WO2020256351A1 - 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커 - Google Patents

대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커 Download PDF

Info

Publication number
WO2020256351A1
WO2020256351A1 PCT/KR2020/007646 KR2020007646W WO2020256351A1 WO 2020256351 A1 WO2020256351 A1 WO 2020256351A1 KR 2020007646 W KR2020007646 W KR 2020007646W WO 2020256351 A1 WO2020256351 A1 WO 2020256351A1
Authority
WO
WIPO (PCT)
Prior art keywords
severity
rheumatoid arthritis
group
kit
patients
Prior art date
Application number
PCT/KR2020/007646
Other languages
English (en)
French (fr)
Inventor
김경헌
차훈석
안중경
김정연
정유은
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US17/619,290 priority Critical patent/US20220244273A1/en
Priority to EP20825796.4A priority patent/EP3985390A4/en
Publication of WO2020256351A1 publication Critical patent/WO2020256351A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • G01N2800/101Diffuse connective tissue disease, e.g. Sjögren, Wegener's granulomatosis
    • G01N2800/102Arthritis; Rheumatoid arthritis, i.e. inflammation of peripheral joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Definitions

  • the present invention relates to a biomarker for predicting or discriminating the severity of rheumatoid arthritis using joint capsular metabolism analysis.
  • Rheumatoid Arthritis is a disease caused by inflammation of a tissue called the synovial membrane surrounding the joints, and it is a representative chronic disease that is estimated to be a patient group in about 1% of the total population in Korea.
  • Joint capsule fluid acts as a biological lubricant between joints as well as a solution through which nutrients and various cytokines pass. Therefore, inflammation or decomposition by enzymes in the synovial membrane and cartilage in the joint causes a change in the chemical composition of the joint sac.
  • joint cyst is considered to be the sample that best reflects the etiological state of inflammatory arthritis (O'Connel J. X. Pathology of the synovium (2000) Am J Clin Pathol vol. 114, pp. 773-784).
  • analysis of joint cyst fluid in patients with rheumatoid arthritis can provide a diagnostic biomarker or can be applied to clinical practice by helping to understand the etiology of rheumatoid arthritis.
  • a drug therapy method in which analgesic anti-inflammatory drugs are combined with various antirheumatic drugs is generally used. It has been developed and used as a combination therapy with antirheumatic drugs, and surgical therapy is being performed when the severity of the disease is severe.
  • joint deformity can persist and proper treatment may be difficult due to drug side effects, and there is a disadvantage that it is expensive due to the increase in drug price due to the cost of developing a new drug, so the severity of rheumatoid arthritis There is an urgent need to develop a predictable or distinguishable kit.
  • Metabolomics is the study of changes in metabolites according to metabolic changes in living organisms, and is used to identify various physiological and pathological conditions (Johnson CH et. al. Metabolomics: beyond biomarkers and towards mechanisms (2016) Nat Rev Mol Cell Biol vol. 17, pp. 451-459). Since rheumatoid arthritis is caused by the action of various factors including genetic and environmental factors, it can induce changes in metabolites, and can be useful in revealing physiological and pathological changes through metabolomics.
  • Non-patent literature Korean Patent Application Laida No. 9(6), e97501
  • the present invention is characterized in that it is a biomarker for predicting or discriminating the severity of rheumatoid arthritis patients.
  • the present inventors examine how metabolites change according to severity in the joint capsule fluid of rheumatoid arthritis patients, and discover new biomarkers that can more specifically distinguish the severity of patients by presenting metabolic markers representing the severity. I did.
  • a total of 125 metabolites were detected through analysis of metabolites in the joint capsule of rheumatoid arthritis patients using GC/TOF MS. Based on this, it was analyzed in association with the patient's severity level (DAS28-ESR).
  • OPLS-DA orthogonal partial least squares discriminant analysis
  • an object of the present invention is to provide a kit for distinguishing between a high severity group and a severity group of rheumatoid arthritis patients.
  • an object of the present invention is to provide a kit for predicting the severity of rheumatoid arthritis patients.
  • the present invention is indole-3-lactate, glucose-6-phosphate, fucose, isothreonate, 3-phenyl lactate (3 -phenyllactate), guaiacol, glycocyamine, adipic acid (adipate), phenylalanine (phenylalanine), arabitol (arabitol), cholic acid (cholic acid) and tryptophan group consisting of It provides a kit for distinguishing between the high severity group and the severity group of rheumatoid arthritis patients comprising a quantification device for one or more joint capsular fluid metabolites selected from.
  • the present invention is indole-3-lactate (indole-3-lactate), glucose-6-phosphate (glucose-6-phosphate), fucose (fucose), isothreonate (isothreonate), 3-phenyl lactate (3-phenyllactate), guaiacol, glycocyamine, adipic acid (adipate), phenylalanine (phenylalanine), arabitol (arabitol), cholic acid (cholic acid) and tryptophan It provides a kit for predicting the severity of rheumatoid arthritis patients comprising a quantification device for at least one joint capsular fluid metabolite selected from the group consisting of.
  • a biomarker capable of specifically predicting or discriminating the severity of rheumatoid arthritis was identified using metabolomics.
  • the biomarkers for predicting or discriminating the severity may be applied in various forms, such as a severity prediction kit or a severity discrimination kit for discriminating between high severity and severity.
  • RA_high high severity group
  • RA_moderate severe severity group
  • Figure 2 shows the statistical verification using the ROC curve of the OPLS-DA model for severity diagnosis of rheumatoid arthritis patients.
  • FIG. 3 shows the verification of severity diagnosis using an external specimen of the OPLS-DA model for severity diagnosis of rheumatoid arthritis patients.
  • the present invention relates to a kit for predicting the severity of rheumatoid arthritis patients and/or a kit for distinguishing between the high severity group and the severity group of rheumatoid arthritis patients.
  • the term "predicting the prognosis of the severity of rheumatoid arthritis” refers to the possibility that bone destruction may progress due to high disease activity when the overall degree of inflammation, bone destruction, or progression of rheumatoid arthritis is evaluated. Is related to the possibility of being brought about.
  • DAS Disease Activity Score
  • DAS28 Disease Activity Score 28
  • a modified form thereof is an index evaluation method of a score calculation method, such as inflammatory marker test or radiographic findings. The subjective factors evaluated by patients and doctors are evaluated together with some of the same objective factors.
  • DAS28 is a composite index consisting of the number of tender joints, the number of swelling joints, the red blood cell sedimentation rate, and the patient's systemic evaluation among 28 joints of the patient.
  • the 28 joints include both shoulder joints, elbow and wrist joints, and metacarpophalangeal joints. , Muscle joints, knee joints, etc.
  • the DAS28-ESR score based on the erythrocyte sedimentation rate and the DAS28-CRP score calculated based on the activity index of the C-reactive protein are included in the determination of disease severity using DAS28.
  • the DAS28-ESR(3) score which calculates disease severity using DAS28's ESR score, tender joint count, and swollen joint count, is widely used (https://www.mdcalc.com/disease-activity-). score-28-rheumatoid-arthritis-esr-das28-esr).
  • Rheumatoid arthritis disease activity measured by the DAS28-ESR(3) score can be calculated from 0 to 9.4 points, and in general, if the DAS28 score is less than 2.6, there is little disease activity (remission, remission), or more than 2.6 points. If it is less than 3.2 points, low disease activity (mild), if it is higher than 3.2 points and less than 5.1 points, moderate disease activity (moderate disease activity), and if it is higher than 5.1 points, high disease activity (high severity) Is defined as.
  • the present invention can easily predict a patient's future disease severity, and can be used as information for delaying, alleviating and/or curing a disease after the onset of rheumatoid arthritis by determining whether to use an additional required treatment method.
  • a metabolite sampling step including a process of extracting metabolites by mixing pure methanol in the joint capsule fluid, vortexing strongly, and then centrifuging is performed.
