WO2020256079A1 - 培養材およびその用途 - Google Patents

培養材およびその用途 Download PDF

Info

Publication number
WO2020256079A1
WO2020256079A1 PCT/JP2020/024020 JP2020024020W WO2020256079A1 WO 2020256079 A1 WO2020256079 A1 WO 2020256079A1 JP 2020024020 W JP2020024020 W JP 2020024020W WO 2020256079 A1 WO2020256079 A1 WO 2020256079A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
culture material
methyl
container
Prior art date
Application number
PCT/JP2020/024020
Other languages
English (en)
French (fr)
Inventor
木谷 誠
寛 宮廻
勝敏 木下
松木 智昭
小田 隆志
勝弘 江刺家
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US17/279,036 priority Critical patent/US11254904B2/en
Priority to SG11202103024RA priority patent/SG11202103024RA/en
Priority to KR1020217008604A priority patent/KR102646444B1/ko
Priority to EP20827278.1A priority patent/EP3839034B1/en
Priority to ES20827278T priority patent/ES2963127T3/es
Priority to CN202080005455.6A priority patent/CN112823204B/zh
Priority to JP2020562218A priority patent/JP6826244B1/ja
Publication of WO2020256079A1 publication Critical patent/WO2020256079A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/22Petri dishes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/24Apparatus for enzymology or microbiology tube or bottle type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • C12N5/0671Three-dimensional culture, tissue culture or organ culture; Encapsulated cells

