WO2020256267A1 - 직렬형 면상 발열 히터 및 이의 제조방법 - Google Patents

직렬형 면상 발열 히터 및 이의 제조방법 Download PDF

Info

Publication number
WO2020256267A1
WO2020256267A1 PCT/KR2020/005227 KR2020005227W WO2020256267A1 WO 2020256267 A1 WO2020256267 A1 WO 2020256267A1 KR 2020005227 W KR2020005227 W KR 2020005227W WO 2020256267 A1 WO2020256267 A1 WO 2020256267A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
heating
pair
electrode plate
disposed
Prior art date
Application number
PCT/KR2020/005227
Other languages
English (en)
French (fr)
Inventor
김윤진
장상현
김형준
Original Assignee
주식회사 테라온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190071333A external-priority patent/KR102062493B1/ko
Priority claimed from KR1020190090158A external-priority patent/KR102132561B1/ko
Application filed by 주식회사 테라온 filed Critical 주식회사 테라온
Priority to US17/605,222 priority Critical patent/US20220217818A1/en
Priority to DE112020002915.8T priority patent/DE112020002915T5/de
Publication of WO2020256267A1 publication Critical patent/WO2020256267A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a tandem planar heating heater and a manufacturing method thereof. Specifically, the present invention maximizes the heating effect by minimizing the dead zone, which is an area that does not generate heat, and can achieve maximum output that cannot be implemented in parallel in a limited area. At the same time excellent temperature uniformity on the entire heating surface, the design for controlling the heating performance is easy and the manufacturing cost is reduced, to a serial type surface heating heater and a manufacturing method thereof.
  • the planar heating heater is a compact heater in which electrodes, heating elements, etc. are printed on a support plate on a plane, and is suitable for various applications such as electric and electronic products requiring miniaturization and weight reduction, for example, printers, copiers, heaters, ovens, and cookers. Can be applied.
  • FIG. 1 schematically shows an example of a conventional planar heating heater
  • FIG. 2 schematically shows a cross-section A-A' in FIG. 1.
  • a conventional planar heating heater includes a pair of electrode patterns 21 and 22 having different polarities on one surface of the insulating substrate 10 and electrically separated from each other.
  • a plurality of heating elements 30 having both ends electrically connected to each of the pair of electrode patterns 21 and 22 are connected in parallel with each other.
  • the heating element 30 and the insulating substrate 10 are in contact with each other so that heat transfer occurs between them by conduction, and the heating element 30 is a conductor through which electricity can flow, and is made of a material having relatively high thermal conductivity.
  • the insulating substrate 10 is a non-conductor through which electricity does not flow, and is made of a material having a relatively low thermal conductivity, and thus the entire heating surface of the planar heating heater due to the difference in thermal conductivity between the heating element 30 and the insulating substrate 10 Temperature unevenness occurs at, and heat diffusion as a heating surface that does not generate heat is required, which may accompany some energy loss.
  • An object of the present invention is to provide a tandem planar heating heater and a manufacturing method thereof, which maximizes the heating effect by minimizing the dead zone, which is a non-heating area, and has excellent temperature uniformity across the entire heating surface of the planar heating heater. do.
  • an object of the present invention is to provide a series-type planar heating heater that is easy to design for controlling the heating performance and a method for manufacturing the same.
  • the base substrate, the electrode plate, the insulating film and the heating layer are sequentially stacked from the bottom, the electrode plate includes a plurality of electrodes spaced apart from each other, and the insulating film is a plurality of perforations reaching the surfaces of each of the plurality of electrodes. It includes a line, and the heating layer includes a plurality of heating elements spaced apart from each other, and both ends of each of the plurality of heating elements are connected to each of a pair of electrodes adjacent to each other through the perforated line, so that the entire plurality of heating elements are It provides a series-type planar heating heater connected in series with each other.
  • the perforated line provides a series-type planar heating heater, characterized in that the width parallel to the direction of the current flowing through the heating element in each heating element is formed to be the same at all arbitrary points.
  • the plurality of electrodes and the plurality of heating elements are arranged in a plurality of rows or columns, and the plurality of electrodes are disposed at one end of an adjacent row or column, and include an electrode having a shape that can be included in all of the adjacent rows or columns. It is characterized in that it provides a series type surface heating heater.
  • a lower electrode plate and a lower substrate stacked under the lower electrode plate are additionally included under the base substrate, and a via hole filled with a conductive material is provided in the base substrate, and a plurality of electrically connected to each other through a heating element
  • An electrode disposed at one end of the electrodes is connected to the lower electrode plate through the via hole, and the lower electrode plate includes a protruding electrode provided adjacent to an electrode disposed at the other end of the plurality of electrodes. It provides a tandem planar heating heater.
  • a plurality of via holes filled with a conductive material are provided in the base substrate, and a pair of electrodes disposed at both ends of a plurality of electrodes electrically connected to each other through a heating element are respectively provided with the lower electrode through the respective via holes.
  • a pair of protruding electrodes connected to the plate wherein the lower electrode plate is connected to each of a pair of electrodes disposed at both ends, disposed adjacent to each other, and electrically separated from each other through a spaced line.
  • the electrode is characterized in that the specific resistance is 2.82 ⁇ 10 -6 ⁇ ⁇ cm or less, heat resistance is 260 °C or more, it is characterized in that made of a metal having a thermal conductivity of 12 W / m ⁇ K or more, it provides a series type surface heating heater.
  • the insulating film is polyimide (PI), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyethylene sulfide (PES), polyethyleneimide (PEI), polyetheretherketone (PEEK), polyamideimide. (PAI) and polysulfone (PSU), characterized in that it comprises an insulating film containing at least one polymer resin selected from the group consisting of, it provides a series type surface heating heater.
  • the heating element is formed from a heating element composition including a mixed binder and conductive particles, and the conductive particles include at least one or more of metal particles and carbon particles, providing a tandem planar heating heater.
  • a series-type and curved-surface heating heater in which at least some of the edges are formed in a curved surface, a base substrate, an upper electrode plate including a plurality of electrodes spaced apart from each other, a plurality of perforated holes reaching the surfaces of each of the plurality of electrodes
  • An insulating film including a and a heating layer including a plurality of heating elements spaced apart from each other are sequentially stacked from the bottom, and both ends of each of the plurality of heating elements are connected to each of a pair of electrodes adjacent to each other through the perforation hole.
  • One or more series connection sections in which all of the plurality of heating elements are connected in series with each other are included, and among the electrodes and the heating elements, electrodes disposed adjacent to the curved edge of the curved surface heating heater and the curved edge of each of the heating elements Adjacent surfaces have a curved surface corresponding to the curved edge, and the plurality of perforated holes are designed in a parallel shape with inner facing surfaces of two adjacent perforated holes in parallel. Provides a type surface heating heater.
  • the resistance at any point is adjusted to be the same, in series and curved Provides an area heating heater.
  • the plurality of electrodes and at least one heating element disposed in the series connection section have a length of an upper surface greater than that of a lower surface, and the upper surface and the lower surface each have a curved shape corresponding to the curved edge, and are curved parallel to each other. It is characterized in that it has a trapezoidal shape, and provides a tandem and curved surface heating heater.
  • a lower electrode plate is laminated under the base substrate, a lower protective film is laminated under the lower electrode plate, a via hole filled with a conductive material is formed in the base substrate, and among the electrodes disposed in the series connection section
  • Each of the pair of electrodes disposed at both ends of the current flow is connected to each of the pair of connection surfaces of the lower electrode plate through the via hole, and the lower electrode plate is electrically separated from each other through a spaced line and adjacent to each other. It includes a pair of protruding electrodes arranged to be arranged, and each of the pair of connection surfaces is electrically connected to each of the pair of protruding electrodes, and provides a series type and a curved surface heating heater.
  • the plurality of electrodes disposed in the series connection section may be at least partially disposed in a plurality of rows or columns, and one or more electrodes so that electrodes disposed in adjacent rows or columns among the plurality of rows or columns can be electrically connected to each other. It provides a series type and curved surface heating heater, characterized in that it has a shape that can be included in both of these adjacent rows or columns.
  • the serial connection section includes a plurality of serial connection sections, and as a center region of the serial connection section disposed at the innermost of the plurality of serial connection sections, a pair of spaced apart from each other in a region where the electrode cannot be placed.
  • a semicircular electrode is disposed, and the pair of semicircular electrodes spaced apart from each other provides a serial type and a curved surface heating heater, characterized in that they can be electrically connected to each other by a heating element stacked thereon.
  • the electrode is characterized in that it is made of a metal having a specific resistance of 2.82 ⁇ 10 -6 ⁇ cm or less, a heat resistance of 260° C. or more, and a heat conductivity of 12 W/m ⁇ K or more. to provide.
  • the insulating film is polyimide (PI), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyethylene sulfide (PES), polyethyleneimide (PEI), polyetheretherketone (PEEK), polyamideimide. (PAI) and polysulfone (PSU), characterized in that it comprises an insulating film comprising at least one polymer resin selected from the group consisting of, it provides a series type and curved surface heating heater.
  • the heating element is formed from a heating element composition including a mixed binder and conductive particles, and the conductive particles include at least one particle of metal particles and carbon particles. to provide.
  • a plurality of heating elements are connected in series with each other to minimize a dead zone, which is an area that does not generate heat because the heating element is not disposed, and is provided to apply a voltage to the heating element.
  • the electrode made of a metal having excellent thermal conductivity covers the entire heating surface of the planar heating heater, the temperature uniformity of the entire heating surface of the planar heating heater is excellent.
  • tandem planar heating heater according to the present invention exhibits an excellent effect of easy design for controlling the heating performance by controlling the heating performance not by the distance between a pair of electrodes but by the perforated position of the insulating film coated on the electrodes. .
  • FIG. 1 schematically shows the structure of a conventional planar heating heater.
  • FIG. 2 schematically shows the cross-sectional structure A-A' in FIG. 1.
  • FIG. 3 schematically shows constituent layers implementing a stacked structure of a tandem planar heating heater according to an embodiment of the present invention.
  • FIG. 4 schematically shows a perspective view of a tandem planar heating heater in a state in which constituent layers shown in FIG. 3 are sequentially stacked.
  • FIG. 6 schematically shows another embodiment of the constituent layers of the tandem planar heating heater shown in FIG. 3.
  • FIG. 7 schematically shows another embodiment of the constituent layers of the tandem planar heating heater shown in FIG. 3.
  • FIG. 8 is an exploded perspective view schematically showing a stacked structure of one embodiment of a tandem type and a curved surface type heating heater according to the present invention.
  • FIG. 9 is a plan view of the lower electrode plate in FIG. 8.
  • FIG. 10 is a plan view of the base substrate in FIG. 8.
  • FIG. 11 is a plan view of an upper electrode plate in FIG. 8.
  • FIG. 12 is a plan view in which an insulating film is stacked on an upper electrode plate in FIG. 8.
  • FIG. 13 is a plan view of the heating layer in FIG. 8.
  • FIG. 14 schematically shows a partial cross-sectional view of the tandem and curved surface heating heaters shown in FIG. 8.
  • FIG. 15 schematically shows a partial enlarged view of the tandem type and curved surface heating heater shown in FIG. 8.
  • FIG. 16 schematically shows the direction in which current flows through the upper electrode plate in FIG. 8.
  • 17 is a photograph of a thermal image of the tandem and curved surface heating heaters shown in FIG. 8 during heat generation.
  • FIG. 18 is a photograph of a thermal image of the serial and curved surface heating heaters shown in FIG. 8 during heat generation.
  • FIG. 3 schematically shows the constituent layers implementing the stacked structure of the tandem planar heating heater according to the present invention
  • FIG. 4 shows the tandem planar heat generating heater in a state in which the constituent layers shown in FIG. 3 are sequentially stacked. It schematically shows a perspective view
  • FIG. 5 schematically shows a cross-sectional structure of BB′ in FIG. 4.
  • the tandem planar heating heater according to the present invention includes a base substrate 100, an electrode plate 200, an insulating film 300, a heating layer 400, a protective film ( 500) may be formed by sequentially stacking.
  • the base substrate 100 may have a shape corresponding to the shape of the electrode plate 200 stacked on the base substrate 100, and may have a thickness of about 15 to 100 ⁇ m.
  • the base substrate 100 is polyethylene terephthalate (PET), polyimide (PI), polyacrylonitrile, depending on the application field or use temperature in which the tandem planar heating heater according to the present invention is used.
  • PET polyethylene terephthalate
  • PI polyimide
  • PAN polyurethane
  • PU polyurethane
  • PC polycarbonate
  • PC polycarbonate
  • PEEK polyether ether ketone
  • PES polyethersulphone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethyelenen napthalate
  • PPS polyphenylene sulfide
  • Polyallylate cellulose triacetate (CTA), cellulose acetate propinonate (CAP), etc. It may be made of at least one plastic material selected from the group consisting of.
  • the electrode plate 200 may include a plurality of electrodes 210 spaced apart from each other by a gap 220 that may be formed to have a width of about 0.05 to 10 mm by etching by photolithography, and the like. All of the plurality of electrodes 210 not connected to each other are electrically connected to each other by a plurality of heating elements 410 included in the heating layer 400.
  • the insulating film 300 stacked on the electrode plate 200 includes a plurality of perforated electrodes to the surface of the electrode 210 of the electrode plate 200 by etching by a laser device.
  • a perforated line 310 is formed, and both ends of each heating element 410 included in the heating layer 400 stacked on the insulating film 300 are a pair of electrodes adjacent to each other through the perforated line 310
  • the plurality of electrodes 210 are electrically connected to each other as a whole.
  • the plurality of electrodes 210 included in the electrode plate 200 may be disposed in a plurality of rows and columns, and the electrodes 213 and 214 disposed at one end of an adjacent row or column may be included in both adjacent rows or columns. By retaining the shape, even when the plurality of electrodes 210 are arranged in a plurality of rows and columns, the whole can be electrically connected to each other.
  • the electrode may be made of a metal such as aluminum, steel, or copper, and the metal has a specific gravity of 2.7 g/cm 3 or more, for example, 2.7 to 8.9 g/cm 3 , and a specific resistance of 2.82 ⁇ 10 -6 ⁇ . Cm or less, for example, 1.72 ⁇ 10 -6 to 2.82 ⁇ 10 -6 ⁇ cm, heat resistance is 260°C or more, for example, 260 to 500°C, thermal conductivity is 12 W/m ⁇ K or more, for example For example, it may be 12 to 400 W/m ⁇ K.
  • the overall size of the electrode plate 200 may vary according to the use of the serial type planar heating heater according to the present invention.
  • the insulating film 300 stacked on the electrode plate 200 may have a plurality of perforated lines 310 perforated to the surface of the lower electrode plate 200, and the plurality of perforated lines Depending on the length between the pair of perforated lines 310 connected to the surface of each of the pair of electrodes 210 adjacent to each other, each end through each of the pair of perforated lines 310 Since the width of the heating element 410 connected to each of the pair of electrodes 210 is determined, the heating performance can be adjusted by adjusting the length between the pair of perforated lines 310.
  • the pair of perforated lines 310 are formed so that the width parallel to the direction of the current is the same at all arbitrary points in the heating element 410 where each end is inserted into each of the pair of perforated lines 310 May be, for example, may be formed parallel to each other. Accordingly, each of the heating elements 410 has the same resistance in all directions of any current, and as a result, heat is uniform, so that temperature uniformity can be realized.
  • the insulating film 300 may include a polymer resin film having excellent insulating properties and heat resistance, and preferably, long-term thermal stability of 230°C or more, short-term thermal stability of 400°C or more, heat deflection temperature (HDT/A) 470 High strength, elasticity and rigidity maintained even at temperatures above °C and 230 °C, high purity and low gas emission in vacuum, excellent processability and self-flammability, such as polyimide (PI), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyethylene sulfide (PES), polyethyleneimide (PEI), polyetheretherketone (PEEK), polyamideimide (PAI), polysulfone (PSU), etc. It may include a film.
  • PI polyimide
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • PES polyethylene sulfide
  • PEI polyethyleneimide
  • PEEK polyetheretherketone
  • PAI polyamide
  • the heating layer 400 may include a plurality of heating elements 410 spaced apart from each other, and may be disposed in a plurality of rows or columns like a plurality of electrodes included in the electrode plate 200, as described above. Likewise, each of the heating elements 410 is connected to each of a pair of electrodes spaced apart from the electrode plate 200 through a perforated line 310 of the insulating film 300 at both ends.
  • the heating element 410 may be formed by printing and drying a heating element composition including a mixed binder and conductive particles, and the thickness of each of the heating elements 410 thus formed may be about 1 to 20 ⁇ m.
  • the mixed binder may include two or more selected from the group consisting of phenolic resins, acetal resins, isocyanate resins, epoxy resins, etc. so as to have heat resistance even at a temperature of about 300°C, and the conductive particles It includes carbon particles capable of improving the heat resistance of the heating element 410, and may further include metal powder.
  • the carbon particles may include carbon black, carbon nanotubes, graphite, activated carbon, and the like, preferably carbon nanotubes and graphite, and the carbon nanotubes as the carbon particles form a sufficient electrical network in small amounts because the aspect ratio is large.
  • carbon nanotubes and graphite preferably carbon nanotubes and graphite
  • the carbon nanotubes as the carbon particles form a sufficient electrical network in small amounts because the aspect ratio is large.
  • a protective film 500 for protecting the heating layer 400 from the outside may be additionally stacked on the heating layer 400, and the shape of the protective film 500 is the overall shape of the heating layer 400 It may have a shape corresponding to, and its thickness may be about 15 to 100 ⁇ m.
  • the protective film 500 may be made of the same material as or different from the insulating film 300, and preferably may be made of the same material.