  • Methanol may be used as a solvent used for extraction of the metabolite, but is not particularly limited thereto.
  • the 125 metabolites include amines, amino acids, sugars and sugar alcohols, fatty acids, phosphoric acids, and organic acids.
  • the metabolite extracted in the metabolite sampling step undergoes the following analysis steps:
  • the largest value among the area or height of the chromatogram peak displayed during the unit time by dividing the total analysis time by unit time intervals is a representative value for the unit time It is decided as.
  • PLS-DA partial least squares discriminant analysis
  • the partial least squares regression method has a positive loading value, it is determined that a metabolite biomarker increases, and a negative loading value indicates a decrease in metabolite biomarker.
  • indole-3-lactate glucose-6-phosphate ( glucose-6-phosphate), fucose, isothreonate, 3-phenyllactate, guaiacol, glycocyamine, adipic acid ( adipate), phenylalanine (phenylalanine), arabitol (arabitol), cholic acid (cholic acid), and one or more metabolites selected from the group consisting of tryptophan may be used.
  • indole-3-lactate glucose-6-phosphate, fucose, isothreonate, 3-phenyllactate, guaiacol, glycocyamine, adipate, phenylalanine, arabitol, cholic acid, and At least one selected from the group consisting of tryptophan shows a tendency to increase, while citrate and asparagine show a tendency to decrease.
  • tryptophan at least one selected from the group consisting of a tendency to decrease, citrate (citrate), asparagine (asparagine) shows a tendency to increase.
  • the increase or decrease trend means an increase or decrease in the concentration of metabolites
  • the term "increased metabolite concentration” means that the metabolite concentration in the high severity group of rheumatoid arthritis patients is compared to the severe severity group or in the severe group compared to the high severity group. It means a measurable significant increase, and in the present specification, the term “reduction in metabolite concentration” means that the metabolite concentration is measurable in the high severity group of rheumatoid arthritis patients compared to the severe severity group or in the severe group compared to the high severity group. It means a significant reduction.
  • the present invention is indole-3-lactate, citrate, glucose-6-phosphate, fucose, isothreonate , 3-phenyllactate, guaiacol, glycocyamine, adipate, phenylalanine, arabitol, asparagine , Cholic acid, and tryptophan (tryptophan). It provides a kit for distinguishing between a high severity group and a severe severity group of rheumatoid arthritis patients comprising a quantification device for one or more metabolites selected from the group consisting of.
  • Positive Spearman R value indicates a tendency to increase metabolite biomarker intensity as disease severity increases
  • negative Spearman R value indicates a tendency to decrease metabolite biomarker intensity as disease severity increases. Is determined to be.
  • indole-3-lactate citrate, glucose-6-phosphate (glucose-6) -phosphate), fucose, isothreonate, 3-phenyllactate, guaiacol, glycocyamine, adipate,
  • glucose-6-phosphate glucose-6-phosphate
  • fucose fucose
  • isothreonate 3-phenyllactate
  • guaiacol glycocyamine
  • adipate One or more metabolites selected from the group consisting of phenylalanine, arabitol, asparagine, cholic acid, and tryptophan may be used.
  • At least one selected from the group consisting of citrate and asparagine tends to decrease, indole-3-lactate, citrate ( citrate), glucose-6-phosphate, fucose, isothreonate, 3-phenyllactate, guaiacol, glycosyl
  • At least one selected from the group consisting of amine (glycocyamine), adipate, phenylalanine, arabitol, asparagine, cholic acid and tryptophan tends to increase. Represents.
  • the increase or decrease tendency means an increase or decrease in the metabolite concentration
  • the term “increased metabolite concentration” means that the metabolite concentration is significantly increased to a measurable level according to an increase in the severity of a patient with rheumatoid arthritis
  • the term “reduction in metabolite concentration” means that the metabolite concentration is significantly decreased so as to be measurable according to an increase in the severity of a patient with rheumatoid arthritis.
  • the quantification device included in the kit of the present invention may be a chromatography/mass spectrometer. Specifically, Gas Chromatography, Liquid-Solid Chromatography (LSC), Paper Chromatography (PC), Thin-Layer Chromatography (TLC), Gas-Solid Chromatography Chromatography (Gas-Solid Chromatography, GSC), Liquid-Liquid Chromatography, LLC, Foam Chromatography (FC), Emulsion Chromatography (EC), Gas-Liquid Chromatography (Gas-Liquid Chromatography, GLC), Ion Chromatography (IC), Gel Filtration Chromatograhy (GFC) or Gel Permeation Chromatography (GPC), but is not limited thereto. Any quantitative chromatography commonly used in the art can be used. Most specifically, it may be a GC/TOF gas chromatography/time-of-flight mass spectrometry (MS) analyzer.
  • MS mass spectrometry
  • each component is separated by gas chromatography, and components are identified through structural information (elemental composition) as well as accurate molecular weight information using information obtained through TOF MS.
  • Example 1 Identification of capsular fluid metabolites in rheumatoid arthritis patients using GC/TOF MS
  • Joint capsule fluid from 30 rheumatoid arthritis patients was collected, 900 ⁇ l of pure methanol was mixed with 100 ⁇ l of each joint capsule fluid sample, vortexed vigorously, and centrifuged to extract metabolites from 40 different samples.
  • the column used for the analysis was RTX-5Sil MS capillary column (30 m length, 0.25 mm film thickness, and 25 mm inner diameter), and the GC column temperature condition was first maintained at 50°C for 5 minutes and then heated to 330°C. Hold for 1 minute. 1 ⁇ l of the sample was injected by splitless. Transfer line temperature and ion source temperature were maintained at 280 and 250 degrees, respectively. 125 metabolites were identified by finding and identifying them in the library holding the GC/TOF MS results (Table 1).
  • Example 2 Analysis of the correlation between rheumatoid arthritis severity and metabolites using Spearman's rank correlation coefficient and presentation of biomarkers for classification of potential severity
  • DAS-28 ESR (3) score which is the severity of 30 rheumatoid arthritis patients, and how it correlates with the metabolite intensity of each patient. It was analyzed through Spearman's rank correlation coefficient (Table 2). Spearman's rank correlation coefficient is a statistical technique that analyzes the correlation between two different variables. Here, in patients with low severity, high or low levels of metabolites are significantly higher or lower in patients with high severity. It was applied to see if it was lost. As a result, the correlation between the DAS-28 ESR (3) score and the detected intensity of 125 metabolites was calculated in 30 patients.
  • Example 3 Establishment of a severity classification diagnostic model based on an OPLS-DA multivariate model generated using 14 potential biomarkers
  • each sample was divided into high severity and severe severity patients according to the degree of DAS28-ESR(3) score of each patient. If the DAS-ESR(3) score was 5.1 or higher, it was classified as high severity group, and if it was less than 5.1, it was classified as moderate severity group.
  • FIG. 1a is a score plot of PLS-DA. Patients in the severe severity group have a positive value in the PC1 dimension, and patients in the high severity group have a negative value in the PC2 dimension, except for one sample of severely severe patients. It is a diagram showing that the joint capsular fluid samples are accurately classified according to the intensities of 14 metabolites.
  • FIG. 1a is a score plot of PLS-DA. Patients in the severe severity group have a positive value in the PC1 dimension, and patients in the high severity group have a negative value in the PC2 dimension, except for one sample of severely severe patients. It is a diagram showing that the joint capsular fluid samples are accurately classified according to the intensities of 14 metabolites.
  • 1B is a loading plot of OPLS-DA, showing a numerical value that each metabolite contributes to the formation of a model as a positive or negative value.
  • 1C is a diagram showing the statistical significance of the OPLS-DA model, which divides the high severity and the moderate severity groups by permutation tests of the OPLS-DA model.
  • ROC receiver operating characteristic
  • the sensitivity was 100%
  • the 1-specificity was 100%
  • the AUC value was 1.000, indicating that the model is very suitable for diagnosing the severity of rheumatoid arthritis patients (FIG. 2).

