坐标系修正后的地图信息。
本公开可能的实现方式中,将锚点以上述坐标系相同的变换,即根据上述相对变换关系同步变换到基于第二终端的坐标系下,具体的,所述第二终端将所述初始坐标系下的锚点信息,根据所述相对变换关系同步到所述基于初始坐标系修正后的地图信息中。
本公开可能的实现方式中,所述方法还包括:获得所述第二终端在初始坐标系下的第一位姿(定位单元求得);获得所述第二终端在自身第二坐标系下的第二位姿(第二终端给出);根据所述第一位姿和所述第二位姿,得到所述相对变换关系;所述相对变换关系用于表征初始坐标系到第二终端自身第二坐标系的相对变换关系。
根据本公开实施例的坐标系对齐的方法,所述方法包括:第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。第一终端将所述地图信息上传到云端。相应的,第二终端触发坐标系对齐的情况下,从第一终端获取地图信息;所述第二终端将所述第二终端自身的第二坐标系,变换到从第一终端获取的地图信息所对应的初始坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
本公开可能的实现方式中,所述第一终端确定基于第一坐标系的地图信息,包括:所述第一终端基于第一坐标系,对目标场景进行图像采集,得到图像采集结果;所述第一终端根据所述图像采集结果得到所述地图信息。
本公开可能的实现方式中,所述第二终端将所述第二终端自身的第二坐标系,变换到从第一终端获取的地图信息所对应的初始坐标系下,包括:所述第二终端根据所述初始坐标系建立自身的第二坐标系,使第二坐标系基于初始坐标下;所述第二终端根据所述地图信息,建立基于自身第二坐标系的地图信息。
本公开可能的实现方式中,所述方法还包括:所述第二终端根据交互操作,在所述基于自身第二坐标系的地图信息中,设置锚点信息。
本公开可能的实现方式中,所述第二终端将所述第二终端自身的第二坐标系,变换到从第一终端获取的地图信息所对应的初始坐标系下,包括:所述第二终端获取在所述初始坐标系下第二终端相对 于第一终端的相对变换关系;所述第二终端根据所述相对变换关系修正自身的第二坐标系,使第二坐标系修正后基于初始坐标下;所述第二终端根据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
本公开可能的实现方式中,所述方法还包括:所述第二终端根据交互操作,在所述基于自身第二坐标系修正后的地图信息中,设置锚点信息。
根据本公开实施例的坐标系对齐的方法,所述方法包括:第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。第一终端将所述地图信息上传到云端。相应的,第二终端触发坐标系对齐的情况下,从第一终端获取地图信息;所述第二终端将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
本公开可能的实现方式中,所述第一终端确定基于第一坐标系的地图信息,包括:所述第一终端基于第一坐标系,对目标场景进行图像采集,得到图像采集结果;所述第一终端根据所述图像采集结果得到所述地图信息。
本公开可能的实现方式中,所述第二终端将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下,包括:所述第二终端根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系,使初始坐标系修正后基于第二终端自身的第二坐标系下;所述相对变换关系包括初始坐标系到第二终端自身第二坐标系的相对变换关系;所述第二终端根据所述地图信息,建立基于初始坐标系修正后的地图信息。
本公开可能的实现方式中,所述方法还包括:所述第二终端将所述初始坐标系下的锚点信息,根据所述相对变换关系同步到所述基于初始坐标系修正后的地图信息中。
本公开可能的实现方式中,所述方法还包括:获得所述第二终端在初始坐标系下的第一位姿(定位模块求得);获得所述第二终端在自身第二坐标系下的第二位姿(第二终端给出);根据所述第一位姿和所述第二位姿,得到所述相对变换关系。
应用示例:
采用本公开进行坐标系变换的三种方案如下所示。其中,方案一(本地对齐到云端)涉及坐标系变换,不涉及锚点变换,锚点自动注册,设置下锚点就行;有两种可能:其一,第二终端不建立坐标系,触发坐标系对齐后直接用初始坐标系作为自身坐标系;其二,第二终端建立自己的坐标系再触发坐标系对齐处理。方案二(云端对齐到本地)是涉及坐标系和锚点同步变换。方案三是终端与终端间互联并通信。这区别于方案一-二(终端与终端间通过云端的中央服务器通信)。方案三可以复用方案一和方案二的内容。