Definitions

  • the present invention relates to a culture material and its use.
  • cells, tissues, and organs can only be cultured under conditions suitable for growth, they should be placed in a culture container such as a dish, plate, or flask together with a medium containing appropriate nutrients, and the temperature, humidity, and gas concentration of the culture container should be adjusted. It is necessary to stand in an incubator that can be maintained at a predetermined level.
  • the culture container made of the material is provided with an opening at the upper part of the culture container such as a cap and a lid to secure gas supply from the inside of the incubator to the inside of the container.
  • the cultured cells are usually adhered to the bottom surface of the culture vessel or are often suspended near the bottom surface, and the upper surface is covered with the medium, so that the oxygen diffusion rate in the medium becomes rate-determining.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 As a simple and practical method for improving oxygen supply, it is known that the problem of oxygen diffusion rate-determining in the culture solution layer in static culture can be easily solved by using a culture plate with a high oxygen permeable film as the culture surface.
  • Patent Document 1 As a highly oxygen permeable material, a rubber material such as polybutadiene (Patent Document 1) is being studied in addition to the above-mentioned PDMS.
  • the gas permeable film made of a rubber material has low strength and is easily torn, and in addition, it is liable to bend when a medium is added, and its shape is unstable.
  • the culture vessel is bent, the cells attached to the inner wall of the culture vessel are peeled off due to the deformation of the container or the impact caused by the deformation, and the cells being cultured gather in the bent place. Cannot be cultivated.
  • rubber materials are generally prone to adsorption and absorption of drug substances, their use in drug discovery screening applications and diagnostic applications is limited.
  • Patent Documents 1 to 4 disclose a technique for culturing a culture vessel using a film using poly4-methyl-1-pentene resin. Although it is suitable for growing plants such as horns and bags and for culturing floating cells by improving the heat sealability and flexibility of the film, when it is applied for static culture, it is on the bottom of the culture. It is not suitable as a culture container because it bends. Further, the poly4-methyl-1-pentene resin has a high hydrophobicity on the culture surface as it is, and when it is used as a culture substrate, there is a problem that cells cannot adhere to it and peel off and die.
  • the inventors of the present invention have an excellent oxygen supply capacity and are flexible in order to culture cells, tissues, or organs (hereinafter referred to as cells) in vitro in a state closer to in vivo.
  • cells cells
  • the 4-methyl-1-pentene polymer (X) contains 4-methyl-1-pentene homopolymer (x1), 4-methyl-1-pentene, ethylene, and 3 to 20 carbon atoms.
  • test method (B) Culture consisting of a cylindrical portion made of polyethylene and a flat bottom portion made of the same material as the culture material and having the same thickness as the culture surface of the culture material.
  • Rat primary cultured hepatocytes were seeded in a collagen-coated culture vessel having an area of 2 cm 2 with 0.5 mL of a culture solution for rat primary hepatocytes, and the temperature was 37 ° C., carbon dioxide concentration was 5.0%, and oxygen concentration was 20. After culturing under% and removing the culture solution in the culture vessel 24 hours after seeding, 0.5 mL of the culture solution is newly added, and the oxygen concentration is measured at a height of 80 ⁇ m from the bottom surface of the culture vessel for 1 hour.
  • [7] The culture material according to any one of [1] to [6], wherein the culture surface is microfabricated.
  • [9] A culture vessel in which at least the culture surface is formed of the culture material according to any one of [1] to [7].
  • the culture vessel according to [9] which has at least one well.
  • [12] The culture device according to [11], wherein the culture surface is coated with a natural polymer material, a synthetic polymer material, or an inorganic material.
  • a method for culturing cells, tissues, or organs which comprises a step of incubating cells, tissues, or organs in the culture device according to [11] or [12].
  • an oxygen environment that is excellent in shape stability and suitable for culturing cells, tissues, or organs, does not emit autofluorescence, does not impair cell observability, and is a culture in which a drug is difficult to cultivate.
  • Wood and culture vessels can be provided.
  • a culture device having cell adhesion suitable for culturing adherent cells, tissues, or organs.
  • the culture material according to the first aspect of the present invention is a culture material for cells, tissues, or organs containing 4-methyl-1-pentene polymer (X), and the water contact angle of the culture surface is 50 °.
  • the oxygen permeability is 4500-90000 cm 3 / (m 2 x 24 h x atm) when the temperature is ⁇ 100 °, the hanging distance according to the following test method (A) is 0 to 5 mm, the temperature is 23 ° C, and the humidity is 0%.
  • the culture device according to the third aspect of the present invention is a culture device composed of the culture material according to the first aspect or the culture vessel according to the second aspect.
  • the method for culturing cells, tissues, or organs according to the fourth aspect of the present invention is a culturing method including a step of incubating cells, tissues, or organs in a culturing instrument according to the third aspect.
  • a culturing method including a step of incubating cells, tissues, or organs in a culturing instrument according to the third aspect.
  • the term “polymer” is used to include homopolymers and copolymers.
  • the term “polymerization” is used to include homopolymerization and copolymerization. Therefore, “4-methyl-1-pentene polymer (X)” refers to a homopolymer of 4-methyl-1-pentene and a copolymer of 4-methyl-1-pentene and another monomer. It is a concept to be included.
  • the 4-methyl-1-pentene homopolymer is also referred to as 4-methyl-1-pentene homopolymer (x1) below.
  • the copolymer of 4-methyl-1-pentene and another monomer may be any of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer.
  • Examples of the copolymer of 4-methyl-1-pentene and other monomers include 4-methyl-1-pentene, ethylene, and ⁇ -olefin having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene). ),
  • a copolymer (x2) with at least one type of olefin is preferable because the base material has high strength (hard to tear and hard to crack) and little bending.
  • 4-methyl-1-pentene polymer (X) examples include 4-methyl-1-pentene homopolymer (x1), 4-methyl-1-pentene, ethylene, and ⁇ -olefin having 3 to 20 carbon atoms. It is preferably at least one polymer selected from the copolymer (x2) with at least one olefin selected from (excluding 4-methyl-1-pentene), preferably 4-methyl-1-pentene. And more preferably, it is a copolymer (x2) with ethylene and at least one olefin selected from ⁇ -olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene).
  • olefin examples include ethylene, propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene and 1-eicosen. Can be mentioned.
  • the olefin can be appropriately selected depending on the physical properties required for the culture material.
  • ⁇ -olefin having 8 to 18 carbon atoms is preferable from the viewpoint of appropriate oxygen permeability and excellent rigidity, and 1-octene, 1-decene, 1-dodecene, 1-tetradecene, At least one selected from 1-hexadecenes, 1-heptadecene and 1-octadecenes is more preferred.
  • the carbon number of the olefin is in the above range, the film formation processability of the polymer becomes better, and as a result, the appearance is poor due to cracks and cracks at the edges when the polymer is released from the roll or mold during molding. It tends to be less likely to occur. Therefore, the incidence of defective culture materials is low.
  • the olefin may contain only one type, or may combine two or more types. From the viewpoint of the strength of the material, the number of carbon atoms is preferably 2 or more, more preferably 10 or more. When combining two or more different ⁇ -olefins, it is particularly preferable to combine at least one selected from 1-tetradecene and 1-hexadecene and at least one selected from 1-heptadecene and 1-octadecene.
  • the content of the structural unit derived from 4-methyl-1-pentene is preferably 60 to 100 mol%, more preferably 80 to 98 mol%.
  • the content of the structural unit derived from ethylene and at least one olefin selected from ⁇ -olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene) is preferably 0 to 40 mol%. More preferably, it is 2 to 20 mol%.
  • the total repetitive structural unit amount is 100 mol%.
  • the 4-methyl-1-pentene polymer (X) is a structural unit other than the structural unit derived from 4-methyl-1-pentene and the structural unit derived from the olefin, as long as the effects of the present invention are not impaired. Hereinafter, it may also have "other structural units").
  • the content of the other structural units is, for example, 0 to 10.0 mol%.
  • the 4-methyl-1-pentene polymer has other structural units, the other structural units may be one kind or two or more kinds.
  • Examples of the monomer for deriving other structural units include cyclic olefins, aromatic vinyl compounds, conjugated diene, non-conjugated polyenes, functional vinyl compounds, hydroxyl group-containing olefins, and halogenated olefins.
  • Examples of the cyclic olefin, aromatic vinyl compound, conjugated diene, non-conjugated polyene, functional vinyl compound, hydroxyl group-containing olefin and halogenated olefin are described in paragraphs [0035] to [0041] of JP2013-169685A. Compounds can be used.
  • the 4-methyl-1-pentene polymer (X) may be used alone or in combination of two or more.
  • the culture material of the present invention may contain 4-methyl-1-pentene polymer (X), may be formed only from 4-methyl-1-pentene polymer (X), or 4-methyl. It may be formed from a composition containing -1-pentene polymer (X).
  • a commercially available product can also be used as the 4-methyl-1-pentene polymer (X).
  • Specific examples thereof include TPX MX001, MX002, MX004, MX0020, MX021, MX321, RT18, RT31 and DX845 (all of which are trademarks) manufactured by Mitsui Chemicals, Inc.
  • a 4-methyl-1-pentene polymer that satisfies the above requirements can be preferably used even if it is manufactured by another manufacturer.
  • the 4-methyl-1-pentene polymer (X) may be used alone or in combination of two or more.
  • the culture material of the present invention is formed from a composition containing a 4-methyl-1-pentene polymer (X)
  • the composition is other than the 4-methyl-1-pentene polymer (X). It may contain an ingredient, and for example, it may contain an ingredient described in the section (Additives) described later.
  • the culture material is formed from a composition containing the 4-methyl-1-pentene polymer (X)
  • the 4-methyl-1-pentene polymer (X) is contained in 100% by mass of the culture material. , It is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and particularly preferably 99 to 100% by mass.
  • the composition ratio of 4-methyl-1-pentene polymer (X) defined in this range is that of the culture surface of the culture material, and the cells such as the frame portion and the lid portion of the culture vessel do not come into direct contact with each other. The portion may be different from the above range.
  • the weight average molecular weight (Mw) of the 4-methyl-1-pentene polymer (X) measured by gel permeation chromatography (GPC) using standard polystyrene as a reference material is preferably 10,000 to 2000000, more preferably 10,000 to 2000000. Is 20,000 to 1,000,000, more preferably 30,000 to 500,000.
  • the sample concentration at the time of GPC measurement can be, for example, 1.0 to 5.0 mg / ml.
  • the molecular weight distribution (Mw / Mn) of the 4-methyl-1-pentene polymer (X) is preferably 1.0 to 30, more preferably 1.1 to 25, and even more preferably 1.1 to 20. Is.
  • the solvent used in GPC is not particularly limited as long as it dissolves the 4-methyl-1-pentene polymer (X), but orthodichlorobenzene is preferably used. Further, as an example of the measurement conditions, the conditions shown in Examples described later can be mentioned, but the measurement conditions are not limited to the measurement conditions.
  • the film produced by melt molding suppresses the occurrence of defects such as gel. It is possible to realize a film formation having a uniform surface. Further, when produced by the solution casting method, the solubility in a solvent is good, defects such as gel of the film can be suppressed, and a film formation having a uniform surface can be realized.
  • weight average molecular weight (Mw) is set to be equal to or higher than the above lower limit, a film made of 4-methyl-1-pentene polymer (X), which is a culture material, is sufficient in the container production and cell culture of the present invention. Has strength. Furthermore, by setting the molecular weight distribution within the above range, it is possible to suppress stickiness on the surface of the produced film, and it has sufficient toughness to prevent bending during film molding and cracking during cutting. It becomes possible to suppress it.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the 4-methyl-1-pentene polymer (X) are such that two or more kinds of polymers are used as the 4-methyl-1-pentene polymer (X).
  • Mw and Mw / Mn of each polymer may be in the above range.
  • the method for producing the 4-methyl-1-pentene polymer (X) may be any method as long as 4-methyl-1-pentene, an olefin, or other constituent units can be polymerized. Further, a chain transfer agent such as hydrogen may coexist in order to control the molecular weight and the molecular weight distribution.
  • the equipment used for manufacturing is also not limited.
  • the polymerization method may be a known method, or may be a vapor layer method, a slurry method, a solution method, or a bulk method. The slurry method and the solution method are preferable.
  • the polymerization method may be a single-stage polymerization method or a multi-stage polymerization method such as two-stage, in which a plurality of polymers having different molecular weights are blended into the polymerization system.
  • hydrogen when hydrogen is used as the chain transfer agent, it may be charged all at once or dividedly, for example, at the initial stage, middle stage, and final stage of polymerization.
  • the production may be carried out at room temperature or may be heated if necessary, but from the viewpoint of polymerization efficiency, it is preferably carried out at 20 ° C to 80 ° C, particularly preferably 40 ° C to 60 ° C. ..
  • the catalyst used for production is also not limited, but from the viewpoint of polymerization efficiency, it is preferable to use the solid titanium catalyst component (I) described in International Publication 2006/054613.
  • the culture material of the present invention is formed from a composition containing a 4-methyl-1-pentene polymer (X), a component other than the 4-methyl-1-pentene polymer (X) is contained.
  • a heat-resistant stabilizer As components other than the 4-methyl-1-pentene polymer (X), a heat-resistant stabilizer, a light-resistant stabilizer, a processing aid, a plasticizer, an antioxidant, a lubricant, an antifoaming agent, and an anti Examples thereof include additives such as blocking agents, colorants, modifiers, antibacterial agents, antifungal agents, and antifogging agents.
  • the 4-methyl-1-pentene polymer (X) usually has a melting point of 200 ° C. to 240 ° C. and has high heat resistance. In addition, since it does not cause hydrolysis, it has excellent water resistance, boiling water resistance, and steam resistance, so that culture materials such as culture vessels containing 4-methyl-1-pentene polymer (X) can be sterilized by high-pressure steam. Is.
  • the 4-methyl-1-pentene polymer (X) also has a high visible light transmittance (usually 90% or more) and does not emit autofluorescence. Therefore, the 4-methyl-1-pentene polymer (X) has a characteristic that it does not emit autofluorescence. It is easy to observe the cultured cells in the culture vessel containing.
  • the 4-methyl-1-pentene polymer (X) can be heat-sealed, and not only heat fusion between its own materials but also heat adhesion with other materials is easy. Further, since thermoforming is possible, it is easy to mold into a container having an arbitrary shape, and for example, molding using an imprint method or an insert method is also easy.
  • a culture vessel made of the culture material of the present invention or a cell having a culture surface formed by the culture material of the present invention.
  • the container does not adversely affect the culture, has good stability, light transmission, and moldability, and can be sterilized, so that it is very excellent as a material for the culture container.
  • the method for producing the culture material of the present invention is not particularly limited, and the equipment used for production is not particularly limited.
  • a film containing components other than 4-methyl-1-pentene polymer (X) and, if necessary, 4-methyl-1-pentene polymer (X) is formed, and the film is molded to have a desired shape. It may be a culture material.
  • a culture material having a desired shape may be directly molded by a method such as injection molding or blow molding.
  • the extrusion temperature is preferably 100 ° C. to 400 ° C., particularly preferably 200 ° C. to 300 ° C.
  • the roll temperature is preferably 45 ° C. to 75 ° C., particularly preferably 55 ° C. to 65 ° C.
  • the film of the present invention may be produced by a solution casting method in which 4-methyl-1-pentene polymer (X) is dissolved in a solvent, poured onto a resin or metal, and slowly dried while leveling to form a film.
  • the solvent used is not particularly limited, but a hydrocarbon solvent such as cyclohexane, hexane, decane, or toluene may be used. Further, two or more kinds of solvents may be mixed in consideration of the solubility of the resin and the drying efficiency.
  • a polymer solution is applied by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, etc., and the polymer solution is processed by drying and peeling.
  • a film containing a component other than 4-methyl-1-pentene polymer (X) and, if necessary, 4-methyl-1-pentene polymer (X) is used. It is preferable to form the film and mold the film into a culture material having a desired shape.
  • cells, tissues, or organs are also simply referred to as "cells, etc.”
  • the cell in the present invention is not particularly limited, and in the case of an animal cell, it may be a floating cell or an adhesive cell, for example, a fibroblast, a mesenchymal stem cell, a hematopoietic stem cell, or a nerve.
  • Stem cells nerve cells, corneal epithelial cells, oral mucosal cells, retinal pigment supracells, root membrane stem cells, myofibroblasts, myocardial cells, hepatocytes, splenic endocrine cells, skin keratinized cells, skin fibroblasts, subcutaneous fat Origin precursor cells, kidney cells, bottom root sheath cells, nasal mucosal epithelial cells, vascular endothelial precursor cells, vascular endothelial cells, vascular smooth muscle cells, osteoblasts, cartilage cells, skeletal muscle cells, immortalized cells, cancer cells, Examples thereof include keratinized cells, embryonic stem cells (ES cells), EBV-transformed B cells, and artificial pluripotent stem cells (iPS cells).
  • ES cells embryonic stem cells
  • iPS cells artificial pluripotent stem cells
  • the skin, kidney, liver, brain, nerve tissue, myocardial tissue, skeletal muscle tissue, cancer stem cells, etc. have high oxygen demand, and the cells constituting them are also cells with high oxygen demand.
  • the cells in the above are preferably cells constituting skin, kidney, liver, brain, nerve tissue, myocardial tissue, or skeletal muscle tissue, or cancer stem cells.
  • the cells, tissues, or organs are preferably hepatocytes, renal cells, myocardial cells, nerve cells, or cancer stem cells, and more preferably hepatocytes.
  • the tissue in the present invention means a tissue in which similar cells gather and perform the same function.
  • the tissue is not particularly limited, and examples thereof include epithelial tissue, connective tissue, muscle tissue, and nerve tissue. Due to the high oxygen requirement, the tissue is preferably hepatic lobule, myocardial tissue, nervous tissue, or skeletal muscle tissue, more preferably hepatic lobule.
  • the organ in the present invention means an organ in which the tissues gather to perform a joint work with a purpose.
  • the organ is not particularly limited, and includes, for example, lung, heart, liver, kidney, spleen, pancreas, gallbladder, esophagus, stomach, skin, and brain. Due to the high oxygen requirement, the organs are preferably skin, kidney, liver and brain, more preferably the liver.
  • cells and the like are cells because they are suitable for culturing in a culture device.
  • cells and the like are preferably aerobic, and more preferably not containing anaerobic ones.
  • the origin of cells and the like is not particularly limited and may be any organism such as animals, plants, fungi, protists and bacteria, but animals or plants are preferable, animals are more preferable, and mammals are particularly preferable.
  • the culture device in the present invention is preferably oxygen permeable and retains cell adhesion, the cells and the like are preferably adherent, and more preferably adherent cells.
  • the hepatocytes in the present invention may be any cells in the liver, including hepatocytes, and specifically, vascular endothelial cells, vascular smooth muscle cells, fat cells, blood cells, and the like. Includes hepatocytes, hepatocyte macrophages (including Kupffer cells), hepatocytes, intrahepatic bile duct epithelial cells, embryonic sac fibroblasts and the like.
  • the hepatocyte is, for example, a cell population containing 20% or more, 30% or more, 40% or more, or 50% or more of hepatocyte parenchymal cells.
  • the hepatocytes may be primary cultured cells or established passage cells, but it is preferable to use primary cultured cells as hepatocytes.
  • the type of passaged cells is not particularly limited, but for example, SSP-25, RBE, HepG2, TGBC50TKB, HuH-6, HuH-7, ETK-1, Het-1A, PLC / PRF / 5, Hep3B, SK. -HEP-1, C3A, THLE-2, THLE-3, HepG2 / 2.2.1, SNU-398, SNU-449, SNU-182, SNU-475, SNU-387, SNU-423, FL62891, DMS153 And so on.
  • the origin of the hepatocytes may be any mammal, but human, bovine, dog, cat, pig, miniature pig, rabbit, hamster, rat, or mouse cells are particularly preferable, and human, rat, mouse. , Or bovine cells are more preferred.
  • the hepatocyte may be a cell population containing a cell type other than hepatocytes, for example, a cell population containing 20% or more, 30% or more, 40% or more, or 50% or more of hepatocytes. ..
  • culture is used in a broad sense including not only the proliferation and maintenance of cells and the like, but also processes such as seeding, passage, differentiation induction, and self-organization induction of cells and the like.
  • the medium or the like used for culturing is not limited, and the medium or the like may be selected according to the characteristics of the cells or the like.
  • the cell culture may be a two-dimensional (including the case where the cells are spontaneously stratified) culture or a three-dimensional culture. Since the culture material of the present invention has an oxygen permeability suitable for culturing, it is possible to sufficiently supply oxygen to cells not only in two-dimensional culture but also in three-dimensional culture in which cells are three-dimensionally stacked. , Cells proliferate and differentiate, and highly self-organizing phenomena of cells are also likely to occur.
  • Three-dimensional culture is intentionally culturing cells three-dimensionally, and there are two types: Scaffold type, in which cells are cultured in a scaffold material, and Scaffold-free type, in which cells are cultured in a floating state as a mass (spheroid). Either may be used, but the Scaffold type is preferable.
  • Scaffold type as the scaffolding material, Matrigel TM , collagen gel, laminin, hydrogel alginate, and Vitrigel are preferable because cells can be efficiently cultured.
  • the medium used for culturing is not limited, but in order to efficiently cultivate the cells, it is preferable to cultivate the cells in the presence of serum (for example, fetal bovine serum).
  • the cell culture density is preferably 0.1 ⁇ 10 5 cells. / Cm 2 to 10.0 ⁇ 10 5 cells / cm 2 , more preferably 0.5 ⁇ 10 5 cells / cm 2 to 5.0 ⁇ 10 5 cells / cm 2 , and even more preferably 1.0. It is ⁇ 10 5 cells / cm 2 to 4.0 ⁇ 10 5 cells / cm 2 , and particularly preferably 1.5 ⁇ 10 5 cells / cm 2 to 3.5 ⁇ 10 5 cells / cm 2 .
  • the above range is preferable because the drug-metabolizing activity is further enhanced as compared with the case where the cell culture density is outside the above range.
  • the culture material of the present invention has high oxygen permeability, it can be suitably cultured even when the cell culture density is high.
  • the cell density of a living body is about 2.5 ⁇ 10 5 cells / cm 2, but the culture material of the present invention can be cultured at the same cell culture density as that of a living body. Therefore, it is preferable because the culture can be carried out in vitro in a state closer to in vivo.
  • the culture material of the present invention is a culture material for cells, tissues, or organs containing 4-methyl-1-pentene polymer (X), and the water contact angle of the culture surface is 50 ° to 100 °.
  • the hanging distance according to the following test method (A) is 0 to 5 mm, and the oxygen permeability at a temperature of 23 ° C. and a humidity of 0% is 4500 to 90000 cm 3 / (m 2 ⁇ 24 h ⁇ atm).
  • the culture material refers to a material used for culturing cells, and constitutes the culture container itself or a part of the culture container.
  • the culture material of the present invention constitutes a part of the culture container, at least the culture surface is composed of the culture material of the present invention.
  • the culture material of the present invention is, for example, a film, a sheet, or a culture container.
  • the culture material is a film or sheet, the film or sheet can be used as a part of the culture container including the culture surface.
  • the culture vessel various known culture vessels can be used, and the shape and size are not particularly limited, and examples thereof include petri dishes (also referred to as dishes), flasks, inserts, plates, bottles, and bags.
  • the culture vessel is usually used in a device such as an incubator, a mass culture device, or a perfusion culture device.
  • the culture container is preferably a container having the bottom surface as the culture surface.
  • the culture material of the present invention is used, the shape is stable even in a plate having wells such as 1 well, 6 wells, 12 wells, 24 wells, 48 wells, 96 wells, 384 wells, and 1536 wells. The oxygen supply to cells and the like is also sufficient.
  • the culture material of the present invention means that the culture surface is not coated with a natural polymer material, a synthetic polymer material, or an inorganic material for serving as a scaffold for cells or the like.
  • the culture surface in the present invention means a surface on which a medium is formed, a surface on which cells or the like are seeded, or a surface on which a medium is formed and cells or the like are seeded when cells or the like are cultured. That is, the culture surface is a concept including a culture medium formation surface and a cell seeding surface.
  • the oxygen permeability of the culture material of the present invention at a temperature of 23 ° C. and a humidity of 0% is 4500 to 90000 cm 3 / (m 2 ⁇ 24 h ⁇ atm), preferably 4500 to 67500 cm 3 / (m 2 ⁇ 24 h ⁇ ). Atm), more preferably 4500-47000 cm 3 / (m 2 ⁇ 24 h ⁇ atm), and even more preferably 4500-45000 cm 3 / (m 2 ⁇ 24 h ⁇ atm).
  • the oxygen permeability of the culture medium is too low, the oxygen concentration in the medium will be low, and the cells will not grow sufficiently. On the other hand, if the oxygen permeability is too high, the oxygen concentration in the medium becomes too high, and the cell function deteriorates due to oxygen stress. When the oxygen permeability is within the above upper and lower limit ranges, the cells maintain good adhesion and good morphology, and can proliferate efficiently according to the culture period.
  • the thickness of the culture material when the culture material of the present invention is arranged on the bottom surface of the container to prepare a culture container such as a petri dish, flask, insert or plate is not particularly limited, but is preferably 20 ⁇ m to 400 ⁇ m, more preferably 20 ⁇ m to 300 ⁇ m. More preferably, the thickness is 20 ⁇ m to 200 ⁇ m. It is selected in a timely manner according to the morphology of the culture vessel, but by adjusting it to the above upper and lower limit range, an appropriate oxygen concentration in the medium necessary for cell growth can be obtained, and the bottom surface of the culture vessel bends (hanging distance). It is possible to prepare a suitable culture vessel without the above.
  • a multi-hole plate will be described as an example of a culture container.
  • cell culture well plates with 1, 6, 12, 24, 48, 96, 128, 384, and 1536 holes (also referred to as wells) are commercially available.
  • the size of the entire container is the same, and the number of wells is defined by the diameter of the hole. That is, a container with multiple holes has a small hole diameter, and a container with a small number of holes has a large hole diameter.
  • the culture medium is placed on the bottom of the container as it is, regardless of the diameter, and the deflection of the culture medium is affected by the stress caused by the weight of the medium with the medium in it.
  • a culture medium having a relatively small thickness may be used, and a culture medium having a relatively large thickness needs to be used in a container having a small number of holes (large hole diameter).
  • the thickness of the culture material of the present invention is not particularly limited.
  • the thickness of the culture surface of the culture material of the present invention is not particularly limited, but is preferably 20 to 500 ⁇ m, more preferably 25 to 500 ⁇ m, and particularly preferably 50 to 200 ⁇ m.
  • the thickness of the culture material is within the above range because the strength is excellent.
  • the thickness of the culture surface is within the above range, bending is unlikely to occur even when used in a container having a small number of wells and a large hole diameter.
  • the oxygen permeability is in a range particularly suitable for culturing oxygen-requiring cells and the like.
  • the surface of the culture material of the present invention may be microfabricated in order to produce spheroids and improve the scaffolding function of cells.
  • 4-methyl-1-pentene polymer (X) is a kind of thermoplastic resin, as a method for performing microfabrication, cutting, optical lithography, direct electron beam drawing, particle beam beam processing, etc. It is possible to appropriately select from the self-assembly of fine particles such as scanning probe processing method, nanoimprint method from master formed by these methods, casting method, molding processing method typified by injection molding method, plating method, etc. it can.
  • the shape of the microfabrication is not particularly limited, but it is preferable that the height from the groove portion to the mountain portion is 20 nm to 500 ⁇ m. Further, in order to maintain sufficient strength, the film thickness of the thinnest portion can be reduced to 20 ⁇ m as compared with the case where the surface is not microfabricated.
  • microfabricated culture material may be used as a microchannel device (also referred to as a microchannel chip).
  • Microchannel device is a general term for devices for creating microchannels and reaction vessels by microfabrication on the surface of culture materials and applying them to bio-research and chemical engineering. For example, devices called microTAS (micro Total Analysis Systems), Lab-on-a-Chip, and the like are mentioned, and their application as next-generation culture devices is being promoted.
  • microTAS micro Total Analysis Systems
  • Lab-on-a-Chip Lab-on-a-Chip, and the like are mentioned, and their application as next-generation culture devices is being promoted.
  • the culture material of the present invention cells are suitably brought into close contact with the surface of the culture material, and collagen or the like, which is a scaffolding material for culturing cells, is loaded on the surface of the culture material and cultured for close contact, depending on the purpose. It is preferable to hydrophilize the surface of the material.
  • the surface free energy of the surface of the culture material can be defined by the water contact angle described later, and the water contact angle of the culture surface of the culture material is preferably 50 ° to 100 °, more preferably 55 ° to 100 °. More preferably, it is 60 ° to 100 °. Further, as another preferable aspect of the water contact angle, 84 ° or less can be mentioned, and 50 ° to 84 ° is more preferable.
  • hepatocytes have good adhesion to the culture material and can proliferate uniformly on the culture material surface.
  • collagen in the form after collagen treatment when loading collagen, collagen can be uniformly loaded on the surface of the culture material, and the collagen does not peel off in the environment of washing with physiological saline or cell culture, and the cells maintain a stable initial state. It can be used for culturing.