Abstract

본 발명은 대사체 분석을 이용한 류마티스 관절염의 중증도 진단방법에 관한 것으로, 관절 낭액 대사체 분석을 통해 류마티스 관절염 환자에서 그 중증도를 구분하기 위한 바이오마커를 제공하며, 류마티스 관절염 환자의 중증도를 더욱 특이적으로 구분하는 키트 등에 적용될 수 있다.

Description

대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커
본 발명은 관절 낭액 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커에 관한 것이다.
류마티스 관절염(RA: Rheumatoid Arthritis)은 관절 주위를 둘러싸고 있는 활막이라는 조직의 염증 때문에 일어나는 질환으로 우리나라 전체 인구 중 대략 1%가 환자군으로 추정되고 있는 대표적인 만성질환이다. (McInnes I. B. and Schett G. The pathogenesis of rheumatoid arthritis (2011) N Engl J Med vol. 365, pp. 2205-2219). 관절 낭액은 관절 간의 생물학적인 윤활유로 작용할 뿐 아니라 영양소 및 다양한 사이토카인이 통과하는 용액으로 작용한다. 따라서 관절 활막과 연골 내의 염증이나 효소에 의한 분해 등은 관절 낭액의 화학적 조성의 변화를 일으킨다. 또한 관절 낭액은 염증성 관절염의 병인학적 상태를 가장 잘 반영하는 샘플로 여겨진다 (O'Connel J. X. Pathology of the synovium (2000) Am J Clin Pathol vol. 114, pp. 773-784).
따라서 류마티즘 관절염 환자의 관절 낭액의 분석은 진단의 바이오마커를 제공하거나, 류마티스 관절염의 병인학적 이해를 도와서 임상에 적용될 수 있다.
또한, 류마티스 관절염의 치료 방법으로는 관절의 손상을 최소화하고, 기능 손실을 방지하며 통증을 줄이기 위하여 일반적으로 진통소염제를 다양한 항류마티스제제와 병합 투여하는 약물치료 방법이 사용되고 있고, 최근에는 생물학적 치료제가 개발되어 항류마티스 약제와 함께 병용 치료로 이용되고 있으며, 질병의 중증도가 심각한 경우에는 수술요법이 시행되고 있다. 그러나 이와 같은 치료 방법은 상당히 뛰어난 효과에도 불구하고 관절 변형이 지속될 수 있고 약제 부작용으로 적절한 치료가 어려운 경우도 있으며, 신약 개발 비용에 따른 약가 상승으로 많은 비용이 드는 단점이 있기 때문에, 류마티스 관절염의 중증도 예측 또는 구분할 수 있는 키트 개발이 시급한 실정이다.
대사체학은 생체의 대사적 변화에 따른 종합적인 대사물질의 변화를 살펴보는 학문으로, 다양한 생리학적, 병리학적 상태를 밝히는데 사용된다 (Johnson C. H. et. al. Metabolomics: beyond biomarkers and towards mechanisms (2016) Nat Rev Mol Cell Biol vol. 17, pp. 451-459). 류마티스 관절염은 유전적, 환경적 인자를 포함한 다양한 인자들이 작용하여 발생하는 것이기에 대사물질의 변화를 유도할 수 있으며, 대사체학을 통해 생리학 및 병리학적 변화를 밝히는데 유용할 수 있다.
다른 관절염 환자와 류마티스 관절염 환자를 구분할 수 있는 바이오마커에 대해서는 비특허문헌(Kim S. et. al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis (2014) PLOS ONE vol. 9(6), e97501)에 보고된 바 있으나, 본 발명은 류마티스 관절염 환자의 중증도 예측 또는 구분을 위한 바이오마커라는 점에 그 특징이 있다.
본 발명자들은 대사체학을 통해 류마티스 관절염 환자 관절 낭액에서 대사물질이 중증도에 따라 어떻게 변화하는지 살펴보고, 중증도를 나타내는 대사체 마커를 제시하여 환자의 중증도를 더욱 특이적으로 구분할 수 있는 새로운 바이오마커를 발굴하였다.
류마티스 관절염 환자의 관절 낭액을 채취하고 GC/TOF MS를 이용하여 류마티스 관절염 환자의 관절 낭액 내 대사체 분석을 통해 총 125개의 대사체를 검출하였다. 이를 기반으로 환자의 중증도 수치 (DAS28-ESR) 와 연관지어 분석하였다.
먼저, 각 환자의 중증도를 DAS28-ESR을 통하여 산출하고, 중증도의 증가에 따라서 통계적으로 유의미하게 증가 혹은 감소하는 대사물질을 비모수적 상관관계 분석인 Spearman's rank correlation coefficient를 구해서 찾았다. 이때 p-value가 0.05 미만인 14개의 대사물질을 신규생체표지자 후보 물질로 선정하였다.
이 14개의 류마티스 관절염 환자의 중증도 신규생체표지자 후보 물질을 이용하여 다변량 통계분석법에 기반한 직교부분최소제곱회귀법(Orthogonal partial least squares discriminant analysis: OPLS-DA) 모델을 만들어 고중증도군과 중중증도군을 구분할 수 있도록 하였다.
또한, 중증도 진단 모델이 외부 샘플의 중증도 진단에도 적용될 수 있는지 확인하기 위하여, 10명의 환자로부터 얻은 관절낭액 샘플에서 대사체 분석 및 모델에 적용하여 중증도를 정확히 판별할 수 있음을 확인하고 모델을 검증하였다.
따라서, 본 발명은 류마티스 관절염 환자의 고중증도군과 중증증도 군의 구별용 키트를 제공하는데 그 목적이 있다.
또한, 본 발명은 류마티스 관절염 환자의 중증도 예측 키트를 제공하는데 목적이 있다.
본 발명은 인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 관절 낭액 대사체에 대한 정량 장치를 포함하는 류마티스 관절염 환자의 고중증도군과 중증증도 군의 구별용 키트를 제공한다.
또한, 본 발명은 인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 관절 낭액 대사체에 대한 정량 장치를 포함하는 류마티스 관절염 환자의 중증도 예측 키트를 제공한다.
본 발명을 통하여 대사체학을 이용해 류마티스 관절염 중증도를 특이적으로 예측 또는 구분할 수 있는 바이오마커를 규명하였다. 이러한 중증도 예측 또는 구분용 바이오마커는 중증도 예측 또는 고중증도와 중중증도를 구별하기 위한 중증도 구분 키트 등의 다양한 형태로 적용될 수 있다.