方案一和方案二都需要由一个终端设备建立初始坐标系,并将该坐标系下的地图信息上传到云端,这一过程对于方案一和方案二来说是没有差别的,处理过程如图5所示。
图5示出根据本公开实施例的坐标系对齐方法中地图上传云端过程的示意图,处理过程包括:一个终端设备扫描场景,根据扫描的场景来构建地图信息,将地图信息上传到云端进行地图信息在多个终端间的共享。其中,构建地图的算法和地图数据是可替换的,可以是基于视觉的稀疏SLAM构建的稀疏点云,也可以是稠密SLAM算法重建的稠密点云,也可以是非视觉算法例如雷达设备采集到点云地图。
分别对三个方案进行介绍如下:
方案一:
图6示出根据本公开实施例的坐标系对齐方法中方案一坐标对齐过程的示意图,处理过程包括如下内容:
1.终端设备扫描场景,生成地图信息。这是一个可替换模块,具体的替换方案视设备以及SLAM方案而定,通常情况下对于视觉方案需要至少包含一个关键帧信息;对于非视觉方案而言,需要的地图构成元素是至少能满足相应的定位算法能够运行的最小数据需求,该最小数据需求根据执行该定位算法所需要的数据规模来配置。
2.基于共享地图的定位,得到定位的位姿[R c t c]。根据步骤1得到的本地的地图信息以及按上述图5流程上传到云端的地图信息,进行定位。同样的,定位算法视SLAM方案而定,基于视觉的方案通常的做法是进行特征匹配,建立2D-3D的匹配,从而估算位姿,现在也有使用深度学习的方法直接估算位姿的定位方法。基于非视觉的SLAM方案,定位方案也有很大区别,以基于点云的定位方案为例,常用的做法是使用ICP算法(简言之,ICP算法是通过迭代、寻找来不断搜索最近点,定义一个阀值并最终完成多视图的拼合)来求解。
3.步骤2得到定位的位姿[R c t c],其中R c是一个旋转矩阵,表示设备二在云端坐标系下的朝向,t c是一个三维向量,表示设备二在云端坐标系下的位置。结合步骤1中本身就包含了本地坐标系下的位姿[R l t l],其中R l是一个旋转矩阵,表示设备二在本地坐标系下的朝向,t l是一个三维向量,表示设备二在本地坐标系下的位置,就可以将本地坐标系对齐到云端坐标系。假设对应本地坐标系的点X l,经过对齐之后对应到云端坐标系中的点X c,则可以定义两个坐标系之间的相对变换为[dR dt],其中dR是一个旋转矩阵,dt是一个三维向量,它们表示将云端坐标系对齐到本地坐标系的变换矩阵,具体的数学定义如下如公式(1)表示:
X c=dR*X l+dt   (1)
可以推导得[dR dt]的求解过程如公式(2)-公式(3)所示:
Figure PCTCN2020080467-appb-000001
Figure PCTCN2020080467-appb-000002
设备一扫描并上传地图信息到云端,然后将这个相对变换[dR dt]应用到设备二的坐标系上,即完成了设备二坐标系到设备一的对齐。特别的,如果设备二的坐标系未建立,则可以直接使用定位的位姿[R c t c]来进行初始化,此时R l=R c,t l=t c,dR=I,
Figure PCTCN2020080467-appb-000003
其中I表示单位阵。
上述公式中,X c为云端坐标系中的点,X l为本地坐标系的点,
Figure PCTCN2020080467-appb-000004
为R c的转置。
完成坐标系对齐之后,还要完成的是锚点的对齐,处理过程如图7所示。图7示出根据本公开实施例的坐标系对齐方法中方案一锚点对齐过程的示意图,包括:在数据库查询并获取锚点信息,将锚点信息传回终端。由于至少一个终端都是对齐到云端坐标系,锚点也都是在云端坐标系下,因此在锚点进行共享的过程中不再需要其他坐标变换。
方案二:
图8示出根据本公开实施例的坐标系对齐方法中方案二坐标对齐过程的示意图,处理过程包括如下内容:
1.终端设备扫描场景,生成地图信息。这是一个可替换模块,具体的替换方案视设备以及SLAM方案而定,通常情况下对于视觉方案需要至少包含一个关键帧信息;对于非视觉方案而言,需要的地图构成元素是至少能满足相应的定位算法能够运行的最小数据需求,以及当前帧的位姿[R l t l]。
