WO2021235870A1 - 발열체 - Google Patents

발열체 Download PDF

Info

Publication number
WO2021235870A1
WO2021235870A1 PCT/KR2021/006291 KR2021006291W WO2021235870A1 WO 2021235870 A1 WO2021235870 A1 WO 2021235870A1 KR 2021006291 W KR2021006291 W KR 2021006291W WO 2021235870 A1 WO2021235870 A1 WO 2021235870A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heating element
heating
electrode layer
insulating layer
Prior art date
Application number
PCT/KR2021/006291
Other languages
English (en)
French (fr)
Inventor
박일우
정인원
김용환
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210021278A external-priority patent/KR102352663B1/ko
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Publication of WO2021235870A1 publication Critical patent/WO2021235870A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields

Definitions

  • the present invention relates to a heating element. Specifically, the present invention relates to a heating element that maximizes heating efficiency by minimizing the interface resistance between the electrode layer and the heating layer.
  • a heating element generates heat by using electricity.
  • the heating element may be configured in various forms such as a linear heating element and a planar heating element.
  • the planar heating element is configured in the form of a plate to generate heat from the entire surface, and is used for heating, anti-fog, and anti-icing purposes in heating pads, car side mirrors, bathroom mirrors, roads, etc. have.
  • FIG. 1 is a cross-sectional view of a heating element according to the prior art.
  • the conventional heating element includes a base layer 110 , an electrode layer 120 , a heating layer 130 , a protective layer 140 , a leader wire 150 , and the like.
  • the electrode layer 120 pattern is formed on the entire upper surface of the base layer 110 by a semiconductor process.
  • a process of forming the electrode layer 120 involves a process of applying and removing a photoresist.
  • the photoresist remains in the electrode layer 120 or the surface of the electrode layer 120 is oxidized in the process of removing the photoresist.
  • Foreign substances on the electrode layer 120 or oxidation of the surface of the electrode layer 120 may increase the interface resistance between the electrode layer 120 and the heating element 130 , thereby reducing the heating efficiency of the heating element 130 .
  • the present invention is to solve the problems of the prior art, and the present invention prevents foreign substances from remaining on the surface of the electrode layer or the electrode layer from being oxidized, thereby minimizing the interface resistance between the electrode layer and the heating element, thereby improving the heating efficiency of the heating element. want to maximize
  • the present invention aims to reduce the process, ease the process, reduce the manufacturing cost, and the like by eliminating the process of laminating and pressing (compressing) the heating element.
  • the present invention is to offset the occurrence of thermal imbalance in the heating layer due to differential cooling of the heating element according to the difference in exposure environment.
  • the heating element of the present invention for achieving this object may include a base layer, an electrode layer, an insulating layer, a heating layer, and the like.
  • the electrode layer may be formed to be spaced apart from the base layer.
  • the insulating layer may be formed on the electrode layer.
  • the heating layer may be formed on the insulating layer while connecting the electrode layers.
  • the insulating layer is formed to have a width smaller than the width of the spaced apart space of the electrode layer and a height equal to or greater than the thickness of the electrode layer, so that the heating layer can be connected to the side surface and the upper surface of the electrode layer.
  • the insulating layer is wider than the spaced apart space of the electrode layer and formed higher than the electrode layer, and the heating layer is formed on the insulating layer while both ends are connected to the electrode layer, but the central region may have a larger volume than the outer region.
  • the insulating layer may have a depression in the upper surface of the central region.
  • the depression may have a line shape.
  • the heating element of the present invention there may be a plurality of depressions.
  • the depression may be formed to be symmetrical in the width direction with respect to a center line in the width direction.
  • the recessed portion may have a width smaller than the spacing between the electrode layers.
  • the lower end of the depression may be located higher than the upper surface of the electrode layer.
  • the insulating layer may have a penetrating portion in the central region.
  • the through portion may have a line shape.
  • the through portions may be arranged to be spaced apart in the form of an island.
  • the penetrating portion may be formed symmetrically in the width direction with respect to the center line in the width direction.
  • the penetrating portion may be located between the spacing between the electrode layers.
  • the heating element of the present invention may include a protective layer formed on the heating layer.
  • the electrode layer may be formed by a roll-to-roll lamination method or a printing method.
  • the insulating layer may be formed by a roll-to-roll lamination or coating method.
  • the heating layer may be formed by a roll-to-roll coating method.
  • the present invention can prevent foreign substances from remaining on the surface of the electrode layer or oxidation of the electrode layer by forming the electrode layer by a lamination (tape attachment, etc.) method rather than an etching process. As a result, it is possible to prevent an increase in interface resistance between the electrode layer and the heating element, thereby maximizing the heating efficiency of the heating element.
  • the pressing process is already performed in the process of forming each component by forming an electrode layer, a heating layer, an insulating layer, a protective layer, and the like in a roll-to-roll method.
  • the present invention there is no need to separately perform a process of laminating and pressing (compressing) a plurality of heating elements.
  • the present invention can promote productivity improvement such as process reduction, process easiness, and manufacturing cost reduction.
  • the present invention can offset or block the thermal imbalance of the heating layer due to differential cooling of the heating element by adjusting the volume of the heating layer through a change in the thickness of the insulating layer.
  • FIG. 1 is a cross-sectional view of a heating element according to the prior art.
  • FIGS. 2 to 11 are cross-sectional views of the first to tenth embodiments of the heating element according to the present invention.
  • 12A to 12F are process perspective/sectional views illustrating a method of manufacturing a heating element according to a tenth embodiment according to the present invention.
  • FIG. 13 shows that the temperature difference occurs in the heating layer when the thickness of the heating layer is changed due to the recessed portion of the insulating layer in the heating element according to the tenth embodiment according to the present invention.
  • FIG. 2 is a cross-sectional view of a first embodiment of a heating element according to the present invention.
  • the heating element of the first embodiment includes a base layer 110 , an electrode layer 120 , an insulating layer 200A, a heating layer 130 , a protective layer 140 , a lead wire 150 , and the like. may include
  • the base layer 110 is a base material of the heating element, for example, cyclo-olefin polymer (COP), polycarbonate, polyethylene terephthalate (PET), polymethyl methacrylate, polyimide, polyethylene naphthalate, poly It may be composed of an insulating material such as ethersulfone.