따라서, 류마티스 관절염 중증도에 특이적인 바이오마커를 표적으로 한 신약 개발에 활용될 수 있는 바, 류마티스 관절염의 중증도에 특이적인 바이오마커를 이용하여 류마티스 관절염의 발병 기전을 좀 더 정확히 파악하고 이를 근거로 해서 신약 개발이나 신약 후보 약물들에 대한 선별 도구로서 이용될 수 있다.
또한, 류마티스 관절염 중증도의 파악 및 예측을 통한 맞춤형 조기 치료가 가능함으로써 류마티스 관절염으로 의심되는 환자나 류마티스 관절염으로 진단된 환자에서 특정 대사체의 농도를 통하여 중증도를 파악하여 이에 대한 맞춤형 조기 치료에 활용될 수 있다.
도 1은 14개의 잠재적 중증도 구분 바이오마커 기반으로 생성된 OPLS-DA를 이용한 류마티스 관절염 환자의 고중증도군과 (RA_high) 중중증도군 (RA_moderate) 간의 비교 진단 모델(a: score plot; b: loading plit; c: permutation tests)을 나타낸 것이다.
도 2는 류마티스 관절염 환자의 중증도 진단용 OPLS-DA 모델의 ROC curve를 이용한 통계학적 검증을 나타낸 것이다.
도 3은 류마티스 관절염 환자의 중증도 진단용 OPLS-DA 모델의 외부 검체를 이용한 중증도 진단 검증을 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명은 류마티스 관절염 환자의 중증도 예측용 키트 및/또는 류마티스 관절염 환자의 고중증도군과 중증증도 군의 구별용 키트에 관한 것이다.
본 발명에서 용어, "류마티스 관절염의 중증도 예후 예측"이란 류마티스 관절염 환자의 전반적인 염증 정도, 골 파괴 정도, 또는 류마티스 관절염의 진행 정도를 평가하였을 때 높은 질병활성으로 인해 골 파괴가 진행될 가능 성 또는 관절 변형이 초래될 가능성과 관련된다. 종래 임상에서 류마티스 관절염의 질병 중증도를 측정하는 대표적인 방법인 DAS(Disease Activity Score) 또는 이것의 변형된 형태인 DAS28(Disease Activity Score 28) 은 점수 계산 방식의 지수 평가 방법으로, 염증 표지자 검사나 방사선 소견 같은 일부 객관적 요소와 함께 환자 및 의사가 평가하는 주관적인 요소들을 함께 평가한다. DAS28은 환자의 28개 관절 중 압통을 느끼는 관절 수, 부종을 보이는 관절 수, 적혈구 침강속도, 환자의 전신적 평가로 구성된 종합 지수로서, 28개의 관절에는 양쪽 어깨 관절, 팔꿈치 및 손목 관절, 중수지 관절, 근수지 관절, 무릎 관절 등을 포함한다.
DAS28을 이용한 질병의 중증도 판별은 적혈구 침강 속도에 (erythrocyte sedimentation rate) 기반한 DAS28-ESR score와 C-reactive protein의 활성도 지수를 기반으로 계산하는 DAS28-CRP score가 있으며, 특히 환자에 대한 기타 종합적인 검사를 생략하고 DAS28의 ESR score와 tender joint count, swollen joint count를 이용하여 질병의 중증도를 계산하는 DAS28-ESR(3) score가 널리 사용된다 (https://www.mdcalc.com/disease-activity-score-28-rheumatoid-arthritis-esr-das28-esr).
DAS28-ESR(3) score로 조사된 류마티스 관절염 질병 활성도는 0점에서 최대 9.4점까지 계산될 수 있으며, 일반적으로 DAS28 점수가 2.6 미만이면 질병 활성이 거의 없는 상태(Remission, 관해), 2.6점 이상 3.2점 미만이면 낮은 질병활성(Low Disease Activity, 경증), 3.2점 이상 5.1 점 미만이면 중간 질병활성(Moderate Disease Activity, 중중증도), 그리고 5.1점 이상이면 높은 질병활성(High Disease Activity, 고중증도)으로 정의하고 있다.
본 발명은 환자의 향후 질병 중증도를 손쉽게 예측할 수 있어, 추가 필요한 치료 방법의 사용 여부를 결정함으로써 류마티스 관절염 발병 후의 질병의 지연, 완화 및/또는 완치를 위한 정보로 활용할 수 있다.
본 발명의 일 구현예로서, 관절낭액에서 순수 메탄올을 섞고 강하게 볼텍싱 한 후에 원심분리하여 대사체를 추출하는 과정을 포함하는 대사체 샘플링 단계를 거친다.
상기 대사체의 추출에 사용하는 용매로는 메탄올을 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다.
상기 125개의 대사체에는 아민류, 아미노산류, 당 및 당 알코올류, 지방산류, 인산류, 유기산류 등을 포함하고 있다.
상기 대사체 샘플링 단계에서 추출된 대사체에 대해서는 다음의 분석 단계를 거친다:
추출된 대사체를 GC/TOF MS(gas chromatography/time-of-flight mass spectrometry) 분석기기로 분석하는 단계;
GC/TOF MS 분석 결과를 통계처리 가능한 수치로 변환하는 단계; 및
변환된 수치를 이용하여 통계학적으로 상기 두 생체시료군의 차별성을 검증하는 단계.
즉, 상기 GC/TOF MS 분석 결과를 통계처리 가능한 수치로 변환하는 단계는 총 분석시간을 단위시간 간격으로 나누어 단위시간 동안 나타난 크로마토그램 피크의 면적 또는 높이 중 가장 큰 수치를 단위시간 동안의 대표값으로 정한다.
다음으로, 대사체의 프로파일링 차이를 비교하기 위해 부분최소제곱회귀법(Partial least squares discriminant analysis: PLS-DA)을 수행하여 두 생체시료군 간의 유의적인 차이를 나타내는 대사체 바이오마커를 선정하고, 분석 및 검증한다.
부분최소제곱회귀법의 로딩 값이 양수인 것은 대사체 바이오마커의 증가 경향을, 로딩 값이 음수인 것은 대사체 바이오마커의 감소 경향을 나타내는 것으로 판정한다.
본 발명의 이 구현예에 따르면, 류마티스 관절염의 고중증도군과 중중증도군의 대사체를 구별하기 위한 바이오마커로, 인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 대사체를 사용할 수 있다.
고중증도군에서는, 상기 바이오마커들 중 인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상은 증가하는 경향을, 시트레이트(citrate), 아스파라진(asparagine)은 감소하는 경향을 나타낸다.