2.基于共享地图的定位,得到定位的位姿[R c t c],其中R c是一个旋转矩阵,表示设备二在云端坐标系下的朝向,t c是一个三维向量,表示设备二在云端坐标系下的位置。根据步骤1得到的本地的地图信息以及按上述图5流程上传到云端的地图信息,进行定位。同样的,定位算法视SLAM方案而定,基于视觉的方案通常的做法是进行特征匹配,建立2D-3D的匹配,从而估算位姿,现在也有使用深度学习的方法直接估算位姿的定位方法。基于非视觉的SLAM方案,定位方案也有很大区别,以基于点云的定位方案为例,常用的做法是使用ICP算法(简言之,ICP算法是通过迭代、寻找来不断搜索最近点,定义一个阀值并最终完成多视图的拼合)来求解。
3.步骤2得到定位的位姿[R c t c],结合步骤1中本身就包含了本地坐标系下的位姿[R l t l](其中R l是一个旋转矩阵,表示设备二在本地坐标系下的朝向,t l是一个三维向量,表示设备二在本地坐标系下的位置),就可以将云端坐标系对齐到本地坐标系。假设云端坐标系中的点X c经过对齐之后,对应到本地坐标系的点X l,则可以定义两个坐标系之间的变换矩阵为[dR dt],其中dR是一个旋转矩阵,dt是一个三维向量,它们表示将本地坐标系对齐到云端坐标系的变换矩阵,具体的数学定义如公式(4)所示:
X l=dR*X c+dt  (4)
可以推导得[dR dt]的求解过程如公式(5)-公式(6)所示:
Figure PCTCN2020080467-appb-000005
Figure PCTCN2020080467-appb-000006
上述公式中,X c为云端坐标系中的点,X l为本地坐标系的点,
Figure PCTCN2020080467-appb-000007
为R l的转置。
完成坐标系对齐之后,还要完成锚点的对齐,过程如图9所示,图9示出根据本公开实施例的坐标系对齐方法中方案二锚点对齐过程的示意图,包括如下内容:
1.查询之前保存好的锚点数据。
2.查询出来的锚点是按照云端坐标系存储的,需要使用图8求出的云端坐标系往本地坐标系对齐的变换公式,将云端的锚点坐标同样的变换到本地坐标系。
3.将对齐后的锚点传回终端,假设锚点在云端坐标系下的位姿为[R ac t ac],其中R ac是一个旋转矩阵,表示锚点在云端坐标系下的朝向,t ac是一个三维向量,表示锚点在云端坐标系下的位置。对齐到本地的坐标系后的位姿为[R al t al],其中R al是一个旋转矩阵,表示锚点在本地坐标系下的朝向,t al是一个三维向量,表示锚点在本地坐标系下的位置。则对应的变换公式如公式(7)-公式(8)所示:
R al=dR*R al  (7)
t al=dR*t ac+dt  (8)
方案三:
方案三区别于上述方案,可以不依赖于云端的架构,直接终端之间互联,完成坐标系的对齐,处理过程如图10所示,图10示出根据本公开实施例的坐标系对齐方法中方案三坐标对齐过程的示意图,包括如下内容:
1、设备一完成建图,建好的地图无须上传。
2、其他设备扫描场景,并将地图信息传送给设备一。对于地图信息的要求与之前两种方案的相同,即定位需要的最小地图需求数据量。传输的方法可以有多种方案,如蓝牙,局域网等。
3、基于共享地图的定位,得到定位的位姿[R c t c],其中R c是一个旋转矩阵,表示设备二在云端坐标系下的朝向,t c是一个三维向量,表示设备二在云端坐标系下的位置。根据步骤1得到的本地的地图信息以及按上述图5流程上传到云端的地图信息,进行定位。同样的,定位算法视SLAM方案而定,基于视觉的方案通常的做法是进行特征匹配,建立2D-3D的匹配,从而估算位姿,现在也有使用深度学习的方法直接估算位姿的定位方法。基于非视觉的SLAM方案,定位方案也有很大区别,以基于点云的定位方案为例,常用的做法是使用ICP算法(简言之,ICP算法是通过迭代、寻找来不断搜索最近点,定义一个阀值并最终完成多视图的拼合)来求解。
4、坐标系对齐。对齐方案既可以采用方案一中的步骤3,也可以采用方案二中的步骤3,具体方案参见上文,不做赘述。
方案一和方案二可以应用于有中央服务器的系统架构中,共享地图存储于云端。方案一中会对本地坐标系有一个整体的变换,这在本地SLAM算法运行过程中可能会带来一些影响,适用于本地SLAM系统能以比较小代价来同步这种整体变换的系统中,或者需要将云端数据下载到本地进行解析的架构中。方案二中在对每个锚点信息进行同步的时候,都需要加上一个坐标系变换的操作,这会带 来一些额外计算,但通常情况下这种额外计算量是可以忽略不计的。
