WO2020258888A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2020258888A1
WO2020258888A1 PCT/CN2020/075006 CN2020075006W WO2020258888A1 WO 2020258888 A1 WO2020258888 A1 WO 2020258888A1 CN 2020075006 W CN2020075006 W CN 2020075006W WO 2020258888 A1 WO2020258888 A1 WO 2020258888A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display panel
auxiliary electrode
layer
opening
Prior art date
Application number
PCT/CN2020/075006
Other languages
English (en)
French (fr)
Inventor
朱超
董正逵
蔡伟民
朱翩
徐品全
范文志
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020258888A1 publication Critical patent/WO2020258888A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the embodiments of the present application relate to the field of display technology, for example, to a display panel and a display device.
  • the size of the display panel gradually increases, the design difficulty of the display panel gradually increases, and the user's requirements for the uniformity of the display panel display are getting higher and higher.
  • an auxiliary cathode is arranged to be electrically connected to the cathode, and the light-emitting function layer of the organic light-emitting structure is removed by laser drilling technology so that the cathode is electrically connected to the auxiliary cathode.
  • the laser perforation technology has a problem of poor accuracy, which leads to a decrease in the aperture ratio of the display panel and the life span of the organic light emitting device, which affects the display effect of the display panel.
  • the present application provides a display panel and a display device, which not only improve the display uniformity of the display panel, but also help increase the aperture ratio of the display panel.
  • the embodiment of the present application provides a display panel, including:
  • a pixel definition layer located on the substrate, the pixel definition layer being located on a side of the auxiliary electrode away from the substrate;
  • a number of sub-pixel structures located on the substrate including a first electrode, the first electrode is located on the side of the pixel definition layer away from the substrate, the pixel definition layer is provided with Openings located between adjacent sub-pixel structures, the auxiliary electrodes are arranged corresponding to the openings, and each opening exposes the auxiliary electrode corresponding to the opening;
  • each conductive structure is located between the first electrode and the corresponding auxiliary electrode, and the first electrode is electrically connected to the auxiliary electrode through the conductive structure Connected, each conductive structure covers at least part of the sidewall of the opening where the auxiliary electrode corresponding to the conductive structure is located.
  • An embodiment of the present application also provides a display device, including the display panel described in the embodiment of the present application.
  • the embodiment of the present invention provides a display panel and a display device.
  • the display panel includes a substrate; a plurality of auxiliary electrodes on the substrate; a pixel definition layer on the substrate, and the pixel definition layer is located on the auxiliary electrode away from the substrate.
  • the auxiliary electrode is arranged corresponding to the opening and each opening exposes the auxiliary electrode corresponding to the opening.
  • the display panel also includes a number of conductive structures. The conductive structure and the auxiliary electrode are arranged correspondingly.
  • Each conductive structure is located between the first electrode and the corresponding auxiliary electrode. Between the electrodes, the first electrode is electrically connected to the auxiliary electrode through a conductive structure, and each conductive structure covers at least part of the sidewall of the opening where the auxiliary electrode corresponding to the conductive structure is located, which improves the display uniformity of the display panel and is beneficial to improve the display The opening ratio of the panel.
  • FIG. 1 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the application
  • FIG. 2 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic top view of the structure of an auxiliary electrode provided by an embodiment of the application.
  • FIG. 5 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • FIG. 6 is a schematic top view of a first metal structure provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • an auxiliary cathode can be arranged under the cathode, and the light-emitting function layer of the organic light-emitting structure corresponding to the auxiliary cathode position can be removed by laser drilling technology, so that the cathode is electrically connected to the auxiliary cathode, and the auxiliary cathode is used to increase the setting
  • the cross-sectional area of the structure for transmitting the cathode signal is used to reduce the resistance of the structure for transmitting the cathode signal, thereby improving the uniformity of cathode signal transmission and improving the display uniformity of the display panel.
  • the position of the laser perforation is located between adjacent sub-pixel structures. Due to the poor accuracy of the laser perforation technology, the laser perforation to form via holes may encroach on the openings of the sub-pixel structure during the laser perforation process.
  • the area reduces the aperture ratio of the display panel, reduces the life span of the organic light-emitting device, and affects the display effect of the display panel.
  • An embodiment of the present application provides a display panel, including: a substrate; a plurality of auxiliary electrodes on the substrate; a pixel definition layer on the substrate, the pixel definition layer is located far from the auxiliary electrode One side of the substrate; a number of sub-pixel structures located on the substrate, the sub-pixel structure includes a first electrode, the first electrode is located on the side of the pixel definition layer away from the substrate ,
  • the pixel definition layer is provided with openings between adjacent sub-pixel structures, the auxiliary electrodes are provided corresponding to the openings, and each opening exposes the auxiliary electrode corresponding to the opening; and a number of conductive structures, so
  • the conductive structure is arranged corresponding to the auxiliary electrode, each conductive structure is located between the first electrode and the corresponding auxiliary electrode, the first electrode is electrically connected to the auxiliary electrode through the conductive structure, and each conductive structure
  • the structure covers at least part of the sidewall of the opening where the auxiliary electrode corresponding to the conductive structure is located.
  • the display panel provided by the embodiments of the present application uses auxiliary electrodes and a conductive structure to reduce the resistance of the structure configured to transmit cathode signals, which is beneficial to improve the uniformity of cathode signal transmission, and while improving the display uniformity of the display panel, the conductive structure
  • the setting of is beneficial to reduce the area of the opening provided in the region between adjacent sub-pixel structures, thereby increasing the aperture ratio of the display panel.
  • electrical contact points can be provided on the first metal layer on the side of the first electrode close to the substrate. At least two auxiliary electrodes are connected through one electrical contact point, which increases the current formed by the structure configured to transmit cathode signals.
  • the channel reduces the resistance of the structure configured to transmit the cathode signal, and improves the uniformity of the cathode signal transmission.
  • FIG. 1 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the application (in order to reflect the relative position relationship between multiple structures and the characteristics of each structure, a perspective effect is added to FIG. 1)
  • FIG. 2 is the application
  • the embodiment provides a schematic cross-sectional structure diagram of a display panel.
  • the display panel includes a substrate 1 and a plurality of auxiliary electrodes 2 on the substrate 1, a pixel definition layer 3 and a first electrode 41.
  • the pixel definition layer 3 is located on the side of the auxiliary electrode 2 away from the substrate 1.