  • the tandem planar heating heater according to the present invention can be manufactured by sequentially performing steps a) to d) below.
  • an insulating film 300 is laminated on an electrode plate 200 including a plurality of electrodes 210 spaced apart from each other in the above-described structure, and the insulating film 300
  • the entire plurality of electrodes 210 are electrically connected to each other through a plurality of heating elements 410 each of which both ends are connected to each of the adjacent pair of electrodes 210 through a plurality of perforated lines 310 formed in,
  • the heating surface due to the complicated design of the electrode pattern for connecting electrodes of different polarities to both ends of each heating element as a plurality of heating elements are conventionally connected in parallel.
  • the dead zone can be minimized by solving the problem of increasing the dead zone, which does not generate heat because the heating element is not disposed at the same time, while an electrode made of metal with excellent thermal conductivity covers the heating surface of the planar heating heater as a whole. By doing so, excellent temperature uniformity can be realized by rapid heat transfer over the entire heating surface of the planar heating heater.
  • the control of the heating performance is not due to the design of the electrode plate 200, but a perforated line formed on the insulating film 300 stacked on the electrode plate 200. Since it is possible by the design of 310, it may be easier to design for controlling the heating performance compared to the conventional planar heating heater in which the design of the electrode pattern had to be changed according to the heating performance.
  • FIG. 6 schematically shows another embodiment of the constituent layers of the tandem planar heating heater shown in FIG. 3.
  • a lower electrode plate 600 and a lower substrate 700 stacked under the lower electrode plate 600 may be additionally included under the base substrate 100 ′.
  • the lower substrate 700 functions to support and insulate the lower electrode plate 600, and the shape thereof has a shape corresponding to the overall shape of the lower electrode plate 600, and the base substrate ( It may be made of the same thickness and material as 100).
  • the lower electrode plate 600 is formed in the base substrate 100 ′ stacked on the lower electrode plate 600 and is formed in the electrode plate 200 ′ through a via hole 110 ′ filled with a conductive material. It is connected to an electrode 212 ′ disposed at one end of a plurality of electrodes 210 ′ that are spaced apart and electrically connected to each other through a plurality of heating elements 410.
  • a position adjacent to the electrode 211 ′ disposed at the other end of the plurality of electrodes 210 ′ electrically connected to each other from the electrode plate 200 ′ of the lower electrode plate 600, for example, the A protruding electrode 610 disposed under the electrode 211 ′ and having a polarity different from that of the electrode 211 ′ may be provided, whereby a pair of electrodes 211 ′ and 610 having different polarities are disposed adjacent to each other And the arrangement of terminals connected to the pair of electrodes 211 ′ and 610, respectively, may be facilitated.
  • FIG. 7 schematically shows another embodiment of the constituent layers of the tandem planar heating heater shown in FIG. 3.
  • a lower electrode plate 600 ′ and a lower substrate 700 ′ stacked under the lower electrode plate 600 ′ may be additionally included under the base substrate 100 ′′.
  • the lower substrate 700 ′ supports and insulates the lower electrode plate 600 ′, and the shape thereof has a shape corresponding to the overall shape of the lower electrode plate 600 ′. It may be made of the same thickness and material as the base substrate 100.
  • the lower electrode plate 600 ′ is formed on the base substrate 100 ′′ stacked on the lower electrode plate 600 ′ and passes through via holes 110 ′′ and 120 ′′ filled with a conductive material. 200") are disposed to be spaced apart from each other and connected to the electrodes 211" and 212" disposed at both ends of the plurality of electrodes 210" which are electrically connected to each other through the plurality of heating elements 410.
  • a pair of electrodes 211" and 212" disposed at both ends of the lower electrode plate 600' are connected to each of the via holes 110" and 120" formed in the base substrate 100".
  • the protruding electrodes 610 ′ and 620 ′ of are provided, and the pair of protruding electrodes 610 ′ and 620 ′ may be electrically separated from each other through a separation line 630 ′.
  • a pair of electrodes 610 ′ and 620 ′ having different polarities may be disposed adjacent to each other, and an arrangement and design of terminals connected to the pair of electrodes 610 ′ and 620 ′ may be facilitated.
  • FIGS. 9 to 13 are a lower electrode plate, a base substrate, and an upper electrode in FIG. It shows a plan view of the plate, the insulating film and the heating layer, respectively.
  • the serial and curved surface heating heaters include a lower protective film 1000, a lower electrode plate 2000, a base substrate 3000, an upper electrode plate 4000, and an insulating film. (5000), the heating layer 6000 and the upper protective film 7000 may be formed by sequentially stacking from the bottom.
  • Each of the components to be stacked may have the same or similar planar shape as a whole, and in particular, at least some of the respective rims may be formed in a curved surface.
  • the radius of curvature of the curved surface formed on the rim may be about 1 m or less, and the length of the curved surface may be about 5% or more based on the total length of the rim.
  • the lower protective film 1000 functions to support and insulate the lower electrode plate 2000, and according to the application field and the use temperature in which the serial and curved surface heating heaters according to the present invention are used. It may be made of a thickness and a material, for example, the thickness is about 5 to 20 ⁇ m, the material is polyethylene terephthalate (polyethyelene terepthalate; PET), polyimide (PI), polyacrylonitrile (poly acrylonitrile; PAN).
  • PET polyethylene terephthalate
  • PI polyimide
  • PAN polyacrylonitrile
  • polyurethane PU
  • silicone silicone
  • PC polycarbonate
  • tefron liquid crystal polymer
  • PEEK polyether ether ketone
  • PES polyether Sulfone
  • PAR polyetherimide
  • PEI polyethylene naphthalate
  • PEN polyethyelenen napthalate
  • PPS polyphenylene sulfide
  • PES polyarylate
  • CTA cellulose triacetate
  • CAP cellulose acetate propinonate
  • the lower electrode plate 2000 is formed on the base substrate 3000 stacked on the lower electrode plate 2000, and the upper electrode stacked on the base substrate 3000 through via holes 3100a and 3100b filled with a conductive material Connection surfaces 2100a, which are disposed apart from each other in the plate 4000, but are respectively connected to the electrodes 4100a and 4100b disposed at both ends of the plurality of electrodes 4100 connected in series through one or more heating elements 6100, 2100b).
  • the lower electrode plate 2000 is provided with a pair of protruding electrodes 2200a and 2200b that are electrically connected to each of the pair of connection surfaces 2100a and 2100b and protrude to the outside, and the pair of The connection surfaces 2100a and 2100b and the pair of protruding electrodes 2200a and 2200b may be electrically separated from each other through a separation line 2300, respectively.
  • a pair of protruding electrodes 2200a and 2200b each connected to an external power terminal and having different polarities, may be disposed adjacent to each other, and a power terminal connected to the pair of protruding electrodes 2200a and 2200b, respectively
  • the layout design can be easy.
  • the lower protective film 1000 and the lower electrode plate 2000 may be omitted.
  • the base substrate 3000 does not need to have a via hole, and the upper electrode plate
  • the provided pair of electrodes 4100a and 4100b may be directly connected to an external power terminal.
  • the base substrate 3000 supports the upper electrode plate 4000 and is disposed between the upper electrode plate 4000 and the lower electrode plate 2000 to insulate from each other except for the via holes 3100a and 3100b. It can be made of various thicknesses and materials according to the application field or temperature in which the serial and curved surface heating heaters according to the present invention are used, for example, the same as the lower protective film 1000 or It can be made of different thicknesses and materials.
  • the upper electrode plate 4000 may include a plurality of electrodes 4100 spaced apart from each other by a gap 4200 that may be formed to have a width of about 0.5 to 1 mm by etching by photolithography, etc.
  • a plurality of electrodes 4100 that are not electrically connected may include one or more series connection sections connected in series to each other by one or more heating elements 6100 included in the heating layer 6000, and a plurality of series connections In the case of including a section, each serial connection section may be provided in a circular ring shape as a whole.
  • a surface adjacent to the curved edge has a curved surface corresponding to the curved edge, so that even when the electrode 4100 and the heating element 6100 are disposed adjacent to the curved edge, the electrode disposed adjacent to the curved edge (4100)
  • a dead zone between the surface adjacent to the curved edge of the heating element 6100 and the curved edge that is, a region that does not generate heat on the heating surface can be minimized, and disposed adjacent to A dead zone between the electrode 4100 and the heating element 6100 may also be minimized.
  • the electrode 4100 and the heating element 6100 have an inverted trapezoid shape in which the length of the upper surface is greater than the length of the lower surface, and the upper surface and the lower surface each have a curved shape corresponding to the curved edge and are parallel to each other. It can have a curved trapezoidal shape.
  • a pair of semicircular electrodes spaced apart from each other is located in the center area of the series connection section, which is disposed at the innermost of the one or more series connection sections, and the space is no longer in which the curved trapezoidal electrode 4100 can be disposed. It may be disposed, and the pair of semicircular electrodes spaced apart from each other may be electrically connected to each other by a rectangular heating element stacked thereon.
  • FIG. 14 schematically shows a partial cross-sectional view of the tandem and curved surface heating heaters shown in FIG. 8.
  • the insulating film 5000 stacked on the upper electrode plate 4000 includes a plurality of perforated electrodes up to the surface of the electrode 4100 of the electrode plate 4000 by etching by a laser device.
  • Four perforated holes 5100 are formed, and both ends of each of the heating elements 6100 included in the heating layer 6000 laminated on the insulating film 5000 are formed by a pair of adjacent through the perforated holes 5100.
  • the plurality of electrodes 4100 arranged in each serial connection section are electrically connected to each other.
  • FIG. 15 schematically shows a partial enlarged view of the tandem curved surface heating heater shown in FIG. 8.
  • the heating element 6100 having a curved trapezoidal shape increases in width according to the current flow direction from the bottom surface formed in a parallel curve to the top surface, and accordingly, the resistance of the heating element 6100 is also on the bottom surface. Since it increases toward the top of the heating element 6100, when the left and right ends of the heating element 6100 are connected to the electrode, temperature non-uniformity due to different resistances in one heating element 6100 may be caused.
  • the series-type and curved-surface heating heater according to the present invention is designed to specify the shape of the plurality of perforated holes 5100 formed in the insulating film 5000, so that when current flows through the single heating element 6100 It can be adjusted so that the resistance at the point of is the same.
  • the plurality of perforated holes 5100 are inner surfaces opposite to each other in the adjacent two perforated holes 5100, that is, an insulating film 5100 disposed between the two perforated holes.
  • a pair of surfaces in contact with each of the left and right sides may be designed in a parallel shape, whereby the flow of current occurs in the heating element 6100 that is connected to the electrode 4100 located at the lower side thereof through the perforated hole 5100
  • the resistance can be maintained constant, and as a result, the temperature uniformity in one heating element 6100 can be improved.
  • FIG. 16 schematically shows the direction in which current flows through the upper electrode plate in FIG.
  • the upper electrode plate 4100 includes a plurality of series connection sections, so that a plurality of series current flows may exist, and a plurality of electrodes 4100 disposed in each series connection section are at least It may be partially disposed in a plurality of rows or columns, and in this case, some electrodes 4110 may be included in all adjacent rows or columns so that the electrodes 4100 disposed in each of adjacent rows or columns can be electrically connected to each other. Can hold.
  • a pair of electrodes 4100a and 4100b disposed at both ends due to the flow of current in each serial connection section are formed of the lower electrode plate 2000 through the via holes 3100a and 3100b of the base substrate 3000.
  • a voltage is applied to a pair of protruding electrodes 2200a and 2200b each connected to a pair of connection surfaces 2100a and 2100b and electrically connected to each of the pair of connection surfaces 2100a and 2100b and having different polarities.
  • a current flows through the heating elements 6100 arranged in each series connection section and connected in series to each other, so that heat generation is realized by the specific resistance of the heating element 6100.
  • the lower electrode plate 2000 and the upper electrode plate 4000 may be made of a metal such as aluminum, steel, or copper, and the metal has a specific gravity of 2.7 g/cm 3 or more, for example, 2.7 to 8.9 g/ cm 3 , resistivity is 2.82 ⁇ 10 -6 ⁇ cm or less, for example, 1.72 ⁇ 10 -6 to 2.82 ⁇ 10 -6 ⁇ cm, heat resistance is 260° C. or more, eg 260 to 500° C., thermal conductivity This may be 12 W/m ⁇ K or more, for example, 12 to 400 W/m ⁇ K.
  • the thickness of the electrode plates 2000 and 4000 may be, for example, 5 to 75 ⁇ m.
  • the thickness of the electrode plates 2000 and 4000 is less than 5 ⁇ m, there is a risk of a voltage drop due to the driving voltage, and when the thickness of the electrode plates 2000 and 4000 is greater than 75 ⁇ m, there is a high risk of a defect due to a height difference between the electrode part and the heating part.
  • the insulating film 5000 may include a plurality of perforated holes 5100 as described above, and connected to the surfaces of each of a pair of electrodes 4100 adjacent to each other among the plurality of perforated holes 5100 Since the width of the heating element 6100 connected to each of the pair of electrodes 4100 through each of the pair of perforated holes 5100 is determined according to the length between the pair of perforated lines 5100 , It is possible to adjust the heating performance by adjusting the length between the pair of perforated holes 5100.
  • the insulating film 5000 may include a polymer resin film having excellent insulating properties and heat resistance, and preferably, long-term thermal stability of 230°C or higher, short-term thermal stability of 400°C or higher, and heat deflection temperature (HDT/A) 470 High strength, elasticity and rigidity maintained even at temperatures above °C and 230 °C, cold resistance properties at temperatures below -40 °C, high purity and low gas emission in a vacuum, excellent processability and self-flame retardant polymer resin, for example, Polyimide (PI), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyethylene sulfide (PES), polyethyleneimide (PEI), polyetheretherketone (PEEK), polyamideimide (PAI), polysulfone A film containing a polymer resin such as (PSU) may be included.
  • PI polyimide
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • PES polyethylene
  • the heating layer 6000 may include a plurality of heating elements 6100 spaced apart from each other, and may be disposed in a plurality of rows or columns like the plurality of electrodes 4100 included in the upper electrode plate 4000, As described above, each of the heating elements 6100 has both ends of each of the pair of electrodes 4100 spaced apart from the upper electrode plate 4000 through the perforated holes 5100 of the insulating film 5000. Connected.
  • the heating element 6100 may be formed by printing and drying a heating element composition including a mixed binder and conductive particles, and the thickness of each of the heating elements 6100 thus formed may be about 3 to 20 ⁇ m.
  • the mixed binder may include two or more selected from the group consisting of phenolic resins, acetal resins, isocyanate resins, epoxy resins, etc. so as to have heat resistance even at a temperature of about 300°C, and the conductive particles It includes carbon particles capable of improving heat resistance of the heating element 6100 and may further include metal powder.
  • the carbon particles may include carbon black, carbon nanotubes, graphite, activated carbon, and the like, preferably carbon nanotubes and graphite, and the carbon nanotubes as the carbon particles form a sufficient electrical network in small amounts because the aspect ratio is large.
  • carbon nanotubes and graphite preferably carbon nanotubes and graphite
  • the carbon nanotubes as the carbon particles form a sufficient electrical network in small amounts because the aspect ratio is large.
  • an upper protective film 7000 for protecting the heating layer 6000 from the outside may be additionally stacked, and the shape of the upper protective film 7000 is It may be a shape corresponding to the overall shape, and the thickness thereof may be about 10 to 100 ⁇ m.
  • the upper protective film 7000 may be formed of the same or different material as the lower protective film 1000 or the insulating film 5000, and preferably may be formed of the same material.
  • tandem and curved surface heating heaters according to the present invention can be manufactured by sequentially performing steps a) to f) below.
  • a pair of protruding electrodes 2200a and 2200b are formed to be electrically separated by forming a separation line 2300 for the lower electrode plate 2000 stacked on the lower protective film 1000 by etching by photolithography. Steps to do,
  • a pair of perforated holes 5100 disposed on the surface of each of the adjacent pair of electrodes among the plurality of perforated holes 5100 are connected to each other so that both ends are connected to each of the pair of electrodes and a plurality of spaced apart from each other.
  • an insulating film 5000 is laminated on an upper electrode plate 4000 including a plurality of electrodes 4100 spaced apart from each other in the above-described structure, and the insulation Through a plurality of perforated holes 5100 formed in the film 5000, the plurality of electrodes 4100 are electrically connected to each other through a plurality of heating elements 6100, each of which ends are connected to each of the adjacent pair of electrodes 4100. And the plurality of heating elements 6100 are connected in series, so that electrodes of different polarities are connected to both ends of each heating element as the plurality of heating elements 6100 are connected in parallel.
  • the dead zone that does not generate heat is solved by solving the problem of increasing the dead zone, which is not arranged on the heating surface, and at the same time, the electrode made of metal with excellent thermal conductivity is used to generate surface heating.
  • the electrode made of metal with excellent thermal conductivity is used to generate surface heating.
  • 17 and 18 are photographs of thermal images of the curved surface heating heater shown in FIG. 8 during heat generation.
  • FIG. 17 is a photograph of a thermal image of a curved surface heating heater for low heat generation
  • FIG. 18 is a photograph of a thermal image of a curved surface heating heater for high heat generation.
  • the series-type and curved-surface heating heater according to the present invention covers the heating surface as a whole, and an electrode that minimizes the rapid heat conduction and dead zone by the upper electrode plate 4000 having excellent thermal conductivity. Overall, excellent temperature uniformity can be implemented by designing the shape of the heating element.
  • the curved surface heating heater is formed on the insulating film 5000 laminated on the upper electrode plate 4000, not by the design of the upper electrode plate 4000 as described above, Since it is possible by the design of the perforated hole 5100, the design for controlling the heating performance is easier compared to the conventional planar heating heater, which had to change the design of the electrode pattern according to the heating performance, and thus manufacturing cost can be reduced.