반면에, 중중증도군에서는 상기 바이오마커들 중 인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상은 감소하는 경향을, 시트레이트(citrate), 아스파라진(asparagine)은 증가하는 경향을 나타낸다.
상기 증가 또는 감소 경향이란 대사체 농도의 증가 또는 감소를 의미하는 것으로, 용어 "대사체 농도의 증가"는 류마티스 관절염 환자 고중증도군에서 중중증도군 대비 또는 중증도군에서 고중증도군 대비 대사체 농도가 측정 가능할 정도로 유의하게 증가된 것을 의미하며, 본 명세서에서, 용어 "대사체 농도의 감소"는 류마티스 관절염 환자 고중증도군에서 중중증도군 대비 또는 중증도군에서 고중증도군 대비 대사체 농도가 측정 가능할 정도로 유의하게 감소된 것을 뜻한다.
따라서, 본 발명은 인돌-3-락테이트(indole-3-lactate), 시트레이트(citrate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 아스파라진(asparagine), 콜산(cholic acid), 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 대사체에 대한 정량 장치를 포함하는 류마티스 관절염 환자 고중증도군과 중중증도군의 구별용 키트를 제공한다.
다음으로 류마티스 관절염의 중증도의 증가에 따라 유의미하게 증감하는 대사체를 찾고자, DAS-28 ESR (3) score와 실시예 1에서 얻은 대사체의 intensity 간의 상관관계를 구하기 위해서 두 변수 간의 상관관계 비모수적 통계 분석 방법인 Spearman's rank correlation coefficient (Spearman R)를 통하여 분석하여 통계적으로 유의적인 증감을 나타내는 대사체 바이오마커를 선정하고 분석 및 검증한다.
Spearman R값이 양수인 것은 질병 중증도의 증가에 따라서 대사체 바이오마커의 인테시티가 증가하는 경향을, Spearman R값이 음수인 것은 질병 중증도의 증가에 따라서 대사체 바이오마커의 인텐시티가 감소하는 경향을 나타내는 것으로 판정한다.
본 발명의 일 구현예에 따르면, 류마티스 관절염의 중증도를 예측하기 위한 바이오마커로, 인돌-3-락테이트(indole-3-lactate), 시트레이트(citrate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 아스파라진(asparagine), 콜산(cholic acid), 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 대사체를 사용할 수 있다.
상기 바이오마커들은 중증도의 증가에 따라서 시트레이트(citrate) 및 아스파라진(asparagine)으로 이루어진 군에서 선택된 하나 이상은 감소하는 경향을, 인돌-3-락테이트(indole-3-lactate), 시트레이트(citrate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 아스파라진(asparagine), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상은 증가하는 경향을 나타낸다.
상기 증가 또는 감소 경향이란 대사체 농도의 증가 또는 감소를 의미하는 것으로, 용어 "대사체 농도의 증가"는 류마티스 관절염 환자 중증도의 증가에 따라서 대사체 농도가 측정 가능할 정도로 유의하게 증가된 것을 의미하며, 본 명세서에서, 용어 "대사체 농도의 감소"는 류마티스 관절염 환자 중증도의 증가에 따라서 대사체 농도가 측정 가능할 정도로 유의하게 감소된 것을 뜻한다.
본 발명의 키트에 포함된 정량 장치는 크로마토그래피/질량분석기일 수 있다. 구체적으로, 가스 크로마토그래피(Gas Chromatography), 액체-고체 크로마토그래피(Liquid-Solid Chromatography, LSC), 종이 크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피(Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함하나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다. 가장 구체적으로는, GC/TOF MS(gas chromatography/time-of-flight mass spectrometry) 분석기기일 수 있다.
본 발명의 대사체는 가스 크로마토그래피에서 각 성분들이 분리되며, TOF MS를 거쳐 얻어진 정보를 이용하여 정확한 분자량 정보뿐만 아니라 구조 정보(elemental composition)를 통해 구성 성분을 확인한다.
이하, 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
[실시예]
실시예 1: GC/TOF MS를 이용한 류마티스 관절염 환자의 관절낭액 대사체 동정
30명의 류마티스 관절염 환자의 관절 낭액을 채취하여 각각의 관절낭액 샘플 100 μl에 순수 메탄올 900 μl을 섞고 강하게 볼텍싱한 후에 원심분리하여 40 개의 서로 다른 샘플에서 대사체를 추출하였다.
GC/TOF MS 분석을 위한 유도체화 과정은 다음과 같다.
추출한 검체를 스피드 백으로 건조시킨 후에 5 μl의 40%(w/v)농도의 O-methylhydroxylamine hydrochloride in pyridine을 넣고 30 ℃, 200 rpm에서 90분간 반응을 시켰다. 그리고 45 μl의 N-methyl- N-(trimethylsilyl)trifluoroacetamide를 넣고 37 ℃, 200 rpm에서 30분간 반응을 실시하였다.
GC/TOF MS 분석을 위한 기기 조건은 다음과 같다.
분석할 때 사용한 컬럼은 RTX-5Sil MS capillary column (30 m length, 0.25 mm film thickness, 및 25 mm inner diameter)이며, GC 컬럼 온도 조건은 먼저 50도에서 5분간 유지시킨 후 330도까지 승온시킨 다음 1분간 유지하였다. 1μl의 샘플을 비분할법(splitless)으로 주입(injection)하였다. Transfer line 온도와 Ion source 온도는 각각 280도, 250도로 유지시켰다. GC/TOF MS 결과를 보유하고 있는 라이브러리에서 찾아 동정하여, 125개의 대사체를 동정하였다(표 1).