  • the first electrode 41 is located on the side of the pixel defining layer 3 away from the substrate 1, that is, the pixel defining layer 3 is formed after the auxiliary electrode 2 is formed, and the first electrode 41 is formed after the pixel defining layer 3 is formed.
  • the display panel includes a plurality of sub-pixel structures 4 configured to emit light.
  • the pixel defining layer 3 is provided with a plurality of openings 5 corresponding to the area between the adjacent sub-pixel structures 4, and the auxiliary electrode 2 is provided corresponding to the opening 5, and each opening 5 is provided with an auxiliary electrode 2 corresponding to each opening 5 The auxiliary electrode 2 corresponding to the opening 5 is exposed.
  • the display panel also includes a plurality of conductive structures 6, and the conductive structures 6 are arranged corresponding to the auxiliary electrodes 2.
  • Each conductive structure 6 is located between the first electrode 41 and the auxiliary electrode 2 corresponding to the conductive structure 6.
  • the first electrode 41 is electrically connected to the auxiliary electrode 2 through the corresponding conductive structure 6.
  • Each conductive structure 6 covers at least a part of the sidewall 51 of the opening 5 where the auxiliary electrode 2 corresponding to the conductive structure 6 is located.
  • FIG. 2 exemplarily shows that the conductive structure 6 covers a part of the sidewall 51 of the opening 5.
  • Figures 1 and 2 only exemplarily show the arrangement of the sub-pixel structures 4, the embodiment of the present application does not limit the arrangement of the sub-pixel structures 4, and it is ensured that the openings 5 are arranged between adjacent sub-pixel structures 4 Between areas.
  • the material constituting the conductive structure 6 may be, for example, indium tin oxide (ITO) and silver (Ag).
  • ITO indium tin oxide
  • Ag silver
  • the embodiment of the present application does not limit the material constituting the conductive structure 6 as long as the conductive structure 6 is conductive.
  • the first electrode 41 is electrically connected to the auxiliary electrode 2 through the conductive structure 6.
  • the first electrode 41 may be the cathode of the sub-pixel structure 4, and both the auxiliary electrode 2 and the conductive structure 6 transmit cathode signals.
  • the arrangement of the auxiliary electrode 2 and the conductive structure 6 increases the cross-sectional area of the structure configured to transmit the cathode signal, reduces the resistance of the structure configured to transmit the cathode signal, and is beneficial to increase the voltage drop during the cathode signal transmission process and increase the cathode signal The uniformity of transmission further improves the display uniformity of the display panel.
  • the auxiliary electrode 2 is formed on the substrate 1, and then the pixel defining layer 3 is formed.
  • the light-emitting function layer 43 of the sub-pixel structure 4 is formed in the opening 5.
  • the electrical connection between the electrode 41 and the auxiliary electrode 2 requires a laser drilling process to remove part of the light-emitting function layer 43 in the opening 5 to expose the auxiliary electrode 2.
  • the opening 5 is located between the adjacent sub-pixel structures 4. The accuracy of the hole technology is poor.
  • the via hole formed by laser drilling may exceed the area of the opening 5, which may occupy the opening area 40 of the sub-pixel structure 4, making the sub-pixel structure 4, such as organic
  • the lifetime of the light emitting structure decreases, and the aperture ratio of the display panel decreases.
  • the offset area of the laser perforation of the light-emitting function layer 43 is only limited to the opening 5
  • the bottom 52 area that is, the area where the opening 5 exposes the auxiliary electrode 2, which places higher requirements on the accuracy of laser drilling.
  • the via hole formed by laser drilling exceeds the area of the opening 5, and the probability of invading the opening area 40 of the sub-pixel structure 4 is relatively high.
  • the newly-added conductive structure 6 is provided to cover at least part of the sidewall 51 of the corresponding opening 5.
  • the via hole formed by laser drilling can expose at least part of the conductive structure 6 to realize the first electrode 41 and the auxiliary
  • the electrical connection of the electrode 2 causes the offset area of the laser drilling to extend to the sidewall 51 area of the opening 5, which increases the allowable offset area of the laser drilling and reduces the accuracy requirements of the laser drilling.
  • the offset accuracy of the laser drilling is 40 ⁇ m
  • the solution that the first electrode 41 is directly electrically connected to the auxiliary electrode 2 needs to ensure that the opening 5 exposes the area of the auxiliary electrode 2, that is, the diameter of the bottom 52 of the opening 5 is at least 40 ⁇ m
  • the covering diameter of the conductive structure 6 can be set to 40 ⁇ m, that is, the bottom 52 of the opening 5 and at least part of the sidewall 51 covered by the conductive structure 6
  • the sum of the diameters of the first electrode 41 and the auxiliary electrode 2 is 40 ⁇ m, so that the diameter of the area where the opening 5 exposes the auxiliary electrode 2 can be less than 40 ⁇ m, that is, for the same laser drilling accuracy, the opening required to realize the electrical connection between the first electrode 41 and the auxiliary electrode 2 is reduced 5 area.
  • a first metal layer may be provided on the side of the first electrode 41 close to the substrate 1 (not shown in FIGS. 1 and 2).
  • the first metal layer is provided with at least one electrical contact point through which at least two auxiliary electrodes 2 are connected. That is, in the film layer where the first electrode 41 is located, the auxiliary electrode 2 is electrically connected to the first electrode 41; in the film layer where the first electrode 41 is not located, the auxiliary electrode 2 passes through the film layer located in the first metal layer. Multiple electrical contact points are connected.
  • the current path formed by the first electrode 41 and the auxiliary electrode 2 is increased, that is, the current path formed by the structure configured to transmit the cathode signal is increased, the resistance of the structure configured to transmit the cathode signal is reduced, and the cathode is increased.
  • the uniformity of signal transmission further improves the uniformity of display of the display panel.
  • each conductive structure 6 can be set to extend beyond the opening 5 where the auxiliary electrode 2 corresponding to the conductive structure 6 is located, that is, each conductive structure 6 is set to cover the location where the auxiliary electrode 2 corresponding to the conductive structure 6 is located.
  • each conductive structure 6 is arranged to extend beyond the opening 5 where the auxiliary electrode 2 corresponding to the conductive structure 6 is located.