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

본 발명은 직렬형 면상 발열 히터 및 이의 제조방법에 관한 것이다. 구체적으로, 본 발명은 발열하지 않는 영역인 데드존(dead zone)이 최소화됨으로써 발열 효과가 극대화되고, 한정된 면적에서 병렬형으로는 구현이 되지않는 최대의 출력을 달성할 수 있으며, 면상 발열 히터의 전체 발열면에서의 온도 균일도가 우수한 동시에, 발열성능 조절을 위한 설계가 용이하고 제조비용이 절감되는, 직렬형 면상 발열 히터 및 이의 제조방법에 관한 것이다.

Description

직렬형 면상 발열 히터 및 이의 제조방법
본 발명은 직렬형 면상 발열 히터 및 이의 제조방법에 관한 것이다. 구체적으로, 본 발명은 발열하지 않는 영역인 데드존(dead zone)이 최소화됨으로써 발열 효과가 극대화되고, 한정된 면적에서 병렬형으로는 구현이 되지않는 최대의 출력을 달성할 수 있으며, 면상 발열 히터의 전체 발열면에서의 온도 균일도가 우수한 동시에, 발열성능 조절을 위한 설계가 용이하고 제조비용이 절감되는, 직렬형 면상 발열 히터 및 이의 제조방법에 관한 것이다.
면상 발열 히터는 면상의 지지 플레이트에 전극, 발열체 등이 인쇄된 컴팩트한 형태의 히터로 소형화 및 경량화가 요구되는 전기 전자 제품, 예를 들어, 프린터, 복사기, 난방기, 오븐, 조리기 등의 다양한 용도에 적용될 수 있다.
도 1은 종래 면상 발열 히터의 하나의 예시를 개략적으로 도시한 것이고, 도 2는 도 1에서 A-A' 단면을 개략적으로 도시한 것이다.
도 1 및 2에 도시된 바와 같이, 종래 면상 발열 히터는 절연 기판(10)의 일면에 서로 다른 극성을 갖고 서로 전기적으로 분리된 한 쌍의 전극 패턴(21, 22)을 포함하는 전극(20), 양 말단이 상기 한 쌍의 전극 패턴(21,22) 각각에 전기적으로 연결된 복수개의 발열체(30)가 서로 병렬로 연결되어 있다.
이러한 종래 면상 발열 히터는 복수개의 발열체(30)가 서로 병렬로 연결되기 때문에 각각의 발열체(30) 양 말단 각각에 서로 다른 극성의 전극 패턴(21,22)이 각각 연결되어야 하고, 이로써 발열체(30)의 갯수가 증가함에 따라 전극 패턴(21,22)의 설계가 복잡할 수밖에 없으며, 이에 따라 면상 발열 히터에서 발열체가 배치되지 않아 발열하지 않는 영역인 데드존(dead zone)이 증가하게 되고, 결과적으로 발열 효과가 저하되는 문제가 있다.
또한, 발열체(30)와 절연 기판(10)은 서로 접촉함으로써 이들 사이에 전도에 의한 열전달이 일어나고, 상기 발열체(30)는 전기가 흐를 수 있는 도체로 상대적으로 열전도도가 높은 소재로 이루어져 있는 반면 상기 절연 기판(10)은 전기가 흐르지 않는 부도체로 열전도도가 상대적으로 낮은 소재로 이루어져 있어, 이러한 상기 발열체(30)와 상기 절연 기판(10)의 열전도도 차이에 의해 면상 발열 히터의 발열면 전체에서 온도 불균일이 발생하고, 발열이 되지 않는 발열면으로서의 열확산이 필요하며, 이것은 어느 정도의 에너지 손실을 동반할 수 있다.
따라서, 발열하지 않는 영역인 데드존(dead zone)이 최소화됨으로써 발열 효과가 극대화되고 면상 발열 히터의 전체 발열면에서의 온도 균일도가 우수한 동시에, 발열성능 조절을 위한 설계가 용이하고 제조비용이 절감될 수 있는, 면상 발열 히터 및 이의 제조방법이 절실히 요구되고 있는 실정이다.
본 발명은 발열하지 않는 영역인 데드존(dead zone)이 최소화됨으로써 발열 효과가 극대화되고 면상 발열 히터의 전체 발열면에서의 온도 균일도가 우수한 직렬형 면상 발열 히터 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 발열성능 조절을 위한 설계가 용이한 직렬형 면상 발열 히터 및 이의 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은,
베이스 기판, 전극 플레이트, 절연 필름 및 발열층이 하부로부터 순차적으로 적층되고, 상기 전극 플레이트는 서로 이격된 복수개의 전극을 포함하고, 상기 절연 필름은 상기 복수개의 전극 각각의 표면까지 도달하는 복수개의 타공라인을 포함하며, 상기 발열층은 서로 이격된 복수개의 발열체를 포함하고, 상기 복수개의 발열체 각각의 양 말단은 각각 상기 타공라인을 통해 인접한 한 쌍의 전극 각각에 접속하게 되어 상기 복수개의 발열체 전체가 서로 직렬로 연결되는, 직렬형 면상 발열 히터를 제공한다.
여기서, 상기 타공라인은 각각의 발열체에서 상기 발열체에 흐르는 전류의 방향과 평행한 폭이 임의의 모든 지점에서 동일하도록 형성되는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
또한, 상기 복수개의 전극 및 상기 복수개의 발열체는 복수개의 행 또는 열로 배치되고, 상기 복수개의 전극은 인접한 행 또는 열의 일측 말단에 배치되고 상기 인접한 행 또는 열에 모두 포함될 수 있는 형상을 갖는 전극을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
그리고, 상기 발열층 위에 보호 필름이 적층된 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
나아가, 상기 베이스 기판 하부에는 하부 전극판 및 상기 하부 전극판 하부에 적층된 하부 기판을 추가로 포함하고, 상기 베이스 기판에는 도전성 물질이 충진된 비아홀이 구비되며, 발열체를 통해 서로 전기적으로 연결되는 복수개의 전극 중 일 말단에 배치된 전극이 상기 비아홀을 통해 상기 하부 전극판에 접속하고, 상기 하부 전극판은 상기 복수개의 전극 중 타 말단에 배치된 전극에 인접하게 구비된 돌출 전극을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
여기서, 상기 베이스 기판에는 도전성 물질이 충진된 복수개의 비아홀이 구비되며, 발열체를 통해 서로 전기적으로 연결되는 복수개의 전극 중 양 말단에 배치된 한 쌍의 전극 각각이 상기 각각의 비아홀을 통해 상기 하부 전극판에 접속하고, 상기 하부 전극판은 상기 양 말단에 배치된 한 쌍의 전극 각각에 접속하고 서로 인접하게 배치되며 이격 라인을 통해 서로 전기적으로 분리되는 한 쌍의 돌출 전극을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
또한, 상기 전극은 비저항이 2.82×10-6 Ω·cm 이하, 내열성은 260℃ 이상, 열전도율이 12 W/m·K 이상인 금속으로 이루어져 있는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
그리고, 상기 절연 필름은 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리에틸렌설파이드(PES), 폴리에틸렌이미드(PEI), 폴리에테르에테르케톤(PEEK), 폴리아미드이미드(PAI) 및 폴리설폰(PSU)으로 이루어진 그룹으로부터 선택된 1종 이상의 고분자 수지를 포함하는 절연 필름을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
나아가, 상기 발열체는 혼합 바인더와 전도성 입자를 포함하는 발열체 조성물로부터 형성되고, 상기 전도성 입자는 금속 입자와 탄소 입자 중 적어도 하나 이상의 입자를 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터를 제공한다.
한편, 아래 단계 a) 내지 d)를 순차적으로 수행하는, 상기 직렬형 면상 발열 히터의 제조방법을 제공한다.
a) 베이스 기판 위에 적층된 전극 플레이트에 대해 복수개의 간극을 형성함으로써 서로 이격된 복수개의 전극을 형성하는 단계,
b) 상기 전극 플레이트 위에 형성된 복수개의 타공라인을 갖는 절연 필름을 합지하는 단계,
c) 상기 복수개의 타공라인 중 인접한 한 쌍의 전극 각각의 표면에 배치되는 한 쌍의 타공라인을 서로 연결하여 양 말단이 상기 한 쌍의 전극 각각에 접속하고 서로 이격된 복수개의 발열체를 인쇄하는 단계,
d) 상기 발열체 위에 보호 필름을 합지하는 단계.
한편, 테두리 중 적어도 일부가 곡면으로 형성된 직렬형 및 곡면형 면상 발열 히터로서, 베이스 기판, 서로 이격된 복수개의 전극을 포함하는 상부 전극플레이트, 상기 복수개의 전극 각각의 표면까지 도달하는 복수개의 타공홀을 포함하는 절연필름 및 서로 이격된 복수개의 발열체를 포함하는 발열층이 하부로부터 순차적으로 적층되고, 상기 복수개의 발열체 각각의 양 말단이 각각 상기 타공홀을 통해 인접한 한 쌍의 전극 각각에 접속하게 되어 상기 복수개의 발열체 전체가 서로 직렬로 연결되는 하나 이상의 직렬 연결구간이 포함되며, 상기 전극 및 발열체 중 상기 곡면형 면상 발열 히터의 곡면형 테두리에 인접하여 배치되는 전극 및 발열체 각각의 상기 곡면형 테두리에 인접하는 면은 상기 곡면형 테두리에 상응하는 곡면을 보유하고, 상기 복수개의 타공홀은 인접한 2개의 타공홀에서 내측의 서로 대향하는 면이 평행한 형상으로 설계되는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
여기서, 상기 2개의 타공홀을 통해 양 말단 각각이 인접한 한 쌍의 전극 각각에 접속하게 되는 발열체에 전류가 흐를 때 임의의 지점에서의 저항이 동일하도록 조절되는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
또한, 상기 직렬 연결구간에 배치되는 복수개의 전극 및 하나 이상의 발열체는 윗면의 길이가 아랫면의 길이보다 크고 상기 윗면과 상기 아랫면은 각각 상기 곡면형 테두리에 상응하는 곡면 형상을 갖고 서로 평행곡선인 곡면형 사다리꼴 형상을 갖는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
그리고, 상기 베이스 기판 하부에 하부 전극플레이트가 적층되고, 상기 하부 전극플레이트 하부에 하단 보호필름이 적층되고, 상기 베이스 기판에는 도전성 물질이 충진된 비아홀이 형성되며, 상기 직렬 연결구간에 배치된 전극 중 전류의 흐름상 양 말단에 배치되는 한 쌍의 전극 각각이 상기 비아홀을 통해 상기 하부 전극플레이트의 한 쌍의 접속면 각각에 접속하고, 상기 하부 전극플레이트는 이격 라인을 통해 서로 전기적으로 분리되며 서로 인접하게 배치되는 한 쌍의 돌출 전극을 포함하며, 상기 한 쌍의 접속면 각각은 상기 한 쌍의 돌출 전극 각각에 전기적으로 연결되는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
나아가, 상기 직렬 연결구간에 배치되는 복수개의 전극은 적어도 부분적으로 복수개의 행 또는 열로 배치될 수 있고, 상기 복수개의 행 또는 열 중 인접한 행 또는 열에 배치되는 전극들이 서로 전기적으로 연결될 수 있도록 하나 이상의 전극이 인접한 행 또는 열 모두에 포함될 수 있는 형상을 보유하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
또한, 상기 직렬 연결구간은 복수개의 직렬 연결구간을 포함하고, 상기 복수개의 직렬 연결구간 중 가장 내측에 배치되는 직렬 연결구간의 중심 영역으로서 상기 전극이 배치될 수 없는 영역에 서로 이격된 한 쌍의 반원형 전극이 배치되고, 상기 서로 이격된 한 쌍의 반원형 전극은 이들 위에 적층된 발열체에 의해 서로 전기적으로 연결될 수 있는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
그리고, 상기 발열층 위에 적층된 상단 보호필름을 추가로 포함하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
또한, 상기 전극은 비저항이 2.82×10-6 Ω·cm 이하, 내열성은 260℃ 이상, 열전도율이 12 W/m·K 이상인 금속으로 이루어져 있는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
나아가, 상기 절연필름은 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리에틸렌설파이드(PES), 폴리에틸렌이미드(PEI), 폴리에테르에테르케톤(PEEK), 폴리아미드이미드(PAI) 및 폴리설폰(PSU)으로 이루어진 그룹으로부터 선택된 1종 이상의 고분자 수지를 포함하는 절연 필름을 포함하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