  • COP cyclo-olefin polymer
  • PET polyethylene terephthalate
  • PET polymethyl methacrylate
  • polyimide polyethylene naphthalate
  • poly It may be composed of an insulating material such as ethersulfone.
  • the electrode layer 120 may be formed to be spaced apart from the base layer 110 .
  • the electrode layer 120 may be made of a conductive material, for example, silver (Ag), gold (Au), copper (Cu), nickel (Ni), platinum (Pt), palladium (Pd), aluminum (Al), or the like. have.
  • the electrode layer 120 may have a thin film shape. To this end, the electrode layer 120 may attach a thin conductive metal in the form of a tape on the base layer 110 in a laminate method.
  • the electrode layer 120 when the heating element is configured to have a width of 2,000 mm (may be the same as when the width of the base layer 110 is formed to be 2,000 mm, and the width of 2,000 mm is the standard size of the heating element), each exceeds 5 It can be formed with a width of less than 997.5 mm. If the width of the electrode layer 120 is 5 mm or less, electrical connection with the heating layer 130 or the leader line 150 may be poor. In particular, when the electrode layer 120 is laminated on the base layer 110 in the form of a tape, The electrode layer 120 may be broken or distorted.
  • the width of the electrode layer 120 is 997.5 mm or more, the gap between the electrode layers 120 is narrowed to within 5 mm, so that a short may occur between the electrode layers 120, and also the electrode layer 120 compared to the heat generation efficiency. cost may be too high.
  • the insulating layer 200A may be formed on the electrode layer 120 .
  • the insulating layer 200A may also be formed on the upper surface of the electrode layer 120 while having a longer width (the upper width in FIG. 2 ) wider than the width of the separation space of the electrode layer 120 .
  • the insulating layer 200A may have a maximum thickness (the thickness of the spaced-apart space of the electrode layer 120 ) thicker than the thickness of the electrode layer 120 .
  • the insulating layer 200A may be formed of a curable prepolymer, a curable polymer, a plastic polymer, or the like.
  • the insulating layer 200A may be formed of a tape in the form of a film and may be coupled to the electrode layer 120 in a laminated manner.
  • the insulating layer 200A may be formed to have a width of more than 5 and less than 2,000 mm in a range that covers the spaced apart space of the electrode layer 120 and a part of the upper surface.
  • the width of the insulating layer 200A is 5 mm or less, the width of the heating section of the heating layer 130 is narrow, so that sufficient heat cannot be generated. If the width of the insulating layer 200A is 2,000 mm or more, it is difficult to connect the heating layer 130 and the electrode layer 120, and the section of the heating layer 130 connecting the electrode layer 120 also becomes too large, which may cause an excessive voltage increase. .
  • the heating layer 130 may be formed on the insulating layer 200A while electrically connecting the spaced apart electrode layers 120 .
  • the heating layer 130 may be made of a material that can generate heat when electricity is applied, for example, carbon nanotubes (CNT), carbon black, graphene, conductive metal nanowires, conductive oxides (ITO, etc.). have.
  • the protective layer 140 protects the heating layer 130 and may be formed on the heating layer 130 .
  • the protective layer 140 may be any material for coating or film having low electrical conductivity. For example, it may be made of one or more materials selected from a curable prepolymer, a curable polymer, and a plastic polymer.
  • the protective layer 140 may be formed of a varnish-type material that can be filmed.
  • the varnish-type material may include polysilicon-based materials such as polydimethylsiloxane (PDMS), polyorganosiloxane (POS), or the like. Polyimide-type or polyurethane-type, such as spandex, etc. exist. These varnish-type materials may increase the extensibility of the heating element as a flexible insulating material and increase the dynamic folding ability.
  • One side of the lead wire 150 may be connected to the electrode layer 120 by bonding and the other side may be connected to a power source (not shown) to transmit electricity from the outside to the heating element.
  • FIG 3 is a cross-sectional view of a second embodiment of a heating element according to the present invention.
  • the heating element of the second embodiment includes a base layer 110 , an electrode layer 120 , an insulating layer 200B, a heating layer 130 , a protective layer 140 , a lead wire 150 , and the like. may include
  • the heating element of the second embodiment includes the insulating layer 200B having a different shape from the insulating layer 200A of the first embodiment.
  • the insulating layer 200B may be formed to have a width equal to the width of the spaced apart space of the electrode layer 120 .
  • the insulating layer 200B may have a maximum thickness (or height) equal to the thickness (height) of the electrode layer 120 , so that the heating layer 130 may be connected to the upper surface of the electrode layer 120 .
  • the electrical connection between the electrode layers 120 is not connected in a straight line horizontally in the spaced space, but is bent upward and then connected, so that the electric flow distance of the heating element is increased, and as a result, the heating efficiency of the heating element can be higher than that of the prior art. .
  • FIG. 4 is a cross-sectional view of a third embodiment of a heating element according to the present invention.
  • the heating element of the third embodiment includes a base layer 110 , an electrode layer 120 , an insulating layer 200C, a heating layer 130 , a protective layer 140 , a lead wire 150 , and the like. may include
  • the heating element of the third embodiment includes the insulating layer 200C having a different shape from the insulating layers 200A and 200B of the first and second embodiments.
  • the insulating layer 200C has a width smaller than the spacing width of the electrode layer 120, and has a maximum thickness (or height) equal to the thickness (height) of the electrode layer 120,
  • the heating layer 130 is connected to the side surface and the top surface of the electrode layer 120 .
  • the electrical connection between the electrode layers 120 is not connected horizontally in a straight line in the spaced space, but is bent upward and then connected, thereby increasing the electric flow distance of the heating element, and as a result, the heating efficiency of the heating element can be higher than that of the prior art.
  • FIG 5 and 6 are cross-sectional views of the fourth and fifth embodiments of the heating element according to the present invention.
  • the heating element of the fourth and fifth embodiments is a modification of the second and third embodiments shown in FIGS. 3 and 4, and the thickness (or height) of the insulating layers 200D and 200E is reduced.
  • the thickness (or height) of the insulating layers 200B and 200C of the second and third embodiments may be greater than that of the second and third embodiments.
  • FIG. 7 to 9 are cross-sectional views of sixth to eighth embodiments of the heating element according to the present invention.
  • the heating element of the sixth to eighth embodiments is a modification of the first, fourth, and fifth embodiments shown in 2, 5, and 6, and insulating layers 200F, 200G, and 200H are respectively formed.
  • the first and second insulating layers 200F-1,200F-2, 200G-1,200G-2, and 200H-1,200H-2 may be separated and formed.
  • the first insulating layer 200F-1,200G-1,200H-1 is formed to have a thickness of the electrode layer 120