  • the offset precision of the laser drilling is 40 ⁇ m
  • the solution that the first electrode 41 is directly electrically connected to the auxiliary electrode 2 needs to ensure that the opening 5 exposes the area of the auxiliary electrode 2, that is, the bottom diameter of the opening 5 is at least 40 ⁇ m.
  • the covering diameter of the conductive structure 6 can be set to 40 ⁇ m, that is, the bottom 52 of the opening 5, the side walls 51, and the portion 53 outside the opening 5 covered by the conductive structure 6
  • the sum of the diameters is 40 ⁇ m; if the sum of the diameters of the side wall 51 and the part 53 covered by the conductive structure 6 outside the opening 5 is 20 ⁇ m, the diameter of the area where the opening 5 exposes the auxiliary electrode 2 is reduced to 20 ⁇ m, for the same
  • the laser drilling accuracy reduces the area of the opening 5 required to realize the electrical connection between the first electrode 41 and the auxiliary electrode 2.
  • the probability of the via hole formed by the laser drilling occupying the opening area 40 of the sub-pixel structure 4 is reduced, and the corresponding phase is reduced.
  • the area of the opening 5 provided in the region between the adjacent sub-pixel structures 4 further increases the aperture ratio of the display panel.
  • each sub-pixel structure 4 further includes a second electrode 42 located on the side of the first electrode 41 close to the substrate 1, and a second electrode 42 disposed between the first electrode 41 and the second electrode 42.
  • Luminescent function layer 43 located on the side of the first electrode 41 close to the substrate 1, and a second electrode 42 disposed between the first electrode 41 and the second electrode 42.
  • each sub-pixel structure 4 includes a second electrode 42 located on the side of the first electrode 4 close to the substrate 1.
  • the light-emitting function layer 43 is located between the first electrode 41 and the second electrode 42.
  • the light-emitting functional layer 43 may include a light-emitting material layer, and the light-emitting functional layer 43 may further include at least one of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • the pressure difference between the first electrode 41 and the second electrode 42 makes the holes provided by the second electrode 42 reach the luminescent material layer through the hole injection layer and the hole transport layer.
  • the electrons provided by the first electrode 41 reach the luminescent material layer through the electron injection layer and the electron transport layer.
  • the two carriers of electron and hole recombine in the light-emitting material layer, the excitons in the light-emitting material layer migrate from the excited state to the ground state to emit light, the sub-pixel structure 4 emits light, and the display panel realizes the display function.
  • the formation process of multiple structures in the display panel is as follows: firstly form the auxiliary electrode 2 and then form the pixel defining layer 3.
  • the light-emitting function layer 43 of the sub-pixel structure 4 When the light-emitting function layer 43 of the sub-pixel structure 4 is formed, light will be formed in the opening 5.
  • Function layer 43 In order to realize the electrical connection between the first electrode 41 and the auxiliary electrode 2, a laser drilling process needs to be used to remove part of the light-emitting function layer 43 in the opening 5 to expose the auxiliary electrode 2.
  • the light-emitting function layer 43 is provided to at least expose the conductive structure 6 to Laser drilling allows the maximum offset.
  • the via hole formed by laser drilling can expose at least part of the conductive structure 6 to realize the electrical connection between the first electrode 41 and the auxiliary electrode 2, so that the offset area of the laser drilling is the area where the entire conductive structure 6 is located.
  • the deviation area allowed by the laser drilling is reduced, the area of the opening 5 required to realize the electrical connection between the first electrode 41 and the auxiliary electrode 2 is reduced, and the resistance of the structure configured to transmit the cathode signal is reduced to improve the display of the display panel. Uniformity.
  • the probability that the via hole formed by the laser drilling invades the opening area 40 of the sub-pixel structure 4 is reduced, and the area of the opening 5 provided in the area between the adjacent sub-pixel structures 4 is reduced, thereby increasing the opening of the display panel. rate.
  • each sub-pixel structure 4 includes a second electrode 42 located on the side of the first electrode 41 close to the substrate 1.
  • a light-emitting function layer 43 is provided between the first electrode 41 and the second electrode 42.
  • the auxiliary electrode 2 may be provided, and the auxiliary electrode 2 and the second electrode 42 may be provided in the same layer.
  • a second electrode layer can be formed on the substrate 1, and the second electrode layer can be etched.
  • the second electrode 42 is formed corresponding to the region where the sub-pixel structure 4 is located, corresponding to between adjacent sub-pixel structures 4
  • the auxiliary electrode 2 is formed in the region to simplify the manufacturing process of the display panel. In addition, it is necessary to ensure that the second electrode 42 provided in the same layer is insulated from the auxiliary electrode 2 to prevent the first electrode 41 and the second electrode 42 of the sub-pixel structure 4 from being short-circuited, which will affect the normal display of the display panel.
  • FIG. 4 is a schematic top view of the structure of an auxiliary electrode provided by an embodiment of the application.
  • the auxiliary electrode 2 may be disposed on the first metal layer 7.
  • at least two auxiliary electrodes 2 are connected by electrical contact points.
  • the auxiliary electrode 2 is exemplarily arranged to form a grid-like structure, and two adjacent auxiliary electrodes 2 are arranged on the film layer where the auxiliary electrode 2 itself is located, that is, the first metal layer 7 is provided with electrical contact points.
  • the area between the adjacent sub-pixel structures 4 can be used to route around the position of the second electrode 42 of the sub-pixel structure 4 in the film layer where the auxiliary electrode 2 is located, so that the auxiliary electrode 2 forms a grid structure.
  • the auxiliary electrode 2 forms a grid-like structure with multiple current paths, increases the current paths formed by the cathode signal transmission structure, reduces the resistance of the cathode signal transmission structure, and improves the cathode signal transmission performance. Uniformity.
  • FIG. 5 is a schematic cross-sectional structure diagram of another display panel provided by an embodiment of the application.
  • the first metal layer 7 may be provided on the side of the plurality of auxiliary electrodes 2 away from the first electrode 41.
  • a planarization layer 70 is provided between the first metal layer 7 and the auxiliary electrode 2.
  • the first metal layer 7 is provided with electrical contact points through which at least two auxiliary electrodes 2 are connected.
  • One auxiliary electrode 21 can be connected to the metal structure 71 in the first metal layer 7 through a via hole penetrating the planarization layer 70
  • the other auxiliary electrode 22 can be connected to the metal structure 71 in the first metal layer 7 through a via hole penetrating the planarization layer 70.