  • the method used for the hydrophilization treatment of the surface of the culture material of the present invention is not particularly limited, but for example, corona treatment, plasma treatment, ozone treatment, ultraviolet treatment, chemical vapor deposition, etching, or hydroxyl group, amino group, sulfone group, thiol group.
  • a specific functional group such as a carboxyl group
  • treatment with a specific functional group such as silane coupling, surface roughening with an oxidizing agent or the like.
  • it is preferable to perform surface hydrophilization treatment such as ultraviolet treatment, corona treatment, plasma treatment, or ozone treatment.
  • the surface modification treatments may be performed alone or in combination of two or more.
  • nitrogen, hydrogen, helium, oxygen, argon or the like is used as the accompanying gas, and at least one gas selected from nitrogen, helium and argon is preferably selected.
  • the culture material of the present invention is preferably a cell culture material, and more preferably a hepatocyte culture material.
  • the culture material of the present invention has a hanging distance of 0 to 5 mm, preferably 0 to 3 mm, according to the test method (A).
  • the test method (A) is as follows. Test method (A): A flat plate-shaped test piece having the same material as the culture material and the same thickness as the culture surface of the culture material and having a length ⁇ width of 100 mm ⁇ 10 mm is prepared.
  • the test piece is fixed to the test table in a state where 50 mm with respect to the vertical dimension of the test piece protrudes horizontally from the horizontal upper surface of the test table. Three minutes after fixing, the distance at which the tip of the test piece protruding from the test table hangs vertically downward from the horizontal plane including the upper surface of the test table is measured. However, the measurement is performed at room temperature from the above fixation. In this specification, room temperature means 20 to 25 ° C.
  • This hanging distance (mm) is called the hanging distance (mm), and the hanging distance is an index of flexural rigidity. That is, the smaller the hanging distance, the more excellent the bending rigidity of the culture surface of the culture material of the present invention.
  • the method for preparing the test piece is not particularly limited. For example, thermoforming such as extrusion molding is performed on the same material as the culture material to prepare a flat test piece, and the test piece having the above dimensions is cut out from the sheet.
  • the test piece may be directly molded.
  • the culture material is a film or a sheet
  • a test piece may be cut out from the film or sheet.
  • the thermoforming when producing the test piece is preferably formed under the same temperature conditions (temperature, time) as when producing the culture material.
  • the test piece may or may not have undergone microfabrication or surface modification treatment on the culture material, but it is preferable that the test piece has not been subjected to any treatment.
  • the shape stability is insufficient. Specifically, the culture material is bent, and the deformation and the impact caused by the deformation not only exfoliate the cells attached to the inner wall of the culture vessel, but also cause the cells being cultured to gather in the bent place. , Cannot culture cells efficiently.
  • the culture material of the present invention has an oxygen permeability of 4500 to 90000 cm 3 / (m 2 ⁇ 24 h ⁇ atm) at a temperature of 23 ° C. and a humidity of 0%.
  • Oxygen permeability [cm 3 x mm / (m 2 x) at a temperature of 23 ° C and a humidity of 0% for a culture material or a measurement sample prepared using the same material as the culture material by a differential pressure gas permeability measurement method. 24h ⁇ atm)] is measured, and the value obtained by dividing the oxygen permeability by the thickness ( ⁇ m) of the culture material is taken as the oxygen permeability coefficient.
  • the device used for the measurement is not particularly limited as long as it uses the differential pressure type gas permeability measuring method, and examples thereof include the differential pressure type gas permeability measuring device MT-C3 manufactured by Toyo Seiki Seisakusho.
  • the measurement sample is prepared by cutting out a 90 ⁇ 90 mm test piece from, for example, a film having a thickness of 50 ⁇ m, and the measurement portion diameter is preferably 70 mm (transmission area is 38.46 cm 2 ). Since the oxygen permeability is high, it is more preferable to apply an aluminum mask to the sample in advance so that the actual permeation area is 5.0 cm 2 .
  • the culture material used for measuring the oxygen permeability or the measurement sample prepared using the same material as the culture material may or may not have been microfabricated or surface-modified. It is preferable that the product has not been treated.
  • the cell density of the rat primary cultured hepatocytes seeded by the following test method (B) is 1.0 ⁇ 10 5 cells /.
  • the dissolved oxygen concentration in the culture medium after 1 hour at at least one point in the cell density range is the saturated oxygen concentration in the culture solution. It is preferably 2 to 20%, more preferably 5 to 18%, even more preferably 5 to 16%, and most preferably 9 to 16%.
  • the method for measuring the saturated oxygen concentration in the culture solution is not particularly limited, and examples thereof include a measuring method using a fluorescent oxygen sensor (FireSting oxygen monitor, manufactured by BAS Co., Ltd.).
  • the test method (B) is as follows.
  • the culture solution in the culture vessel is removed, 0.5 mL of the culture solution is newly added, and the oxygen concentration is measured at a height of 80 ⁇ m from the bottom surface of the culture vessel for 1 hour.
  • the oxygen environment is preferable because it is in an optimum state for hepatocytes.
  • the oxygen concentration can be measured using a FireSting oxygen monitor (manufactured by BAS Co., Ltd.) or the like, and when using a FireSting oxygen monitor (manufactured by BAS Co., Ltd.), the oxygen concentration can be measured.
  • a sensor is installed at a height of 80 ⁇ m from the bottom surface of the culture vessel for measurement.
  • the cell density of the seeded rat primary cultured hepatocytes may be 1.0 ⁇ 10 5 cells / cm 2 to 4.0 ⁇ 10 5 cells / cm 2.
  • the dissolved oxygen concentration may be within the above range. That is, it is not required that the dissolved oxygen concentration is within the above range in the entire range of cell density of 1.0 ⁇ 10 5 cells / cm 2 to 4.0 ⁇ 10 5 cells / cm 2 .
  • the culture medium for rat primary hepatocytes used in the test method (B) is not particularly limited, but is, for example, 10% bovine fetal serum (Fetal Bottle Serum, FBS, Fujifilm Wako Pure Chemical Industries, Ltd.), 30 mg / mL L-proline ( For culture, Wako Pure Chemical Industries, Ltd.), 1 ⁇ 10 -7 M dexamethasone (for biochemistry, Wako Pure Chemical Industries, Ltd.), 50 ⁇ g / mL hydrocortisone (for culture, Wako Pure Chemical Industries, Ltd.), 20 ng / mL epithelial growth Factors (Epidermal glow factor, EGF, for cell biology, Fujifilm Wako Pure Chemical Industries, Ltd.), 5.0 ⁇ 10 -7 M insulin (SIGMA), 5000 units / mL penicillin, 5000 ⁇ g / mL streptomycin (for culture, Fujifilm Wako Pure Chemical Industries, Ltd.) Drug), D-MEM medium (high glucose, L-glu
  • the oxygen consumption rate is calculated by dividing the product of the difference between the oxygen concentration in the outside air (20%) and the dissolved oxygen concentration in the culture solution and the oxygen permeability of the film by the cell density, using Fick's law, and consuming per cell. It can be calculated as a quantity. It is based on the idea that oxygen is supplied from the outside air as much as the cells consume the oxygen in the medium.
  • the appropriate oxygen consumption rate differs depending on each organ and the cells that compose them, such as lung, heart, liver, kidney, spleen, pancreas, gallbladder, esophagus, stomach, skin, and brain. It also depends on the animal species, such as humans, cows, dogs, cats, pigs, miniature pigs, rabbits, hamsters, rats, or mice. Furthermore, it differs between primary cultured cells and established passage cells.
  • the oxygen consumption rate when the cells were seeded in the cell culture vessel at 1.0 ⁇ 10 5 cells / cm 2 was 90 pmol immediately after the cells adhered to the culture vessel, according to Non-Patent Documents 2 and 3.
  • / s / 10 5 cells then is the 40 pmol/s/10 5 cells, the degree of adhesion and aggregation into containers such as cells, that number can vary.
  • the culture material of the present invention it is possible to culture in an oxygen environment suitable for cells and the like, and the oxygen consumption rate when the cell density is, for example, 1.0 ⁇ 10 5 cells / cm 2 is preferable. and a 40 pmol/s/10 5 cells or more, more preferably 40 ⁇ 150pmol / s / 10 5 cells.
  • the culture for evaluating the oxygen consumption rate is preferably performed according to the test method (B). That is, when the test method (B) was performed at a cell density of 1.0 ⁇ 10 5 cells / cm 2 to 4.0 ⁇ 10 5 cells / cm 2 of the seeded rat primary cultured hepatocytes, the above. in at least one point in the range of cell density, it is preferable oxygen consumption rate is 40 ⁇ 150pmol / s / 10 5 cells.
  • the culture vessel of the second aspect of the present invention is a culture vessel in which at least the culture surface is formed of the culture material.
  • the culture vessel of the present invention may be the culture material itself, or may be a part of the culture material.
  • a part is composed of the culture material, at least the surface in direct contact with the scaffold material such as cells and collagen is composed of the culture material.
  • the culture vessel of the present invention has excellent shape stability and sufficient oxygen supply to cells and the like.
  • the shape and size of the culture vessel are not particularly limited, and examples thereof include petri dishes, flasks, inserts, plates, bottles, and bags.
  • the culture vessel preferably has at least one well. That is, the culture vessel is preferably a plate having wells, and more preferably a plate having wells such as 1 well, 6 wells, 12 wells, 24 wells, 48 wells, 96 wells, 384 wells, and 1536 wells.
  • the culture vessel of the present invention means that the culture surface is not coated with a natural polymer material, a synthetic polymer material, or an inorganic material for serving as a scaffold for cells or the like.
  • the bottom surface is the culture surface, so that the culture vessel preferably constitutes at least a part or all of the bottom surface, the side surface, and the top surface. ..
  • oxygen can be efficiently supplied into the medium through the culture material, so that cells and the like in the medium can be efficiently proliferated. Can be done.
  • the shape stability of the bottom surface is excellent, cells and the like can be uniformly cultured. Moreover, since it has excellent transparency, it is easy to observe cells and the like.
  • the shape of the bottom surface is not particularly limited, and examples thereof include a flat bottom, a round bottom (U bottom), a flat bottom (F bottom), a conical bottom (V bottom), and a flat bottom + curved edge.
  • a round bottom (U bottom), flat bottom (F bottom), conical bottom (V bottom), flat bottom + curved edge, etc. it may be processed at once by general injection molding or press molding, or a film. Alternatively, it is also possible to prepare a sheet and perform secondary processing by vacuum forming, compressed air forming, or the like.
  • the shape of the bottom surface is selected according to the purpose of culturing, but when culturing cells or the like in two dimensions, it is preferably a flat bottom, and when culturing in three dimensions, a round bottom (U bottom) or a conical bottom (U bottom) ( V bottom) is preferable.
  • the portion of the culture container other than the culture material may be made of a material other than the culture material.
  • Materials other than the culture material are not particularly limited, and known materials can be used.
  • PE polyethylene
  • PS polystyrene
  • PDMS polydimethylsiloxane
  • the culture vessel of the present invention may be disinfected and sterilized in order to prevent contamination.
  • the method of disinfection / sterilization is not particularly limited, and is a physical disinfection method such as a circulating steam method, a boiling method, an intermittent method, an ultraviolet method, a gas such as ozone, or a chemical disinfection method using a disinfectant such as ethanol; Heat sterilization methods such as high-pressure steam method and dry heat method; irradiation sterilization methods such as gamma ray method and high-frequency method; gas sterilization methods such as ethylene oxide gas method and ozone hydrogen gas plasma method can be mentioned.
  • the ethanol disinfection method, the high-pressure steam sterilization method, the gamma ray sterilization method, or the ethylene oxide gas sterilization method is preferable because the operation is simple and sufficient sterilization can be performed.
  • These disinfection / sterilization treatments may be performed individually by 1 type or in combination of 2 or more types.
  • the method for producing the culture vessel of the present invention is not particularly limited, and when the culture material is the culture vessel itself, it can be produced by the above-mentioned method.
  • the culture vessel can be obtained by appropriately joining the culture material and other members.
  • the method of joining is not particularly limited, and the culture material and other members may be integrally formed, or may be brought into close contact with each other via an adhesive or an adhesive.
  • the culture vessel of the present invention is preferably a cell culture vessel, and more preferably a hepatocyte culture vessel.
  • the culture instrument according to the third aspect of the present invention is composed of the culture material according to the first aspect or the culture vessel according to the second aspect.
  • the culture instrument of the present invention may be the culture material of the first aspect or the culture vessel itself of the second aspect, or on the culture surface of the culture material of the first aspect or the culture vessel of the second aspect. It may be a culture device coated with a natural polymer material, a synthetic polymer material, or an inorganic material.
  • the coated culture instrument can be obtained, for example, by coating a culture material with a natural polymer material, a synthetic polymer material, or an inorganic material by a known method. Further, the culture instrument may be obtained, for example, by coating the culture vessel with a natural polymer material, a synthetic polymer material, or an inorganic material by a known method, or the already coated culture material may be coated on the culture vessel. It may be obtained by using at least the culture surface of.
  • the coated culture device is excellent in adhesion and proliferation of cells and the like. It is considered that this is because the natural polymer material, the synthetic polymer material, or the inorganic material coated on the culture surface serves as a scaffold for cells and the like. Therefore, when culturing adherent cells or the like, a culture material or a culture container is usually coated with a natural polymer material, a synthetic polymer material, or an inorganic material and used as a culture instrument.
  • the natural polymer material, synthetic polymer material, or inorganic material is not particularly limited, and examples of the natural polymer material include glycosaminoglycans such as collagen, gelatin, alginic acid, hyaluronic acid, and chondroitin sulfate, fibronectin, laminin, and fibrinogen.
  • glycosaminoglycans such as collagen, gelatin, alginic acid, hyaluronic acid, and chondroitin sulfate, fibronectin, laminin, and fibrinogen.
  • synthetic polymer materials include polyethylene glycol, polyhydroxyethylmethacrylate and polyerylene imine
  • inorganic materials include ⁇ -tricalcium phosphate and calcium carbonate.
  • examples of the natural polymer material, synthetic polymer material, or inorganic material include vitrigel obtained by vitrifying a conventional hydrogel such as an extracellular matrix component and then rehydrating it.
  • a collagen vitrigel composed of a high-density collagen fiber network made from collagen, which is one of the extracellular matrix components, can be mentioned.
  • the culture device of the present invention is preferably a cell culture device, and more preferably a hepatocyte culture device.
  • the method for culturing cells, tissues, or organs according to the fourth aspect of the present invention is a culturing method including a step of incubating cells, tissues, or organs in a culturing instrument according to the third aspect.
  • the method for culturing the cells or the like may include a step of incubating the cells or the like in the culturing instrument, and other culturing conditions may be appropriately selected according to the characteristics of the cells or the like.
  • the method for culturing cells and the like is preferably a method for culturing cells, and more preferably a method for culturing hepatocytes.
  • the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
  • the method for measuring the polymer analysis value in the examples the method for measuring the sagging distance, the method for measuring the water contact angle, the method for adjusting the collagen coat solution, the method for preparing the cell type and the culture medium, the method for measuring the dissolved oxygen concentration in the medium, The method for calculating the oxygen consumption rate, the method for measuring the metabolic activity value, the method for evaluating cell adhesion, the method for observing autologous fluorescence of cultured cells, and the evaluation of drug sorption are described below.
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The weight average molecular weight Mw and the molecular weight distribution (Mw / Mn) of the 4-methyl-1-pentene polymer used as the culture material of the present invention were measured by gel permeation chromatography (GPC). Specifically, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer dissolved in orthodichlorobenzene were measured by calibrating the molecular weights with a polystyrene standard under the following conditions.
  • a test piece having a size of 100 mm x 10 mm in length x width is cut out and fixed to the test table in a state where it protrudes horizontally from the horizontal upper surface of the test table by 50 mm with respect to the vertical dimension of the test piece. After a minute, the distance at which the tip of the test piece protruding from the test table hung vertically downward from the horizontal plane including the upper surface of the test table was measured. The room temperature was 23 ° C. from the fixation to the measurement. The results are shown in Table 1.
  • the water contact angle after the surface hydrophilization treatment of the culture material is measured under the constant temperature and humidity conditions of 25 ⁇ 5 ° C. and 50 ⁇ 10% in accordance with Japanese Industrial Standard JIS-R3257 (wetting property test method for the substrate glass surface).
  • a water droplet having a volume of 4 ⁇ L or less, which can be regarded as a spherical shape, is dropped on the surface of the base material, and the contact interface between the base material and the water droplet is within 1 minute immediately after the water droplet comes into contact with the surface of the base material by the static drip method. It can be done by measuring the angle.
  • a numerical value within 1 minute immediately after the water droplets come into contact with each other by the above method is treated as a physical property value.
  • a 0.1 M hydrochloric acid solution (for volumetric analysis, Fujifilm Wako Pure Chemical Industries, Ltd.) was diluted 100-fold with water for injection (Nippon Pharmacy, Otsuka Pharmaceutical) to prepare a 0.001 M hydrochloric acid solution and sterilized by filtration.
  • a 3 mg / mL collagen solution (Cellmatrix TypeIP, derived from pig tendon, Nitta gelatin) was diluted 2-fold with a 0.001 M hydrochloric acid solution to prepare a 1.5 mg / mL collagen coat solution.
  • the culture solution was added to a centrifuge tube (50 ml) containing a cell suspension containing rat primary frozen hepatocytes.
  • the culture solution is L-proline (for culture, Fujifilm) diluted with 1.5 mL of bovine fetal serum (Fetal Boveine Serum, FBS, Fujifilm Wako Pure Chemical Industries, Ltd.) and 3.0 g / mL with water for injection (Fuso Yakuhin Kogyo).
  • Wako Pure Chemical Industries, Ltd. solution 0.15 mL
  • dexamethasone biochemical, Fujifilm Wako Pure Chemical Industries, Ltd.
  • Hydrocortisone for culture, Fujifilm Wako Pure Chemical Industries, Ltd.
  • D-MEM medium 4500 mg / mL D-glucose, 584 mg / mL L-glutamine, 15 mg / mL phenol red, 110 mg / mL sodium pyruvate, 3700 mg / mL containing sodium hydrogen carbonate, for culture, Fujifilm Wako Pure Chemical Industries, Ltd.
  • the cell density was adjusted by adjusting the number of cells in the cell suspension containing the rat primary frozen hepatocytes, and the cell density was 1.0 ⁇ 10 5 cells / cm 2 unless otherwise specified.
  • the high-density cultures of Example 8 and Comparative Example 6 were performed at a cell density of 4.0 ⁇ 10 5 cells / cm 2 .
  • the oxygen permeability coefficient was measured in an environment of a temperature of 23 ° C. and a humidity of 0% RH using a differential pressure type gas permeability measuring device MT-C3 manufactured by Toyo Seiki Seisakusho.
  • the diameter of the measuring part was 70 mm (transmission area was 38.46 cm 2 ). Since it was expected that the oxygen permeability coefficient would be large, the sample was masked with aluminum in advance to set the actual permeation area to 5.0 cm 2 .
  • the measured oxygen permeability coefficient [cm 3 x mm / (m 2 x 24 h x atm)] is divided by the thickness ( ⁇ m) of the film (culture material) to obtain the oxygen permeability [cm 3 / (m 2 x 24 h)]. ⁇ atm)] was calculated.
  • the amount of protein after removing the Luciferin-CEE solution diluted with the culture medium, 200 ⁇ L of PBS (-) was added to the medium, and then the cells were collected in an Eppen tube using a cell scraper and centrifuged (4 ° C., 22000 ⁇ g). 10 minutes). Then, the supernatant was removed, 100 ⁇ L of 0.1 M sodium hydroxide solution was added, and then the amount of protein was measured using Pierce TM BCA Protein Assay Kit (Thermo Fisher Scientific). The absorbance at a wavelength of 450 nm was measured with a plate reader (SPECTRA max PLUS384, manufactured by Molecular Devices).
  • the metabolic activity (pmol / L) of the Luciferin-CEE solution obtained with a luminometer was measured using a P450-Glo TM CYP1A1 Assay kit (Promega), and the amount of protein obtained from the absorbance and the Luciferin-CEE solution of the Luciferin-CEE solution.
  • the metabolic activity value (pmol / min / mg protein) was calculated by dividing by the reaction time. The results are shown in Table 1.
  • AA is a state in which hepatocytes are adhered and stretched
  • BB is a state in which hepatocytes are adhered and slightly stretched
  • Rhodamine 6G PBS solution (concentration 10 ⁇ mol / L) 4.
  • DMSO solution of ticlopidine hydrochloride (concentration 10 ⁇ mol / L) 6.
  • DMSO solution of reflunomide (concentration 10 ⁇ mol / L) 7.
  • troglitazone (concentration 10 ⁇ mol / L) 8.
  • evaluation agents 1 to 3 were subjected to concentration analysis by a fluorescence analysis method, and evaluation agents 4 to 8 were subjected to concentration analysis by LC / MS.
  • Example 1 0.5 mL of a 1.5 mg / mL collagen coat solution was added to the culture surface of the culture vessel 1 prepared from the film 1 having a thickness of 50 ⁇ m, and then the excess collagen coat solution was removed. After allowing to stand at room temperature for 30 to 60 minutes, it was washed with Dulbecco PBS ( ⁇ ) and dried at room temperature overnight. Five collagen-coated culture vessels 1 were prepared by the same method.
  • a culture solution (0.5 mL) containing rat primary frozen hepatocytes was seeded on each of the culture surfaces of the five culture vessels 1 with a micropipette, covered with a polystyrene lid, and brought into an incubator at 37 ° C., 5% CO 2 Incubation was started.
  • four culture containers 1 were taken out from the incubator, the bottom surface of the container was looked into from the side, and the presence or absence of film sagging was observed in the culture environment. As a result, all the containers showed the same sagging as when the containers were made. I could't.
  • each of the four culture vessels 1 was observed under a microscope to observe how the cells were adhering and extending.
  • Table 1 shows the results of measuring the metabolic activity of the remaining three. (The metabolic activity values are shown in Table 1 as the average values of the results of the three containers.) Furthermore, after culturing in the remaining one container for 7 days, the cells were taken out of the incubator and the cells were adhering and extending. The results of observing are shown in Table 1.
  • FIG. 1 shows the results of observing the cells after 1 day and 7 days with a phase-contrast microscope.
  • Example 2 Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that the culture vessel 2 prepared from the film 2 having a thickness of 100 ⁇ m was used. One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 3 Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that a culture vessel 3 prepared from a film 3 having a thickness of 200 ⁇ m was used. One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 4 Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that a culture vessel 4 prepared from a film 4 having a thickness of 280 ⁇ m was used. One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 5 Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that a culture vessel 5 prepared from a film 5 having a thickness of 400 ⁇ m was used. One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 6 Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that the culture vessel 6 which was the 24-well culture plate prepared in Production Example 3 was used. At this time, 4 out of 24 wells were used. One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 7 Using the culture vessel 6 which is the 24-well culture plate prepared in Production Example 3, the culture solution (0.5 mL) containing the rat primary frozen hepatocytes was directly applied to the culture vessel 6-4 without performing collagen coating. The cells were seeded in each of the wells, and rat primary frozen hepatocytes were cultured in the same manner as in Example 1. One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container. Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 8 Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that the cell density in the culture medium was changed to 4.0 ⁇ 10 5 cells / cm 2 . One day later, as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container. Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • TPX® registered trademark (manufactured by Mitsui Chemicals, Inc.), which is a 4-methyl-1-pentene polymer having a weight average molecular weight (Mw) of 95,000 and a molecular weight distribution (Mw / Mn) of 3.5, was used.
  • a film 6 having a thickness of 50 ⁇ m was obtained in the same manner as in Production Example 1 except for the above.
  • Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that film 1 was changed to film 6.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • Example 10 As a result of observing the bottom surface of the culture vessel of Example 5 in which the culture material is a 4-methyl-1-pentene polymer with a fluorescence microscope and confirming whether autofluorescence derived from the culture material is generated, BZ-X filter DAPI, BZ-X filter It was found that no fluorescence derived from the material was observed when observing with either the GFP or the BZ-X filter TexasRed wavelength filter, and the cells could be directly observed on the culture surface of the container.
  • FIG. 4 shows a photograph of the culture surface observed with a fluorescence microscope.
  • Example 1 A film 6 having a thickness of 600 ⁇ m was prepared in the same manner as in Production Example 1, and the surface treatment and sterilization of the film 6 were carried out in the same manner as in Production Example 2 to prepare a culture vessel c1. Then, rat primary frozen hepatocytes were cultured in the same manner as in Example 1. After 24 hours, the bottom surface of the container was looked into from the side and the presence or absence of the film dripping was observed in the culture environment. As a result, no dripping was observed without any change from the time when the container was prepared. Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • a culture vessel c2 was prepared by sterilizing the film 1 having a thickness of 50 ⁇ m without performing the surface treatment of Production Example 2. Next, collagen coating was performed according to Example 1, but the collagen-containing solution was repelled on the culture surface, and collagen coating could not be performed, leading to the culture of rat primary frozen hepatocytes.
  • Rat primary frozen hepatocytes were cultured in the same manner as in Example 1 except that a commercially available 24-well TCPS culture vessel (manufactured by Corning Inc.) (manufactured by polystyrene (PS)) having a culture surface thickness of 1000 ⁇ m was used.
  • a commercially available 24-well TCPS culture vessel manufactured by Corning Inc.
  • PS polystyrene
  • One day later as a result of observing the bottom surface of the container from the side and observing the presence or absence of the film dripping in the culture environment, no dripping was observed as in the case of preparing the container.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • FIG. 2 shows the results of observing the cells after 1 day and 7 days with a phase-contrast microscope.
  • Example 1 Example 1 and Example 1 except that a commercially available 24-well PDMS (polydimethylsiloxane) culture container (product name G-plate, VECELL model number V24WGPB-10) having a culture material thickness of 350 ⁇ m was used as the high oxygen permeation container.
  • Rat primary frozen hepatocytes were cultured in a similar manner. One day later, the film was taken out of the incubator, the bottom surface of the container was looked into from the side, and the presence or absence of the film hanging was observed in the culture environment. As a result, the film was changed to a state of bending downward and hanging.
  • Table 1 shows the results of calculating the oxygen consumption rate from the cell adhesiveness and dissolved oxygen concentration as a result of culturing after 1 day, the measured value of metabolic activity, and the result of evaluating the cell adhesiveness after 7 days.
  • FIG. 3 shows the results of observing the cells after 1 day and 7 days with a phase-contrast microscope.
  • the oxygen consumption rate of the cells calculated by measuring the oxygen concentration in the medium one day after culturing is 40 pmol / s / 10 5 It was more than cells, maintained a sufficient oxygen consumption rate even as a result of increasing the cell density four times, and oxygen was effectively supplied through the culture medium. As a result, the metabolic activity value for evaluating the metabolic activity of the drug as the function of hepatocytes was high, and the cell function was maintained normally.
  • Comparative Examples 1 and 4 oxygen consumption of Comparative Examples 1 and 4 are less than 30 pmol/s/10 5 cells, at least rat primary frozen hepatocytes proliferate, the oxygen necessary to express functional has not been supplied.
  • the cells cultured in the PS containers of Comparative Examples 4 and 6 had low metabolic activity values, and even though the cells were proliferating, they could not express normal functions.
  • the surface properties of the culture material of the present invention in both cases where cells are directly seeded and cultured on the surface of the culture material or when cells are cultured with a collagen coat, the cells and collagen are in good condition. It was in close contact with the surface.
  • the surface of the culture material is hydrophilic (constant water contact angle).
  • a wide variety of cells are known, and various culturing methods are also known depending on the cells and their purposes.
  • the hydrophilization treatment on the surface of a culture material is performed when the oxygen permeable container of the present invention is used. It is positioned as a useful method as one means of.
  • Example 11 A drug sorption test was performed on the 4-methyl-1-pentene polymer container used in Example 6. The results are shown in Table 2.
  • the culture material of the present invention has excellent shape stability, oxygen supply, and adhesiveness to cells, etc., and despite being a resin container, does not generate autofluorescence, and the cultured cells. It was found that it is also excellent in the convenience of being able to observe the fluorescence as it is. In addition, since it has low drug retention, it is suitably used for drug discovery screening and diagnostic purposes.
  • the culture material of the present invention can cultivate a wide variety of cells, and can also be used for various culture methods according to the cells and their purposes. Further, the surface of the culture material of the present invention When the hydrophilization treatment of the above is applied, it can be applied to more applications and has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[課題]形状安定性に優れ、かつ肝細胞培養に適した酸素環境を実現できる培養材を提供する。 [解決手段]4-メチル-1-ペンテン重合体(X)を含む、細胞、組織、または器官の培養材であって、培養面の水接触角が50°~100°であり、かつ下記試験方法(A)による垂れ下がり距離が0~5mmであり、温度23℃、湿度0%の時の酸素透過度が4500~90000cm3/(m2×24h×atm)である培養材。 試験方法(A):前記培養材と同一の材料であり、かつ培養材の培養面と同一の厚さであり、縦×横が100mm×10mmの平板状の試験片を作成する。前記試験片を、試験片の縦寸法に対して50mmが、試験台の水平な上面から水平方向へはみ出した状態で試験台に固定する。固定から3分後、試験台からはみ出した前記試験片の先端が前記試験台の上面を含む水平面から鉛直下方へ垂れ下がった距離を測定する。但し、前記固定から測定は室温で行う。