方案三不再依赖于中央服务器的角色,无需把数据上传到云端,适用于终端设备可以直接互联的系统架构下。
采用本公开的一个场景中,玩家一可以对一个场景进行扫描,并在该场景中添加自己喜欢的AR效果,例如画一个笑脸,并将这个地图上传分享给他的小伙伴,称之为玩家二。玩家二到相同的场景下,通过定位模块然后将两个坐标系对齐之后,就可以看到玩家一画下的笑脸,然后玩家二也可以在笑脸旁也画上一个笑脸,新生成的笑脸也会同步到玩家一的终端上。当然这种共享也能够共享给更多的终端设备。
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。
此外,本公开还提供了坐标系对齐的装置、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种坐标系对齐的方法,相应技术方案和描述和参见方法部分的相应记载,不再赘述。
本公开实施例的坐标系对齐的装置,可以位于终端,适用场景包括通过多个终端与云端的交互,或者多个终端间的直接交互(不涉及云端),只要能实现将第一终端和第二终端对齐到同一个坐标系下,都在本公开的保护范围之内。该装置包括:获取单元,用于第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;对齐单元,用于第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。若多个终端在共享地图中运动及定位,即多个终端共享同一个坐标系下的地图(称为共享地图),可以为实现多个终端间彼此精准的定位奠定基础。
图11示出根据本公开实施例的坐标系对齐的装置的框图,如图11所示,本公开实施例的坐标系对齐的装置,包括:确定单元31,用于确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;发送单元32,用于将所述地图信息上传到云端;对齐单元33,用于触发坐标系对齐的情况下,将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下。
本公开可能的实现方式中,所述装置包括:确定单元,用于确定基于第一坐标系的地图信息,将 所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和所述第二终端的位置关系;发送单元,用于将所述地图信息上传到云端;对齐单元,用于触发坐标系对齐的情况下,将云端存储的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下。
根据本公开实施例的坐标系对齐的装置,所述装置包括:确定单元,用于确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;对齐单元,用于触发坐标系对齐的情况下,将所述第二终端自身的第二坐标系,变换到从第一终端获取的地图信息所对应的初始坐标系下。
根据本公开实施例的坐标系对齐的装置,所述装置包括:确定单元,用于确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;对齐单元,用于触发坐标系对齐的情况下,将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下。
根据本公开实施例的坐标系对齐的装置,所述装置包括:确定单元,用于确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;发送单元,用于将所述地图信息上传到云端。
本公开可能的实现方式中,所述确定单元,进一步用于:基于第一坐标系,对目标场景进行图像采集,得到图像采集结果;根据所述图像采集结果得到所述地图信息。
根据本公开实施例的坐标系对齐的装置,所述装置包括:获取单元,用于触发坐标系对齐的情况下,获取云端存储的地图信息;对齐单元,用于将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
本公开可能的实现方式中,所述对齐单元,进一步用于:根据所述初始坐标系建立自身的第二坐标系;根据所述地图信息,建立基于自身第二坐标系的地图信息。
本公开可能的实现方式中,所述装置还包括:锚点设置单元,用于根据交互操作,在所述基于自身第二坐标系的地图信息中,设置锚点信息。