  • 7 ⁇ Metal structure 72 7 ⁇ Metal structure 72.
  • the metal structure 71 and the metal structure 72 are electrically connected to the first metal layer 7, that is, an electrical contact point between the auxiliary electrode 21 and the auxiliary electrode 22 is formed on the first metal layer 7, thereby increasing the current path formed by the structure configured to transmit the cathode signal . Therefore, the resistance of the structure configured to transmit the cathode signal is reduced, and the uniformity of the cathode signal transmission is improved.
  • the arrangement of the metal structure 71 and the metal structure 72 also increases the cross-sectional area of the structure configured to transmit the cathode signal, reduces the resistance of the structure configured to transmit the cathode signal, improves the uniformity of the cathode signal transmission, and thereby improves the display The display uniformity of the panel.
  • the first metal layer 7 is provided with a first power signal line or a data signal line.
  • the first power signal line is configured to provide a positive voltage first power signal to the plurality of sub-pixel structures 4, and the first power signal can reach the anode of the organic light emitting structure.
  • the data signal line is configured to provide data signals to a plurality of sub-pixel structures 4, and each sub-pixel structure 4 adjusts its own light-emitting brightness according to the received data signal.
  • At least two electrical contact points corresponding to the auxiliary electrodes 2 can be formed on the film layer where the first power signal line is located or the film layer where the data signal line is located, that is, the metal structure 71 and the metal structure 72 are provided on the same layer as the first power signal line or made with The data signal lines are made in the same layer. While simplifying the display panel manufacturing process, the current path formed by the structure for transmitting the cathode signal is increased, and the cross-sectional area of the structure for transmitting the cathode signal is increased. The resistance of the materials of a power signal line and data signal line is small, thereby reducing the resistance of the structure configured to transmit the cathode signal, and improving the uniformity of the cathode signal transmission.
  • the first metal layer can also be provided with a first metal structure.
  • FIG. 6 is a schematic top view of a first metal structure provided by an embodiment of the application.
  • the first metal structure 8 may be a grid structure, and the first metal structure 8 and the auxiliary electrode 2 are electrically connected through a via hole penetrating the planarization layer 70.
  • the first metal structure 8 here may be a newly added metal layer, and the first metal structure 8 is also located on the side of the auxiliary electrode 2 away from the first electrode 41.
  • the grid-shaped first metal structure 8 increases the current path formed by the structure configured to transmit the cathode signal, so as to reduce the resistance of the structure configured to transmit the cathode signal and improve the uniformity of the cathode signal transmission.
  • the arrangement of the first metal structure 8 also increases the cross-sectional area of the structure for transmitting the cathode signal, reduces the resistance of the structure for transmitting the cathode signal, improves the uniformity of the cathode signal transmission, and further improves the display panel. The display uniformity.