다음 표 1과 같이, 각각의 대사체군별로 분류하였을 때, 유기산 20.8%, 아미노산 21.6%, 당 18.4%, 지방산 14.4%, 아민 11.2%, 인 5.6%, 기타 7.9%로 나타났다.
Figure PCTKR2020007646-appb-img-000001
(계속)
Figure PCTKR2020007646-appb-img-000002
실시예 2: Spearman's rank correlation coefficient를 이용한 류마티스 관절염 중증도와 대사체 상관관계 분석 및 잠재적 중증도 구분 바이오마커의 제시
류마티스 관절염의 중증도의 증가에 따라 유의미하게 증감하는 대사물질을 살펴보고자, 30명의 류마티스 관절염 환자에서 중증도인 DAS-28 ESR (3) score를 계산하고, 각 환자의 대사체 intensity와 어떻게 상관관계를 갖는지 Spearman's rank correlation coefficient를 통하여 분석하였다 (표 2). Spearman's rank correlation coefficient는 서로 다른 두 변수가 얼마나 연관성을 갖는지 상관관계를 분석하는 통계기법으로, 여기선 중증도 환자가 낮은 환자에서 높거나 낮은 수준의 대사물질이 중증도가 높은 환자에서 통계적으로 유의미하게 높아지거나 낮아지는지 살펴보기 위하여 적용되었다. 그 결과 30명의 환자에서 DAS-28 ESR (3) score와 검출된 125개의 대사물질 intensity 간의 상관관계를 구하였으며, 125개의 대사물질 중 환자의 중증도인 DAS-28 ESR (3) score가 증가할 때 p-value가 0.05 미만으로 통계적으로 유의미하게 증가하거나 감소하는 상관관계를 갖는 대사물질은 14개였다 (표 2). 표 2의 N은 샘플의 개수를 의미하며, Spearman R은 DAS-28 ESR (3) score, 즉 중증도가 증가함에 따라서 대사물질의 intensity가 감소하거나 증가하는 정도를 나타낸다. t(N-2)는 Spearman R을 통한 상관관계 분석 시의 통계적으로 계산된 상대 수치를 의미하며, p-value는 각 대사물질이 DAS-28 ESR (3) score에 증가에 따라서 얼마나 통계적으로 유의미하게 증가하였거나 감소하였는지 보여주는 신뢰구간을 나타낸다. Spearman R을 통한 상관관계 분석에서 DAS-28 ESR (3) score의 증가에 따른 대사물질의 증감이 p-value가 0.05 미만 수준에서 이루어질 경우에 통계적으로 유의미하다고 제시하였다.
Figure PCTKR2020007646-appb-img-000003
실시예 3: 14개의 잠재적 바이오마커를 이용하여 생성한 OPLS-DA 다변량 모델에 기반한 중증도 구분 진단 모델 확립
중증도 구분 진단 모델을 확립하기 위해서, 각 환자의 DAS28-ESR(3) score의 정도에 따라서 각각의 샘플을 고중증도군과 중중증도군 환자로 나누었다. DAS-ESR(3) score가 5.1 이상이면 고중증도군, 5.1 미만이면 중중증도군으로 분류하였다.
실시예 2에서 제시한 14개의 잠재적 중증도 진단용 대사물질의 intensity를 기반으로 고중증도와 중중증도의 환자군을 구분할 수 있는지 다변량 통계 및 모델링 OPLS-DA 기법을 통해 살펴보았을 때, 대사체 프로파일이 명확하게 차이가 나는 것을 확인하였다(도 1). 도 1a는 PLS-DA의 score plot으로 중중증도군의 환자는 PC1 차원의 값이 양수가 되며, 고중증도군의 환자는 PC2 차원의 값이 음수가 되어 중중증도 환자 1개의 샘플을 제외하고는 환자의 관절낭액 샘플을 14개의 대사물질 intensity에 따라서 정확하게 구분되는 것을 보여주는 도면이다. 도 1b는 OPLS-DA의 loading plot으로 각 대사물이 모델의 형성에 기여하는 수치를 양수 혹은 음수 값으로 나타낸 그림이다. 도 1c는 OPLS-DA 모델의 permutation tests로 고중증도 및 중중증도 군을 구분하는 OPLS-DA 모델이 통계학적으로 유의미하다는 점을 보여주는 도면이다.
실시예 4: 외부 검체 진단 검증에 기반한 중증도 구분 진단용 OPLS-DA 다변량 모델 실효성 검증
실시예 3를 통해 생성된 관절낭액 검체를 통한 류마티스 관절염 환자의 중증도 진단용 대사체적 생체표지자 OPLS-DA 모델 이 진단에 적절한지 살펴보기 위하여 모델 내 각 검체의 PC1 score를 이용해서 ROC(receiver operating characteristic) 곡선을 그렸다.
그 결과 sensitivity가 100%, 1-specificity가 100%, AUC값이 1.000으로 모델이 류마티스 관절염 환자의 중증도 진단에 매우 적합함을 보였다(도 2).
또한, 이 모델이 외부 검체를 이용하여 류마티스 관절염 환자의 중증도 진단에 적절한지 살펴보기 위하여, 류마티스 관절염 환자 고중증도군 3명 및 중중증도군 7명의 관절낭액 검체를 실시예 1의 방법으로 대사체 추출 및 14개의 대사체를 검출하여 모델에 집어넣고 고중증도군 및 중중증도군을 구분할 수 있는지 살펴보았다.
도 1의 모델은 류마티스 관절염 환자 관절 낭액에서 추출된 14개의 대사체의 intensity를 집어넣을 때, 고중증도군의 환자이면 PC1을 기준으로 음수 값을, 중중증도군의 환자이면 PC1을 기준으로 양수 값을 나타내는 OPLS-DA 모델이다. 마찬가지로 10개의 외부 검체도 추출한 14개의 대사체 인텐시티 정보를 모델에 집어넣는 경우에 중증도에 따라 PC1을 기준으로 음수 혹은 양수값을 갖게 되고 고중증도 혹은 중중증도를 판단할 수 있게 된다. 그 결과, 10개의 검체 중 3개의 고중증도 환자 검체는 PC1을 기준으로 음수 값을 보였으며 7개의 중중증도 환자 검체 중 6개는 PC1을 기준으로 양수 값을, 1개는 PC1을 기준으로 음수 값을 보였다. 따라서 총 10개의 검체 중 9개의 검체 환자의 중증도를 정확하게 예측하였으므로 14개의 대사체 생체 표지자 OPLS-DA 모델이 외부 검체의 중증도 진단에 적절함을 알 수 있었다 (도 3).