Description

培養材およびその用途
 本発明は、培養材およびその用途に関する。
 細胞、組織、器官は、生育に適した条件下でなければ培養できないため、適切な栄養を含む培地と共にディッシュやプレート、フラスコ等の培養容器に入れ、さらに培養容器は温度・湿度・ガス濃度を所定の水準に保つことができるインキュベーター内に静置することが必要である。
 さらに、上記の培養を効率的に実現するためには、充分かつ適正な酸素供給が行われなければならない。
 細胞への酸素供給および培地のpH調整用の二酸化炭素供給のためには、培養容器内への酸素および二酸化炭素等のガスの供給が必要であるので、ガス透過性が低いガラスやポリスチレン等の素材からなる培養容器は、キャップや蓋等、培養容器上部に開口部を設けて、インキュベーター内から容器内部へのガス供給を確保している。しかし、培養細胞は通常、培養容器底面に接着している場合、若しくは、底面近傍に浮遊している場合が多く、上面は培地で覆われているので、培地中の酸素拡散速度が律速になり、特に底部の培養細胞への酸素供給は充分でなく、細胞の増殖が妨げられるという問題が古くから知られている。またポリスチレンは自家蛍光を持つため、顕微鏡で観察しにくい等の問題もあることが知られている(非特許文献1)。
 細胞への酸素供給を促進するために、培養装置内の酸素分圧を高める等の手段があるが、酸素分圧をコントロールするための専用の培養装置が必要であり、一般的に大気下で培養するための培養装置と比較してコストが高い。また、酸素分圧をコントロールするために使用する酸素ボンベは支燃性ガスであるため、酸化発熱、燃焼、爆発の危険性があり、不燃性ガスである窒素ボンベや炭酸ガスボンベと比較して、酸素ボンベの取り扱いには充分注意する必要がある。簡便かつ実用的な酸素供給改善方法として、高酸素透過性のフィルムを培養面とした培養プレートを使うと、静置培養における培養液層中の酸素拡散律速の問題を簡便に解決できる事が知られている(非特許文献2)。
 例えば、東大の酒井らは、高酸素透過性のポリジメチルシロキサン(PDMS)を培養容器底面に用いて、酸素消費速度の大きい肝細胞の培養を行っている。その結果、市販のポリスチレン製プレートにおいてみられる酸素欠乏状態(嫌気的な環境)が解消され、肝細胞の高度な自己組織化現象が観察されたことを報告している(非特許文献3)。
 高酸素透過性の材料として、前述のPDMSの他にポリブタジエン(特許文献1)などのゴム材料が検討されている。しかし、ゴム材料から構成されるガス透過性フィルムは、強度が弱くて破けやすいことに加え、培地を入れた際に撓みを生じやすく、形状が不安定である。培養容器に撓みが生じると、容器の変形や、変形に伴う衝撃によって、培養容器内壁に付着していた細胞が剥離する、撓んだ場所に培養中の細胞が集まるなど、効率的に細胞を培養できない。また、ゴム材料は一般に、薬剤物質の吸着や吸収が起こりやすいため、創薬スクリーニング用途や診断用途での使用が限定される。
 酸素透過性の観点から、非極性のポリエチレン樹脂やポリプロピレン樹脂等を培養容器に適用する検討がなされているが、充分な強度を保つために膜厚を調整すると、酸素透過性が不充分になってしまう点や、不透明であるため顕微鏡で観察しにくい等の問題があり、袋状の培養容器等、一部の培養容器にしか使用されていない。フィルムを薄く保ち、破れや撓みを防止するために、培養容器の底面に支持層を設ける技術も知られるが(特許文献5)、細胞を観察する際に支持層が邪魔になるという問題がある。
 一方、優れた高酸素透過性の樹脂材料として、ポリ4-メチル-1-ペンテン樹脂が挙げられる。特許文献1~4には、ポリ4-メチル-1-ペンテン樹脂を用いたフィルムでの培養容器の技術が開示されている。フィルムのヒートシール性や柔軟性を高める工夫により、角状、袋状等の植物の生育や浮遊性細胞の培養容器には好適に用いられるものの、静置培養用に適用した場合、培養底面の撓みが発生するため、培養容器として適さない。また、ポリ4-メチル-1-ペンテン樹脂は、そのままでは培養表面の疎水性が高く、培養基材に使うと細胞が付着できずに剥がれて死滅するなどの問題がある。
実開平1-112697号公報 特開平8-149973号公報 特開平11-137241号公報 特開2001-190267号公報 特開2016-077164号公報
Stevens, K. M., Oxygen requirements for liver cells in vitro., Nature、206, 199 (1965) Xiao W、Shinohara M, Komori K, Sakai Y, Matsui H, Osada T, A (2014): The importance of physiological oxygen concentrations in the sandwichi cultures of rat hepatocytes on gas-permeable membranes, Biotechnol. Prog., 30(6), 1401-1410 酒井康行、"肝培養における酸素供給の改善"、[online]、肝細胞研究会、[平成31年4月9日検索]、インターネット<http://hepato.umin.jp/kouryu/kouryu28.html>
 本発明の発明者らは、in vitroにて、細胞、組織、または器官(以下、細胞等という)の培養を、in vivoにより近い状態で行うには、優れた酸素供給能を有し、たわみ等の変形の少ない培養材を開発することが重要であると考えた。すなわち、インキュベーターによる酸素濃度コントロールのみに頼らずとも、厳密に酸素供給環境がコントロールされ、形状も安定している培養容器が必要であると考えた。そこで、形状安定性に優れ、とりわけ酸素の供給が必要とされる、細胞、組織、または器官の培養に適し、自家蛍光を発せず細胞観察性を損なわず、薬剤を収着しにくい培養材および培養容器を提供することを本発明の課題とした。また、付着性の細胞、組織、または器官の培養には、形状安定性、酸素供給性に加え、細胞等の接着性が保持できることが重要である。そこで、付着性の細胞、組織、または器官の培養に適した培養器具を提供することを本発明の第二の課題とした。
 本発明者らは上記課題を解決すべく鋭意検討した。その結果、以下の構成を有する培養材は上記課題を解決できることを見出し、本発明を完成するに至った。本発明は、例えば以下の〔1〕~〔14〕である。
〔1〕4-メチル-1-ペンテン重合体(X)を含む、細胞、組織、または器官の培養材であって、培養面の水接触角が50°~100°であり、かつ下記試験方法(A)による垂れ下がり距離が0~5mmであり、温度23℃、湿度0%の時の酸素透過度が4500~90000cm3/(m2×24h×atm)である培養材。試験方法(A):前記培養材と同一の材料であり、かつ前記培養材の培養面と同一の厚さであり、縦×横が100mm×10mmの平板状の試験片を作成する。前記試験片を、試験片の縦寸法に対して50mmが、試験台の水平な上面から水平方向へはみ出した状態で試験台に固定する。固定から3分後、試験台からはみ出した前記試験片の先端が前記試験台の上面を含む水平面から鉛直下方へ垂れ下がった距離を測定する。(但し、前記固定から測定は室温で行う。)
〔2〕前記4-メチル-1-ペンテン重合体(X)が、4-メチル-1-ペンテン単独重合体(x1)並びに、4-メチル-1-ペンテンと、エチレンおよび炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体(x2)から選択される少なくとも1種の重合体である、〔1〕に記載の培養材。
〔3〕下記試験方法(B)を、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行った際に、前記細胞密度の範囲の少なくとも一点において、1時間後の培養液中の溶存酸素濃度が、培養液中の飽和酸素濃度の2~20%である、〔1〕または〔2〕に記載の培養材。試験方法(B):ポリエチレンで構成される円筒部と、前記培養材と同一の材料であり、前記培養材の培養面と同一の厚さで構成された平板状の底面部とからなる、培養面積が2cm2である、コラーゲンコートされた培養容器に、ラット初代培養肝細胞をラット初代肝細胞用培養液0.5mLで播種し、温度37℃、二酸化炭素濃度5.0%、酸素濃度20%下で培養し、播種24時間後に培養容器内の培養液を除去した後、新たに培養液を0.5mL添加し、培養容器底面から80μmの高さで酸素濃度を1時間測定する。
〔4〕前記試験方法(B)を、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行った際に、前記細胞密度の範囲の少なくとも一点において、酸素消費速度が40~150pmol/s/105cellsである、〔3〕に記載の培養材。
〔5〕フィルム、シート、または培養容器である、〔1〕~〔4〕にいずれかに記載の培養材。
〔6〕培養容器が、シャーレ、フラスコ、インサート、プレート、ボトルまたはバッグである、〔5〕に記載の培養材。
〔7〕培養面に、微細加工がなされた〔1〕~〔6〕のいずれか一項に記載の培養材。
〔8〕〔7〕に記載の培養材を含むマイクロ流路デバイス。
〔9〕少なくとも培養面が、〔1〕~〔7〕のいずれか一項に記載の培養材で形成された、培養容器。
〔10〕少なくとも一つのウェルを有する、〔9〕に記載の培養容器。
〔11〕〔1〕~〔7〕のいずれか一項に記載の培養材、または〔9〕若しくは〔10〕に記載の培養容器から構成される、培養器具。
〔12〕培養面に、天然高分子材料、合成高分子材料、または無機材料がコーティングされた、〔11〕に記載の培養器具。
〔13〕〔11〕または〔12〕に記載の培養器具内で細胞、組織、または器官をインキュベートする工程を有する、細胞、組織、または器官の培養方法。
〔14〕細胞、組織、または器官が、肝細胞である、〔13〕に記載の、細胞、組織、または器官の培養方法。
 本発明によれば、形状安定性に優れ、かつ、細胞、組織、または器官の培養に適した酸素環境を実現でき、自家蛍光を発せず細胞観察性を損なわず、薬剤を収着しにくい培養材および培養容器を提供することができる。また、付着性の細胞、組織、または器官の培養に適した細胞付着性を保持した培養器具を提供することができる。
実施例1の細胞を位相差顕微鏡で観察した写真である。(上図:1日後、下図:7日後を示す。) 比較例4の細胞を位相差顕微鏡で観察した写真である。(上図:1日後、下図:7日後を示す。) 比較例5の細胞を位相差顕微鏡で観察した写真である。(上図:1日後、下図:7日後を示す。) 実施例8の蛍光顕微鏡で観察した培養材の写真である。(左図:DAPIフィルタ、中図:GFPフィルタ、右図:TexasRedフィルタ) 比較例6の蛍光顕微鏡で観察した培養材の写真である。(左図:DAPIフィルタ、中図:GFPフィルタ、右図:TexasRedフィルタ)
 本発明は、大きく分けて四つの態様がある。
 本発明の第一の態様である培養材は、4-メチル-1-ペンテン重合体(X)を含む、細胞、組織、または器官の培養材であって、培養面の水接触角が50°~100°であり、かつ下記試験方法(A)による垂れ下がり距離が0~5mmであり、温度23℃、湿度0%の時の酸素透過度が4500~90000cm3/(m2×24h×atm)である培養材。試験方法(A):前記培養材と同一の材料であり、かつ培養材の培養面と同一の厚さであり、縦×横が100mm×10mmの平板状の試験片を作成する。前記試験片を、試験片の縦寸法に対して50mmが、試験台の水平な上面から水平方向へはみ出した状態で試験台に固定する。固定から3分後、試験台からはみ出した前記試験片の先端が前記試験台の上面を含む水平面から鉛直下方へ垂れ下がった距離を測定する。但し、前記固定から測定は室温で行う。
 本発明の第二の態様である培養容器は、少なくとも培養面が、第一の態様である培養材で形成されている。
 本発明の第三の態様である培養器具は、第一の態様である培養材、または第二の態様である培養容器から構成される培養器具である。
 本発明の第四の態様である細胞、組織、または器官の培養方法は、第三の態様である培養器具内で細胞、組織または器官をインキュベートする工程を有する培養方法である。
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 数値範囲に関する「A~B」との記載は、特に断りがなければ、A以上B以下であることを表す。例えば、「1~5%」との記載は、1%以上5%以下を意味する。
 〈4-メチル-1-ペンテン重合体(X)〉
 本発明において、「重合体」という語は単独重合体および共重合体を包含する意味で用いる。同様に本発明において、「重合」という語は単独重合および共重合を包含する意味で用いる。したがって、「4-メチル-1-ペンテン重合体(X)」とは、4-メチル-1-ペンテンの単独重合体および、4-メチル-1-ペンテンと、他のモノマーとの共重合体を包含する概念である。なお、4-メチル-1-ペンテンの単独重合体を、以下4-メチル-1-ペンテン単独重合体(x1)とも記す。
 4-メチル-1-ペンテンと、他のモノマーとの共重合体としては、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。4-メチル-1-ペンテンと、他のモノマーとの共重合体としては、4-メチル-1-ペンテンと、エチレンおよび炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体(x2)が、基材の強度が高く(破れにくく割れにくい)撓みも少ないため好ましい。
 4-メチル-1-ペンテン重合体(X)としては、4-メチル-1-ペンテン単独重合体(x1)並びに、4-メチル-1-ペンテンと、エチレンおよび炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体(x2)から選択される少なくとも1種の重合体であることが好ましく、4-メチル-1-ペンテンと、エチレンおよび炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体(x2)であることがより好ましい。
 前記オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンが挙げられる。前記オレフィンは、培養材に必要な物性に応じて適宜選択することができる。例えば、前記オレフィンとしては、適度な酸素透過性と、優れた剛性という観点からは、炭素数8~18のα-オレフィンが好ましく、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセンおよび1-オクタデセンから選ばれる少なくとも1種がより好ましい。オレフィンの炭素数が上記範囲にあると、重合体の成膜加工性がより良好になり、その結果、成形時にロールや金型からの離型の際にクラックや端部の割れによる外観不良が生じにくくなる傾向にある。そのため、培養材の不良品発生率が低くなる。
 前記オレフィンは、1種のみ含まれていてもよく、また、2種以上を組み合わせてもよい。材料の強度の観点から、炭素数は2以上が好ましく、更に好ましくは炭素数10以上が更に好ましい。異なる2種以上のα-オレフィンを組み合わせる場合には、1-テトラデセンおよび1-ヘキサデセンから選ばれる少なくとも1種と、1-ヘプタデセンおよび1-オクタデセンから選ばれる少なくとも1種とを組み合わせるのが特に好ましい。
 4-メチル-1-ペンテンから導かれる構成単位の含有量は、好ましくは60~100モル%、より好ましくは80~98モル%である。また、エチレンおよび炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンから導かれる構成単位の含有量は、好ましくは0~40モル%、より好ましくは2~20モル%である。なお、前記構成単位の含有量は、全繰返し構成単位量を100モル%とする。構成単位の含有量が上記の範囲内にあると、加工性に優れ均質な培養面が得られ、またフィルムの靭性と強度のバランスが良いため、撓みも少なくなる。
 前記4-メチル-1-ペンテン重合体(X)は、本発明の効果を損なわない範囲で、4-メチル-1-ペンテンから導かれる構成単位および前記オレフィンから導かれる構成単位以外の構成単位(以下「その他の構成単位」ともいう)を有してもよい。その他の構成単位の含有量は、例えば0~10.0モル%である。前記4-メチル-1-ペンテン重合体がその他の構成単位を有する場合、その他の構成単位は、1種でも2種以上であってもよい。
 その他の構成単位を導くモノマーとしては、例えば、環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエン、官能ビニル化合物、水酸基含有オレフィン、ハロゲン化オレフィンが挙げられる。環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエン、官能ビニル化合物、水酸基含有オレフィンおよびハロゲン化オレフィンとしては、例えば、特開2013-169685号公報の段落[0035]~[0041]に記載の化合物を用いることができる。
 前記4-メチル-1-ペンテン重合体(X)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の培養材は、4-メチル-1-ペンテン重合体(X)を含んでいればよく、4-メチル-1-ペンテン重合体(X)のみから形成されていてもよく、4-メチル-1-ペンテン重合体(X)を含む組成物から形成されていてもよい。
 4-メチル-1-ペンテン系重合体(X)としては市販品を使用することもできる。具体的には、三井化学(株)製のTPX MX001、MX002、MX004、MX0020、MX021、MX321、RT18、RT31又はDX845(いずれも商標)などが挙げられる。また、その他のメーカー製でも上記の要件を満たす4-メチル-1-ペンテン系重合体であれば、好ましく使用できる。4-メチル-1-ペンテン系重合体(X)は1種単独で使用してもよく、2種以上を組み合せて使用することもできる。
 本発明の培養材が、4-メチル-1-ペンテン重合体(X)を含む組成物から形成される場合には、前記組成物は、4-メチル-1-ペンテン重合体(X)以外の成分を含んでいてもよく、例えば、後述の(添加剤)の項に記載した成分を含んでいてもよい。なお、培養材が4-メチル-1-ペンテン重合体(X)を含む組成物から形成される場合には、培養材100質量%中に、4-メチル-1-ペンテン重合体(X)が、好ましくは90~100質量%であり、より好ましくは95~100質量%であり、特に好ましくは99~100質量%である。4-メチル-1-ペンテン重合体(X)以外の成分を多量に含むと、酸素透過性の低下のみならず、透明性の低下や強度の低下を招く。本範囲に規定される、4-メチル-1-ペンテン重合体(X)の組成物比率は、培養材の培養面におけるものであり、培養容器の枠部分や蓋部分などの直接細胞が接触しない部分は前記範囲と異なっていてもよい。
 4-メチル-1-ペンテン重合体(X)の、標準ポリスチレンを基準物質としたゲルパーミュエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)は、好ましくは10000~2000000、より好ましくは20000~1000000、さらに好ましくは30000~500000である。ここで、GPC測定の際の試料濃度は、例えば1.0~5.0mg/mlとすることができる。また、4-メチル-1-ペンテン重合体(X)の、分子量分布(Mw/Mn)は、好ましくは1.0~30、より好ましくは1.1~25、さらに好ましくは1.1~20である。GPCで用いられる溶剤は、4-メチル-1-ペンテン重合体(X)を溶解するものであれば特に限定されないが、オルトジクロロベンゼンが好ましく用いられる。また、測定条件の一例としては、後述する実施例に示した条件が挙げられるが、該測定条件に限定されるものではない。