本公开可能的实现方式中,所述对齐单元,进一步用于:获取在所述初始坐标系下第二终端相对于第一终端的相对变换关系;根据所述相对变换关系修正自身的第二坐标系;据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
本公开可能的实现方式中,所述装置还包括:锚点设置单元,用于根据交互操作,在所述基于自身第二坐标系修正后的地图信息中,设置锚点信息。
根据本公开实施例的坐标系对齐的装置,所述装置包括:获取单元,用于触发坐标系对齐的情况下,获取云端存储的地图信息;对齐单元,用于将云端存储的地图信息所对应的初始坐标系,变换到 第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
本公开可能的实现方式中,所述对齐单元,进一步用于:根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系;根据所述地图信息,建立基于初始坐标系修正后的地图信息。
本公开可能的实现方式中,所述装置还包括:锚点变换单元,用于将所述初始坐标系下的锚点信息,根据所述相对变换关系同步到所述基于初始坐标系修正后的地图信息中。
本公开可能的实现方式中,所述装置还包括:第一位姿获得单元,用于获得所述第二终端在初始坐标系下的第一位姿;第二位姿获得单元,用于获得所述第二终端在自身第二坐标系下的第二位姿;处理单元,用于根据所述第一位姿和所述第二位姿,得到所述相对变换关系;所述相对变换关系用于表征初始坐标系到第二终端自身第二坐标系的相对变换关系。
根据本公开实施例的坐标系对齐的装置,所述装置包括:获取单元,用于触发坐标系对齐的情况下,从第一终端获取地图信息;对齐单元,用于将所述第二终端自身的第二坐标系,变换到从第一终端获取的地图信息所对应的初始坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
根据本公开实施例的坐标系对齐的装置,所述装置包括:获取单元,用于触发坐标系对齐的情况下,从第一终端获取地图信息;对齐单元,用于将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述坐标系对齐的方法。计算机可读存储介质可以是非易失性计算机可读存储介质。
本公开实施例还提出一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述坐标系对齐的方法。
电子设备可以被提供为终端、服务器或其它形态的设备。
本公开实施例还提出一种计算机程序,其中,所述计算机程序包括计算机可读代码,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行用于实现上述坐标系对齐的方法。
图12是根据一示例性实施例示出的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图12,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806, 多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实 施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
图13是根据一示例性实施例示出的一种电子设备900的框图。例如,电子设备900可以被提供为一服务器。参照图13,电子设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法。
电子设备900还可以包括一个电源组件926被配置为执行电子设备900的电源管理,一个有线或无线网络接口950被配置为将电子设备900连接到网络,和一个输入输出(I/O)接口958。电子设备900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器932,上述计算机程序指令可由电子设备900的处理组件922执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、 以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实 现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (17)