Claims (12)

  1. 인돌-3-락테이트(indole-3-lactate), 시트레이트(citrate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 아스파라진(asparagine), 콜산(cholic acid), 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 관절 낭액 대사체에 대한 정량 장치를 포함하는 류마티스 관절염 환자의 고중증도군과 중증증도 군의 구별용 키트.
  2. 제 1 항에 있어서,
    정량 장치는 크로마토그래피/질량분석기인 키트.
  3. 제 1 항에 있어서,
    인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 농도가 증가하는 경향을 나타내는 경우, 류마티스 관절염 환자의 고중증도군에 해당하는 것인 키트.
  4. 제 1 항에 있어서,
    시트레이트(citrate) 및 아스파라진(asparagine)으로 이루어진 군에서 선택된 하나 이상의 농도가 감소하는 경향을 나타내는 경우, 류마티스 관절염 환자의 고중증도군에 해당하는 것인 키트.
  5. 제 1 항에 있어서,
    시트레이트(citrate) 및 아스파라진(asparagine)으로 이루어진 군에서 선택된 하나 이상의 농도가 증가하는 경향을 나타내는 경우, 류마티스 관절염 환자의 중중증도군에 해당하는 것인 키트.
  6. 제 1 항에 있어서,
    인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민(glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 농도가 감소하는 경향을 나타내는 경우, 류마티스 관절염 환자의 중중증도군에 해당하는 것인 키트.
  7. 제 1 항에 있어서,
    류마티스 관절염 환자의 고중증도군은 류마티스 관절염 환자의 중증도 수치인 DAS28-ESR 스코어(score) ≥ 5.1에 만족하는 것인 키트.
  8. 제 1 항에 있어서,
    류마티스 관절염 환자의 중중증도군 류마티스 관절염 환자의 중증도 수치인 DAS28-ESR 스코어(score) < 5.1에 만족하는 것인 키트.
  9. 인돌-3-락테이트(indole-3-lactate), 시트레이트(citrate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 아스파라진(asparagine), 콜산(cholic acid), 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 관절 낭액 대사체에 대한 정량 장치를 포함하는 류마티스 관절염 환자의 중증도 예측 키트.
  10. 제 9 항에 있어서,
    정량 장치는 크로마토그래피/질량분석기인 키트.
  11. 제 9 항에 있어서,
    시트레이트(citrate) 및 아스파라진(asparagine)으로 이루어진 군에서 선택된 하나 이상의 대사체 농도가 류마티스 관절염 환자의 중증도의 증가에 따라 감소하는 경향을 나타내는 키트.
  12. 제 9 항에 있어서,
    인돌-3-락테이트(indole-3-lactate), 글루코오스-6-포스페이트(glucose-6-phosphate), 푸코오스(fucose), 이소트레오네이트(isothreonate), 3-페닐락테이트(3-phenyllactate), 구아이아콜(guaiacol), 글라이코사이아민 (glycocyamine), 아디프산(adipate), 페닐알라닌(phenylalanine), 아라비톨(arabitol), 콜산(cholic acid) 및 트립토판(tryptophan)으로 이루어진 군에서 선택된 하나 이상의 대사체 농도가 류마티스 관절염 환자의 중증도의 증가에 따라 증가하는 경향을 나타내는 키트.
PCT/KR2020/007646 2019-06-17 2020-06-12 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커 WO2020256351A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/619,290 US20220244273A1 (en) 2019-06-17 2020-06-12 Biomarker for predicting or classifying severity of rheumatoid arthritis using metabolite analysis
EP20825796.4A EP3985390A4 (en) 2019-06-17 2020-06-12 BIOMARKER FOR PREDICTING OR CLASSIFYING THE SEVERITY OF RHEUMATOID ARTHRITIS THROUGH METABOLITE ANALYSIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190071462A KR102333499B1 (ko) 2019-06-17 2019-06-17 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커
KR10-2019-0071462 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020256351A1 true WO2020256351A1 (ko) 2020-12-24

Family

ID=74037368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007646 WO2020256351A1 (ko) 2019-06-17 2020-06-12 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커

Country Status (4)