  • the embodiment of the present application does not limit the shape of the grid-like structure formed by the first metal structure 8 and is not limited to the grid-like structure shown in FIG. 6 to ensure that the first metal structure 8 is a grid-like structure with multiple connection points. OK.
  • FIG. 7 is a schematic structural diagram of a display device provided in an embodiment of the present application.
  • the display device 20 includes the display panel 19 of the above embodiment. Therefore, the display device 20 provided in the embodiment of the present application also has the beneficial effects described in the above-mentioned embodiments, which will not be repeated here.
  • the display device 20 may be a mobile phone, or may be an electronic device such as a computer or a wearable device, and the embodiment of the present application does not limit the form of the display device.

Abstract

一种显示面板及显示装置,显示面板包括:衬底(1);位于所述衬底(1)上的若干辅助电极(2);位于所述衬底(1)上的像素定义层(3),所述像素定义层(3)位于所述辅助电极(2)的远离所述衬底(1)的一侧;位于所述衬底(1)上的若干子像素结构(4),所述子像素结构(4)包括第一电极(41),所述第一电极位(41)于所述像素定义层(3)的远离所述衬底(1)的一侧,所述像素定义层(3)设置有位于相邻的子像素结构(4)之间的开口(5),所述辅助电极(2)与所述开口(5)对应设置且每个开口(5)暴露出所述开口(5)对应的辅助电极(2);以及若干导电结构(6),所述导电结构(6)与所述辅助电极(2)对应设置,每个导电结构(6)位于所述第一电极(41)与对应的辅助电极(2)之间,所述第一电极(41)通过所述导电结构(6)与所述辅助电极(2)电连接,每个导电结构(6)至少覆盖与所述导电结构(6)对应的辅助电极(2)所在的开口的部分侧壁(51)。

Description

显示面板及显示装置
本申请要求在2019年06月26日提交中国专利局、申请号为201910563732.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如涉及一种显示面板及显示装置。
背景技术
随着显示技术的发展,显示面板的尺寸逐渐增加,显示面板的设计难度逐渐加大,用户对显示面板显示的均匀性的要求也越来越高。
为了提高显示面板的显示均匀性,设置辅助阴极与阴极电连接,利用激光打孔技术去除有机发光结构的发光功能层以使得阴极与辅助阴极电连接。但是激光打孔技术存在精度较差的问题,导致显示面板的开口率下降,有机发光器件的寿命下降,影响显示面板的显示效果。
发明内容
本申请提供一种显示面板及显示装置,在提高了显示面板的显示均匀性的同时,有利于提高显示面板的开口率。
本申请实施例提供了一种显示面板,包括:
衬底;
位于所述衬底上的若干辅助电极;
位于所述衬底上的像素定义层,所述像素定义层位于所述辅助电极的远离所述衬底的一侧;
位于所述衬底上的若干子像素结构,所述子像素结构包括第一电极,所述第一电极位于所述像素定义层的远离所述衬底的一侧,所述像素定义层设置有位于相邻的子像素结构之间的开口,所述辅助电极与所述开口对应设置且每个开口暴露出所述开口对应的辅助电极;以及
若干导电结构,所述导电结构与所述辅助电极对应设置,每个导电结构位于所述第一电极与对应的辅助电极之间,所述第一电极通过所述导电结构与所述辅助电极电连接,每个导电结构至少覆盖所述导电结构对应的辅助电极所在的开口的部分侧壁。
本申请实施例还提供了一种显示装置,包括本申请实施例所述的显示面板。
本发明实施例提供了一种显示面板及显示装置,设置显示面板包括衬底;位于衬底上的若干辅助电极;位于衬底上的像素定义层,像素定义层位于辅助电极的远离衬底的一侧;位于衬底上的若干子像素结构,子像素结构包括第一电极,,第一电极位于像素定义层的远离衬底的一侧,像素定义层设置有位于相邻的子像素结构之间的开口,辅助电极与开口对应设置且每个开口暴露出开口对应的辅助电极,显示面板还包括若干导电结构,导电结构与辅助电极对应设置,每个导电结构位于第一电极与对应的辅助电极之间,第一电极通过导电结构与辅助电极电连接,每个导电结构至少覆盖导电结构对应的辅助电极所在开口的部分侧壁,提高了显示面板的显示均匀性的同时,有利于提高显示面板的开口率。
附图说明
图1为本申请实施例提供的一种显示面板的俯视结构示意图;
图2为本申请实施例提供的一种显示面板的剖面结构示意图;
图3为本申请实施例提供的另一种显示面板的剖面结构示意图;
图4为本申请实施例提供的一种辅助电极的俯视结构示意图;
图5为本申请实施例提供的另一种显示面板的剖面结构示意图;
图6为本申请实施例提供的一种第一金属结构的俯视结构示意图;
图7为本申请实施例提供的一种显示装置的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。贯穿本说明书中,相同或相似的附图标号代表相同或相似的结构、元件或流程。
随着显示技术的发展,显示面板的尺寸逐渐增加,显示面板的设计难度逐渐加大,用户对显示面板显示的均匀性的要求也越来越高。为了提高显示面板的显示均匀性,可以在阴极下方设置辅助阴极,利用激光打孔技术去除对应辅助阴极位置的有机发光结构的发光功能层,使得阴极与辅助阴极电连接,利用辅助阴极增加设置为传输阴极信号的结构的横截面积,以降低设置为传输阴极信号的结构的电阻,进而提高阴极信号传输的均匀性,提高显示面板的显示均匀性。但是,激光打孔的位置位于相邻的子像素结构之间,由于激光打孔技术 存在精度较差的问题,在激光打孔的过程中激光打孔形成过孔可能会侵占子像素结构的开口区,使得显示面板的开口率下降,使得有机发光器件的寿命下降,影响显示面板的显示效果。
本申请实施例提供了一种显示面板,包括:衬底;位于所述衬底上的若干辅助电极;位于所述衬底上的像素定义层,所述像素定义层位于所述辅助电极的远离所述衬底的一侧;位于所述衬底上的若干子像素结构,所述子像素结构包括第一电极,所述第一电极位于所述像素定义层的远离所述衬底的一侧,所述像素定义层设置有位于相邻的子像素结构之间的开口,所述辅助电极与所述开口对应设置且每个开口暴露出所述开口对应的辅助电极;以及若干导电结构,所述导电结构与所述辅助电极对应设置,每个导电结构位于所述第一电极与对应的辅助电极之间,所述第一电极通过所述导电结构与所述辅助电极电连接,每个导电结构至少覆盖与所述导电结构对应的辅助电极所在的开口的部分侧壁。