  • the second insulating layer 200F-2,200G-2,200H-2 is formed to have a thickness of the electrode layer 120 .
  • the first and second insulating layers 200F-1,200F-2, 200G-1,200G-2, and 200H-1,200H-2 may be formed of different materials through different processes.
  • FIG. 10 is a cross-sectional view of a ninth embodiment of a heating element according to the present invention.
  • the heating element of the ninth embodiment forms a through portion H in the central region of the insulating layer 200I to adjust the heating volume of the heating layer 130 , thereby resulting in differential cooling of the heating element
  • the thermal imbalance of the heating layer 130 may be offset or blocked.
  • the through portions H may be configured in the form of one or a plurality of lines formed along the longitudinal direction, or may be arranged to be spaced apart in the form of an island.
  • the through portion H may be formed or arranged symmetrically in the width direction with respect to a center line in the width direction. Through this, it is possible to block or minimize heat generated in the heating layer 130 from being unbalanced in the width direction.
  • the through portion H may be formed in the spaced apart space of the electrode layer 120 since thermal imbalance of the heating layer 130 mainly occurs in the spaced space region of the electrode layer 120 . Through this width limitation, it is possible to block or minimize the connection or tunneling between the heating layer 130 and the electrode layer 120 in the spaced apart space of the electrode layer 120 .
  • FIG. 11 is a cross-sectional view of a tenth embodiment of a heating element according to the present invention.
  • the heating element of the tenth embodiment is a modification of the ninth embodiment shown in Fig. 10, and includes an insulating layer 200J having a different shape from the insulating layer 200I of the ninth embodiment. .
  • the insulating layer 200J may include a depression R on the upper surface of the central region.
  • the recessed portion R may offset or block the thermal imbalance of the heating layer 130 due to differential cooling of the heating element by adjusting the heating volume of the heating layer 130 .
  • the recessed portion R may be configured in a line shape formed along the longitudinal direction, and a plurality of recessed portions R may be arranged to be spaced apart when configured in a line shape.
  • the recessed portion R may be formed or arranged symmetrically in the width direction with respect to a center line in the width direction. Through this, it is possible to block or minimize heat generated in the heating layer 130 from being unbalanced in the width direction.
  • the recessed portion R may have a width smaller than the spaced gap of the electrode layer 120 . Through such a width limitation, it is possible to block or minimize the connection or tunneling between the heating layer 130 and the electrode layer 120 in the spaced space region of the electrode layer 120 .
  • the depression R may be configured such that the lower end of the depression is located higher than the upper surface of the electrode layer 120 . Through this, it is possible to block or minimize the connection or tunneling of the heating layer 130 and the electrode layer 120 in the spaced space region of the electrode layer 120 .
  • the heating layer 130 increases the heating volume in the central region in the width direction due to the depression R formed in the insulating layer 200J, and as a result, generates more heat in the central region, resulting in overcooling of the central region. It is possible to offset or block the thermal imbalance of the heating element.
  • 12A to 12F are process perspective/sectional views illustrating a method of manufacturing a heating element according to a tenth embodiment according to the present invention.
  • the base layer 110 may be prepared, and the electrode layer 120 may be formed thereon.
  • the base layer 110 may be formed of a film made of polyethylene terephthalate (PET) or the like, and may be formed by separating the electrode layers 120 from the base layer 110 in a laminated manner.
  • a thin film conductive tape may be used for the lamination of the electrode layer 120 , and the thin film conductive tape may be formed by forming a conductive metal in the form of a thin film on a substrate in the form of a film.
  • the electrode layer 120 is formed in a laminate (or taping) method. Through this, the residual foreign substances on the electrode layer or oxidation of the electrode layer that may occur in processes such as coating and etching of the conductive metal can be blocked.
  • the electrode layer 120 to the base layer 110 can be press-bonded. and, as a result, there is no need to separately perform a lamination pressing (compression bonding) process of the heating element.
  • the roll-to-roll method can simplify the process and increase the process speed, thereby achieving cost reduction.
  • an insulating layer 200J may be formed on the electrode layer 120 .
  • the insulating layer 200J may be formed in a space between the electrode layer 120 and the upper surface of the electrode layer 120 .
  • the insulating layer 200J may be formed to maximize the electrical connection distance of the heating layer 130 .
  • the insulating layer 200J may be formed by coating, printing, lamination (tapping), etc., and it may be preferable to apply a roll-to-roll lamination (tapping) or coating method for process simplification and omitting a separate pressing process. have.
  • a depression R having a shape of a line or the like may be formed in the central region of the insulating layer 200J.
  • the recessed portion R may be formed later by using an insulating film having the recessed portion R formed thereon or by laminating the insulating film and then performing a separate compression process.
  • the screen printing can adjust the coating thickness by making the mesh of the depression (R) dense, and the gravure printing can lower the depth of the offset pattern of the depression (R).
  • the thickness may be adjusted by additionally coating a portion other than the depression (R).
  • the heating layer 130 may be formed on the insulating layer 200J while connecting both ends to the electrode layer 120 .
  • the heating layer 130 may be formed to cover the upper surface of the insulating layer 200J, both outer surfaces in the width direction, and a portion of the upper surface of the electrode layer 120 .
  • the heating layer 130 may be formed by coating, printing, or the like. In order to simplify the process and omit a separate pressing process, it may be preferable to form the heating layer 130 by a roll-to-roll coating method.
  • the protective layer 140 may be formed on the heating layer 130 .
  • the protective layer 140 may electrically, physically, and chemically protect the heating layer 130 .
  • the protective layer 140 may be formed by coating, printing, lamination (tapping), etc., but it may be preferable to form a roll-to-roll lamination (tapping) or coating method in order to simplify the process and omit a separate pressing process. have.
  • the leader line 150 may be connected to the exposed electrode layer 120 .
  • One side of the leader line 150 may be bonded to the upper exposed surface of the electrode layer 120 , and the other side may be connected to a power source (not shown).
  • FIG. 13 shows that the temperature difference occurs in the heating layer when the thickness of the heating layer is changed due to the recessed portion of the insulating layer in the heating element according to the tenth embodiment according to the present invention.
  • the temperature of the heating layer 130 is higher, and the thickness difference (T1, T2 in FIG. 11 ) of the heating layer 130 is also increased. It can be seen that the larger the temperature difference, the higher the temperature difference.
  • T1, T2 thickness of the heating layer