 重量平均分子量(Mw)を上記上限以下とすることにより、後述する4-メチル-1-ペンテン重合体(X)の成型法において、溶融成型で作製したフィルムは、ゲル等の不具合の発生を抑制でき、表面が均一な製膜の実現が可能となる。また、溶液キャスト法で作製する際は溶剤への溶解性が良好で、フィルムのゲル等の不具合を抑制でき、表面均一な製膜の実現が可能となる。
 また、重量平均分子量(Mw)を上記下限以上とすることにより、本発明の容器製造、および細胞培養において、培養材である4-メチル-1-ペンテン重合体(X)からなるフィルムは充分な強度を有する。さらに、分子量分布を上記の範囲内とすることで、作製したフィルム表面のベタツキを抑えることが可能となり、かつ、充分な靭性を有し、フィルム成型時の曲げや裁断時のクラックの発生などを抑制することが可能となる。
 前記4-メチル-1-ペンテン重合体(X)重量平均分子量(Mw)および分子量分布(Mw/Mn)は、4-メチル-1-ペンテン重合体(X)として、2種以上の重合体を用いた場合には、各重合体それぞれの、MwおよびMw/Mnが、上記範囲にあればよい。
 〈4-メチル-1-ペンテン重合体(X)の製造方法〉
 前記4-メチル-1-ペンテン重合体(X)を製造する方法は、4-メチル-1-ペンテン、オレフィン、その他の構成単位を重合させられれば、いずれの方法であってもよい。また、分子量や分子量分布を制御するために連鎖移動剤、例えば水素を共存させてもよい。製造に用いる機器も制限されない。重合法は公知の方法でもよく、気層法、スラリー法、溶液法、バルク法であってもよい。好ましくはスラリー法、溶液法である。さらに、重合法は単段重合法、または二段等の多段重合法で、分子量の異なる複数の重合体を重合系中にブレンドする方法であってもよい。単段、多段重合法の何れであっても、連鎖移動剤として水素を用いる場合には、一括投入しても、分割投入、例えば重合初期、中期、終期に投入してもよい。製造は常温で行ってもよく、必要に応じて加温してもよいが、重合の効率の観点から、20℃~80℃で行うことが好ましく、40℃~60℃で行うことが特に好ましい。製造に用いる触媒も制限されないが、重合の効率の観点から、国際公開公報2006/054613に記載される固体状チタン触媒成分(I)を用いることが好ましい。
 〈添加剤〉
 本発明の培養材が、4-メチル-1-ペンテン重合体(X)を含む組成物から形成される場合には、4-メチル-1-ペンテン重合体(X)以外の成分が含まれていてもよく、4-メチル-1-ペンテン重合体(X)以外の成分としては、耐熱安定化剤、耐光安定化剤、加工助剤、可塑剤、酸化防止剤、滑剤、消泡剤、アンチブロック剤、着色剤、改質剤、抗菌剤、抗黴剤、防曇剤などの添加剤が挙げられる。
 4-メチル-1-ペンテン重合体(X)は、通常、融点200℃~240℃であり耐熱性が高い。また加水分解を起こさないため耐水性、耐沸水性、耐スチーム性が優れているため、4-メチル-1-ペンテン重合体(X)を含む培養容器等の培養材は高圧蒸気滅菌処理が可能である。4-メチル-1-ペンテン重合体(X)は、また可視光線透過率が高く(通常90%以上)、自家蛍光を発しない特徴を有するので、4-メチル-1-ペンテン重合体(X)を含む培養容器は培養細胞の観察がしやすい。さらに、ほとんどの薬品に優れた耐薬品性を示し、薬剤を吸収しにくいため、創薬スクリーニング用途や診断用途にも好適に用いられる。4-メチル-1-ペンテン重合体(X)は、ヒートシールが可能であり、自材同士の熱融着のみならず他の素材との熱接着も容易である。また、熱成形が可能であるため、任意の形状の容器に成形することが容易であり、例えばインプリント法やインサート法を用いた成形も容易である。
 4-メチルペンテン-1重合体(X)は以上のような優れた特性を有しているので、本発明の培養材からなる培養容器や、本発明の培養材で培養面が形成された細胞容器は、培養に悪い影響を与えることも無く、また安定性、光透過性、成形加工性が良好で、滅菌処理を行うことができるので、培養容器の材料として非常に優れている。
 〈4-メチル-1-ペンテン重合体(X)のフィルム製造方法〉
 本発明の培養材の製造方法は、特に制限されず、製造に用いる機器も制限されない。4-メチル-1-ペンテン重合体(X)および必要に応じて4-メチル-1-ペンテン重合体(X)以外の成分を含むフィルムを形成し、そのフィルムを成形して所望の形状を有する培養材にしてもよい。射出成形、ブロー成形等の方法により、所望の形状を有する培養材を直接成形してもよい。
 フィルムを形成する方法としては、具体的には、例えば、通常のインフレーション法、T-ダイ押出法などが採用される。製造は通常加温して行う。T-ダイ押出法を採用する場合、押出温度は100℃~400℃が好ましく、200℃~300℃が特に好ましい。また、ロール温度は45℃~75℃が好ましく、55℃~65℃が特に好ましい。
 また、本発明のフィルムは4-メチル-1-ペンテン重合体(X)を溶剤に溶解し樹脂や金属上に流し、レベリングしながらゆっくりと乾かしフィルム化する溶液キャスト法で製造してもよい。用いられる溶剤は特に制限ないが、シクロヘキサン、ヘキサン、デカン、トルエンなどの炭化水素溶剤を用いてもよい。また、溶剤は、樹脂の溶解性や乾燥効率を考慮して2種類以上を混合してもよい。テーブルコート、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ロールコート、カーテンフローコートなどの方法でポリマー溶液を塗布し、乾燥、剥離することでフィルムに加工する。
 何れの場合であっても、量産性の観点より、4-メチル-1-ペンテン重合体(X)および必要に応じて4-メチル-1-ペンテン重合体(X)以外の成分を含むフィルムを形成し、そのフィルムを成形して所望の形状を有する培養材にするのが好ましい。
 <細胞、組織、または器官>
 本明細書において、細胞、組織、または器官は、単に「細胞等」とも称する。
 本発明における細胞は、特に限定されず、動物細胞の場合には浮遊性細胞であってもよく、接着性細胞であってもよく、例えば、線維芽細胞、間葉系幹細胞、造血幹細胞、神経幹細胞、神経細胞、角膜上皮細胞、口腔粘膜上細胞、網膜色素上細胞、歯根膜幹細胞、筋繊維芽細胞、心筋細胞、肝細胞、脾内分泌細胞、皮膚角化細胞、皮膚繊維芽細胞、皮下脂肪由来前駆細胞、腎臓細胞、底部毛根鞘細胞、鼻粘膜上皮細胞、血管内皮前駆細胞、血管内皮細胞、血管平滑筋細胞、骨芽細胞、軟骨細胞、骨格筋細胞、不死化細胞、がん細胞、角化細胞、胚性幹細胞(ES細胞)、EBV形質転換B細胞、人工多能性幹細胞(iPS細胞)などが例示される。初代培養細胞あるいは株化継代された細胞のいずれであってもよい。皮膚、腎臓、肝臓、脳、神経組織、心筋組織、骨格筋組織、がん幹細胞などは酸素要求性が高く、それらを構成する細胞もまた、酸素要求性の高い細胞であることから、本発明における細胞は皮膚、腎臓、肝臓、脳、神経組織、心筋組織、または骨格筋組織を構成する細胞、もしくはがん幹細胞であることが好ましい。細胞、組織、または器官としては、肝細胞、腎細胞、心筋細胞、神経細胞、またはがん幹細胞であることが好ましく、肝細胞であることがより好ましい。
 本発明における組織とは、類似の細胞が集って同じような働きをするものの意味である。前記組織は、特に限定されず、例えば、上皮組織、結合組織、筋組織、神経組織等があげられる。酸素要求性が高いことから、前記組織は、肝小葉、心筋組織、神経組織、または骨格筋組織であることが好ましく、肝小葉がさらに好ましい。
 本発明における器官とは、前記組織が集って目的をもった共同の仕事をするものの意味である。前記器官は、特に限定されず、例えば肺、心臓、肝臓、腎臓、脾臓、膵臓、胆嚢、食道、胃、皮膚、脳などである。酸素要求性が高いことから、前記器官は、皮膚、腎臓、肝臓、脳であることが好ましく、肝臓がさらに好ましい。
 培養器具内での培養に適することから、細胞等は細胞であることが好ましい。本発明において、細胞等は、好気性であると好ましく、嫌気性のものを含まないことがより好ましい。細胞等の由来は、特に限定されず、動物、植物、菌、原生生物、細菌などあらゆる生物であってよいが、動物、または植物が好ましく、動物がさらに好ましく、特に哺乳動物が好ましい。本発明における培養器具は、酸素透過性が好適であり、細胞接着性も保持しているので、細胞等は付着性のものであることが好ましく、付着性細胞であるとさらに好ましい。
 <肝細胞>
 本発明における肝細胞は、肝実質細胞(Hepatocyte)を始め、肝臓中の細胞であればいかなる細胞であってもよく、具体的には血管内皮細胞、血管平滑筋細胞、脂肪細胞、血球細胞、肝単核細胞、肝マクロファージ(クッパー細胞を含む)、肝星状細胞、肝内胆管上皮細胞、胚嚢線維芽細胞等を含む。前記肝細胞は、例えば20%以上、30%以上、40%以上または50%以上の肝実質細胞が含まれる細胞集団である。
 前記肝細胞は、初代培養細胞でも、株化継代細胞でもよいが、肝細胞としては初代培養細胞を用いるのが好ましい。株化継代細胞の種類は特に制限されないが、例えば、SSP-25,RBE,HepG2,TGBC50TKB,HuH-6,HuH-7,ETK-1,Het-1A,PLC/PRF/5,Hep3B,SK-HEP-1,C3A,THLE-2,THLE-3,HepG2/2.2.1,SNU-398,SNU-449,SNU-182,SNU-475,SNU-387,SNU-423,FL62891,DMS153等が挙げられる。
 前記肝細胞の由来は、いずれの哺乳動物であってもよいが、特に、ヒト、ウシ、イヌ、ネコ、ブタ、ミニブタ、ウサギ、ハムスター、ラット、又はマウスの細胞が好ましく、ヒト、ラット、マウス、又はウシの細胞がより好ましい。
 前記肝細胞は、肝細胞以外の他の細胞種が含まれる細胞集団であってもよく、例えば20%以上、30%以上、40%以上または50%以上の肝細胞が含まれる細胞集団である。
 〈培養〉
 本明細書において、培養とは、細胞等を増殖、維持させることだけでなく、細胞等の播種、継代、分化誘導、自己組織化誘導等のプロセスも含む広い意味で用いる。培養に用いる培地等は制限されず、細胞等の特性に応じた培地を選択すればよい。
 〈細胞の培養〉
 細胞の培養は、2次元(細胞が自発的に重層化する場合を含む)培養でも、3次元培養でもよい。本発明の培養材は、酸素透過度が培養に好適であるため、2次元培養だけでなく、立体的に細胞が積み重なっている3次元培養においても、細胞に充分に酸素を供給することができ、細胞が増殖、分化し、さらに細胞の高度な自己組織化現象も起きやすい。
 3次元培養とは、意図的に細胞を立体的に培養することであり、足場材の中で細胞を培養するScaffold型と、塊(スフェロイド)として浮遊状態で細胞を培養するScaffold-free型のどちらであってもよいが、Scaffold型が好ましい。Scaffold型の場合、細胞を効率よく培養できることから足場材としては、MatrigelTM、コラーゲンゲル、ラミニン、アルギン酸ヒドロゲル、ビトリゲルが好ましい。
 培養に用いる培地等は制限されないが、細胞を効率的に培養するため、細胞は、血清(例えば、ウシ胎児血清)の存在下で培養するのが好ましい。
 本発明の培養材を培養に用いる際、言い換えると、後述の本発明の培養器具を用いて、本発明の培養方法を行う際の、細胞培養密度としては、好ましくは0.1×105cells/cm2~10.0×105cells/cm2であり、より好ましくは0.5×105cells/cm2~5.0×105cells/cm2であり、さらに好ましくは1.0×105cells/cm2~4.0×105cells/cm2であり、特に好ましくは1.5×105cells/cm2~3.5×105cells/cm2である。
 上記の範囲であると、細胞培養密度が上記範囲外の場合と比べて、薬物代謝活性がより亢進されるため好ましい。
 本発明の培養材は、酸素透過度が高いため、細胞培養密度が高い場合であっても、好適に培養することができる。一般に、生体の細胞密度は、2.5×105cells/cm2程度だといわれているが、本発明の培養材は、生体と同程度の細胞培養密度で、培養を行うことが可能であるため、in vitroにて、in vivoにより近い状態で培養を行うことができるため好ましい。
 〈培養材〉
 本発明の培養材は、4-メチル-1-ペンテン重合体(X)を含む、細胞、組織、または器官の培養材であって、培養面の水接触角が50°~100°であり、かつ下記試験方法(A)による垂れ下がり距離が0~5mmであり、温度23℃、湿度0%の時の酸素透過度が4500~90000cm3/(m2×24h×atm)である。
 培養材とは、細胞を培養するために用いる材料を指し、培養容器そのものまたは培養容器の一部を構成する。なお、本発明の培養材が培養容器の一部を構成する場合には、少なくとも培養面が、本発明の培養材により構成される。本発明の培養材は、例えば、フィルム、シート、または培養容器である。前記培養材が、フィルムやシートである場合には、該フィルムやシートを、培養面を含む培養容器の一部として用いることができる。培養容器としては、公知の各種の培養容器を用いることができ、形状や大きさは特に制限されないが、例えば、シャーレ(ディッシュとも称す)、フラスコ、インサート、プレート、ボトル、バッグ等が挙げられる。前記培養容器は通常、インキュベーター、大量培養装置、または灌流培養装置などの装置内で用いる。前記培養容器は、培地を保持あるいは貯留するため、底面を培養面とする容器であることが好ましい。一般にウェルのようなくぼみ形状を底面に有する培養容器は、底面の複雑な形状を安定させるために底面を厚くする必要があり、細胞等への酸素供給が充分に行われ難い。本発明の培養材を用いると、1ウェル、6ウェル、12ウェル、24ウェル、48ウェル、96ウェル、384ウェル、1536ウェル等のウェルを有するプレートであっても、形状は安定しており、細胞等への酸素供給も充分である。
 本発明の培養材は、培養面に、細胞等の足場となるための天然高分子材料、合成高分子材料、または無機材料がコーティングされていないものを意味する。
 なお、本発明における培養面とは、細胞等を培養する際に、培地が形成される面、細胞等が播種される面、または培地が形成されかつ細胞等が播種される面を意味する。すなわち、培養面とは、培地形成予定面および細胞等播種予定面を包含する概念である。
 本発明の培養材の温度23℃、湿度0%の時の酸素透過度は、4500~90000cm3/(m2×24h×atm)であり、好ましくは4500~67500cm3/(m2×24h×atm)であり、より好ましくは4500~47000cm3/(m2×24h×atm)であり、さらに好ましくは4500~45000cm3/(m2×24h×atm)である。
 培養材の酸素透過度が低すぎると培地中の酸素濃度が低くなり、細胞は充分に増殖しない。一方で、酸素透過度が高すぎると培地中の酸素濃度が高くなりすぎ、酸素ストレスにより細胞機能が低下する。
酸素透過度が上記上下限の範囲である場合、細胞は密着性良く良好な形態を保ち培養期間に応じて効率良く増殖することができる。
 本発明の培養材を容器底面に配置してシャーレ、フラスコ、インサートまたはプレート等の培養容器を作製する際の培養材の厚みは特に限定されないが、好ましくは20μm~400μm、より好ましくは20μm~300μm、さらに好ましくは20μm~200μmの厚みである。培養容器の形態に応じて適時選ばれるが、上記上下限の範囲に調整することで細胞が増殖する上で必要な適度な培地中の酸素濃度が得られ、培養容器底面が撓む(垂れ下がり距離として規定)ことなく好適な培養容器を作製することができる。
 培養容器の一例として、多穴プレートについて説明する。通常、穴(ウェルとも称す)の数が1、6、12、24、48、96、128、384、および1536個の細胞培養ウェルプレートが市販されている。これらの容器は容器全体(短辺、長辺の長さ)のサイズは等しく、穴の径によりウェル数が規定されている。つまり、多穴の容器では穴径は小さく、穴数が少ない容器は穴径が大きい。径の大小はそのまま培養材を容器底面に配置し、培地を入れた状態での培地の重量に起因する応力によって培養材の撓みが左右され、通常、多穴(穴径が小さい)の容器では比較的厚みが小さい培養材を用いてよく、穴数が少ない(穴径が大きい)容器では比較的厚みが大きい培養材を用いる必要がある。
 本発明の培養材の厚さは、特に制限されない。また、本発明の培養材の培養面の厚さは、特に制限されないが、20~500μmが好ましく、25~500μmがより好ましく、50~200μmが特に好ましい。
 培養材の厚さが前記範囲内であると、強度に優れるため好ましい。特に培養面の厚さが前記範囲内にあると、ウェル数が少なく穴径が大きい容器に用いた際にも撓みが生じにくい。また、培養材にコロナ処理等を施す際に破けにくい。また、培養面の厚さが前記範囲内にあると、酸素透過度は酸素要求性の細胞等を培養するために特に適した範囲になる。
 本発明の培養材は、スフェロイドの作成や細胞の足場機能向上のため、表面に微細加工を行ってもよい。4-メチル-1-ペンテン重合体(X)は熱可塑性樹脂の1種であることから、微細加工を施す方法として、切削加工、光リソグラフィ法、電子線直接描画法、粒子線ビーム加工法、走査プローブ加工法等、微粒子の自己組織化、またはこれらの手法によって形成されたマスタからのナノインプリント法、キャスト法、射出成形法に代表される成形加工法、めっき法等から適切に選択することができる。微細加工の形状は特に限定されるものではないが、溝の部分から山の部分までの高さが20nmから500μmであると好ましい。また、充分な強度を保つために、表面に微細加工がなされていない場合に比べ最薄部の膜厚を20μm迄薄くすることが可能である。
 微細加工を行った培養材は、マイクロ流路デバイス(マイクロ流路チップとも言う)として用いてもよい。マイクロ流路デバイスは、培養材表面に微細加工を施して微小流路や反応容器を作成し、バイオ研究や化学工学へ応用するためのデバイスの総称である。例えば、microTAS(micro Total Analysis Systems)やLab on a Chipなどと呼ばれる装置が挙げられ、次世代の培養装置としての適用が進められている。本発明の一態様として、本発明の培養材を含むマイクロ流路デバイスが挙げられる。
 本発明の培養材は、細胞を好適に培養材表面に密着させ、また、目的に応じて、細胞を培養する際の足場材であるコラーゲン等を培養材表面に積載し、密着させるために培養材表面を親水化処理することが好ましい。培養材表面の表面自由エネルギーは後述する水接触角で定義することができ、培養材の培養面の水接触角は、好ましくは50°~100°であり、より好ましくは55°~100°、さらに好ましくは60°~100°である。また、水接触角の好ましい別の態様としては、84°以下が挙げられ、50°~84°がより好ましい。
 上記範囲に本発明の培養材の培養面(表面)の水接触角を調整することで、例えば、肝細胞が培養材との密着性が良く、培養材表面で均一に増殖できる。また、コラーゲンを積載する際のコラーゲン処理後の形態で、培養材表面に均一にコラーゲンを積載でき、生理食塩水による洗浄や、細胞培養の環境においてコラーゲンは剥がれず安定な初期状態を保って細胞培養に用いることができる。
本発明の培養材表面の親水化処理に用いる方法は特に限定されないが、例えばコロナ処理、プラズマ処理、オゾン処理、紫外線処理、化学蒸着、エッチング、または、ヒドロキシル基、アミノ基、スルホン基、チオール基、カルボキシル基等の特定の官能基付加、シランカップリング等の特定の官能基による処理、酸化剤等による表面粗化等が挙げられる。中でも前記培養材表面の濡れ性を上げ、効率的に細胞を培養できるようにするため、紫外線処理、コロナ処理、プラズマ処理、またはオゾン処理等の表面親水化処理を行うことが好ましい。これらの表面改質処理は、単独で行ってもよいし、2種以上を組み合わせて行ってもよい。なお、表面改質処理を行う場合には、少なくとも培養面に行うことが好ましい。プラズマ処理を行う場合には、同伴させるガスとして、窒素、水素、ヘリウム、酸素、アルゴンなどが用いられ、好ましくは、窒素、ヘリウム、アルゴンから選択される少なくとも一種のガスが選ばれる。