  1. 一种坐标系对齐的方法,其特征在于,所述方法包括:
    第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;
    所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;
    所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
  2. 根据权利要求1所述的方法,其特征在于,所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下,包括:
    所述第二终端根据所述初始坐标系建立自身的第二坐标系;
    所述第二终端根据所述地图信息,建立基于自身第二坐标系的地图信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第二终端将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下,包括:
    所述第二终端获取在所述初始坐标系下第二终端相对于第一终端的相对变换关系;
    所述第二终端根据所述相对变换关系修正自身的第二坐标系;
    所述第二终端根据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
  4. 根据权利要求1所述的方法,其特征在于,所述第二终端将云端存储的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下,包括:
    所述第二终端根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系;
    所述第二终端根据所述地图信息,建立基于初始坐标系修正后的地图信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    获得所述第二终端在初始坐标系下的第一位姿;
    获得所述第二终端在自身第二坐标系下的第二位姿;
    根据所述第一位姿和所述第二位姿,得到所述相对变换关系;
    所述相对变换关系用于表征初始坐标系到第二终端自身第二坐标系的相对变换关系。
  6. 一种坐标系对齐的方法,其特征在于,所述方法包括:
    第一终端确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;第一终端将所述地图信息上传到云端或者发送至所述第二终端,以便所述第二终端根据所述地图信息触发坐标系的对齐。
  7. 一种坐标系对齐的方法,其特征在于,所述方法包括:
    服务器获取第一终端上传的地图信息,所述地图信息基于所述第一终端的第一坐标系进行确定;
    将所述地图信息发送至第二终端,以便所述第二终端根据所述地图信息触发坐标系的对齐。
  8. 一种坐标系对齐的装置,其特征在于,所述装置包括:
    获取单元,用于第二终端触发坐标系对齐的情况下,获取云端存储的地图信息,或者,从第一终端获取地图信息;
    对齐单元,用于将所述第二终端自身的第二坐标系,变换到云端存储的地图信息所对应的初始坐标系下或者变换到从第一终端获取的地图信息所对应的初始坐标系下;或者,将云端存储的地图信息所对应的初始坐标系或者将从第一终端获取的地图信息所对应的初始坐标系,变换到第二终端自身的第二坐标系下;
    所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系。
  9. 根据权利要求8所述的装置,其特征在于,所述对齐单元,进一步用于:
    根据所述初始坐标系建立自身的第二坐标系;
    根据所述地图信息,建立基于自身第二坐标系的地图信息。
  10. 根据权利要求8所述的装置,其特征在于,所述对齐单元,进一步用于:
    获取在所述初始坐标系下第二终端相对于第一终端的相对变换关系;
    根据所述相对变换关系修正自身的第二坐标系;
    据所述地图信息,建立基于自身第二坐标系修正后的地图信息。
  11. 根据权利要求8所述的装置,其特征在于,所述对齐单元,进一步用于:
    根据所述第二终端在不同坐标系位姿的相对变换关系,修正所述初始坐标系;
    根据所述地图信息,建立基于初始坐标系修正后的地图信息。
  12. 根据权利要求11所述的装置,其特征在于,所述装置还包括:
    第一位姿获得单元,用于获得所述第二终端在初始坐标系下的第一位姿;
    第二位姿获得单元,用于获得所述第二终端在自身第二坐标系下的第二位姿;
    处理单元,用于根据所述第一位姿和所述第二位姿,得到所述相对变换关系;
    所述相对变换关系用于表征初始坐标系到第二终端自身第二坐标系的相对变换关系。
  13. 一种坐标系对齐的装置,其特征在于,所述装置包括:
    确定单元,用于确定基于第一坐标系的地图信息,将所述第一坐标系作为初始坐标系,其中,所述初始坐标系用于在所述地图信息处于共享状态时,定位所述第一终端和第二终端的位置关系;
    发送单元,用于将所述地图信息上传到云端或者发送至所述第二终端,以便第二终端根据所述地图信息触发坐标系的对齐。
  14. 一种坐标系对齐的装置,其特征在于,所述装置包括:
    获取单元,用于获取第一终端上传的地图信息,所述地图信息基于所述第一终端的第一坐标系进行确定;
    对齐单元,用于将所述地图信息发送至第二终端,以便所述第二终端根据所述地图信息触发坐标系的对齐。
  15. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1-5、权利要求6、权利要求7中任意一项所述的方法。
  16. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1-5、权利要求6、权利要求7中任意一项所述的方法。
  17. 一种计算机程序,其中,所述计算机程序包括计算机可读代码,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行用于实现权利要求1-5、权利要求6、权利要求7中任意一项所述的方法。
PCT/CN2020/080467 2019-06-28 2020-03-20 一种坐标系对齐的方法及装置、电子设备和存储介质 WO2020258937A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021564707A JP2022530821A (ja) 2019-06-28 2020-03-20 座標系のアライメント方法及び装置、電子機器並びに記憶媒体
SG11202112243SA SG11202112243SA (en) 2019-06-28 2020-03-20 Method and device for aligning coordinate systems, electronic device and storage medium
US17/452,988 US20220049960A1 (en) 2019-06-28 2021-10-29 Method and device for aligning coordinate systems, electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910577448.2 2019-06-28
CN201910577448.2A CN112146645B (zh) 2019-06-28 2019-06-28 一种坐标系对齐的方法及装置、电子设备和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/452,988 Continuation US20220049960A1 (en) 2019-06-28 2021-10-29 Method and device for aligning coordinate systems, electronic device and storage medium