Landscapes

  • Resistance Heating (AREA)

Abstract

발열체는 기재층, 기재층에 이격 형성되는 전극층, 전극층에 형성되는 절연층, 및 전극층을 연결하면서 절연층에 형성되는 발열층을 포함한다.

Description

발열체
본 발명은 발열체에 관한 것이다. 상세하게는, 본 발명은 전극층과 발열층 사이의 계면 저항을 최소화하여 발열 효율을 최대화한 발열체에 관한 것이다.
발열체는 전기를 이용하여 열을 발생하는 것이다. 발열체는 선상 발열체, 면상 발열체 등 다양한 형태로 구성할 수 있다. 예를 들어, 면상 발열체는 면(Plate) 형태로 구성하여 면 전체에서 열이 발생하게 하는 것으로, 히팅 패드, 자동차 사이드 미러, 욕실 거울, 도로 등에서 난방, 김서리 방지, 결빙 방지 등의 용도로 사용되고 있다.
도 1은 종래기술에 따른 발열체의 단면도이다.
도 1에 도시한 바와 같이, 종래의 발열체는 기재층(110), 전극층(120), 발열층(130), 보호층(140), 인출선(150) 등을 포함하고 있다. 종래기술에서 전극층(120)을 형성하는 과정을 보면, 기재층(110)의 전체 상면에 반도체 공정으로 전극층(120) 패턴을 형성하고 있다.
종래기술에서, 전극층(120)을 형성하는 공정, 즉 에칭 공정은 포토레지스트의 도포 및 제거 공정을 수반한다. 그런데, 에칭 공정에서, 포토레지스트가 전극층(120)에 잔존하거나 포토레지스트를 제거하는 과정에서 전극층(120) 표면이 산화되는 경우가 발생하고 있다. 전극층(120) 상의 이물질이나 전극층(120) 표면의 산화는 전극층(120)과 발열체(130) 사이의 계면 저항을 증가시켜 발열체(130)의 발열 효율을 떨어뜨릴 수 있다.
또한, 종래기술에서는, 결합력을 높이고 두께를 줄이기 위해 다수의 발열체를 적층 가압하는 과정을 별도로 거친다. 이러한 적층 가압 공정의 별도 수행은 공정을 복잡하게 하고, 제조 원가를 상승시킬 수 있다.
본 발명은 이러한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명은 전극층 표면에 이물질이 잔존하거나 전극층이 산화되는 것을 차단하여, 전극층과 발열체 사이의 계면 저항을 최소화하고, 이를 통해 발열체의 발열 효율을 최대화하고자 한다.
본 발명은 발열체를 적층 가압(압착)하는 공정을 제거함으로써, 공정 축소, 공정 용이, 제조원가 감소 등을 도모하고자 한다.
또한, 본 발명은 노출 환경 차이에 따른 발열체의 차등 냉각으로 발열층에 열적 불균형이 발생하는 것을 상쇄하고자 한다.
이러한 목적을 달성하기 위한 본 발명의 발열체는 기재층, 전극층, 절연층, 발열층 등을 포함할 수 있다.
전극층은 기재층에 이격시켜 형성할 수 있다.
절연층은 전극층에 형성할 수 있다.
발열층은 전극층을 연결하면서 절연층에 형성할 수 있다.
본 발명의 발열체에서, 절연층은 전극층의 이격 공간의 폭보다 작은 폭과 전극층의 두께 이상의 높이로 형성되어 발열층을 전극층의 측면 및 상면에서 연결시킬 수 있다.
본 발명의 발열체에서, 절연층은 전극층의 이격 공간보다 넓고 전극층보다 높게 형성되고, 발열층은 양단이 전극층에 접속하면서 절연층에 형성되되 중앙 영역이 외측 영역보다 체적이 클 수 있다.
본 발명의 발열체에서, 절연층은 중앙 영역의 상면에 함몰부를 구비할 수 있다.
본 발명의 발열체에서, 함몰부는 라인 형태를 가질 수 있다.
본 발명의 발열체에서, 함몰부는 복수일 수 있다.
본 발명의 발열체에서, 함몰부는 폭방향 중심선을 중심으로 폭방향 대칭되게 형성될 수 있다.
본 발명의 발열체에서, 함몰부는 전극층의 이격 간격보다 작은 폭을 가질 수 있다.
본 발명의 발열체에서, 함몰부는 함몰 하단이 전극층의 상면보다 높게 위치할 수 있다.
본 발명의 발열체에서, 절연층은 중앙 영역에 관통부를 구비할 수 있다.
본 발명의 발열체에서, 관통부는 라인 형태를 가질 수 있다.
본 발명의 발열체에서, 관통부는 섬 형태로 이격 배열될 수 있다.
본 발명의 발열체에서, 관통부는 폭방향 중심선을 중심으로 폭방향 대칭되게 형성될 수 있다.
본 발명의 발열체에서, 관통부는 전극층의 이격 간격 사이에 위치할 수 있다.
본 발명의 발열체는 발열층에 형성되는 보호층을 포함할 수 있다.
본 발명의 발열체에서, 전극층은 롤투롤 라미네이트 방식 또는 인쇄 방식으로 형성할 수 있다.
본 발명의 발열체에서, 절연층은 롤투롤 라미네이트 또는 코팅 방식으로 형성할 수 있다.
본 발명의 발열체에서, 발열층은 롤투롤 코팅 방식으로 형성할 수 있다.
이러한 구성을 통해, 본 발명은 에칭 공정이 아닌 라미네이트(테이프 부착 등) 방식으로 전극층을 형성함으로써 전극층 표면에 이물질이 잔존하거나 전극층이 산화되는 것을 차단할 수 있다. 그 결과, 전극층과 발열체 사이에서 계면 저항이 증가하는 것을 방지하고, 이를 통해 발열체의 발열 효율을 최대화할 수 있다.
본 발명은 롤투롤 방식으로 전극층, 발열층, 절연층, 보호층 등을 형성함으로써 각 구성요소의 형성 과정에서 이미 가압 공정이 수행된다. 그 결과, 본 발명은 다수의 발열체를 적층 가압(압착)하는 공정을 별도로 수행할 필요가 없다. 이를 통해, 본 발명은 공정 축소, 공정 용이, 제조원가 감소 등의 생산성 향상을 도모할 수 있다.
또한, 본 발명은 절연층의 두께 변화를 통해 발열층의 체적을 조절함으로써 발열체의 차등 냉각에 따른 발열층의 열적 불균형을 상쇄 내지 차단할 수 있다.
도 1은 종래기술에 따른 발열체의 단면도이다.
도 2~11은 본 발명에 따른 발열체의 제1~10 실시예의 단면도이다.
도 12a~12f는 본 발명에 따른 제10 실시예의 발열체를 제조하는 방법을 도시하는 공정 사시/단면도이다.
도 13은 본 발명에 따른 제10 실시예의 발열체에서 절연층 함몰부로 인해 발열층 두께가 변화할 때 발열층에 온도 차이가 발생하는 것을 도시하고 있다.
이하, 첨부도면을 참조하여 본 발명을 상세히 설명한다.
도 2는 본 발명에 따른 발열체의 제1 실시예의 단면도이다.
도 2에 도시한 바와 같이, 제1 실시예의 발열체는 기재층(110), 전극층(120), 절연층(200A), 발열층(130), 보호층(140), 인출선(150) 등을 포함할 수 있다.
기재층(110)은 발열체의 기재로서, 예를 들어 시클로올레핀폴리머(cyclo-olefin polymer: COP), 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리메틸메타크릴레이트, 폴리이미드, 폴리에틸렌나프탈레이트, 폴리에테르설폰 등의 절연물로 구성할 수 있다.
전극층(120)은 기재층(110)에 이격되어 형성될 수 있다. 전극층(120)은 도전성 재질, 예를 들어 은(Ag), 금(Au), 구리(Cu), 니켈(Ni), 백금(Pt), 팔라듐(Pd), 알루미늄(Al) 등으로 구성할 수 있다. 전극층(120)은 박막 필름 형상으로 구성할 수 있다. 이를 위해서, 전극층(120)은 테이프(tape) 형태의 박막 도전 금속을 라미네이트(laminate) 방식으로 기재층(110) 상에 부착할 수 있다.