 本発明の培養材は、細胞培養材であることが好ましく、肝細胞培養材であるとより好ましい。
 〈試験方法(A)による垂れ下がり距離の測定〉
 本発明の培養材は、試験方法(A)による垂れ下がり距離が0~5mmであり、好ましくは0~3mmである。試験方法(A)は以下の通りである。
試験方法(A):前記培養材と同一の材料であり、かつ培養材の培養面と同一の厚さであり、縦×横が100mm×10mmの平板状の試験片を作成する。
 前記試験片を、試験片の縦寸法に対して50mmが、試験台の水平な上面から水平方向へはみ出した状態で試験台に固定する。
 固定から3分後、試験台からはみ出した前記試験片の先端が前記試験台の上面を含む水平面から鉛直下方へ垂れ下がった距離を測定する。但し、前記固定から測定は室温で行う。なお、本明細書において室温とは20~25℃を意味する。
 この垂れ下がった距離(mm)を、垂れ下がり距離(mm)と呼称し、垂れ下がり距離は、曲げ剛性の指標となる。すなわち、垂れ下がり距離が小さいほど、本発明の培養材の培養面は、曲げ剛性に優れる。
 試験片の作成方法は特に制限されず、例えば培養材と同一の材料に対して、押出成形等の熱成形を行い、平板状の試験片を作成し、そのシートから前記寸法の試験片を切り出してもよいし、試験片を直接成形してもよい。また、培養材が、フィルムやシートである場合には、そこから試験片を切り出してもよい。また、試験片を作成する際の熱成形は、培養材を製造する際と、同一の温度条件(温度、時間)で成形されることが好ましい。試験片は、培養材に微細加工、表面改質処理を行っていてもよいし、行っていなくてもよいが、何も処理を行っていないものが好ましい。
 垂れ下がり距離が、5mmより大きいと形状安定性が不充分である。具体的には、培養材に撓みが生じ、変形や、変形に伴う衝撃によって、培養容器内壁に付着していた細胞が剥離するだけでなく、撓んだ場所に培養中の細胞が集まってしまい、効率的に細胞を培養できない。
 〈酸素透過度〉
 本発明の培養材は、温度23℃、湿度0%の時の酸素透過度が4500~90000cm3/(m2×24h×atm)である。培養材あるいは培養材と同一の材料を用いて作成された測定サンプルについて、差圧式ガス透過率測定法により、温度23℃、湿度0%での酸素透過度[cm3×mm/(m2×24h×atm)]を測定し、酸素透過度を培養材の厚み(μm)で除した値を酸素透過係数とする。測定に用いる機器は差圧式ガス透過率測定法を用いたものであれば特に制限されないが、例えば東洋精機製作所製の差圧式ガス透過率測定装置MT-C3が挙げられる。測定サンプルは、例えば厚さ50μmのフィルムから90×90mmの試験片を切り出して作成し、測定部径は70mm(透過面積は38.46cm2)とすると好ましい。酸素透過度が大きいため、予めサンプルにアルミニウムマスクを施し、実透過面積を5.0cm2とすることがより好ましい。酸素透過度の測定に用いる培養材また培養材と同一の材料を用いて作成された測定サンプルは、微細加工、表面改質処理を行ったものでもよいし、行っていないものでもよいが、何も処理を行っていないものが好ましい。
 〈試験方法(B)による培養液中の溶存酸素濃度〉
 本発明の培養材は、培養液中の飽和酸素濃度を100%とした場合に、下記試験方法(B)を、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行った際に、前記細胞密度の範囲の少なくとも一点において、1時間後の培養液中の溶存酸素濃度が、培養液中の飽和酸素濃度の2~20%であると好ましく、5~18%であるとより好ましく、5~16%であるとさらに好ましく、9~16%であることが最も好ましい。培養液中の飽和酸素濃度の測定方法は特に制限されず、例えば、蛍光式の酸素センサー(FireSting酸素モニター、株式会社ビー・エー・エス社製)を用いる測定方法が挙げられる。試験方法(B)は、以下の通りである。
試験方法(B):ポリエチレンで構成される円筒部と、前記培養材と同一の材料であり、培養材の培養面と同一の厚さで構成された平板状の底面部とからなる、培養面積が2cm2である、コラーゲンコートされた培養容器にラット初代培養肝細胞をラット初代肝細胞用培養液0.5mLで播種し、温度37℃、二酸化炭素濃度5.0%、酸素濃度20%下で培養し、播種24時間後に、培養容器内の培養液を除去した後、新たに培養液を0.5mL添加し、培養容器底面から80μmの高さで酸素濃度を1時間測定する。溶存酸素濃度が前記範囲内にあると、酸素環境は肝細胞に最適な状態であるため好ましい。
 なお、酸素濃度の測定は、FireSting酸素モニター(株式会社ビー・エー・エス社製)等を用いて行うことができ、FireSting酸素モニター(株式会社ビー・エー・エス社製)を用いる場合には、培養容器底面から80μmの高さにセンサーを設置して測定する。
 なお、試験方法(B)を行う際には、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行えばよく、少なくともその範囲の一点において、溶存酸素濃度が前記範囲となればよい。すなわち、細胞密度が1.0×105cells/cm2~4.0×105cells/cm2の全範囲において、溶存酸素濃度が前記範囲となることまでは要求されない。
 試験方法(B)に用いるラット初代肝細胞用培養液とは、特に限定されないが、例えば、10%ウシ胎児血清(Fetal Bovine Serum、FBS、富士フイルム和光純薬)、30mg/mL L-プロリン(培養用、富士フイルム和光純薬)、1×10-7Mデキサメタゾン(生化学用、富士フイルム和光純薬)、50μg/mLハイドロコルチゾン(培養用、富士フイルム和光純薬)、20ng/mL上皮成長因子(Epidermal growth factor、EGF、細胞生物学用、富士フイルム和光純薬)、5.0×10-7M インスリン(SIGMA)、5000units/mLペニシリン、5000μg/mLストレプトマイシン(培養用、富士フイルム和光純薬)、D-MEM培地(高グルコース、L-グルタミン、フェノールレッド、ピルビン酸ナトリウム、炭酸水素ナトリウム含有、培養用、富士フイルム和光純薬)を含む溶液である。
 〈酸素消費速度〉
 酸素消費速度は、Fickの法則を用いて、外気の酸素濃度(20%)と培養液中の溶存酸素濃度の差と、フィルムの酸素透過度の積を細胞密度で除し、細胞当たりの消費量として算出することができる。培地中の酸素を細胞が消費した分、外気から酸素が供給されるという考えに基づく。
 適切な酸素消費速度は各臓器およびそれらを構成する細胞によって異なり、例えば肺、心臓、肝臓、腎臓、脾臓、膵臓、胆嚢、食道、胃、皮膚、脳などで異なる。また、動物種によっても異なり、例えばヒト、ウシ、イヌ、ネコ、ブタ、ミニブタ、ウサギ、ハムスター、ラット、又はマウスによっても異なる。さらに、初代培養細胞および株化継代細胞で異なる。
 ラット初代肝細胞の場合、細胞培養容器に細胞を1.0×105cells/cm2で播種したときの酸素消費速度は非特許文献2および3より、細胞が培養容器に付着した直後で90pmol/s/105cells、その後は40pmol/s/105cellsとされ、細胞の容器への付着や凝集の程度等により、その数値は変動し得る。
 本発明の培養材を用いることにより、細胞等に適した酸素環境で培養することが可能であり、細胞密度が例えば1.0×105cells/cm2の場合の酸素消費速度は、好ましくは40pmol/s/105cells以上であり、より好ましくは40~150pmol/s/105cellsである。なお、酸素消費速度を評価する際の培養は、前記試験方法(B)に従って行われることが好ましい。すなわち、前記試験方法(B)を、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行った際に、前記細胞密度の範囲の少なくとも一点において、酸素消費速度が40~150pmol/s/105cellsであることが好ましい。
 〈培養容器〉
 本発明の第二の態様の培養容器は、少なくとも培養面が、前記培養材で形成された、培養容器である。
 本発明の培養容器は、前記培養材そのものであってもよく、前記培養材で一部が構成されたものであってもよい。前記培養材で一部が構成される場合には、少なくとも、細胞やコラーゲン等の足場材が直接接する面が前記培養材により構成される。
 本発明の培養容器は、形状安定性に優れ、細胞等への酸素供給も充分である。培養容器としては、形状や大きさは特に制限されないが、例えば、シャーレ、フラスコ、インサート、プレート、ボトル、バッグ等が挙げられる。培養容器は、少なくとも一つのウェルを有することが好ましい。すなわち、培養容器はウェルを有するプレートであることが好ましく、1ウェル、6ウェル、12ウェル、24ウェル、48ウェル、96ウェル、384ウェル、1536ウェル等のウェルを有するプレートであるとさらに好ましい。
 本発明の培養容器は、培養面に、細胞等の足場となるための天然高分子材料、合成高分子材料、または無機材料がコーティングされていないものを意味する。
 培養容器が、シャーレ、フラスコ、インサート、またはプレートの場合、底面が培養面であるので、培養容器は、これらの底面、側面、上面のうち、少なくとも底面の一部または全部を構成することが好ましい。少なくとも底面(培養面)が本発明の培養材で構成されていると、前記培養材を介して培地中に酸素を効率的に供給できることから、培地中にある細胞等を効率的に増殖させることができる。さらに、底面の形状安定性が優れていることから、細胞等を均一に培養することができる。また、透明性に優れているため、細胞等の観察もしやすい。
 底面の形状は特に制限されず、平底、丸底(U底)、平底(F底)、円錐底(V底)、平底+カーブエッジ等が挙げられる。丸底(U底)、平底(F底)、円錐底(V底)、平底+カーブエッジ等に加工する場合には、一般の射出成形やプレス成型で一度に加工してもよいし、フィルムまたはシートを作成しておき、真空成型や圧空成形などで2次加工を行い作成することも可能である。底面の形状は培養の目的に応じて選択されるが、細胞等を2次元培養する際には、平底であることが好ましく、3次元培養する際には丸底(U底)または円錐底(V底)であると好ましい。
 培養容器の前記培養材以外の部分は、前記培養材以外の素材で構成してもよい。前記培養材以外の素材は特に制限されず、公知の素材を用いることができる。例えば、ポリエチレン(PE)、ポリスチレン(PS)、ポリジメチルシロキサン(PDMS)、ガラス等が挙げられる。
 本発明の培養容器は、コンタミネーション防止のために、消毒・滅菌処理を施してもよい。消毒・滅菌処理の方法としては、特に制限されず、流通蒸気法、煮沸法、間歇法、紫外線法等の物理的消毒法、オゾン等の気体、エタノール等の消毒薬を用いる化学的消毒法;高圧蒸気法、乾熱法等の加熱滅菌法;ガンマ線法、高周波法等の照射滅菌法;酸化エチレンガス法、過酸化水素ガスプラズマ法等のガス滅菌法等が挙げられる。中でも操作が簡便で、充分に滅菌が行えることから、エタノール消毒法、高圧蒸気滅菌法、ガンマ線滅菌法、または酸化エチレンガス滅菌法が好ましい。これらの消毒・滅菌処理は、1種単独で行ってもよいし、2種以上を組み合わせて行ってもよい。
 本発明の培養容器の製造方法は、特に制限されず、培養材が培養容器そのものである場合には、前述の方法で製造することができる。培養容器の一部が前記培養材で形成される場合には、培養材と、その他の部材とを、適宜接合することにより培養容器を得ることができる。接合する方法としては特に制限はなく、培養材と、その他の部材とを一体で形成してもよく、接着剤や粘着剤を介して密着させてもよい。
 本発明の培養容器は、細胞培養容器であることが好ましく、肝細胞培養容器であるとより好ましい。
 〈培養器具〉
 本発明の第三の態様である培養器具は、第一の態様である培養材または第二の態様である培養容器から構成される。本発明の培養器具は、第一の態様である培養材または第二の態様である培養容器そのものでもよいし、第一の態様である培養材または第二の態様である培養容器の培養面上に天然高分子材料、合成高分子材料、または無機材料がコーティングされた培養器具であってもよい。
 前記コーティングされた培養器具は、例えば、培養材に天然高分子材料、合成高分子材料、または無機材料を公知の方法によりコーティングすることにより得ることができる。また、前記培養器具は、例えば、培養容器を天然高分子材料、合成高分子材料、または無機材料で公知の方法によりコーティングすることにより得てもよいし、既にコーティングされた前記培養材を培養容器の少なくとも培養面に用いることにより得てもよい。
 前記コーティングされた培養器具は、細胞等の接着性、増殖性に優れる。これは、培養面にコーティングされている天然高分子材料、合成高分子材料、または無機材料が、細胞等の足場となるためと考えられる。したがって、付着性の細胞等を培養する際には、通常、培養材、または培養容器に天然高分子材料、合成高分子材料、または無機材料をコーティングし、培養器具として用いる。
 前記天然高分子材料、合成高分子材料、または無機材料は特に制限されないが、天然高分子材料として、コラーゲン、ゼラチン、アルギン酸、ヒアルロン酸やコンドロイチン硫酸等のグリコサミノグリカン、フィブロネクチン、ラミニン、フィブリノーゲン、オステオポンチン、テネイシン、ビトロネクチン、トロンボスボジン、アガロース、エラスチン、ケラチン、キトサン、フィブリン、フィブロイン、糖類、合成高分子材料として、ポリグルコース酸、ポリ乳酸、ポリエチレングリコール、ポリカプロラクトン、合成ペプチド類、合成タンパク質類、合成高分子材料としてポリエチレングリコール、ポリヒドロキシエチルメタクリラート、ポリエリレンイミン、無機材料として、β-リン酸三カルシウム、炭酸カルシウムなどが挙げられる。
 また、前記天然高分子材料、合成高分子材料、または無機材料としては、従来の細胞外マトリックス成分等のハイドロゲルをガラス化した後に再水和して得られるビトリゲルなども挙げられる。例えば、細胞外マトリックス成分の一つであるコラーゲンから作製された高密度のコラーゲン繊維網で構成されるコラーゲンビトリゲルも挙げられる。
 細胞の接着性や細胞の増殖性を向上させ、細胞の機能をより長期に維持させるために、コラーゲン、ゼラチン、ラミニン、ポリリジン等のタンパク質、またはペプチドによるコーティングが好ましく、コラーゲンまたはポリリジンによるコーティング処理がより好ましい。これらのコーティングは、1種単独でもよいし、2種以上を組み合わせて行ってもよい。
 本発明の培養器具は、細胞培養器具であることが好ましく、肝細胞培養器具であるとより好ましい。
 〈培養方法〉
 本発明の第四の態様である細胞、組織、または器官の培養方法は、第三の態様である培養器具内で細胞、組織または器官をインキュベートする工程を有する培養方法である。
 前記細胞等の培養方法は、前記培養器具内で細胞等をインキュベートする工程を有すればよく、その他の培養条件は細胞等の特性に応じて適宜選択すればよい。前記細胞等の培養方法は、細胞の培養方法であることが好ましく、肝細胞の培養方法であるとさらに好ましい。
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。
 なお、実施例におけるポリマー分析値測定方法、垂れ下がり距離の測定方法、水接触角の測定方法、コラーゲンコート溶液の調整方法、細胞種と培養液の調製方法、培地中の溶存酸素濃度の測定方法、酸素消費速度の算出方法、代謝活性値の測定方法、細胞接着性の評価方法、培養した細胞の自家蛍光の観察方法、および薬剤収着性の評価を以下に記載した。
[重量平均分子量(Mw)および分子量分布(Mw/Mn)]
 本発明の培養材として用いた4-メチル-1-ペンテン重合体の重量平均分子量Mw、および、分子量分布(Mw/Mn)をゲルパーミュエーションクロマトグラフィー(GPC)により測定した。
 具体的には、下記の条件で、オルトジクロロベンゼンに溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を、ポリスチレンスタンダードによって分子量を較正して測定した。
・装置:ゲル浸透クロマトグラフ HLC-8321 GPC/HT型 (東ソー社製)
・データ解析ソフト:Empower3(Waters社製)
・検出器:示差屈折計
・直列連結カラム:TSKgel GMH6-HT(2本)、および、TSKgel GMH6-HTL(2本)
・カラム温度:140℃
・流量:1.0ml/分
・試料濃度:1.5mg/ml
[垂れ下がり距離の測定]
 縦×横が100mm×10mmのサイズで試験片を切り出して、該試験片の縦寸法に対して50mmだけ試験台の水平な上面から水平方向へはみ出した状態で試験台に固定し、固定から3分後に、試験台からはみ出した試験片の先端が試験台の上面を含む水平面から鉛直下方へ垂れ下がった距離を測定した。前記固定から測定までは室温23℃であった。結果を表1に示す。
[水接触角の測定]
 培養材の表面親水化処理後の水接触角の測定は、日本工業規格JIS-R3257(基板ガラス表面のぬれ性試験方法)に準じて、25±5℃、50±10%の恒温恒湿条件下で水滴の形状を球形とみなせる4μL以下の容量の水滴を基材表面に滴下し、静滴法により、基材表面に水滴が接触した直後から1分以内の基材と水滴の接触界面の角度を計測する方法で行うことができる。本実施形態においては、上記方法により水滴が接触した直後から1分以内の数値を物性値として取り扱った。
[コラーゲンコート溶液の調製]
 0.1Mの塩酸溶液(容量分析用、富士フイルム和光純薬)を注射用水(日本薬局方、大塚製薬)で100倍希釈し、0.001Mの塩酸溶液を調製してろ過滅菌をした。3mg/mLのコラーゲン溶液(セルマトリックスTypeI-P、ブタ腱由来、新田ゼラチン)を0.001Mの塩酸溶液で2倍希釈し、1.5mg/mLのコラーゲンコート溶液を調製した。
[細胞種と培養液の調製]
 ラット初代凍結肝細胞を含む細胞懸濁液を入れた遠沈管(50ml)に培養液を加えた。培養液は、ウシ胎児血清(Fetal Bovine Serum、FBS、富士フイルム和光純薬)を1.5mL、注射用水(扶桑薬品工業)で3.0g/mLに希釈したL-プロリン(培養用、富士フイルム和光純薬)溶液を0.15mL、エタノール(分子生物学用、富士フィルム和光純薬)で1×10-3Mに希釈したデキサメタゾン(生化学用、富士フイルム和光純薬)溶液を1.5μL、エタノールで36mMに希釈したハイドロコルチゾン(培養用、富士フイルム和光純薬)溶液を21μL、注射用水で1.0mg/mLに希釈したBSA溶液を用いて、さらに20μg/mLに希釈した上皮成長因子(Epidermal growth factor、EGF、細胞生物学用、富士フイルム和光純薬)溶液を15μL、インスリン溶液(10mg/mL in HEPESS、SIGMA)を8.7μL、ペニシリン-ストレプトマイシン溶液(5000units/mLペニシリン、5000μg/mLストレプトマイシン含有、培養用、富士フイルム和光純薬)を0.3mL、D-MEM培地(4500mg/mL D-グルコース、584mg/mL L-グルタミン、15mg/mLフェノールレッド、110mg/mLピルビン酸ナトリウム、3700mg/mL炭酸水素ナトリウム含有、培養用、富士フイルム和光純薬)を13mL加えて調整した。細胞密度の調整は、ラット初代凍結肝細胞を含む細胞懸濁液の細胞数を調整する方法で実施し、特に断りのない限りは1.0×105cells/cm2の細胞密度で、実施例8および比較例6の高密度培養では4.0×105cells/cm2の細胞密度で実施した。
[酸素透過係数の測定、および酸素透過度の算出]