Country Link
US (1) US20220244273A1 (ko)
EP (1) EP3985390A4 (ko)
KR (2) KR102333499B1 (ko)
WO (1) WO2020256351A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992967A1 (en) 2020-11-02 2022-05-04 Samsung Electronics Co., Ltd. Memory package, storage device including memory package, and storage device operating method
CN116381072A (zh) * 2023-01-16 2023-07-04 青岛大学附属医院 识别偶发型痛风和频发型痛风的生物标志物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120105444A (ko) * 2009-10-15 2012-09-25 오클라호마 메디컬 리써치 화운데이션 염증성 질병의 활성 측정 및 모니터링을 위한 바이오마커 및 방법
KR20140148346A (ko) * 2013-06-21 2014-12-31 가톨릭대학교 산학협력단 류마티스 관절염 진단용 바이오마커
KR20180014419A (ko) * 2016-07-29 2018-02-08 가톨릭대학교 산학협력단 류마티스 관절염 진단용 바이오마커

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007100058A1 (ja) * 2006-03-02 2009-07-23 国立大学法人 千葉大学 関節リウマチの検査方法及び治療方法
JP2017516085A (ja) * 2014-04-08 2017-06-15 メタボルン インコーポレーティッド 疾患診断および健康評価のための個々の対象の低分子生化学プロファイリングの方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120105444A (ko) * 2009-10-15 2012-09-25 오클라호마 메디컬 리써치 화운데이션 염증성 질병의 활성 측정 및 모니터링을 위한 바이오마커 및 방법
KR20140148346A (ko) * 2013-06-21 2014-12-31 가톨릭대학교 산학협력단 류마티스 관절염 진단용 바이오마커
KR20180014419A (ko) * 2016-07-29 2018-02-08 가톨릭대학교 산학협력단 류마티스 관절염 진단용 바이오마커

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JOHNSON C. H.: "Metabolomics: beyond biomarkers and towards mechanisms", NAT REV MOL CELL BIOL, vol. 17, 2016, pages 451 - 459
KIM S: "Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis", PLOS ONE, vol. 9, no. 6, 2014, pages e97501, XP055766880, DOI: 10.1371/journal.pone.0097501
MCINNES I. B.SCHETT G.: "The pathogenesis of rheumatoid arthritis", N ENGL J MED, vol. 365, 2011, pages 2205 - 2219, XP009173711, DOI: 10.1056/NEJMra1004965
O'CONNEL J. X.: "Pathology of the synovium", AM J CLIN PATHOL, vol. 114, 2000, pages 773 - 784
See also references of EP3985390A4
SOOAH KIM, HWANG JIWON, XUAN JINHUA, JUNG YOUNG HOON, CHA HOON-SUK, KIM KYOUNG HEON: "Global Metabolite Profiling of Synovial Fluid for the Specific Diagnosis of Rheumatoid Arthritis from Other Inflammatory Arthritis", PLOS ONE, vol. 9, no. 6, e97501, 2 June 2014 (2014-06-02), pages 1 - 9, XP055766880, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0097501 *
XIN YU YANG, ZHENG KAI DI, LIN KE, ZHENG GUIFENG, ZOU HAI, WANG JIAN MIN, LIN YAO YAO, CHUKA CHIFUNDO MARTHA, GE REN SHAN, ZHAI: "Energy Metabolism Disorder as a Contributing Factor of Rheumatoid Arthritis: A Comparative Proteomic and Metabolomic Study", PLOS ONE, vol. 10, no. 7, e0132695, 6 July 2015 (2015-07-06), pages 1 - 15, XP055766881, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0132695 *

Also Published As

Publication number Publication date
KR102332309B1 (ko) 2021-12-01
EP3985390A4 (en) 2023-07-05
EP3985390A1 (en) 2022-04-20
KR102333499B1 (ko) 2021-12-01
US20220244273A1 (en) 2022-08-04
KR20200144173A (ko) 2020-12-29
KR20210134580A (ko) 2021-11-10

Similar Documents

Publication Publication Date Title
CA2911204C (en) Biomarkers related to kidney function and methods using the same
WO2020256351A1 (ko) 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커
WO2017003166A1 (ko) 대사체 분석을 이용한 당뇨병 조기 진단용 조성물
KR20180119717A (ko) 대사체 분석을 이용한 베체트병의 진단방법
CN113008972A (zh) 用于妊娠期糖尿病诊断的血清代谢标志物及其应用
CN111279193B (zh) 白塞氏病诊断试剂盒及检测尿中代谢物差异的方法
CN109313195A (zh) 用于提供胆道癌诊断信息的方法和用于诊断胆道癌的装置
CN112986454A (zh) 急性心肌梗死的血清标志物、试剂盒和用途
WO2022255774A1 (ko) 아실카르니틴 대사체를 포함하는 구강암 진단용 바이오마커 조성물
CN116949161A (zh) 一组肺结核血清外泌体miRNA标志物及其应用
WO2015026171A1 (ko) 리소포스파티딜콜린 및 호모시스테인산을 포함하는 난소암 진단용 조성물 및 이를 사용하여 난소암을 진단하는 방법
CN113030327A (zh) 一种基于高效液相色谱-串联质谱诊断泌尿结石的试剂盒和应用
WO2022255781A1 (ko) 류마티스 관절염의 질병활성도 평가, 진단 및 발병 예측용 바이오마커
WO2022255782A1 (ko) 류마티스 관절염의 치료 반응성 예측용 바이오마커
WO2023153635A1 (ko) 머신 러닝 기반 라만 분광 분석을 이용한 염증 질환 분류 방법 및 장치
CN112903840B (zh) 一种血清代谢物用于制备诊断干燥综合征的试剂盒的用途
CN112285260B (zh) 一组诊断标志物在诊断肥胖所致弱精子症中的应用
Misra et al. Circulatory levels of multiple microRNA associated with prediabetes
US20170016901A1 (en) Examination method of breast cancer
CN112881668B (zh) 两种血清代谢物单独或联合用于制备诊断干燥综合征的试剂盒的用途
WO2020091408A1 (ko) 반려동물에서 종양질병의 보조적 진단을 위한 바이오마커 검사방법
CN113820408A (zh) 一种基于色氨酸代谢产物的急性胰腺炎诊断模型与应用
WO2018143684A1 (ko) 급성 열성 질환을 진단하기 위한 현장 진단 시스템 및 방법
CN115754260A (zh) 一种阿尔兹海默症粪便代谢标志物及其筛选方法和应用
RU2254572C2 (ru) Способ диагностики антифосфолипидного синдрома

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020825796

Country of ref document: EP

Effective date: 20220117