전극층(120)는, 발열체를 2,000mm 폭으로 구성하는 경우(기재층(110)의 폭을 2,000mm로 형성하는 경우와 동일할 수 있고, 2,000mm 폭은 발열체의 표준 크기임), 각각 5 초과 997.5 ㎜ 미만의 폭으로 형성할 수 있다. 전극층(120)의 폭이 5mm 이하이면 발열층(130) 또는 인출선(150)과의 전기적 접속이 불량될 수 있고, 특히 전극층(120)을 테이프 형태로 기재층(110)에 라미네이트하는 경우에는 전극층(120)이 끊어지거나 뒤틀릴 수 있다. 한편, 전극층(120)의 폭이 997.5mm 이상이면, 전극층(120) 사이의 간격이 5mm 이내로 좁아져서 전극층(120) 사이에 쇼트(shortage)가 발생할 수 있고, 또한 발열 효율에 비해 전극층(120)의 비용이 지나치게 높아질 수 있다.
절연층(200A)은 전극층(120)에 형성될 수 있다. 절연층(200A)은 장폭(도 2에서 상측 폭)이 전극층(120)의 이격 공간의 폭보다 넓은 폭을 가지면서 전극층(120)의 상면에도 형성될 수 있다. 절연층(200A)은 최대 두께(전극층(120)의 이격 공간 두께)를 전극층(120)의 두께보다 두껍게 형성할 수 있다.
절연층(200A)은 경화성 프리폴리머, 경화성 폴리머, 가소성 폴리머 등으로 구성할 수 있다. 절연층(200A)은 필름 형태의 테이프로 구성하여 라미네이트 방식으로 전극층(120)에 결합될 수 있다.
절연층(200A)은, 발열체를 2,000mm 폭으로 구성하는 경우, 전극층(120)의 이격 공간과 상면 일부를 덮는 범위에서 5 초과 2,000 ㎜ 미만의 폭으로 형성할 수 있다. 절연층(200A)의 폭이 5mm 이하이면 발열층(130)의 발열 구간 폭이 좁아서 충분한 발열을 발생할 수 없다. 절연층(200A)의 폭이 2,000 mm 이상이면 발열층(130)과 전극층(120)의 접속이 어렵고 전극층(120)을 연결하는 발열층(130) 구간도 지나치게 커져 과도한 전압 상승이 발생될 수 있다.
발열층(130)은 이격된 전극층(120)을 전기적으로 연결하면서 절연층(200A)에 형성될 수 있다. 발열층(130)은 전기가 인가될 때 열을 발생할 수 있는 재질, 예를 들어 탄소나노튜브(CNT), 카본 블랙, 그래핀, 도전금속 나노와이어, 도전 산화물(ITO 등) 등으로 구성할 수 있다.
보호층(140)은 발열층(130)을 보호하는 것으로 발열층(130)에 형성될 수 있다. 보호층(140)은 전기 전도도가 낮은 코팅용 또는 필름 재질이면 어떤 것이든 사용할 수 있는데, 예를 들어 경화성 프리폴리머, 경화성 폴리머, 가소성 폴리머에서 선택되는 하나 이상의 물질로 구성할 수 있다.
보호층(140)은 필름화가 가능한 바니쉬(varnish) 타입의 재료를 사용할 수도 있는데, 바니쉬 타입의 재료로는 폴리다이메틸실록산(PDMS: polydimethylsiloxane), 폴리오가노실록산(POS: polyorganosiloxane) 등의 폴리실리콘계 또는 폴리이미드계 또는 스판덱스 등의 폴리우레탄계 등이 있다. 이러한 바니쉬 타입의 재료들은 연성 절연물로서 발열체의 연신성을 높이고 다이나믹 폴딩 능력을 높일 수 있다.
인출선(150)은 일측이 전극층(120)에 본딩 접속하고 타측은 전원(미도시)에 접속하여 외부로부터 전기를 발열체에 전달할 수 있다.
도 3은 본 발명에 따른 발열체의 제2 실시예의 단면도이다.
도 3에 도시한 바와 같이, 제2 실시예의 발열체는 기재층(110), 전극층(120), 절연층(200B), 발열층(130), 보호층(140), 인출선(150) 등을 포함할 수 있다.
제2 실시예의 발열체는 제1 실시예의 절연층(200A)과 다른 형상의 절연층(200B)을 포함하고 있다.
도 3에 도시한 바와 같이, 절연층(200B)은 전극층(120)의 이격 공간 폭만큼의 폭을 갖도록 형성할 수 있다. 이 때, 절연층(200B)은 최대 두께(또는 높이)를 전극층(120)의 두께(높이)와 동일하게 함으로써, 발열층(130)이 전극층(120)의 상면에서 연결되게 할 수 있다. 이를 통해, 전극층(120) 사이의 전기적 연결이 이격 공간에서 수평으로 직선 연결되지 못하고 상방으로 굴곡된 후 연결됨으로써, 발열체의 전기적 흐름 거리가 늘어나고, 그 결과 발열체의 발열 효율이 종래기술보다 높아질 수 있다.
제2 실시예의 다른 구성은 제1 실시예의 대응 구성과 동일하므로, 이들에 대한 상세 설명은 제1 실시예의 관련 설명으로 갈음한다.
도 4는 본 발명에 따른 발열체의 제3 실시예의 단면도이다.
도 4에 도시한 바와 같이, 제3 실시예의 발열체는 기재층(110), 전극층(120), 절연층(200C), 발열층(130), 보호층(140), 인출선(150) 등을 포함할 수 있다.
제3 실시예의 발열체는 제1,2 실시예의 절연층(200A,200B)과 다른 형상의 절연층(200C)을 포함하고 있다.
도 4에 도시한 바와 같이, 절연층(200C)은 전극층(120)의 이격 공간 폭보다 작은 폭을 갖고, 최대 두께(또는 높이)를 전극층(120)의 두께(높이)와 동일하게 형성하여, 발열층(130)이 전극층(120)의 측면 및 상면에서 연결되게 하고 있다. 이를 통해, 전극층(120) 사이의 전기적 연결이 이격 공간에서 수평으로 직선 연결되지 못하고 상방으로 굴곡된 후 연결됨으로써 발열체의 전기적 흐름 거리가 늘어나고, 그 결과 발열체의 발열 효율이 종래기술보다 높아질 수 있다.
제3 실시예의 다른 구성은 제1 실시예의 대응 구성과 동일하므로, 이들에 대한 상세 설명은 제1 실시예의 관련 설명으로 갈음한다.
도 5,6은 본 발명에 따른 발열체의 제4,5 실시예의 단면도이다.
도 5,6에 도시한 바와 같이, 제4,5 실시예의 발열체는 도 3,4에 도시한 제2,3 실시예를 변형한 것으로, 절연층(200D,200E)의 두께(또는 높이)를 제2,3 실시예의 절연층(200B,200C)의 두께(또는 높이)보다 더 크게 할 수 있다. 이러한 구성을 통해, 전극층(120) 사이의 전기적 흐름 거리를 더 길게 할 수 있고, 그 결과 발열체의 발열 효율이 더 높아질 수 있다.
도 7~9는 본 발명에 따른 발열체의 제6~8 실시예의 단면도이다.
도 7~9에 도시한 바와 같이, 제6~8 실시예의 발열체는 2,5,6에 도시한 제1,4,5 실시예를 변형한 것으로, 절연층(200F,200G,200H)를 각각 제1,2 절연층(200F-1,200F-2, 200G-1,200G-2, 200H-1,200H-2)로 분리하여 형성할 수 있다. 여기서, 제1 절연층(200F-1,200G-1,200H-1)은 전극층(120)의 두께로 형성하고, 제2 절연층(200F-2,200G-2,200H-2)은 전극층(120)의 두께를 초과하여 형성할 수 있다. 또한, 제1,2 절연층(200F-1,200F-2, 200G-1,200G-2, 200H-1,200H-2)은 다른 공정을 통해 다른 재질로 구성할 수 있다.
도 10은 본 발명에 따른 발열체의 제9 실시예의 단면도이다.
도 10에 도시한 바와 같이, 제9 실시예의 발열체는 절연층(200I)의 중앙 영역에 관통부(H)를 형성하여, 발열층(130)의 발열 체적을 조절함으로써, 발열체의 차등 냉각에 따른 발열층(130)의 열적 불균형을 상쇄 또는 차단할 수 있다.
관통부(H)는 길이방향을 따라 형성되는 하나 또는 복수의 라인 형태로 구성하거나 섬(island) 형태로 이격시켜 배열할 수 있다.