또한, 상기 발열체는 혼합 바인더와 전도성 입자를 포함하는 발열체 조성물로부터 형성되고, 상기 전도성 입자는 금속 입자와 탄소 입자 중 적어도 하나 이상의 입자를 포함하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터를 제공한다.
한편, 아래 단계 a) 내지 f)를 순차적으로 수행하는, 상기 직렬형 및 곡면형 면상 발열 히터의 제조방법을 제공한다.
a) 하단 보호필름 위에 적층된 하부 전극플레이트에 대해 이격 라인을 형성함으로써 한 쌍의 돌출전극이 전기적으로 분리되도록 형성하는 단계,
b) 상기 하부 전극플레이트 위에 전도성 물질이 충진된 비아홀이 구비된 베이스 기관을 합지하는 단계,
c) 상부 전극플레이트에 대해 복수개의 간극을 형성함으로써 서로 이격된 복수개의 전극을 형성한 후 이를 상기 베이스 기판 위에 합지하는 단계,
d) 상기 상부 전극플레이트 위에 형성된 복수개의 타공홀을 갖는 절연필름을 합지하는 단계,
e) 상기 복수개의 타공홀 중 인접한 한 쌍의 전극 각각의 표면에 배치되는 한 쌍의 타공홀을 서로 연결하여 양 말단이 상기 한 쌍의 전극 각각에 접속하고 서로 이격된 복수개의 발열체를 인쇄하는 단계,
f) 상기 발열체를 포함하는 발열층 위에 상단 보호필름을 합지하는 단계.
본 발명에 따른 직렬형 면상 발열 히터는 복수개의 발열체가 서로 직렬로 연결됨으로써 발열체가 배치되지 않아 발열하지 않는 영역인 데드존(dead zone)을 최소화할 수 있고, 상기 발열체에 전압을 인가하기 위해 구비되고 열전도성이 우수한 금속으로 이루어진 전극이 면상 발열 히터의 발열면을 전체적으로 커버함으로써 면상 발열 히터의 전체 발열면에서의 온도 균일도가 우수한 효과를 나타낸다.
또한, 본 발명에 따른 직렬형 면상 발열 히터는 발열성능을 한 쌍의 전극 사이의 거리가 아니라 전극 위에 코팅되는 절연 필름의 타공 위치에 의해 조절함으로써 발열성능 조절을 위한 설계가 용이한 우수한 효과를 나타낸다.
도 1은 종래 면상 발열 히터의 구조를 개략적으로 도시한 것이다.
도 2는 도 1에서 A-A' 단면구조를 개략적으로 도시한 것이다.
도 3은 본 발명의 하나의 실시예에 따른 직렬형 면상 발열 히터의 적층구조를 구현하는 구성층들을 개략적으로 도시한 것이다.
도 4는 도 3에 도시된 구성층들이 순차적으로 적층된 상태의 직렬형 면상 발열 히터의 투시도를 개략적으로 도시한 것이다.
도 5는 도 4에서 B-B' 단면구조를 개략적으로 도시한 것이다.
도 6은 도 3에 도시된 직렬형 면상 발열 히터의 구성층들에 대한 다른 실시예를 개략적으로 도시한 것이다.
도 7은 도 3에 도시된 직렬형 면상 발열 히터의 구성층들에 대한 또 다른 실시예를 개략적으로 도시한 것이다.
도 8은 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터의 하나의 실시예에 대한 적층 구조를 개략적으로 도시한 분해 사시도이다.
도 9은 도 8에서 하부 전극플레이트의 평면도이다.
도 10는 도 8에서 베이스 기판의 평면도이다.
도 11은 도 8에서 상부 전극플레이트의 평면도이다.
도 12는 도 8에서 상부 전극플레이트 위에 절연필름이 적층된 평면도이다.
도 13는 도 8에서 발열층의 평면도이다.
도 14은 도 8에 도시된 직렬형 및 곡면형 면상 발열 히터에서의 일부 단면도를 개략적으로 도시한 것이다.
도 15은 도 8에 도시된 직렬형 및 곡면형 면상 발열 히터에서의 부분 확대도를 개략적으로 도시한 것이다.
도 16은 도 8에서 상부 전극플레이트에 전류가 흐르는 방향을 개략적으로 도시한 것이다.
도 17는 도 8에 도시된 직렬형 및 곡면형 면상 발열 히터의 발열시 열화상이미지 사진이다.
도 18은 도 8에 도시된 직렬형 및 곡면형 면상 발열 히터의 발열시 열화상이미지 사진이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
도 3은 본 발명에 따른 직렬형 면상 발열 히터의 적층구조를 구현하는 구성층들을 개략적으로 도시한 것이고, 도 4는 도 3에 도시된 구성층들이 순차적으로 적층된 상태의 직렬형 면상 발열 히터의 투시도를 개략적으로 도시한 것이며, 도 5는 도 4에서 B-B' 단면구조를 개략적으로 도시한 것이다.
도 3 내지 도 5에 도시된 바와 같이, 본 발명에 따른 직렬형 면상 발열 히터는 하부에서부터 베이스 기판(100), 전극 플레이트(200), 절연 필름(300), 발열층(400), 보호 필름(500) 등이 순차적으로 적층됨으로써 형성될 수 있다.
여기서, 상기 베이스 기판(100)은 상기 베이스 기판(100) 위에 적층되는 상기 전극 플레이트(200)의 형상에 상응하는 형상을 보유할 수 있고, 두께는 약 15 내지 100 ㎛일 수 있다.
또한, 상기 베이스 기판(100)은 본 발명에 따른 직렬형 면상 발열 히터가 사용되는 응용분야나 사용온도에 따라 폴리에틸렌 테레프탈레이트(polyethyelene terepthalate; PET), 폴리이미드(polyimide; PI), 폴리아크릴로니트릴(poly acrylonitrile; PAN), 폴리우레탄(polyurethane; PU), 실리콘, 폴리카보네이트(polycarbonate; PC), 테프론(tefron), 액정고분자(liquid crystal polymer; LCP), 폴리에테르에테르케톤(poly ether ether ketone; PEEK), 폴리에테르술폰(polyethersulphone; PES), 폴리아크릴레이트(polyacrylate: PAR), 폴리에테르이미드(polyetherimide; PEI), 폴리에틸렌 나프탈레이트(polyethyelenen napthalate; PEN), 폴리페닐렌설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 셀룰로오스 트리아세테이트(cellulose triacetate; CTA), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propinonate; CAP) 등으로 이루어진 그룹으로부터 선택된 1종 이상의 플라스틱 소재로 이루어질 수 있다.
상기 전극 플레이트(200)는 포토리소그래피에 의한 에칭 등에 의해 폭이 약 0.05 내지 10 mm로 형성될 수 있는 간극(220)으로 서로 이격된 복수개의 전극(210)을 포함할 수 있고, 서로 이격되어 전기적으로 연결되지 않은 복수개의 전극(210)은 상기 발열층(400)에 포함되는 복수개의 발열체(410)에 의해 전체가 서로 전기적으로 연결된다.
구체적으로, 도 5에 도시된 바와 같이, 상기 전극 플레이트(200) 위에 적층되는 절연 필름(300)에는 레이저장치에 의한 식각 등에 의해 상기 전극 플레이트(200)의 전극(210) 표면까지 타공된 복수개의 타공라인(310)이 형성되고, 상기 절연 필름(300) 위에 적층되는 발열층(400)에 포함되는 각각의 발열체(410)의 양 말단은 각각 상기 타공라인(310)을 통해 인접한 한 쌍의 전극(210) 각각에 접속하게 됨으로써 복수개의 전극(210)은 전체가 서로 전기적으로 연결된다.
나아가, 상기 전극 플레이트(200)에 포함되는 복수개의 전극(210)은 복수개의 행 및 열로 배치될 수 있고, 인접한 행 또는 열의 일측 말단에 배치되는 전극(213,214)은 인접한 행 또는 열에 모두 포함될 수 있는 형상을 보유함으로써, 복수개의 전극(210)이 복수개의 행 및 열로 배치되는 경우에도 전체가 서로 전기적으로 연결될 수 있다.
따라서, 상기 복수개의 발열체(410)를 통해 서로 전기적으로 연결되는 복수개의 전극(210) 중 양 말단에 배치되는 한 쌍의 말단 전극(211,212)이 서로 다른 극성을 갖고, 서로 다른 극성을 갖는 한 쌍의 말단 전극(211,212)에 전압이 인가되는 경우 상기 복수개의 발열체(410)는 전체적으로 직렬로 연결되어 도 4 및 5에 도시된 '전류의 흐름'에 따라 전류가 흐른다.
여기서, 상기 전극은 알루미늄, 스틸, 구리 등의 금속으로 이루어질 수 있고, 상기 금속은 비중이 2.7 g/cm3 이상, 예를 들어, 2.7 내지 8.9 g/cm3, 비저항이 2.82×10-6 Ω·cm 이하, 예를 들어, 1.72×10-6 내지 2.82×10-6 Ω·cm, 내열성은 260℃ 이상, 예를 들어, 260 내지 500℃, 열전도율이 12 W/m·K 이상, 예를 들어, 12 내지 400 W/m·K 일 수 있다. 또한, 상기 전극 플레이트(200)의 전체 크기는 본 발명에 따른 직렬형 면상 발열 히터의 용도에 따라 다양할 수 있다.
상기 전극 플레이트(200) 위에 적층된 절연 필름(300)은 앞서 기술한 바와 같이, 하부의 전극 플레이트(200) 표면까지 타공된 복수개의 타공라인(310)이 형성될 수 있고, 상기 복수개의 타공라인(310) 중 서로 인접한 한 쌍의 전극(210) 각각의 표면과 연결되는 한 쌍의 타공라인(310) 사이의 길이에 따라 상기 한 쌍의 타공라인(310) 각각을 통해 각각의 말단이 상기 한 쌍의 전극(210) 각각에 접속하는 발열체(410)의 폭이 결정되므로, 상기 한 쌍의 타공라인(310) 사이의 길이 조절에 의해 발열성능을 조절할 수 있다.
특히, 상기 한 쌍의 타공라인(310)은 상기 한 쌍의 타공라인(310) 각각에 양 말단 각각이 삽입되는 발열체(410)에서 전류의 방향과 평행한 폭이 임의의 모든 지점에서 동일하도록 형성될 수 있고, 예를 들어, 서로 평행하게 형성될 수 있다. 이로써, 각각의 발열체(410)는 임의의 모든 전류의 방향에서 저항이 동일하게 되고, 결과적으로 발열이 균일하여 온도 균일도를 구현할 수 있다.
상기 절연 필름(300)은 절연 특성, 내열 특성이 우수한 고분자 수지 필름을 포함할 수 있고, 바람직하게는, 장기 열안정성 230℃ 이상, 단기 열안정성 400℃ 이상, 열변형온도(HDT/A) 470℃ 이상, 230℃ 이상의 온도에서도 고강도, 탄성 및 강성 유지, 진공상태에서의 높은 순도 및 낮은 가스 배출, 우수한 가공성 및 자체 난연성을 보유한 고분자 수지, 예를 들어, 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리에틸렌설파이드(PES), 폴리에틸렌이미드(PEI), 폴리에테르에테르케톤(PEEK), 폴리아미드이미드(PAI), 폴리설폰(PSU) 등의 고분자 수지를 포함하는 필름을 포함할 수 있다.
상기 발열층(400)은 서로 이격된 복수개의 발열체(410)를 포함할 수 있고, 상기 전극 플레이트(200)에 포함된 복수개의 전극과 같이 복수개의 행 또는 열로 배치될 수 있으며, 앞서 기술한 바와 같이, 각각의 발열체(410)는 양 말단 각각이 상기 절연 필름(300)의 타공라인(310)을 통해 상기 전극 플레이트(200)에서 이격된 한 쌍의 전극 각각에 접속된다.
상기 발열체(410)는 혼합 바인더와 전도성 입자를 포함하는 발열체 조성물을 인쇄한 후 건조시켜 형성할 수 있고, 이렇게 형성된 발열체(410) 각각의 두께는 약 1 내지 20 ㎛일 수 있다.
상기 혼합 바인더는 300℃ 가량의 온도에서도 내열성을 가질 수 있도록, 페놀계 수지, 아세탈계 수지, 이소시아네이트계 수지, 에폭시계 수지 등으로 이루어진 그룹으로부터 선택된 2종 이상을 포함할 수 있고, 상기 전도성 입자는 상기 발열체(410)의 내열성도 향상시킬 수 있는 탄소 입자를 포함하고, 추가로 금속 분말을 포함할 수 있다.
상기 탄소 입자로는 카본블랙, 탄소나노튜브, 그라파이트, 활성탄소 등, 바람직하게는 탄소나노튜브와 그라파이트를 포함할 수 있고, 상기 탄소 입자로서 탄소나노튜브는 종횡비가 크기 때문에 소량으로 충분한 전기적 네트워크 형성을 가능하게 할 뿐만 아니라 발열체 조성물의 유리전이온도 및 내열도를 증대시키는 효과가 있고, 그라파이트는 탄소나노튜브만으로 도달할 수 없는 저저항을 달성할 수 있도록 한다.