本申请实施例提供的显示面板利用辅助电极以及导电结构降低了设置为传输阴极信号的结构的电阻,有利于提高阴极信号传输的均匀性,而且在提高显示面板的显示均匀性的同时,导电结构的设置有利于减小相邻子像素结构之间的区域设置的开口的面积,进而提高显示面板的开口率。另外,还可以在位于第一电极的靠近衬底一侧的第一金属层设置电接触点,至少两个辅助电极通过一个电接触点连接,增加了设置为传输阴极信号的结构所形成的电流通路,降低了设置为传输阴极信号的结构的电阻,提高了阴极信号传输的均匀性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1为本申请实施例提供的一种显示面板的俯视结构示意图(为了体现多个结构之间的相对位置关系以及每个结构自身的特点,对图1添加透视效果),图2为本申请实施例提供的一种显示面板的剖面结构示意图。结合图1和图2,显示面板包括衬底1以及位于衬底1上的多个辅助电极2、像素定义层3以及第一电极41。这里仅示例性地示出了一个辅助电极2,像素定义层3位于辅助电极2的远离衬底1的一侧。第一电极41位于像素定义层3的远离衬底1的一侧,即像素定义层3在形成辅助电极2后形成,第一电极41在像素定义层3形成后形成。
显示面板包括多个设置为发光的子像素结构4。像素定义层3设置有多个对应相邻的子像素结构4之间的区域的开口5,辅助电极2与开口5对应设置,每个开口5位置处对应设有辅助电极2,每个开口5暴露出该开口5对应的辅助电极2。显示面板还包括多个导电结构6,导电结构6与辅助电极2对应设置。每个导电结构6位于第一电极41与该导电结构6对应的辅助电极2之间。第一电 极41通过对应的导电结构6与辅助电极2电连接。每个导电结构6至少覆盖该导电结构6对应的辅助电极2所在的开口5的部分侧壁51。图2示例性地示出了导电结构6覆盖开口5的部分侧壁51。
图1和图2仅示例性地示出了子像素结构4的排布方式,本申请实施例对子像素结构4的排布方式不作限定,确保开口5设置于相邻的子像素结构4之间的区域即可。另外,构成导电结构6的材料例如可以是氧化铟锡(Indium Tin Oxide,ITO)和银(Ag),本申请实施例对构成导电结构6的材料不做限定,确保导电结构6导电即可。
结合图1和图2,第一电极41通过导电结构6与辅助电极2电连接。例如,第一电极41可以是子像素结构4的阴极,辅助电极2以及导电结构6上均传输阴极信号。辅助电极2以及导电结构6的设置增加了设置为传输阴极信号的结构的横截面积,降低了设置为传输阴极信号的结构的电阻,有利于提高阴极信号传输过程中的压降,提高阴极信号传输的均匀性,进而提高显示面板的显示均匀性。
在显示面板中,在衬底1上先形成辅助电极2,再形成像素定义层3,在制作子像素结构4时在开口5内会形成子像素结构4的发光功能层43,为了实现第一电极41与辅助电极2的电连接,需要采用激光打孔工艺去除开口5内的部分发光功能层43以暴露出辅助电极2,但是开口5位于相邻的子像素结构4之间,由于激光打孔技术的精度较差,在激光打孔的过程中,激光打孔形成的过孔可能超出开口5的区域,从而可能会侵占子像素结构4的开口区40,使得子像素结构4,例如有机发光结构的寿命下降,显示面板的开口率下降。
在第一电极41直接与辅助电极2电连接的结构中,为了实现第一电极41与辅助电极2的准确电连接,对发光功能层43的激光打孔的偏移区域仅限定在开口5的底部52区域,即开口5暴露出辅助电极2的区域,这就对激光打孔的精度提出了较高的要求。在激光打孔的精度有限的情况下,激光打孔形成的过孔超出开口5的区域,侵占子像素结构4的开口区40的概率较大。本申请实施例通过设置新增的导电结构6至少覆盖对应的开口5的部分侧壁51,只需确保激光打孔形成的过孔能够露出至少部分导电结构6即可实现第一电极41与辅助电极2的电连接,使得激光打孔的偏移区域延伸至开口5的侧壁51区域,增加了激光打孔允许的偏移区域,降低了激光打孔的精度要求。
例如,可以假设激光打孔的偏移精度为40μm,采用第一电极41直接与辅助电极2电连接的方案需要确保开口5暴露出辅助电极2的区域,即开口5的底部52的直径至少为40μm,通过设置新增的导电结构6覆盖对应的开口5的部分侧壁51,可以设置导电结构6的覆盖直径为40μm,即开口5的底部52与 被导电结构6覆盖的至少部分侧壁51的直径之和为40μm,使得开口5暴露出辅助电极2的区域的直径可以小于40μm,即针对同样的激光打孔精度,减小了实现第一电极41与辅助电极2电连接所需的开口5的面积。这样,在降低了设置为传输阴极信号的结构的电阻以提到显示面板显示均匀性的同时,有利于降低激光打孔形成的过孔侵占子像素结构4的开口区40的概率,减小了相邻子像素结构4之间的区域设置的开口5的面积,进而提高显示面板的开口率。
可选的,可以在第一电极41的靠近衬底1一侧设置第一金属层(图1和图2中未示出)。第一金属层设置有至少一个电接触点,至少两个辅助电极2通过所述电接触点连接。也就是说,在第一电极41所在的膜层,所述辅助电极2与第一电极41电连接;在非第一电极41所在的膜层,所述辅助电极2通过位于第一金属层的多个电接触点连接。由此,增加了第一电极41与辅助电极2所形成的电流通路,即增加了设置为传输阴极信号的结构所形成的电流通路,降低了设置为传输阴极信号的结构的电阻,提高了阴极信号传输的均匀性,进而提高了显示面板显示的均匀性。
图3为本申请实施例提供的另一种显示面板的剖面结构示意图。结合图1和图3,可以设置每个导电结构6延伸至该导电结构6对应的辅助电极2所在的开口5外,即设置每个导电结构6覆盖该导电结构6对应的辅助电极2所在的开口5的底部52、侧壁51以及开口5外部的边缘区域53。,结合图1和图3,设置每个导电结构6延伸至该导电结构6对应的辅助电极2所在的开口5外,只需确保激光打孔形成的过孔能够露出至少部分导电结构6即可实现第一电极41与辅助电极2的电连接,使得激光打孔的偏移区域延伸至开口5外,增加了激光打孔允许的偏移区域。
例如,可以假设激光打孔的偏移精度为40μm,采用第一电极41直接与辅助电极2电连接的方案需要确保开口5暴露出辅助电极2的区域,即开口5的底部直径至少为40μm,通过设置新增的导电结构6延伸至对应的开口5外,可以设置导电结构6的覆盖直径为40μm,即开口5的底部52、侧壁51以及开口5外被导电结构6覆盖的部分53的直径之和为40μm;如果侧壁51以及开口5外被导电结构6覆盖的部分53的直径之和为20μm,则使得开口5暴露出辅助电极2的区域的直径减小至20μm,针对同样的激光打孔精度,减小了实现第一电极41与辅助电极2电连接所需的开口5的面积。这样,在降低了设置为传输阴极信号的结构的电阻以提高显示面板显示均匀性的同时,降低了激光打孔形成的过孔侵占子像素结构4的开口区40的概率,减小了对应相邻子像素结构4之间区域设置的开口5的面积,进而提高了显示面板的开口率。
可选地,结合图1至图3,每个子像素结构4还包括位于第一电极41的靠 近衬底1一侧的第二电极42、设于第一电极41与第二电极42之间的发光功能层43。所述发光功能层43至少暴露出导电结构6。
结合图1至图3,每个子像素结构4包括位于第一电极4的靠近衬底1一侧的第二电极42。发光功能层43位于第一电极41与第二电极42之间。发光功能层43可以包括发光材料层,发光功能层43还可以包括空穴注入层、空穴传输层、电子传输层和电子注入层中的至少一种。第一电极41与第二电极42之间的压差使得第二电极42提供的空穴经过空穴注入层和空穴传输层达到发光材料层。第一电极41提供的电子经过电子注入层和电子传输层达到发光材料层。电子和空穴两种载流子在发光材料层发生复合,发光材料层中的激子由激发态迁移到基态发光,子像素结构4发光,显示面板实现显示功能。
结合图1至图3,显示面板中多个结构的形成过程为:先形成辅助电极2,再形成像素定义层3,在制作子像素结构4的发光功能层43时会在开口5内形成发光功能层43。为了实现第一电极41与辅助电极2的电连接,需要采用激光打孔工艺去除开口5内的部分发光功能层43以暴露出辅助电极2,设置发光功能层43至少暴露出导电结构6,给激光打孔留出最大的偏移量。即只需确保激光打孔形成的过孔能够露出至少部分导电结构6即可实现第一电极41与辅助电极2的电连接,使得激光打孔的偏移区域为整个导电结构6所在区域,增加了激光打孔允许的偏移区域,减小了实现第一电极41与辅助电极2电连接所需的开口5的面积,在降低了设置为传输阴极信号的结构的电阻以提高显示面板的显示均匀性。同时,降低了激光打孔形成的过孔侵占子像素结构4的开口区40的概率,减小了相邻子像素结构4之间的区域设置的开口5的面积,进而提高了显示面板的开口率。
可选地,结合图1至图3,每个子像素结构4包括位于第一电极41的靠近衬底1一侧的第二电极42。第一电极41与第二电极42之间设置有发光功能层43。可以设置辅助电极2,辅助电极2与第二电极42可以同层设置。