 東洋精機製作所製差圧式ガス透過率測定装置MT-C3を用いて温度23℃、湿度0%RHの環境下にて酸素透過係数を測定した。測定部径は70mm(透過面積は38.46cm2)とした。酸素透過係数が大きいことが予想されたため、予めサンプルにアルミニウムマスクを施し、実透過面積を5.0cm2とした。
 測定した酸素透過係数[cm3×mm/(m2×24h×atm)]の値をフィルム(培養材)の厚み(μm)で除して、酸素透過度[cm3/(m2×24h×atm)]を算出した。
[培地中の溶存酸素濃度の測定]
 細胞播種の1日後、培養容器の培養液を除去した後、新たに培養液を0.5mL添加し、FireSting酸素モニター(株式会社ビー・エー・エス)を用いて培養液中の溶存酸素濃度を測定した。測定は、加湿インキュベーター中で実施した。センサーをジャッキで培養容器底面から80μmの高さに設置し、1時間測定した。1時間後の溶存酸素濃度を、培養液中の飽和酸素濃度で除して100をかけた値(%)を表1に示す。培養液中の飽和酸素濃度は蛍光式の酸素センサー(FireSting酸素モニター、株式会社ビー・エー・エス社製)を用いて測定した。
[酸素消費速度の算出]
 外気(加湿インキュベーター中)の酸素濃度(20%)と上記の培養液中の溶存酸素濃度の差と酸素透過度の積を細胞密度で除して、細胞当たりの消費量として算出した。
[代謝活性値の測定]
 細胞播種24時間後の培養容器中の培養液を除去した後、培養液で希釈したLuciferin-CEEを添加して、さらに3時間培養した。培養後の細胞をLuciferin-CEEを含む培養液を同伴して96ウェルプレートに移した後、Luciferin Detection RegentとReconstitution Bufferの混合液を添加して、室温で遮光して1時間反応させた。1時間後、ルミノメーターで発光量(Relative Light Unit、RLU)を測定した。
 蛋白量は、培養液で希釈したLuciferin-CEE溶液を除去後、PBS(-)を培地200μL添加した後、セルスクレーパーを用いてエッペンチューブに細胞を回収し、遠心した(4℃、22000×g、10分間)。その後、上澄みを除去し、0.1M水酸化ナトリウム溶液を100μL添加した後、PierceTMBCA Protein Assay Kit(Thermo Fisher Scientific)を使用して蛋白量を測定した。波長450nmの吸光度をプレートリーダー(SPECTRA max PLUS384、Molecular Devices社製)で測定した。
 ルミノメーターで得られたLuciferin-CEE溶液の代謝活性量(pmol/L)をP450-GloTM CYP1A1 Assay kit(Promega)を使用して測定し、吸光度から得られたタンパク量およびLuciferin-CEE溶液の反応時間で除することにより、代謝活性値(pmol/min/mg protein)を算出した。結果を表1に示す。
[細胞接着性の評価]
 細胞接着性評価は、容器にラット凍結肝細胞の細胞懸濁液を0.5mL播種し、37℃、5%CO2下でインキュベートし、培養1日および7日後に顕微鏡観察した。肝細胞が接着し、伸展している状態をAA、肝細胞は接着し、わずかに伸展している状態をBB、肝細胞が接着しているが丸くなり伸展していないか、もしくは剥離した状態をCCとして表1に示した。
[培養容器の自家蛍光の観察]
 オールインワン蛍光顕微鏡BZ-X700(キーエンス製)を使用し、顕微鏡に付帯した、青色呈色:BZ-XフィルタDAPI、緑色呈色:BZ-XフィルタGFP、および赤色呈色:BZ-XフィルタTexasRedとの名称のフィルタを介して、培養容器底面の培養材を観察し、青、緑および赤の蛍光色が生じるかを観察した。
[薬剤収着性の評価]
 24ウェル容器の任意の3つのウェルに対して、各種薬剤溶液を1ウェルあたり0.5mL加え、23℃下にて2日間静置後に薬剤溶液を回収した。回収した薬剤溶液の濃度を蛍光分析法またはLC/MSにて測定し、容器に添加する前の薬剤溶液濃度に対する薬剤残存率を算出し、3つのウェル内の薬剤残存率の平均値を求めた。
評価用薬剤
1.ローダミンBのリン酸緩衝生理食塩水(以下、PBSという)溶液(濃度10μmol/L)
2.ローダミン123のPBS溶液(濃度10μmol/L)
3.ローダミン6GのPBS溶液(濃度10μmol/L)
4.シクロスポリンAのジメチルスルホキシド(以下、DMSOという)溶液(濃度10μmol/L)
5.チクロピジン塩酸塩のDMSO溶液(濃度10μmol/L)
6.レフルノマイドのDMSO溶液(濃度10μmol/L)
7.トログリタゾンのDMSO溶液(濃度10μmol/L)
8.イソプロテレノール塩酸塩のDMSO溶液(濃度10μmol/L)
上述の評価用薬剤1~3は、蛍光分析法にて濃度分析を実施し、評価用薬剤4~8はLC/MSによる濃度分析を実施した。
<蛍光分析条件>
・評価装置:FP-6600(日本分光製 分光蛍光光度計)
・使用セル:石英製マイクロセル
・バンド幅:励起側:5nm、蛍光側:6nm
・感度(PMT電圧):400V
・励起波長:ローダミンB 555nm
      ローダミン123 505nm
      ローダミン6G 525nm
・蛍光測定波長:ローダミンB 580nm
        ローダミン123 530nm
        ローダミン6G 555nm
・スキャンスピード:2000nm/min
<LC/MS条件>
・装置:Acquity UPLC I-class system/
TQ-S micro(water)
・イオン化法:エレクトロスプレーイオン化(ESI)、正負イオン検出
検出:選択反応モニタリング(SRM)
1.極性:
Positive:シクロスポリンA、チクロピジン塩酸塩、イソプロテレノール塩酸塩
Negative:レフルノマイド、トログリタゾン
2.プリカーサーイオン:
シクロスポリンA:m/z1203
チクロピジン塩酸:m/z264
レフルノマイド:m/z269
トログリタゾン:m/z440
イソプロテレノール塩酸塩:m/z212
3.プロダクトイオン:
シクロスポリンA:m/z156
チクロピジン塩酸塩:m/z89
レフルノマイド:m/z82
トログリタゾン:m/z42
イソプロテレノール塩酸塩:m/z152
[製造例1]培養材の製造方法
 4-メチル-1-ペンテン重合体であるTPX(登録商標)(三井化学株式会社製:分子量(Mw)=428000、分子量分布(Mw/Mn)=4.1)を使用し、基材層を押し出すフルフライト型のスクリューを備えたTダイ付き押出機へ投入し、押出し温度を270℃、ロール温度を60℃に設定し、ロール回転速度の条件を変えて押出し成形することで、厚みの異なる6種のフィルムを得た。厚み50μm、100μm、200μm、280μm、400μmのフィルムをそれぞれフィルム1、フィルム2、フィルム3、フィルム4、フィルム5とした。
[製造例2]培養材の表面処理法と簡易培養容器の作製法
 フィルム1~5は、テーブル型コロナ処理装置(春日電機製)を用いて、コロナ処理を行った(処理速度3m/min、出力0.5kW、2往復)。その際の培養材表面を測定した水接触角を表1に示す。
 その後、直径23mmのポンチでカットし、消毒用エタノール(日本薬局方、富士フイルム和光純薬)に1時間浸漬させた。1時間後、表面に付着したエタノールを除去するためにダルベッコPBS(-)(培養用、富士フイルム和光純薬)に1時間浸漬させた後、1晩、室温で乾燥させて滅菌し、滅菌済みのポリエチレン製枠でフィルムの上下面を挟み、培養面の内径が15mmである培養容器1~5を作製した。
[製造例3]培養材の表面処理法と24ウェル培養プレートの作製法
 フィルム1は常圧プラズマ表面処理装置(積水化学工業製)を用いて、チャンバー内を窒素の気流で満たしプラズマ処理した(処理速度2m/min、出力4.5kW、2往復)。その際の培養材表面を測定した水接触角を表1に示す。
 その後、ポリスチレン(PSとも称す)製24ウェル容器枠の底面に、プラズマ処理したフィルム1を医療用粘着剤を介して密着させて24ウェルの培養プレート(培養容器6)を作製し、耐ガンマ線袋に梱包して10kGyのガンマ線を照射し滅菌した。
[実施例1]
 厚み50μmのフィルム1から作製した培養容器1の培養面に、1.5mg/mLのコラーゲンコート溶液を0.5mL添加した後、余分なコラーゲンコート溶液を除去した。室温で30~60分間静置した後、ダルベッコPBS(-)で洗浄して、一晩、室温で乾燥させた。同法でコラーゲンコート済みの培養容器1を5個準備した。
 次いで、ラット初代凍結肝細胞を含む培養液(0.5mL)を5個の培養容器1の培養面それぞれにマイクロピペットで播種しポリスチレン製の蓋を被せインキュベーターに持ち込み、37℃、5%CO2下培養を開始した。1日後、インキュベーターから4個の培養容器1を取り出して、容器底面を横方向から覗き込み、培養環境でフィルムの垂れ下がりの有無を観察した結果、何れの容器も容器作製時と変化無く垂れ下がりは見られなかった。次いで、4個の培養容器1のそれぞれを顕微鏡観察し、細胞が接着しながら伸展している様子を観察した。その後、4個のうち1個で培地中の溶存酸素濃度を測定し、酸素消費速度を算出した。残り3個で代謝活性を測定した結果を表1に示す。(代謝活性値は、3個の容器の結果を平均値として表1に示した。)さらに、残り1個の容器で7日間培養後、インキュベーターから取り出し、細胞が接着しながら伸展している様子を観察した結果を表1に示す。図1に1日後、7日後の細胞を位相差顕微鏡で観察した結果を示す。
[実施例2]
 厚み100μmのフィルム2から作製した培養容器2を用いた以外は実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例3]
 厚み200μmのフィルム3から作製した培養容器3を用いた以外は実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例4]
 厚み280μmのフィルム4から作製した培養容器4を用いた以外は実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例5]
 厚み400μmのフィルム5から作製した培養容器5を用いた以外は実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例6]
 製造例3で作製した24ウェルの培養プレートである培養容器6を使用した以外は実施例1と同様な方法でラット初代凍結肝細胞を培養した。この際、24個のウェルのうち4個を使用した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例7]
 製造例3で作製した24ウェルの培養プレートである培養容器6を使用し、コラーゲンコートを実施せずに、直接、ラット初代凍結肝細胞を含む培養液(0.5mL)を培養容器6の4個のウェルそれぞれに播種し、実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例8]
 培養液中の細胞密度を4.0×105cells/cm2に変更したこと以外は、実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例9]
 重量平均分子量(Mw)が95000であり、分子量分布(Mw/Mn)が3.5の4-メチル-1-ペンテン重合体であるTPX(登録商標)(三井化学株式会社製)を使用したこと以外は、製造例1と同様な方法で厚み50μmのフィルム6を得た。
 フィルム1をフィルム6に変更した以外は、実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[実施例10]
 培養材が4-メチル-1-ペンテン重合体である実施例5の培養容器底面を蛍光顕微鏡で観察し培養材由来の自家蛍光を生じるか確認した結果、BZ-XフィルタDAPI、BZ-XフィルタGFPおよびBZ-XフィルタTexasRedの何れの波長フィルタで観察しても材料由来の蛍光は見られず、細胞を直接当該容器の培養面で観察できることが解った。図4に蛍光顕微鏡で観察した培養面の写真を示す。
[比較例1]
 厚み600μmであるフィルム6を製造例1と同様な方法で作製し、製造例2と同様な方法でフィルム6の表面処理と滅菌を実施し培養容器c1を作製した。次いで、実施例1と同様な方法でラット初代凍結肝細胞を培養した。24時間後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[比較例2]
 厚み50μmであるフィルム1を用いて製造例2の表面処理を実施せずに滅菌し、培養容器c2を作製した。次いで、実施例1に従いコラーゲンコートを実施したが、コラーゲンを含む溶液を培養面で弾いてしまいコラーゲンコートができず、ラット初代凍結肝細胞の培養まで至らなかった。
[比較例3]
 比較例2で作成した培養容器c2を用いて、コラーゲンコートを実施せずに直接ラット初代凍結肝細胞の培養液(0.5mL)を播種し、ポリスチレン製の蓋を被せインキュベーターに持ち込み、37℃、5%CO2下培養を開始した。1日後、インキュベーターから取り出して、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。次いで、溶存酸素濃度や代謝活性評価のために培地を除去したところ、細胞は培養面に定着せず培地とともに容器から除去されてしまい培養面には僅かな細胞しか残っておらず、溶存酸素濃度や代謝活性の評価ができなかった。7日後の評価は中止した。
[比較例4]
 培養面の厚みが1000μmである市販の24ウェルTCPS培養容器(コーニング社製)(ポリスチレン(PS)製)を使用した以外は、実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。図2に1日後、7日後の細胞を位相差顕微鏡で観察した結果を示す。
[比較例5] 
 高酸素透過容器として培養材の厚みが350μmである市販の24ウェルPDMS(ポリジメチルシロキサン)製培養容器(製品名G-plate、VECELL社製型番V24WGPB-10)を使用した以外は実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、インキュベーターから取り出して、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、フィルムは下方に撓み垂れ下がった状態に変化していた。溶存酸素濃度や代謝活性を評価するために培地を除去したところ、細胞は培養面の中心に群生した状態で増殖していた。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。図3に1日後、7日後の細胞を位相差顕微鏡で観察した結果を示す。
[比較例6] 
 比較例4に記載の24ウェルTCPS培養容器(コーニング社製)(ポリスチレン(PS)製)を使用し、培養液中の細胞密度を4.0×105cells/cm2に変更したこと以外は、実施例1と同様な方法でラット初代凍結肝細胞を培養した。1日後、容器底面を横方向から覗き込み培養環境でフィルムの垂れ下がりの有無を観察した結果、容器作製時と変化無く垂れ下がりは見られなかった。1日後の培養の結果として、細胞の接着性、溶存酸素濃度から酸素消費速度を算出した結果、代謝活性の測定値、および7日後の細胞の接着性を評価した結果を表1に示す。
[比較例7]
 培養材がポリスチレンである比較例4の培養容器底面を蛍光顕微鏡で観察した結果、BZ-XフィルタGFPおよびBZ-XフィルタTexasRedの波長フィルタで観察すると材料由来の蛍光は観察されなかったが、BZ-XフィルタDAPIの波長フィルタで観察すると材料由来の青色の発光が見られた。当該培養容器では直接細胞を蛍光観察できないことが解った。図5に蛍光顕微鏡で観察した培養面の写真を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、本発明の培養材を培養容器底部に配置した培養容器を用いたラット初代凍結肝細胞の培養では、最長7日間の長期培養が可能であった。容器底面の撓みは無く、細胞は培養面全体に均一に接着、増殖し、形態を維持していた。容器底面は、分子量(Mw)が95000であり、膜厚50μmであるフィルム6を培養材に用いた場合でも撓み無く充分な強度を維持しており、本発明の4-メチル-1-ペンテン重合体(X)を含む培養材は優れた形状安定性を有していた。
 本発明の培養材を用いたラット初代凍結肝細胞の培養の効果をより詳細に見ると、培養1日後の培地中酸素濃度を測定して算出した細胞の酸素消費速度は40pmol/s/105cells以上であり、細胞密度を4倍に高めた結果でも充分な酸素消費速度を維持しており、培養材を介して効果的に酸素が供給されていた。これにより、肝細胞の機能として薬剤の代謝活性を評価した代謝活性値は高く、細胞の機能は正常に維持されていた。一方、比較例1、4の酸素消費量は30pmol/s/105cells未満であり、少なくともラット初代凍結肝細胞が増殖し、機能を発現するのに必要な酸素が供給されていなかった。これにより、特に比較例4、6のPS容器で培養した細胞は代謝活性値も低く、細胞は増殖していても正常な機能を発現できていなかった。
 さらに、高酸素透過性の容器として広く知られているPDMSを容器底面に配置した培養容器を用いた結果では(比較例5)、1つの穴の内径が16mmとそれ程大きく無いにも関わらず、1日後の形態で容器底部のPDMSが大きく撓んでしまった。これは、PDMSフィルムの垂れ下がり距離が48mmであり撓みやすいためと推測される。このとき細胞は容器底面の中心部に群生した状態で集まっており、代謝活性値を確認すると非常に低かった。群生した細胞間で細胞密度の疎密差が生じ、密な状態では酸素が欠乏しているなどの不具合が予測される。加えて、PDMSの残モノマーによる被毒の影響など材料由来の不具合も考えられる。
 さらに、本発明の培養材の表面性状について、培養材表面に直接細胞を播種して培養する場合、あるいはコラーゲンコートを施して培養する場合、何れにおいても、細胞やコラーゲンは良好な状態で培養材表面に密着していた。一方、比較例2、3に示した結果から、少なくとも本実施形態のコラーゲン、もしくは細胞を用いる培養では培養材表面が親水性であること(一定の水接触角であること)の必要性が示された。多種多様な細胞が知られ、培養方法についても細胞やその目的に応じて様々な培養方法が知られている現在では、培養材表面の親水化処理は、本発明の酸素透過性容器を用いる際の1つの手段として有用な方法と位置付けられる。
[実施例11]
 実施例6で用いた4-メチル-1-ペンテン重合体容器に対して、薬剤収着試験を行った。結果を表2に示す。
[比較例7、8]
 比較例4で用いた24ウェルTCPS培養容器(コーニング社製)(ポリスチレン(PS)製)と、比較例5で用いた24ウェルPDMS製培養容器(製品名G-plate、VECELLTM型番V24WGPB-10)に対して、薬剤収着試験を行い、それぞれ比較例7、8とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
  表2より、本発明の培養材を培養容器底部に配置した培養容器を用いた場合(実施例11)、PS製容器、PDMS容器より薬剤が収着しにくいことがわかった。すなわち、本発明の4-メチル-1-ペンテン重合体(X)を含む培養材は優れた薬剤低収着性を有していた。
 以上の結果から、本発明の培養材は、優れた形状安定性、酸素供給性に加え、細胞等の接着性にも優れ、樹脂容器であるにも関わらず自家蛍光を生じず、培養した細胞をそのまま蛍光観察できる利便性にも優れることが解った。また、薬剤収着性が低いため、創薬スクリーニング用途や診断用途にも好適に用いられる。
 本発明の培養材は、前述のように、多種多様な細胞を培養可能であり、また、細胞やその目的に応じた様々な培養方法にも対応可能である、さらに、本発明の培養材表面の親水化処理を施した場合、更に多くの用途に応用可能であり、産業上の利用可能性を有する。