상기 발열층(400) 위에는 상기 발열층(400)을 외부로부터 보호하기 위한 보호 필름(500)이 추가로 적층될 수 있고, 상기 보호 필름(500)의 형상은 상기 발열층(400)의 전체 형상에 상응하는 형상일 수 있고, 이의 두께는 약 15 내지 100 ㎛일 수 있다. 또한, 상기 보호 필름(500)은 상기 절연 필름(300)과 동일하거나 상이한 소재로 이루어질 수 있고, 바람직하게는 동일한 소재로 이루어질 수 있다.
본 발명에 따른 직렬형 면상 발열 히터는 아래 단계 a) 내지 d)를 순차적으로 수행함으로써 제조될 수 있다.
a) 베이스 기판(100) 위에 적층된 전극 플레이트(200)에 대해 포토리소그래피에 의한 에칭 등에 의해 복수개의 간극을 형성함으로써 서로 이격된 복수개의 전극(210)을 형성하는 단계,
b) 상기 전극 플레이트(200) 위에 레이저장치에 의한 식각 등에 의해 형성된 복수개의 타공라인(310)을 갖는 절연 필름을 합지하는 단계,
c) 상기 복수개의 타공라인(310) 중 인접한 한 쌍의 전극 각각의 표면에 배치되는 한 쌍의 타공라인(310)을 서로 연결하여 양 말단이 상기 한 쌍의 전극 각각에 접속하고 서로 이격된 복수개의 발열체를 인쇄하는 단계,
d) 상기 발열체 위에 보호 필름을 합지하는 단계.
본 발명에 따른 직렬형 면상 발열 히터는 앞서 기술한 구조, 특히 서로 이격되어 있는 복수개의 전극(210)을 포함하는 전극 플레이트(200) 위에 절연 필름(300)이 적층되고, 상기 절연 필름(300)에 형성된 복수개의 타공라인(310)을 통해 인접한 한 쌍의 전극(210) 각각에 양 말단 각각이 접속하는 복수개의 발열체(410)를 통해 상기 복수개의 전극(210) 전체가 서로 전기적으로 연결되고, 이로써 상기 복수개의 발열체(410)가 직렬로 연결되도록 함으로써, 종래 복수개의 발열체가 병렬로 연결됨에 따라 각각의 발열체 양 말단에 서로 다른 극성의 전극이 접속되도록 하기 위한 전극 패턴의 복잡한 설계로 인해 발열면에서 발열체가 배치되지 않아 발열하지 않는 데드존(dead zone)이 증가하는 문제를 해결하여 상기 데드존을 최소화할 수 있는 동시에, 열전도성이 우수한 금속으로 이루어진 전극이 면상 발열 히터의 발열면을 전체적으로 커버함으로써 면상 발열 히터의 전체 발열면에서의 신속한 열전달에 의한 우수한 온도 균일도를 구현할 수 있다.
나아가, 상기 직렬형 면상 발열 히터는 앞서 기술한 바와 같이 발열성능의 조절이 상기 전극 플레이트(200)의 설계에 의한 것이 아니라 상기 전극 플레이트(200) 위에 적층되는 절연 필름(300)에 형성되는 타공라인(310)의 설계에 의해 가능하기 때문에 발열성능에 따라 전극 패턴의 설계를 변경해야 했던 종래 면상 발열 히터에 비해 발열성능 조절을 위한 설계가 용이할 수 있다.
도 6은 도 3에 도시된 직렬형 면상 발열 히터의 구성층들에 대한 다른 실시예를 개략적으로 도시한 것이다.
도 6에 도시된 바와 같이, 베이스 기판(100') 하부에는 하부 전극판(600) 및 상기 하부 전극판(600) 하부에 적층된 하부 기판(700)을 추가로 포함할 수 있다. 상기 하부 기판(700)은 상기 하부 전극판(600)을 지지하고 절연시키는 기능을 수행하고, 이의 형상은 상기 하부 전극판(600)의 전체적인 형상에 상응하는 형상을 갖고, 앞서 기술한 베이스 기판(100)과 동일한 두께와 소재로 이루어질 수 있다.
또한, 상기 하부 전극판(600)은 상기 하부 전극판(600) 위에 적층된 베이스 기판(100')에 형성되고 도전성 물질이 충진된 비아홀(110')을 통해 상기 전극 플레이트(200')에서 서로 이격되어 배치되고 복수개의 발열체(410)를 통해 서로 전기적으로 연결되는 복수개의 전극(210') 중 일 말단에 배치된 전극(212')에 접속하게 된다.
그리고, 상기 하부 전극판(600) 중 상기 전극 플레이트(200')에서 서로 전기적으로 연결되는 복수개의 전극(210') 중 타 말단에 배치된 전극(211')에 인접한 위치, 예를 들어, 상기 전극(211')의 하부에 배치되고 상기 전극(211')과 극성이 다른 돌출 전극(610)이 구비될 수 있고, 이로써 극성이 서로 상이한 한 쌍의 전극(211',610)이 인접하여 배치될 수 있고 상기 한 쌍의 전극(211',610)에 각각 연결되는 단자의 배치 설계가 용이할 수 있다.
도 7은 도 3에 도시된 직렬형 면상 발열 히터의 구성층들에 대한 또 다른 실시예를 개략적으로 도시한 것이다.
도 7에 도시된 바와 같이, 베이스 기판(100") 하부에는 하부 전극판(600') 및 상기 하부 전극판(600') 하부에 적층된 하부 기판(700')을 추가로 포함할 수 있다. 상기 하부 기판(700')은 상기 하부 전극판(600')을 지지하고 절연시키는 기능을 수행하고, 이의 형상은 상기 하부 전극판(600')의 전체적인 형상에 상응하는 형상을 갖고, 앞서 기술한 베이스 기판(100)과 동일한 두께와 소재로 이루어질 수 있다.
또한, 상기 하부 전극판(600')은 상기 하부 전극판(600') 위에 적층된 베이스 기판(100")에 형성되고 도전성 물질이 충진된 비아홀(110",120")을 통해 상기 전극 플레이트(200")에서 서로 이격되어 배치되고 복수개의 발열체(410)를 통해 서로 전기적으로 연결되는 복수개의 전극(210") 중 양 말단에 배치된 전극(211",212")에 접속하게 된다.
그리고, 상기 하부 전극판(600')에는 상기 베이스 기판(100")에 형성된 비아홀(110",120")을 통해 상기 양 말단에 배치된 전극(211",212") 각각에 접속하는 한 쌍의 돌출 전극(610',620')이 구비되고, 상기 한 쌍의 돌출 전극(610',620')은 이격 라인(630')을 통해 서로 전기적으로 분리될 수 있다.
이로써, 극성이 서로 상이한 한 쌍의 전극(610',620')이 인접하여 배치될 수 있고 상기 한 쌍의 전극(610',620')에 각각 연결되는 단자의 배치 설계가 용이할 수 있다.
도 8은 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터의 하나의 실시예에 대한 적층 구조를 개략적으로 도시한 분해 사시도이고, 도 9 내지 13는 도 8에서 하부 전극플레이트, 베이스 기판, 상부 전극플레이트, 절연필름 및 발열층의 평면도를 각각 도시한 것이다.
도 8에 도시된 바와 같이, 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터는 하단 보호필름(1000), 하부 전극플레이트(2000), 베이스 기판(3000), 상부 전극플레이트(4000), 절연필름(5000), 발열층(6000) 및 상단 보호필름(7000)이 하부로부터 순차적으로 적층됨으로써 형성될 수 있다.
상기 적층되는 각각의 구성들은 전체적으로 동일하거나 유사한 평면 형상을 보유할 수 있고, 특히 이들 각각의 테두리 중 적어도 일부는 곡면으로 형성될 수 있다. 예를 들어, 상기 테두리에 형성된 곡면의 곡률 반경은 약 1 m 이하이고, 상기 테두리 전체 길이를 기준으로 상기 곡면의 길이는 약 5% 이상일 수 있다.
여기서, 상기 하단 보호필름(1000)은 상기 하부 전극플레이트(2000)를 지지하고 절연시키는 기능을 수행하고, 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터가 사용되는 응용분야나 사용온도에 따라 다양한 두께와 소재로 이루어질 수 있으며, 예를 들어, 두께는 약 5 내지 20 ㎛이고, 소재는 폴리에틸렌테레프탈레이트(polyethyelene terepthalate; PET), 폴리이미드(polyimide; PI), 폴리아크릴로니트릴(poly acrylonitrile; PAN), 폴리우레탄(polyurethane; PU), 실리콘, 폴리카보네이트(polycarbonate; PC), 테프론(tefron), 액정고분자(liquid crystal polymer; LCP), 폴리에테르에테르케톤(poly ether ether ketone; PEEK), 폴리에테르술폰(polyethersulphone; PES), 폴리아크릴레이트(polyacrylate: PAR), 폴리에테르이미드(polyetherimide; PEI), 폴리에틸렌 나프탈레이트(polyethyelenen napthalate; PEN), 폴리페닐렌설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 셀룰로오스 트리아세테이트(cellulose triacetate; CTA), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propinonate; CAP) 등으로 이루어진 그룹으로부터 선택된 1종 이상의 플라스틱 소재로 이루어질 수 있다.
상기 하부 전극플레이트(2000)는 상기 하부 전극플레이트(2000) 위에 적층되는 베이스 기판(3000)에 형성되고 도전성 물질이 충진된 비아홀(3100a,3100b)을 통해 상기 베이스 기판(3000) 위에 적층되는 상부 전극플레이트(4000)에서 서로 이격되어 배치되나 하나 이상의 발열체(6100)를 통해 서로 직렬 연결되는 복수개의 전극(4100) 중 양 말단에 배치된 전극(4100a,4100b)에 각각 접속하게 되는 접속면(2100a,2100b)을 포함한다.
그리고, 상기 하부 전극플레이트(2000)에는 상기 한 쌍의 접속면(2100a,2100b) 각각에 전기적으로 연결되어 있고 외부로 돌출된 한 쌍의 돌출 전극(2200a,2200b)이 구비되고, 상기 한 쌍의 접속면(2100a, 2100b) 및 상기 한 쌍의 돌출 전극(2200a,2200b)은 각각 이격 라인(2300)을 통해 서로 전기적으로 분리될 수 있다.
이로써, 외부의 전원 단자에 각각 연결되고 극성이 서로 상이한 한 쌍의 돌출 전극(2200a,2200b)이 서로 인접하여 배치될 수 있고, 상기 한 쌍의 돌출 전극(2200a,2200b)에 각각 연결되는 전원 단자의 배치 설계가 용이할 수 있다. 다만, 전원 단자의 배치 설계에 따라 상기 하단 보호필름(1000) 및 하부 전극플레이트(2000)는 생략될 수 있고, 이러한 경우 상기 베이스 기판(3000)에는 비아홀이 구비될 필요 없으며, 상기 상부 전극플레이트에 구비된 한 쌍의 전극(4100a,4100b)은 직접 외부의 전원 단자에 연결될 수 있다.
상기 베이스 기판(3000)은 상기 상부 전극플레이트(4000)를 지지하고 상기 상부 전극플레이트(4000)와 상기 하부 전극플레이트(2000) 사이에 배치되어 상기 비아홀(3100a,3100b)을 제외하고 서로 절연시키는 기능을 수행하며, 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터가 사용되는 응용분야나 사용온도에 따라 다양한 두께와 소재로 이루어 질 수 있고, 예를 들어, 상기 하단 보호필름(1000)과 동일하거나 상이한 두께 및 소재로 이루어질 수 있다.
상기 상부 전극플레이트(4000)는 포토리소그래피에 의한 에칭 등에 의해 폭이 약 0.5 내지 1 mm로 형성될 수 있는 간극(4200)으로 서로 이격된 복수개의 전극(4100)을 포함할 수 있고, 특히 서로 이격되어 전기적으로 연결되지 않은 복수개의 전극(4100)이 상기 발열층(6000)에 포함되는 하나 이상의 발열체(6100)에 의해 서로 직렬로 연결되는 하나 이상의 직렬 연결구간을 포함할 수 있으며, 복수개의 직렬 연결구간을 포함하는 경우 각각의 직렬 연결구간은 전체적으로 원형 고리 형상으로 구비될 수 있다.
여기서, 각각의 직렬 연결구간에 배치되는 전극(4100) 및 발열체(6100), 특히 상기 전극(4100) 및 상기 발열체(6100) 각각에서 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터의 곡면형 테두리에 인접하는 면은 상기 곡면형 테두리에 상응하는 곡면을 보유함으로써, 상기 전극(4100) 및 상기 발열체(6100)가 상기 곡면형 테두리에 인접하여 배치되는 경우에도 상기 곡면형 테두리에 인접하여 배치되는 전극(4100) 및 상기 발열체(6100)의 상기 곡면형 테두리에 인접하는 면과 상기 곡면형 테두리 사이의 데드존(dead zone), 즉 발열면에서 발열하지 않는 영역을 최소화할 수 있고, 인접하여 배치되는 전극(4100) 및 발열체(6100) 사이 사이의 데드존도 최소화할 수 있다.