结合图1和图3,可以在衬底1上形成第二电极层,对第二电极层进行刻蚀,对应子像素结构4所在区域形成第二电极42,对应相邻子像素结构4之间的区域形成辅助电极2,以简化显示面板制程。另外,需确保同层设置的第二电极42与辅助电极2绝缘,避免子像素结构4的第一电极41与第二电极42短路,影响显示面板的正常显示。
图4为本申请实施例提供的一种辅助电极的俯视结构示意图。结合图1至图4,可以将辅助电极2设置于第一金属层7。在辅助电极2自身所在膜层,至少两个辅助电极2通过电接触点连接。
图4示例性地设置辅助电极2形成网格状结构,且设置相邻两个辅助电极2 在辅助电极2自身所在膜层,即第一金属层7设有电接触点。可以利用相邻的子像素结构4之间的区域,在辅助电极2所在膜层,绕开子像素结构4的第二电极42所在位置进行走线,以使辅助电极2形成网格状结构。这样使得辅助电极2形成具备多条电流通路的网格状结构,增加了用于传输阴极信号的结构所形成的电流通路,降低了用于传输阴极信号的结构的电阻,提高了阴极信号传输的均匀性。
图5为本申请实施例提供的另一种显示面板的剖面结构示意图。结合图1至图3以及图5,可以在多个辅助电极2的远离第一电极41的一侧设置第一金属层7。第一金属层7与辅助电极2之间设置有平坦化层70。第一金属层7设置有电接触点,至少两个辅助电极2通过所述电接触点连接。可以将一个辅助电极21通过贯穿平坦化层70的过孔连接至位于第一金属层7的金属结构71,将另一个辅助电极22通过贯穿平坦化层70的过孔连接至位于第一金属层7的金属结构72。金属结构71与金属结构72在第一金属层7电连接,即在第一金属层7形成辅助电极21与辅助电极22的电接触点,进而增加设置为传输阴极信号的结构所形成的电流通路。从而降低设置为传输阴极信号的结构的电阻,提高阴极信号传输的均匀性。另外,金属结构71和金属结构72的设置也增加了设置为传输阴极信号的结构的横截面积,降低了设置为传输阴极信号的结构的电阻,提高了阴极信号传输的均匀性,进而提高显示面板的显示均匀性。
示例性地,可以设置第一金属层7设置有第一电源信号线或者数据信号线。第一电源信号线设置为用于向多个子像素结构4提供正压的第一电源信号,该第一电源信号可以到达有机发光结构的阳极。数据信号线设置为向多个子像素结构4提供数据信号,每个子像素结构4根据接收到数据信号调节自身的发光亮度。可以在第一电源信号线所在膜层或者数据信号线所在膜层形成至少两个辅助电极2对应的电接触点,即设置金属结构71和金属结构72与第一电源信号线同层制作或者与数据信号线同层制作,在简化显示面板制程的同时,增加设置为用于传输阴极信号的结构所形成的电流通路,以及增加设置为用于传输阴极信号的结构的横截面积,且构成第一电源信号线以及数据信号线的材料的电阻较小,进而降低设置为用于传输阴极信号的结构的电阻,提高阴极信号传输的均匀性。
本申请实施例对与辅助电极2电连接的金属结构71和金属结构72的形状不作限定。对位于辅助电极2的远离第一电极41一侧的第一金属层7中的辅助电极2的电接触点所在位置不作限定。与辅助电极2电连接的位于第一金属层7的金属结构以及辅助电极2的电接触点可以利用第一金属层7中未布线区域进行走线,确保与辅助电极2电连接的位于第一金属层7的金属结构以及辅助电极2的电接触点与第一金属层7的传输其它信号的结构电绝缘即可。
可选地,也可以设置第一金属层设置有第一金属结构。图6为本申请实施例提供的一种第一金属结构的俯视结构示意图。结合图1至图3以及图5和图6,第一金属结构8可以为网格状结构,第一金属结构8与辅助电极2通过贯穿平坦化层70的过孔电连接。这里的第一金属结构8可以为新增的金属层,第一金属结构8同样位于辅助电极2的远离第一电极41的一侧。通过网格状的第一金属结构8增加了设置为传输阴极信号的结构所形成的电流通路,以降低设置为传输阴极信号的结构的电阻,提高阴极信号传输的均匀性。另外,第一金属结构8的设置也增大了用于传输阴极信号的结构的横截面积,降低了用于传输阴极信号的结构的电阻,提高了阴极信号传输的均匀性,进而提高显示面板的显示均匀性。
本申请实施例对第一金属结构8形成的网格状结构的形状不作限定,不限于图6所示的网格状结构,确保第一金属结构8为具有多个连接点的网格状结构即可。
本申请实施例示附图只是示例性的表示多个元件的大小,并不代表显示面板中多个元件的实际尺寸。
本申请实施例还提供了一种显示装置,图7为本申请实施例提供的一种显示装置的结构示意图。如图7所示,显示装置20包括上述实施例的显示面板19。因此,本申请实施例提供的显示装置20也具备上述实施例中所描述的有益效果,此处不再赘述。示例性地,显示装置20可以是手机,或者可以是电脑或可穿戴设备等电子设备,本申请实施例对显示装置的形式不作限定。

Claims (14)

  1. 一种显示面板,包括:
    衬底;
    位于所述衬底上的若干辅助电极;
    位于所述衬底上的像素定义层,所述像素定义层位于所述辅助电极的远离所述衬底的一侧;
    位于所述衬底上的若干子像素结构,所述子像素结构包括第一电极,所述第一电极位于所述像素定义层的远离所述衬底的一侧,所述像素定义层设置有位于相邻的子像素结构之间的开口,所述辅助电极与所述开口对应设置且所述开口暴露出所述开口对应的辅助电极;以及
    若干导电结构,所述导电结构与所述辅助电极对应设置,每个导电结构位于所述第一电极与对应的辅助电极之间,所述第一电极通过所述导电结构与所述辅助电极电连接,每个导电结构至少覆盖与所述导电结构对应的辅助电极所在的开口的部分侧壁。
  2. 根据权利要求1所述的显示面板,其中,所述导电结构延伸至所述导电结构对应的辅助电极所在的开口外。
  3. 根据权利要求1所述的显示面板,其中,每个子像素结构还包括位于所述第一电极的靠近所述衬底一侧的第二电极、以及设置在所述第一电极与所述第二电极之间的发光功能层,所述发光功能层至少暴露出所述导电结构。
  4. 根据权利要求3所述的显示面板,其中,所述辅助电极与所述第二电极同层设置。
  5. 根据权利要求4所述的显示面板,还包括第一金属层,所述第一金属层设置有电接触点,至少两个所述辅助电极通过所述电接触点连接。
  6. 根据权利要求5所述的显示面板,其中,所述第一金属层位于所述第一电极的靠近所述衬底的一侧。
  7. 根据权利要求6所述的显示面板,其中,所述辅助电极设置于所述第一金属层。
  8. 根据权利要求7所述的显示面板,其中,所述辅助电极形成网格状结构。
  9. 根据权利要求5所述的显示面板,其中,所述第一金属层位于所述辅助电极的远离所述第一电极的一侧。
  10. 根据权利要求9所述的显示面板,其中,所述第一金属层与所述辅助电极之间设置有平坦化层。
  11. 根据权利要求10所述的显示面板,其中,所述第一金属层设置有第一金属结构,所述第一金属结构与所述辅助电极通过贯穿所述平坦化层的过孔电连接。
  12. 根据权利要求11所述的显示面板,其中,所述第一金属结构为网格状结构。
  13. 根据权利要求9所述的显示面板,其中,所述第一金属层设置有第一电源信号线或者数据信号线。
  14. 一种显示装置,包括如权利要求1-13任一项所述的显示面板。
PCT/CN2020/075006 2019-06-26 2020-02-13 显示面板及显示装置 WO2020258888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910563732.4 2019-06-26
CN201910563732.4A CN110277431A (zh) 2019-06-26 2019-06-26 一种显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020258888A1 true WO2020258888A1 (zh) 2020-12-30

Family

ID=67963615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075006 WO2020258888A1 (zh) 2019-06-26 2020-02-13 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN110277431A (zh)