관통부(H)는 폭방향 중심선을 중심으로 폭방향으로 대칭되게 형성 또는 배열할 수 있다. 이를 통해, 발열층(130)에서 발생하는 열이 폭 방향으로 불균형되는 것을 차단 내지 최소화할 수 있다.
관통부(H)는, 발열층(130)의 열 불균형이 전극층(120)의 이격 공간 영역에서 주로 발생하므로, 전극층(120)의 이격 공간에 형성할 수 있다. 이러한 폭 제한을 통해, 전극층(120)의 이격 공간에서 발열층(130)과 전극층(120)이 접속 또는 터널링되는 것을 차단 내지 최소화할 수 있다.
도 11은 본 발명에 따른 발열체의 제10 실시예의 단면도이다.
도 11에 도시한 바와 같이, 제10 실시예의 발열체는 도 10에 도시한 제9 실시예를 변형한 것으로, 제9 실시예의 절연층(200I)과 다른 형상의 절연층(200J)을 포함하고 있다.
절연층(200J)은 중앙 영역의 상면에 함몰부(R)를 구비할 수 있다. 함몰부(R)는 발열층(130)의 발열 체적을 조절함으로써, 발열체의 차등 냉각에 따른 발열층(130)의 열적 불균형을 상쇄 또는 차단할 수 있다.
함몰부(R)은 길이방향을 따라 형성되는 라인 형태로 구성할 수 있고, 라인 형태로 구성할 때도 복수를 이격시켜 배열할 수 있다.
함몰부(R)는 폭방향 중심선을 중심으로 폭방향으로 대칭되게 형성 또는 배열할 수 있다. 이를 통해, 발열층(130)에서 발생하는 열이 폭 방향으로 불균형되는 것을 차단 내지 최소화할 수 있다.
함몰부(R)는, 발열층(130)의 열 불균형이 전극층(120)의 이격 공간 영역에서 주로 발생하므로, 전극층(120)의 이격 간격보다 작은 폭으로 구성할 수 있다. 이러한 폭 제한을 통해, 전극층(120)의 이격 공간 영역에서 발열층(130)과 전극층(120)이 접속 또는 터널링되는 것도 차단 내지 최소화할 수 있다.
함몰부(R)는 함몰 하단이 전극층(120)의 상면보다 높게 위치하도록 구성할 수 있다. 이를 통해, 전극층(120)의 이격 공간 영역에서 발열층(130)과 전극층(120)이 접속 또는 터널링되는 것도 차단 내지 최소화할 수 있다.
발열층(130)은, 절연층(200J)에 형성되는 함몰부(R)로 인해 폭방향 중앙 영역에서 발열 체적이 증가하고, 그 결과 중앙 영역에서 더 많은 열을 발생시킴으로써 중앙 영역의 과냉각에 따른 발열체의 열적 불균형을 상쇄 내지 차단할 수 있다.
도 12a~12f는 본 발명에 따른 제10 실시예의 발열체를 제조하는 방법을 도시하는 공정 사시/단면도이다.
먼저, 도 12a에 도시한 바와 같이, 제10 실시예의 발열체를 제조하는 방법은, 기재층(110)을 준비하고, 그 위에 전극층(120)을 형성할 수 있다.
기재층(110)은 폴리에틸렌테레프탈레이트(polyethylene terephthalate: PET) 등을 재질로 하는 필름을 사용할 수 있고, 이러한 기재층(110)에 전극층(120)을 라미네이트 방식으로 이격시켜 형성할 수 있다. 전극층(120)의 라미네이트에는 박막 도전 테이프 등을 이용할 수 있는데, 박막 도전 테이프는 필름 형태의 기재에 도전 금속을 박막 형태로 형성한 것일 수 있다. 이와 같이, 본 발명에서는 전극층(120)을 라미네이트(또는 테이핑) 방식으로 형성하고 있는데, 이를 통해 도전 금속의 코팅, 식각 등의 공정에서 발생할 수 있는 전극층 상의 이물질 잔존이나 전극층 산화를 원천 차단할 수 있다.
나아가, 도 12a의 단계에서, 기재층(110)에 전극층(120)을 형성할 때, 롤투롤(Roll to Roll) 방식을 채택하면, 기재층(110)에 전극층(120)을 가압 결합할 수 있고, 그 결과 발열체의 적층 가압(압착) 공정을 별도로 수행할 필요가 없다. 또한, 롤투롤 방식은 공정을 단순화하고 공정 속도를 높일 수 있어, 원가 절감도 달성할 수 있다.
도 12b와 같이, 절연층(200J)을 전극층(120)에 형성할 수 있다. 절연층(200J)은 전극층(120)의 이격 공간과 전극층(120)의 상면에 형성할 수 있다. 절연층(200J)은 발열층(130)의 전기적 연결 거리를 최대화하는 형태로 형성할 수 있다.
절연층(200J)은 코팅, 인쇄, 라미네이트(테이핑) 등의 방식으로 형성할 수 있는데, 공정 간소화, 별도의 가압 공정 생략 등을 위해서 롤투롤 라미네이트(테이핑) 또는 코팅 방식을 적용하는 것이 바람직할 수 있다.
도 12b에서, 절연층(200J)의 중앙 영역에 라인 등의 형태를 갖는 함몰부(R)를 형성할 수 있다. 함몰부(R)는 함몰부(R)가 형성된 절연필름을 사용하거나 절연필름을 라미네이트한 후 별도의 압착 공정 등을 통해 추후 형성할 수도 있다. 코팅 방식의 경우, 스크린 인쇄는 함몰부(R)의 메쉬를 촘촘히 하여 코팅 두께를 조절할 수 있고, 그라비아 인쇄는 함몰부(R)의 옵셋 패턴의 깊이를 낮게 할 수 있다. 또한, 코팅 방식에서는 함몰부(R) 이외의 부분을 추가 코팅하여 두께를 조절할 수도 있다.
도 12c와 같이, 양단을 전극층(120)에 연결시키면서 발열층(130)을 절연층(200J)에 형성할 수 있다. 발열층(130)은 절연층(200J)의 상면과 폭방향 양쪽 외측면, 그리고 전극층(120)의 상면 일부를 덮는 형태로 형성될 수 있다.
발열층(130)은 코팅, 인쇄 등의 방식으로 형성할 수 있는데, 공정 간소화, 별도의 가압 공정 생략 등을 위해서는 롤투롤 코팅 방식으로 형성하는 것이 바람직할 수 있다.
도 12d와 같이, 보호층(140)을 발열층(130)에 형성할 수 있다. 보호층(140)은 발열층(130)을 전기, 물리, 화학적으로 보호할 수 있다.
보호층(140)은 코팅, 인쇄, 라미네이트(테이핑) 등의 방식으로 형성할 수 있는데, 공정 간소화, 별도의 가압 공정 생략 등을 위해서는 롤투롤 라미네이트(테이핑) 또는 코팅 방식으로 형성하는 것이 바람직할 수 있다.
도 12e와 같이, 벌크 형태의 발열체를 필요한 크기로 절단하면, 원하는 크기의 개별 발열체를 구할 수 있다.
이후, 도 12f와 같이, 노출된 전극층(120)에 인출선(150)을 연결할 수 있다. 인출선(150)은 일측이 전극층(120)의 상측 노출면에 본딩되고 타측은 전원(미도시)에 연결될 수 있다.
도 13은 본 발명에 따른 제10 실시예의 발열체에서 절연층 함몰부로 인해 발열층 두께가 변화할 때 발열층에 온도 차이가 발생하는 것을 도시하고 있다.
도 13에 도시한 바와 같이, 발열층(130)의 체적이 증가할수록 발열층(130)의 온도가 높은 것을 확인할 수 있고, 또한 발열층(130)의 두께 차이(도 11의 T1,T2)가 클수록 온도 차이가 상승하는 것을 확인할 수 있다.
이상, 본 발명을 여러 실시예로서 설명하였는데, 이들은 본 발명을 예증하기 위한 것이다. 통상의 기술자라면 이러한 실시예를 다른 형태로 변형하거나 수정할 수 있을 것이다. 그러나, 본 발명의 권리범위는 아래의 특허청구범위에 의해 정해지므로, 그러한 변형이나 수정은 본 발명의 권리범위에 포함되는 것으로 해석될 수 있다.
[부호의 설명]
110 : 기재층 120 : 전극층
130 : 발열층 140 : 보호층
150 : 인출선 200A~200J : 절연층
H : 관통부 R : 함몰부
T1,T2 : 발열층의 두께