특히, 상기 전극(4100) 및 상기 발열체(6100)는 예를 들어 윗면의 길이가 아랫면의 길이보다 큰 역사다리꼴 형상으로 상기 윗면과 상기 아랫면은 각각 상기 곡면형 테두리에 상응하는 곡면 형상을 갖고 서로 평행곡선인 곡면형 사다리꼴 형상을 가질 수 있다. 다만, 하나 이상의 직렬 연결구간 중 가장 내측에 배치되는 직렬 연결구간의 중심 영역으로서 그 공간이 더 이상 곡면형 사다리꼴 형상의 전극(4100)이 배치될 수 없는 영역에는 서로 이격된 한 쌍의 반원형 전극이 배치될 수 있고, 상기 서로 이격된 한 쌍의 반원형 전극은 이의 위에 적층된 사각형 형상의 발열체에 의해 서로 전기적으로 연결될 수 있다.
도 14은 도 8에 도시된 직렬형 및 곡면형 면상 발열 히터에서의 일부 단면도를 개략적으로 도시한 것이다.
구체적으로, 도 14에 도시된 바와 같이, 상기 상부 전극플레이트(4000) 위에 적층되는 절연필름(5000)에는 레이저장치에 의한 식각 등에 의해 상기 전극 플레이트(4000)의 전극(4100) 표면까지 타공된 복수개의 타공홀(5100)이 형성되고, 상기 절연필름(5000) 위에 적층되는 발열층(6000)에 포함되는 각각의 발열체(6100)의 양 말단은 각각 상기 타공홀(5100)을 통해 인접한 한 쌍의 전극(4100) 각각에 접속하게 됨으로써 각각의 직렬 연결구간에 배치된 복수개의 전극(4100)은 전체가 서로 전기적으로 연결된다.
도 15은 도 8에 도시된 직렬형 곡면형 면상 발열 히터에서의 부분 확대도를 개략적으로 도시한 것이다.
도 15에 도시된 바와 같이, 곡면형 사다리꼴 형상을 갖는 발열체(6100)는 평행곡선으로 형성된 아랫면에서 윗면으로 갈수록 전류의 흐름 방향에 따른 폭이 증가하게 되고 이에 따라 상기 발열체(6100)의 저항도 아랫면에서 윗면으로 갈수록 증가하게 되므로 상기 발열체(6100)의 좌우측 말단이 전극에 접속하는 경우 하나의 발열체(6100) 내에서 상이한 저항에 따른 온도 불균일이 유발될 수 있다.
따라서, 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터는 상기 절연필름(5000)에 형성된 복수개의 타공홀(5100)의 형상을 특정하게 설계함으로써 상기 하나의 발열체(6100)에 전류가 흐를때 임의의 지점에서의 저항이 동일하도록 조절할 수 있다.
구체적으로, 도 15에 도시된 바와 같이, 상기 복수개의 타공홀(5100)은 인접한 2개의 타공홀(5100)에서 내측의 서로 대향하는 면, 즉 상기 2개의 타공홀 사이에 배치된 절연필름(5100) 좌우에 각각 접하는 한 쌍의 면이 평행한 형상으로 설계될 수 있고, 이로써 상기 타공홀(5100)을 통해 이의 하부에 위치한 전극(4100)과 접속하게 되는 발열체(6100)에서 전류의 흐름이 발생하는 영역의 폭이 아랫면에서 윗면으로 갈수록 증가하지 않고 일정하게 유지됨으로써 저항도 일정하게 유지될 수 있으며, 결과적으로 하나의 발열체(6100) 내에서의 온도 균일도가 향상될 수 있다.
도 16은 도 11에서 상부 전극플레이트에 전류가 흐르는 방향을 개략적으로 도시한 것이다.
도 15에 도시된 바와 같이, 상기 상부 전극플레이트(4100)에는 복수개의 직렬 연결구간이 포함되어 복수개의 직렬 전류흐름이 존재할 수 있고, 각각의 직렬 연결구간에 배치되는 복수개의 전극(4100)은 적어도 부분적으로 복수개의 행 또는 열로 배치될 수 있으며, 이러한 경우 인접한 행 또는 열 각각에 배치되는 전극(4100)들이 서로 전기적으로 연결될 수 있도록 일부 전극(4110)이 인접한 행 또는 열 모두에 포함될 수 있는 형상을 보유할 수 있다.
이로써, 각각의 직렬 연결구간에서 전류의 흐름상 양 말단에 배치되는 한 쌍의 전극(4100a,4100b)은 상기 베이스 기판(3000)의 비아홀(3100a,3100b)을 통해 상기 하부 전극플레이트(2000)의 한 쌍의 접속면(2100a,2100b)에 각각 접속하고, 상기 한 쌍의 접속면(2100a,2100b) 각각에 전기적으로 연결되고 서로 다른 극성을 갖는 한 쌍의 돌출 전극(2200a,2200b)에 전압이 인가되는 경우 상기 직렬 연결구간마다 배치되고 서로 직렬 연결된 발열체(6100)에 전류가 흐름으로써 상기 발열체(6100)가 갖는 고유 저항에 의해 발열이 구현된다.
상기 하부 전극플레이트(2000) 및 상기 상부 전극플레이트(4000)는 알루미늄, 스틸, 구리 등의 금속으로 이루어질 수 있고, 상기 금속은 비중이 2.7 g/cm3 이상, 예를 들어, 2.7 내지 8.9 g/cm3, 비저항이 2.82×10-6 Ω·cm 이하, 예를 들어, 1.72×10-6 내지 2.82×10-6 Ω·cm, 내열성은 260℃ 이상, 예를 들어, 260 내지 500℃, 열전도율이 12 W/m·K 이상, 예를 들어, 12 내지 400 W/m·K 일 수 있다.
또한, 상기 전극플레이트(2000,4000)의 두께는 예를 들어 5 내지 75 ㎛일 수 있다. 상기 전극플레이트(2000,4000)의 두께가 5 ㎛ 미만인 경우, 구동전압에 따른 전압강하의 우려가 있고, 75 ㎛ 초과인 경우 전극부와 발열부 등의 높이 단차로 인한 불량의 우려가 높다.
상기 절연필름(5000)은 앞서 기술한 바와 같이 복수개의 타공홀(5100)을 포함할 수 있고, 상기 복수개의 타공홀(5100) 중 서로 인접합 한 쌍의 전극(4100) 각각의 표면과 연결되는 한 쌍의 타공라인(5100) 사이의 길이에 따라 상기 한 쌍의 타공홀(5100) 각각을 통해 각각의 말단이 상기 한 쌍의 전극(4100) 각각에 접속하는 발열체(6100)의 폭이 결정되므로, 상기 한 쌍의 타공홀(5100) 사이의 길이 조절에 의해 발열성능을 조절할 수 있다.
상기 절연필름(5000)은 절연 특성, 내열 특성이 우수한 고분자 수지 필름을 포함할 수 있고, 바람직하게는, 장기 열안정성 230℃ 이상, 단기 열안정성 400℃ 이상, 열변형온도(HDT/A) 470℃ 이상, 230℃ 이상의 온도에서도 고강도, 탄성 및 강성 유지, -40℃ 이하 온도에서의 내한 특성, 진공상태에서의 높은 순도 및 낮은 가스 배출, 우수한 가공성 및 자체 난연성을 보유한 고분자 수지, 예를 들어, 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리에틸렌설파이드(PES), 폴리에틸렌이미드(PEI), 폴리에테르에테르케톤(PEEK), 폴리아미드이미드(PAI), 폴리설폰(PSU) 등의 고분자 수지를 포함하는 필름을 포함할 수 있다.
상기 발열층(6000)은 서로 이격된 복수개의 발열체(6100)를 포함할 수 있고, 상기 상부 전극플레이트(4000)에 포함된 복수개의 전극(4100)과 같이 복수개의 행 또는 열로 배치될 수 있으며, 앞서 기술한 바와 같이, 각각의 발열체(6100)는 양 말단 각각이 상기 절연필름(5000)의 타공홀(5100)을 통해 상기 상부 전극플레이트(4000)에서 이격된 한 쌍의 전극(4100) 각각에 접속된다.
상기 발열체(6100)는 혼합 바인더와 전도성 입자를 포함하는 발열체 조성물을 인쇄한 후 건조시켜 형성할 수 있고, 이렇게 형성된 발열체(6100) 각각의 두께는 약 3 내지 20 ㎛일 수 있다.
상기 혼합 바인더는 300℃ 가량의 온도에서도 내열성을 가질 수 있도록, 페놀계 수지, 아세탈계 수지, 이소시아네이트계 수지, 에폭시계 수지 등으로 이루어진 그룹으로부터 선택된 2종 이상을 포함할 수 있고, 상기 전도성 입자는 상기 발열체(6100)의 내열성도 향상시킬 수 있는 탄소 입자를 포함하고, 추가로 금속 분말을 포함할 수 있다.
상기 탄소 입자로는 카본블랙, 탄소나노튜브, 그라파이트, 활성탄소 등, 바람직하게는 탄소나노튜브와 그라파이트를 포함할 수 있고, 상기 탄소 입자로서 탄소나노튜브는 종횡비가 크기 때문에 소량으로 충분한 전기적 네트워크 형성을 가능하게 할 뿐만 아니라 발열체 조성물의 유리전이온도 및 내열도를 증대시키는 효과가 있고, 그라파이트는 탄소나노튜브만으로 도달할 수 없는 저저항을 달성할 수 있도록 한다.
상기 발열층(6000) 위에는 상기 발열층(6000)을 외부로부터 보호하기 위한 상단 보호필름(7000)이 추가로 적층될 수 있고, 상기 상단 보호필름(7000)의 형상은 상기 발열층(6000)의 전체 형상에 상응하는 형상일 수 있고, 이의 두께는 약 10 내지 100 ㎛일 수 있다. 또한, 상기 상단 보호필름(7000)은 상기 하단 보호필름(1000) 또는 상기 절연필름(5000)과 동일하거나 상이한 소재로 이루어질 수 있고, 바람직하게는 동일한 소재로 이루어질 수 있다.
본 발명에 따른 직렬형 및 곡면형 면상 발열 히터는 아래 단계 a) 내지 f)를 순차적으로 수행함으로써 제조될 수 있다.
a) 하단 보호필름(1000) 위에 적층된 하부 전극플레이트(2000)에 대해 포토리소그래피에 의한 에칭 등에 의해 이격 라인(2300)을 형성함으로써 한 쌍의 돌출전극(2200a,2200b)이 전기적으로 분리되도록 형성하는 단계,
b) 상기 하부 전극플레이트(2000) 위에 전도성 물질이 충진된 비아홀(3100)이 구비된 베이스 기판(3000)을 합지하는 단계,
c) 상부 전극플레이트(4000)에 대해 포토리소그래피에 의한 에칭 등에 의해 복수개의 간극(4200)을 형성함으로써 서로 이격된 복수개의 전극(4100)을 형성한 후 이를 상기 베이스 기판(3000) 위에 합지하는 단계,
d) 상기 상부 전극플레이트(4000) 위에 레이저장치에 의한 식각 등에 의해 형성된 복수개의 타공홀(5100)을 갖는 절연필름(5000)을 합지하는 단계,
e) 상기 복수개의 타공홀(5100) 중 인접한 한 쌍의 전극 각각의 표면에 배치되는 한 쌍의 타공홀(5100)을 서로 연결하여 양 말단이 상기 한 쌍의 전극 각각에 접속하고 서로 이격된 복수개의 발열체(6100)를 인쇄하는 단계,
f) 상기 발열체(6100)를 포함하는 발열층(6100) 위에 상단 보호필름(7000)을 합지하는 단계.
본 발명에 따른 직렬형 및 곡면형 면상 발열 히터는 앞서 기술한 구조, 특히 서로 이격되어 있는 복수개의 전극(4100)을 포함하는 상부 전극플레이트(4000) 위에 절연필름(5000)이 적층되고, 상기 절연필름(5000)에 형성된 복수개의 타공홀(5100)을 통해 인접한 한 쌍의 전극(4100) 각각에 양 말단 각각이 접속하는 복수개의 발열체(6100)를 통해 상기 복수개의 전극(4100) 전체가 서로 전기적으로 연결되고, 이로써 상기 복수개의 발열체(6100)가 직렬로 연결되도록 함으로써, 종래 복수개의 발열체(6100)가 병렬로 연결됨에 따라 각각의 발열체 양 말단에 서로 다른 극성의 전극이 접속되도록 하기 위한 전극 패턴의 복잡한 설계로 인해 발열면에서 발열체가 배치되지 않아 발열하지 않는 데드존(dead zone)이 증가하는 문제를 해결하여 상기 데드존을 최소화할 수 있는 동시에, 열전도성이 우수한 금속으로 이루어진 전극이 면상 발열 히터의 발열면을 전체적으로 커버함으로써 면상 발열 히터의 전체 발열면에서의 신속한 열전달에 의한 우수한 온도 균일도를 구현할 수 있다.
도 17 및 18은 도 8에 도시된 곡면형 면상 발열 히터의 발열시 열화상이미지 사진이다.
구체적으로, 도 17는 저발열용 곡면형 면상 발열 히터의 발열시 열화상이미지 사진이고, 도 18은 고발열용 곡면형 면상 발열 히터의 발열시 열화상이미지 사진이다.
도 17 및 18에 도시된 바와 같이, 본 발명에 따른 직렬형 및 곡면형 면상 발열 히터는 발열면을 전체적으로 커버하고 열전도도가 우수한 상부 전극플레이트(4000)에 의한 신속한 열전도 및 데드존을 최소화하는 전극과 발열체의 형상 설계에 의해 전체적으로 우수한 온도 균일도를 구현할 수 있다.
나아가, 상기 곡면형 면상 발열 히터는 앞서 기술한 바와 같이 발열성능의 조절이 상기 상부 전극플레이트(4000)의 설계에 의한 것이 아니라 상기 상부 전극플레이트(4000) 위에 적층되는 절연필름(5000)에 형성되는 타공홀(5100)의 설계에 의해 가능하기 때문에 발열성능에 따라 전극 패턴의 설계를 변경해야 했던 종래 면상 발열 히터에 비해 발열성능 조절을 위한 설계가 용이하여 제조비용이 절감될 수 있다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (21)