Publications (1)

Publication Number Publication Date
WO2020258937A1 true WO2020258937A1 (zh) 2020-12-30

Family

ID=73869484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080467 WO2020258937A1 (zh) 2019-06-28 2020-03-20 一种坐标系对齐的方法及装置、电子设备和存储介质

Country Status (6)

Country Link
US (1) US20220049960A1 (zh)
JP (1) JP2022530821A (zh)
CN (1) CN112146645B (zh)
SG (1) SG11202112243SA (zh)
TW (1) TWI767217B (zh)
WO (1) WO2020258937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087758A1 (zh) * 2021-11-16 2023-05-25 上海商汤智能科技有限公司 定位方法、定位装置、计算机可读存储介质和计算机程序产品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112950711A (zh) * 2021-02-25 2021-06-11 深圳市慧鲤科技有限公司 一种对象的控制方法、装置、电子设备及存储介质
CN113900517B (zh) * 2021-09-30 2022-12-20 北京百度网讯科技有限公司 线路导航方法和装置、电子设备、计算机可读介质
US11948234B1 (en) * 2023-08-30 2024-04-02 Illuscio, Inc. Systems and methods for dynamic enhancement of point cloud animations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100223031A1 (en) * 2009-02-27 2010-09-02 Regis Vincent Method and apparatus for mapping of multiple-floor structures
CN103185583A (zh) * 2011-12-30 2013-07-03 上海博泰悦臻电子设备制造有限公司 车辆位置分享方法、车辆位置分享系统
CN105444767A (zh) * 2006-02-24 2016-03-30 飞扬管理有限公司 由用户定义的私人地图
CN105547305A (zh) * 2015-12-04 2016-05-04 北京布科思科技有限公司 一种基于无线定位和激光地图匹配的位姿解算方法
CN109084789A (zh) * 2018-07-02 2018-12-25 四川斐讯信息技术有限公司 一种智能手表导航方法、智能手表及系统
CN109195675A (zh) * 2016-05-31 2019-01-11 微软技术许可有限责任公司 稀疏slam坐标系的共享