WO (1) WO2020258888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114387891A (zh) * 2022-03-16 2022-04-22 季华实验室 微型led显示阵列及显示屏

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277431A (zh) * 2019-06-26 2019-09-24 云谷(固安)科技有限公司 一种显示面板及显示装置
CN113257854B (zh) * 2020-05-06 2022-11-15 广东聚华印刷显示技术有限公司 显示面板及其制备方法、显示装置
CN112164757A (zh) * 2020-09-24 2021-01-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN115275058B (zh) * 2022-07-29 2024-01-19 武汉华星光电半导体显示技术有限公司 显示面板及显示终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171827A (ja) * 1998-12-03 2000-06-23 Casio Comput Co Ltd 液晶表示パネル
JP2007103098A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 有機el装置の製造方法、有機el装置及び電子機器
CN101436608A (zh) * 2007-11-16 2009-05-20 三星移动显示器株式会社 有机发光显示设备
CN102652330A (zh) * 2009-12-09 2012-08-29 夏普株式会社 半导体装置及其制造方法
CN104218182A (zh) * 2013-05-31 2014-12-17 群创光电股份有限公司 有机发光装置及其制造方法、以及包含其的影像显示系统
CN105655375A (zh) * 2014-12-02 2016-06-08 三星显示有限公司 有机发光显示装置及其制造方法
CN105789477A (zh) * 2015-01-14 2016-07-20 三星显示有限公司 有机发光显示面板和制造该有机发光显示面板的方法
CN110277431A (zh) * 2019-06-26 2019-09-24 云谷(固安)科技有限公司 一种显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784375A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 Oled显示单元及其制作方法
CN107611283B (zh) * 2017-10-13 2023-10-17 深圳市华星光电半导体显示技术有限公司 Oled面板的制作方法及oled面板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171827A (ja) * 1998-12-03 2000-06-23 Casio Comput Co Ltd 液晶表示パネル
JP2007103098A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 有機el装置の製造方法、有機el装置及び電子機器
CN101436608A (zh) * 2007-11-16 2009-05-20 三星移动显示器株式会社 有机发光显示设备
CN102652330A (zh) * 2009-12-09 2012-08-29 夏普株式会社 半导体装置及其制造方法
CN104218182A (zh) * 2013-05-31 2014-12-17 群创光电股份有限公司 有机发光装置及其制造方法、以及包含其的影像显示系统
CN105655375A (zh) * 2014-12-02 2016-06-08 三星显示有限公司 有机发光显示装置及其制造方法
CN105789477A (zh) * 2015-01-14 2016-07-20 三星显示有限公司 有机发光显示面板和制造该有机发光显示面板的方法
CN110277431A (zh) * 2019-06-26 2019-09-24 云谷(固安)科技有限公司 一种显示面板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114387891A (zh) * 2022-03-16 2022-04-22 季华实验室 微型led显示阵列及显示屏

Also Published As

Publication number Publication date
CN110277431A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2020258888A1 (zh) 显示面板及显示装置
US11716877B2 (en) Organic light-emitting display device and method of manufacturing the same
KR102605208B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP2015015241A (ja) 有機発光表示装置及び有機発光表示装置製造方法
US20200212162A1 (en) Display substrate and method of manufacturing the same, and display panel
WO2020258906A1 (zh) 一种显示面板和显示装置
KR102459070B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
JP2008103305A (ja) 電界発光パネル及びそれを含む光源装置
CN112331708B (zh) 显示面板
CN113097412A (zh) 显示面板及其制作方法
KR20130096974A (ko) 유기전계발광표시장치 및 그 제조 방법
CN111722761A (zh) 触控显示装置
KR102263261B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CN110391283B (zh) 有机发光显示面板和有机发光显示装置
CN109065590B (zh) 有机发光显示基板及其制作方法、有机发光显示装置
US20230172014A1 (en) Display panel, method for manufacturing display panel, and display device
CN110649068A (zh) 一种阵列基板及其制备方法
CN111162162B (zh) 转移基板及其制备方法、微发光二极管的转移方法
CN111106130A (zh) 一种阵列基板及其制备方法
KR102462498B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN108321305B (zh) 一种oled显示面板及显示装置
CN113972252A (zh) 显示面板及电子设备
US20070235767A1 (en) Light emitting device and method for manufacturing the same
US20230157108A1 (en) Organic light-emitting diode display panel and display device
KR102114999B1 (ko) 유기전계발광표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830576

Country of ref document: EP

Kind code of ref document: A1