  1. 베이스 기판, 전극 플레이트, 절연 필름 및 발열층이 하부로부터 순차적으로 적층되고,
    상기 전극 플레이트는 서로 이격된 복수개의 전극을 포함하고,
    상기 절연 필름은 상기 복수개의 전극 각각의 표면까지 도달하는 복수개의 타공라인을 포함하며,
    상기 발열층은 서로 이격된 복수개의 발열체를 포함하고,
    상기 복수개의 발열체 각각의 양 말단은 각각 상기 타공라인을 통해 인접한 한 쌍의 전극 각각에 접속하게 되어 상기 복수개의 발열체 전체가 서로 직렬로 연결되는, 직렬형 면상 발열 히터.
  2. 제1항에 있어서,
    상기 타공라인은 각각의 발열체에서 상기 발열체에 흐르는 전류의 방향과 평행한 폭이 임의의 모든 지점에서 동일하도록 형성되는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  3. 제1항 또는 제2항에 있어서,
    상기 복수개의 전극 및 상기 복수개의 발열체는 복수개의 행 또는 열로 배치되고,
    상기 복수개의 전극은 인접한 행 또는 열의 일측 말단에 배치되고 상기 인접한 행 또는 열에 모두 포함될 수 있는 형상을 갖는 전극을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  4. 제1항 또는 제2항에 있어서,
    상기 발열층 위에 보호 필름이 적층된 것을 특징으로 하는, 직렬형 면상 발열 히터.
  5. 제1항 또는 제2항에 있어서,
    상기 베이스 기판 하부에는 하부 전극판 및 상기 하부 전극판 하부에 적층된 하부 기판을 추가로 포함하고,
    상기 베이스 기판에는 도전성 물질이 충진된 비아홀이 구비되며,
    발열체를 통해 서로 전기적으로 연결되는 복수개의 전극 중 일 말단에 배치된 전극이 상기 비아홀을 통해 상기 하부 전극판에 접속하고,
    상기 하부 전극판은 상기 복수개의 전극 중 타 말단에 배치된 전극에 인접하게 구비된 돌출 전극을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  6. 제5항에 있어서,
    상기 베이스 기판에는 도전성 물질이 충진된 복수개의 비아홀이 구비되며, 발열체를 통해 서로 전기적으로 연결되는 복수개의 전극 중 양 말단에 배치된 한 쌍의 전극 각각이 상기 각각의 비아홀을 통해 상기 하부 전극판에 접속하고,
    상기 하부 전극판은 상기 양 말단에 배치된 한 쌍의 전극 각각에 접속하고 서로 인접하게 배치되며 이격 라인을 통해 서로 전기적으로 분리되는 한 쌍의 돌출 전극을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  7. 제1항 또는 제2항에 있어서,
    상기 전극은 비저항이 2.82×10-6 Ω·cm 이하, 내열성은 260℃ 이상, 열전도율이 12 W/m·K 이상인 금속으로 이루어져 있는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  8. 제1항 또는 제2항에 있어서,
    상기 절연 필름은 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리에틸렌설파이드(PES), 폴리에틸렌이미드(PEI), 폴리에테르에테르케톤(PEEK), 폴리아미드이미드(PAI) 및 폴리설폰(PSU)으로 이루어진 그룹으로부터 선택된 1종 이상의 고분자 수지를 포함하는 절연 필름을 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  9. 제1항 또는 제2항에 있어서,
    상기 발열체는 혼합 바인더와 전도성 입자를 포함하는 발열체 조성물로부터 형성되고,
    상기 전도성 입자는 금속 입자와 탄소 입자 중 적어도 하나 이상의 입자를 포함하는 것을 특징으로 하는, 직렬형 면상 발열 히터.
  10. 아래 단계 a) 내지 d)를 순차적으로 수행하는, 제4항의 직렬형 면상 발열 히터의 제조방법.
    a) 베이스 기판 위에 적층된 전극 플레이트에 대해 복수개의 간극을 형성함으로써 서로 이격된 복수개의 전극을 형성하는 단계,
    b) 상기 전극 플레이트 위에 형성된 복수개의 타공라인을 갖는 절연 필름을 합지하는 단계,
    c) 상기 복수개의 타공라인 중 인접한 한 쌍의 전극 각각의 표면에 배치되는 한 쌍의 타공라인을 서로 연결하여 양 말단이 상기 한 쌍의 전극 각각에 접속하고 서로 이격된 복수개의 발열체를 인쇄하는 단계,
    d) 상기 발열체 위에 보호 필름을 합지하는 단계.
  11. 테두리 중 적어도 일부가 곡면으로 형성된 직렬형 및 곡면형 면상 발열 히터로서,
    베이스 기판, 서로 이격된 복수개의 전극을 포함하는 상부 전극플레이트, 상기 복수개의 전극 각각의 표면까지 도달하는 복수개의 타공홀을 포함하는 절연필름 및 서로 이격된 복수개의 발열체를 포함하는 발열층이 하부로부터 순차적으로 적층되고,
    상기 복수개의 발열체 각각의 양 말단이 각각 상기 타공홀을 통해 인접한 한 쌍의 전극 각각에 접속하게 되어 상기 복수개의 발열체 전체가 서로 직렬로 연결되는 하나 이상의 직렬 연결구간이 포함되며,
    상기 전극 및 발열체 중 상기 곡면형 면상 발열 히터의 곡면형 테두리에 인접하여 배치되는 전극 및 발열체 각각의 상기 곡면형 테두리에 인접하는 면은 상기 곡면형 테두리에 상응하는 곡면을 보유하고,
    상기 복수개의 타공홀은 인접한 2개의 타공홀에서 내측의 서로 대향하는 면이 평행한 형상으로 설계되는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  12. 제11항에 있어서,
    상기 2개의 타공홀을 통해 양 말단 각각이 인접한 한 쌍의 전극 각각에 접속하게 되는 발열체에 전류가 흐를 때 임의의 지점에서의 저항이 동일하도록 조절되는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  13. 제11항 또는 제12항에 있어서,
    상기 직렬 연결구간에 배치되는 복수개의 전극 및 하나 이상의 발열체는 윗면의 길이가 아랫면의 길이보다 크고 상기 윗면과 상기 아랫면은 각각 상기 곡면형 테두리에 상응하는 곡면 형상을 갖고 서로 평행곡선인 곡면형 사다리꼴 형상을 갖는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  14. 제11항 또는 제12항에 있어서,
    상기 베이스 기판 하부에 하부 전극플레이트가 적층되고,
    상기 하부 전극플레이트 하부에 하단 보호필름이 적층되고,
    상기 베이스 기판에는 도전성 물질이 충진된 비아홀이 형성되며,
    상기 직렬 연결구간에 배치된 전극 중 전류의 흐름상 양 말단에 배치되는 한 쌍의 전극 각각이 상기 비아홀을 통해 상기 하부 전극플레이트의 한 쌍의 접속면 각각에 접속하고,
    상기 하부 전극플레이트는 이격 라인을 통해 서로 전기적으로 분리되며 서로 인접하게 배치되는 한 쌍의 돌출 전극을 포함하며,
    상기 한 쌍의 접속면 각각은 상기 한 쌍의 돌출 전극 각각에 전기적으로 연결되는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  15. 제11항 또는 제12항에 있어서,
    상기 직렬 연결구간에 배치되는 복수개의 전극은 적어도 부분적으로 복수개의 행 또는 열로 배치될 수 있고, 상기 복수개의 행 또는 열 중 인접한 행 또는 열에 배치되는 전극들이 서로 전기적으로 연결될 수 있도록 하나 이상의 전극이 인접한 행 또는 열 모두에 포함될 수 있는 형상을 보유하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  16. 제11항 또는 제12항에 있어서,
    상기 직렬 연결구간은 복수개의 직렬 연결구간을 포함하고,
    상기 복수개의 직렬 연결구간 중 가장 내측에 배치되는 직렬 연결구간의 중심 영역으로서 상기 전극이 배치될 수 없는 영역에 서로 이격된 한 쌍의 반원형 전극이 배치되고,
    상기 서로 이격된 한 쌍의 반원형 전극은 이들 위에 적층된 발열체에 의해 서로 전기적으로 연결될 수 있는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  17. 제14항에 있어서,
    상기 발열층 위에 적층된 상단 보호필름을 추가로 포함하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  18. 제11항 또는 제12항에 있어서,
    상기 전극은 비저항이 1.72×10-6 Ω·cm 이상, 내열성은 260℃ 이상, 열전도율이 12 W/m·K 이상인 금속으로 이루어져 있는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  19. 제11항 또는 제12항에 있어서,
    상기 절연필름은 폴리이미드(PI), 폴리페닐렌설파이드(PPS), 액정고분자(LCP), 폴리에틸렌설파이드(PES), 폴리에틸렌이미드(PEI), 폴리에테르에테르케톤(PEEK), 폴리아미드이미드(PAI) 및 폴리설폰(PSU)으로 이루어진 그룹으로부터 선택된 1종 이상의 고분자 수지를 포함하는 절연 필름을 포함하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  20. 제11항 또는 제12항에 있어서,
    상기 발열체는 혼합 바인더와 전도성 입자를 포함하는 발열체 조성물로부터 형성되고,
    상기 전도성 입자는 금속 입자와 탄소 입자 중 적어도 하나 이상의 입자를 포함하는 것을 특징으로 하는, 직렬형 및 곡면형 면상 발열 히터.
  21. 아래 단계 a) 내지 f)를 순차적으로 수행하는, 제17항의 직렬형 및 곡면형 면상 발열 히터의 제조방법.
    a) 하단 보호필름 위에 적층된 하부 전극플레이트에 대해 이격 라인을 형성함으로써 한 쌍의 돌출전극이 전기적으로 분리되도록 형성하는 단계,
    b) 상기 하부 전극플레이트 위에 전도성 물질이 충진된 비아홀이 구비된 베이스 기판을 합지하는 단계,
    c) 상부 전극플레이트에 대해 복수개의 간극을 형성함으로써 서로 이격된 복수개의 전극을 형성한 후 이를 상기 베이스 기판 위에 합지하는 단계,
    d) 상기 상부 전극플레이트 위에 형성된 복수개의 타공홀을 갖는 절연필름을 합지하는 단계,
    e) 상기 복수개의 타공홀 중 인접한 한 쌍의 전극 각각의 표면에 배치되는 한 쌍의 타공홀을 서로 연결하여 양 말단이 상기 한 쌍의 전극 각각에 접속하고 서로 이격된 복수개의 발열체를 인쇄하는 단계,
    f) 상기 발열체를 포함하는 발열층 위에 상단 보호필름을 합지하는 단계.
PCT/KR2020/005227 2019-06-17 2020-04-20 직렬형 면상 발열 히터 및 이의 제조방법 WO2020256267A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/605,222 US20220217818A1 (en) 2019-06-17 2020-04-20 Serial-type planar heat-generating heater and manufacturing method therefor
DE112020002915.8T DE112020002915T5 (de) 2019-06-17 2020-04-20 In Serie geschaltete planare wärmeerzeugende Heizeinrichtung und dazugehöriges Herstellungsverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0071333 2019-06-17
KR1020190071333A KR102062493B1 (ko) 2019-06-17 2019-06-17 직렬형 면상 발열 히터 및 이의 제조방법
KR1020190090158A KR102132561B1 (ko) 2019-07-25 2019-07-25 곡면형 면상 발열 히터 및 이의 제조방법
KR10-2019-0090158 2019-07-25