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471626B2 (ja) * 2010-03-09 2014-04-16 ソニー株式会社 情報処理装置、マップ更新方法、プログラム及び情報処理システム
KR101591579B1 (ko) * 2011-03-29 2016-02-18 퀄컴 인코포레이티드 증강 현실 시스템들에서 실세계 표면들에의 가상 이미지들의 앵커링
CN104048659B (zh) * 2014-06-16 2017-04-05 广州杰赛科技股份有限公司 地图坐标系的转换方法和系统
CN107223269B (zh) * 2016-12-29 2021-09-28 达闼机器人有限公司 三维场景定位方法和装置
CN106777302B (zh) * 2016-12-30 2020-10-09 深圳市华傲数据技术有限公司 空间地理坐标的转换方法及装置
CN108389264B (zh) * 2018-02-07 2022-03-29 杭州易现先进科技有限公司 坐标系统确定方法、装置、存储介质及电子设备
CN109087359B (zh) * 2018-08-30 2020-12-08 杭州易现先进科技有限公司 位姿确定方法、位姿确定装置、介质和计算设备
CN111723167B (zh) * 2019-05-10 2023-03-24 腾讯科技(深圳)有限公司 地图坐标转换方法、装置、可读存储介质和计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444767A (zh) * 2006-02-24 2016-03-30 飞扬管理有限公司 由用户定义的私人地图
US20100223031A1 (en) * 2009-02-27 2010-09-02 Regis Vincent Method and apparatus for mapping of multiple-floor structures
CN103185583A (zh) * 2011-12-30 2013-07-03 上海博泰悦臻电子设备制造有限公司 车辆位置分享方法、车辆位置分享系统
CN105547305A (zh) * 2015-12-04 2016-05-04 北京布科思科技有限公司 一种基于无线定位和激光地图匹配的位姿解算方法
CN109195675A (zh) * 2016-05-31 2019-01-11 微软技术许可有限责任公司 稀疏slam坐标系的共享
CN109084789A (zh) * 2018-07-02 2018-12-25 四川斐讯信息技术有限公司 一种智能手表导航方法、智能手表及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087758A1 (zh) * 2021-11-16 2023-05-25 上海商汤智能科技有限公司 定位方法、定位装置、计算机可读存储介质和计算机程序产品

Also Published As

Publication number Publication date
US20220049960A1 (en) 2022-02-17
CN112146645A (zh) 2020-12-29
JP2022530821A (ja) 2022-07-01
SG11202112243SA (en) 2021-12-30
CN112146645B (zh) 2022-07-22
TW202102026A (zh) 2021-01-01
TWI767217B (zh) 2022-06-11

Similar Documents

Publication Publication Date Title
WO2020258937A1 (zh) 一种坐标系对齐的方法及装置、电子设备和存储介质
US9953243B2 (en) Electronic device localization based on imagery
WO2022043741A1 (zh) 网络训练、行人重识别方法及装置、存储介质、计算机程序
WO2021035833A1 (zh) 姿态预测方法、模型训练方法及装置
US20210158560A1 (en) Method and device for obtaining localization information and storage medium
WO2023084323A1 (zh) 对象检测方法及装置、电子设备和存储介质
US11776151B2 (en) Method for displaying virtual object and electronic device
CN112432637B (zh) 定位方法及装置、电子设备和存储介质
CN111563138B (zh) 定位方法及装置、电子设备和存储介质
WO2022134475A1 (zh) 点云地图构建方法及装置、电子设备、存储介质和程序
WO2022017140A1 (zh) 目标检测方法及装置、电子设备和存储介质
WO2022151686A1 (zh) 场景图像展示方法、装置、设备、存储介质、程序及产品
WO2022110785A1 (zh) 定位方法及装置、电子设备、存储介质、计算机程序产品、计算机程序
CN112767541A (zh) 三维重建方法及装置、电子设备和存储介质
CN110673732A (zh) 场景共享方法及装置、系统、电子设备和存储介质
CN112700468A (zh) 位姿确定方法及装置、电子设备和存储介质
WO2022237071A1 (zh) 定位方法及装置、电子设备、存储介质和计算机程序
CN112948411A (zh) 位姿数据的处理方法及接口、装置、系统、设备和介质
CN112683262A (zh) 定位方法及装置、电子设备和存储介质
WO2020258936A1 (zh) 一种基于共享地图的定位方法及装置、电子设备和存储介质
US20210383580A1 (en) Method, apparatus and system for anchor sharing, electronic device and storage medium
CN112837361A (zh) 一种深度估计方法及装置、电子设备和存储介质
CN117528396A (zh) 追踪方法、装置、终端及存储介质
CN117974772A (zh) 视觉重定位方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832171

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20832171

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20832171

Country of ref document: EP

Kind code of ref document: A1