Claims (18)

  1. 기재층;
    상기 기재층에 이격 형성되는 전극층;
    상기 전극층에 형성되는 절연층; 및
    상기 전극층을 연결하면서 상기 절연층에 형성되는 발열층을 포함하는, 발열체.
  2. 제1항에 있어서, 상기 절연층은
    상기 전극층의 이격 공간의 폭보다 작은 폭과 상기 전극층의 두께 이상의 높이로 형성되어 상기 발열층을 상기 전극층의 측면 및 상면에서 연결되게 하는, 발열체.
  3. 제1항에 있어서,
    상기 절연층은 상기 전극층의 이격 공간보다 넓고 상기 전극층보다 높게 형성되고,
    상기 발열층은 양단이 상기 전극층에 접속하면서 상기 절연층에 형성되되, 중앙 영역이 외측 영역보다 체적이 큰, 발열체.
  4. 제3항에 있어서, 상기 절연층은
    중앙 영역의 상면에 함몰부를 구비하는, 발열체.
  5. 제4항에 있어서, 상기 함몰부는
    라인 형태를 갖는, 발열체.
  6. 제5항에 있어서, 상기 함몰부는
    복수인, 발열체.
  7. 제4항에 있어서, 상기 함몰부는
    폭방향 중심선을 중심으로 폭방향 대칭되게 형성되는, 발열체.
  8. 제4항에 있어서, 상기 함몰부는
    상기 전극층의 이격 간격보다 작은 폭을 갖는, 발열체.
  9. 제4항에 있어서, 상기 함몰부는
    함몰 하단이 상기 전극층의 상면보다 높게 위치하는, 발열체.
  10. 제3항에 있어서, 상기 절연층은
    중앙 영역에 관통부를 구비하는, 발열체.
  11. 제10항에 있어서, 상기 관통부는
    라인 형태를 갖는, 발열체.
  12. 제10항에 있어서, 상기 관통부는
    섬 형태로 이격 배열되는, 발열체.
  13. 제10항에 있어서, 상기 관통부는
    폭방향 중심선을 중심으로 폭방향 대칭되게 형성되는, 발열체.
  14. 제10항에 있어서, 상기 관통부는
    상기 전극층의 이격 간격 사이에 위치하는, 발열체.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 발열층에 형성되는 보호층을 포함하는, 발열체.
  16. 제1항 내지 제14항 중 어느 한 항에 있어서, 상기 전극층은
    롤투롤 라미네이트 또는 인쇄 방식으로 형성되는, 발열체.
  17. 제1항 내지 제14항 중 어느 한 항에 있어서, 상기 절연층은
    롤투롤 라미네이트 또는 코팅 방식으로 형성되는, 발열체.
  18. 제1항 내지 제14항 중 어느 한 항에 있어서, 상기 발열층은
    롤투롤 코팅 방식으로 형성되는, 발열체.
PCT/KR2021/006291 2020-05-22 2021-05-20 발열체 WO2021235870A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200061756 2020-05-22
KR10-2020-0061756 2020-05-22
KR10-2021-0021278 2021-02-17
KR1020210021278A KR102352663B1 (ko) 2020-05-22 2021-02-17 발열체