Publications (1)

Publication Number Publication Date
WO2020256267A1 true WO2020256267A1 (ko) 2020-12-24

Family

ID=74037495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005227 WO2020256267A1 (ko) 2019-06-17 2020-04-20 직렬형 면상 발열 히터 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20220217818A1 (ko)
DE (1) DE112020002915T5 (ko)
WO (1) WO2020256267A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000062492A (ko) * 1999-03-29 2000-10-25 토마스 더블유. 버크맨 피티시 요소와 버스 시스템을 구비하는 히터
JP2014003000A (ja) * 2012-05-23 2014-01-09 Denso Corp 輻射ヒータ装置
KR20160124668A (ko) * 2015-04-20 2016-10-28 니혼도꾸슈도교 가부시키가이샤 세라믹 히터 및 정전척
JP2017017016A (ja) * 2015-06-30 2017-01-19 ローム株式会社 ヒータ
KR20170118993A (ko) * 2016-04-15 2017-10-26 전자부품연구원 배터리 히터, 그를 포함하는 배터리 시스템 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000062492A (ko) * 1999-03-29 2000-10-25 토마스 더블유. 버크맨 피티시 요소와 버스 시스템을 구비하는 히터
JP2014003000A (ja) * 2012-05-23 2014-01-09 Denso Corp 輻射ヒータ装置
KR20160124668A (ko) * 2015-04-20 2016-10-28 니혼도꾸슈도교 가부시키가이샤 세라믹 히터 및 정전척
JP2017017016A (ja) * 2015-06-30 2017-01-19 ローム株式会社 ヒータ
KR20170118993A (ko) * 2016-04-15 2017-10-26 전자부품연구원 배터리 히터, 그를 포함하는 배터리 시스템 및 그의 제조 방법

Also Published As

Publication number Publication date
DE112020002915T5 (de) 2022-04-28
US20220217818A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2013172596A1 (ko) 세라믹 히터용 열선 배치 구조
WO2018124804A1 (ko) Uv 임프린팅 기술을 이용한 투명 발광장치 제조 방법 및 그에 따라 제조되는 투명 발광장치
WO2015152575A1 (ko) 자동차용 고효율 발열시트
WO2009091214A2 (ko) 기판 지지 장치 및 이를 갖는 기판 처리 장치
WO2021034108A1 (ko) 배터리모듈용 냉각부재 및 이를 포함하는 배터리모듈
WO2020256267A1 (ko) 직렬형 면상 발열 히터 및 이의 제조방법
KR102062493B1 (ko) 직렬형 면상 발열 히터 및 이의 제조방법
WO2012165898A2 (en) Apparatus and method for manufacturing ingot
KR102132561B1 (ko) 곡면형 면상 발열 히터 및 이의 제조방법
KR102643943B1 (ko) 직병렬 면상 발열 히터
KR102233315B1 (ko) 웨이퍼 척, 그 히터 및 그 제조 방법
WO2020040479A1 (ko) 열전 모듈
WO2024049068A1 (ko) 필름형 복사히터
JP2002345273A (ja) 静電チャック
WO2020153642A1 (ko) 플렉서블 케이블 점퍼 구조체 및 이를 제조하는 방법
WO2017090899A1 (ko) 플로팅 구조의 전극 패턴 형성 방법 및 상기 방법을 이용한 전사 인쇄 방법
WO2020204623A1 (ko) 플렉서블 케이블 점퍼 장치 및 이를 제조하는 방법
WO2021015589A1 (ko) 이차전지 실링공정용 히터
WO2013169019A1 (ko) 세라믹 히터용 전극 커넥팅 구조
WO2018124317A1 (ko) 방열 그래핀 시트 및 이의 제조방법
WO2022191676A1 (ko) 정전 척 시트 및 이를 포함하는 정전 척
WO2019240435A1 (en) Printed circuit board and manufacturing method thereof
WO2012033376A2 (ko) 전기 영동 디스플레이 장치, 이미지 시트 및 이들의 제조 방법
WO2021235870A1 (ko) 발열체
WO2021029493A1 (ko) 대면적 히터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826211

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20826211

Country of ref document: EP

Kind code of ref document: A1