Publications (1)

Publication Number Publication Date
WO2021235870A1 true WO2021235870A1 (ko) 2021-11-25

Family

ID=78708669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006291 WO2021235870A1 (ko) 2020-05-22 2021-05-20 발열체

Country Status (1)

Country Link
WO (1) WO2021235870A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123957A (ja) * 1998-10-14 2000-04-28 Co-Op Chem Co Ltd 面状発熱体の電極部
JP4655255B2 (ja) * 2000-09-29 2011-03-23 Toto株式会社 面状ヒータ及びその製造方法
US20130277359A1 (en) * 2007-01-22 2013-10-24 Panasonic Corporation Ptc resistor
KR20180115378A (ko) * 2017-04-12 2018-10-23 전자부품연구원 복사 히터
KR20190045647A (ko) * 2017-10-24 2019-05-03 (주)인터플렉스 발열필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123957A (ja) * 1998-10-14 2000-04-28 Co-Op Chem Co Ltd 面状発熱体の電極部
JP4655255B2 (ja) * 2000-09-29 2011-03-23 Toto株式会社 面状ヒータ及びその製造方法
US20130277359A1 (en) * 2007-01-22 2013-10-24 Panasonic Corporation Ptc resistor
KR20180115378A (ko) * 2017-04-12 2018-10-23 전자부품연구원 복사 히터
KR20190045647A (ko) * 2017-10-24 2019-05-03 (주)인터플렉스 발열필름

Similar Documents

Publication Publication Date Title
WO2018124804A1 (ko) Uv 임프린팅 기술을 이용한 투명 발광장치 제조 방법 및 그에 따라 제조되는 투명 발광장치
WO2019182216A1 (ko) 양면냉각형 파워 모듈 및 그의 제조 방법
WO2017142203A1 (ko) 카메라 모듈용 히팅 장치 및 이를 갖는 카메라 모듈
WO2016137056A1 (ko) 투명 전광 장치
WO2011096700A2 (en) Touch panel and method of manufacturing the same
WO2023003316A1 (ko) 단면 또는 양면 접촉이 가능한 박막 필름형 안테나 및 이의 제조방법
WO2012050333A2 (en) Radiant heat circuit board, method of manufacturing the same, heat generating device package having the same, and backlight
WO2019039848A1 (ko) 시인성 및 작업성이 개선된 그라파이트 라미네이트 칩온필름형 반도체 패키지
WO2021096224A1 (ko) 퓨즈 소자, 플렉서블 배선기판 및 배터리팩
WO2021235870A1 (ko) 발열체
WO2014092343A1 (ko) 기능성 필름 및 이를 포함하는 연성회로기판
WO2020040479A1 (ko) 열전 모듈
WO2019066379A1 (ko) 투명 발광소자 디스플레이
WO2022197010A2 (ko) 발열체
CN113990884A (zh) 驱动基板及其制备方法和显示装置
JPH11298049A (ja) 発光表示装置
WO2022045467A1 (ko) 하이브리드 필름형 히터 제조방법 및 하이브리드 필름형 히터
WO2021054707A1 (ko) 평판 스피커용 가동 코일
WO2021158041A1 (ko) 케이블 모듈 및 이를 제조하기 위한 방법
WO2020204623A1 (ko) 플렉서블 케이블 점퍼 장치 및 이를 제조하는 방법
WO2009108030A2 (en) Printed circuit board and method of manufacturing the same
WO2022071719A1 (ko) 칩 온 필름용 단열시트, 이를 포함하는 단열 칩 온 필름 패키지 및 디스플레이 장치
KR102352663B1 (ko) 발열체
WO2024186116A1 (ko) 열전 모듈 및 이의 제조 방법
WO2023238963A1 (ko) 면상 발열체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808853

Country of ref document: EP

Kind code of ref document: A1