Claims (14)

  1.  4-メチル-1-ペンテン重合体(X)を含む、細胞、組織、または器官の培養材であって、培養面の水接触角が50°~100°であり、かつ
     下記試験方法(A)による垂れ下がり距離が0~5mmであり、
     温度23℃、湿度0%の時の酸素透過度が4500~90000cm3/(m2×24h×atm)である培養材。
     試験方法(A):前記培養材と同一の材料であり、かつ前記培養材の培養面と同一の厚さであり、縦×横が100mm×10mmの平板状の試験片を作成する。
     前記試験片を、試験片の縦寸法に対して50mmが、試験台の水平な上面から水平方向へはみ出した状態で試験台に固定する。
     固定から3分後、試験台からはみ出した前記試験片の先端が前記試験台の上面を含む水平面から鉛直下方へ垂れ下がった距離を測定する。(但し、前記固定から測定は室温で行う。)
  2.  前記4-メチル-1-ペンテン重合体(X)が、4-メチル-1-ペンテン単独重合体(x1)並びに、4-メチル-1-ペンテンと、エチレンおよび炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体(x2)から選択される少なくとも1種の重合体である、請求項1に記載の培養材。
  3.  下記試験方法(B)を、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行った際に、前記細胞密度の範囲の少なくとも一点において、1時間後の培養液中の溶存酸素濃度が、培養液中の飽和酸素濃度の2~20%である、請求項1または2に記載の培養材。
     試験方法(B):ポリエチレンで構成される円筒部と、前記培養材と同一の材料であり、前記培養材の培養面と同一の厚さで構成された平板状の底面部とからなる、培養面積が2cm2である、コラーゲンコートされた培養容器に、ラット初代培養肝細胞をラット初代肝細胞用培養液0.5mLで播種し、温度37℃、二酸化炭素濃度5.0%、酸素濃度20%下で培養し、播種24時間後に培養容器内の培養液を除去した後、新たに培養液を0.5mL添加し、培養容器底面から80μmの高さで酸素濃度を1時間測定する。
  4.  前記試験方法(B)を、播種されるラット初代培養肝細胞の細胞密度が1.0×105cells/cm2~4.0×105cells/cm2で行った際に、前記細胞密度の範囲の少なくとも一点において、酸素消費速度が40~150pmol/s/105cellsである、請求項3に記載の培養材。
  5.  フィルム、シート、または培養容器である、請求項1~4にいずれか一項に記載の培養材。
  6.  培養容器が、シャーレ、フラスコ、インサート、プレート、ボトルまたはバッグである、請求項5に記載の培養材。
  7.  培養面に、微細加工がなされた請求項1~6のいずれか一項に記載の培養材。
  8.  請求項7に記載の培養材を含むマイクロ流路デバイス。
  9.  少なくとも培養面が、請求項1~7のいずれか一項に記載の培養材で形成された、培養容器。
  10.  少なくとも一つのウェルを有する、請求項9に記載の培養容器。
  11. 請求項1~7のいずれか一項に記載の培養材、または請求項9若しくは10に記載の培養容器から構成される、培養器具。
  12.  培養面に、天然高分子材料、合成高分子材料、または無機材料がコーティングされた、請求項11に記載の培養器具。
  13.  請求項11または12に記載の培養器具内で細胞、組織、または器官をインキュベートする工程を有する、細胞、組織、または器官の培養方法。
  14.  細胞、組織、または器官が、肝細胞である、請求項13に記載の、細胞、組織、または器官の培養方法。
PCT/JP2020/024020 2019-06-21 2020-06-18 培養材およびその用途 WO2020256079A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/279,036 US11254904B2 (en) 2019-06-21 2020-06-18 Culture material and use thereof
SG11202103024RA SG11202103024RA (en) 2019-06-21 2020-06-18 Culture material and use thereof
KR1020217008604A KR102646444B1 (ko) 2019-06-21 2020-06-18 배양재 및 그의 용도
EP20827278.1A EP3839034B1 (en) 2019-06-21 2020-06-18 Culture material and application for same
ES20827278T ES2963127T3 (es) 2019-06-21 2020-06-18 Material de cultivo y uso del mismo
CN202080005455.6A CN112823204B (zh) 2019-06-21 2020-06-18 培养材料及其用途
JP2020562218A JP6826244B1 (ja) 2019-06-21 2020-06-18 培養材およびその用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-115392 2019-06-21
JP2019115392 2019-06-21
JP2019-203071 2019-11-08
JP2019203071 2019-11-08

Publications (1)

Publication Number Publication Date
WO2020256079A1 true WO2020256079A1 (ja) 2020-12-24

Family

ID=74040786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024020 WO2020256079A1 (ja) 2019-06-21 2020-06-18 培養材およびその用途

Country Status (8)

Country Link
US (1) US11254904B2 (ja)
EP (1) EP3839034B1 (ja)
JP (1) JP6826244B1 (ja)
KR (1) KR102646444B1 (ja)
CN (1) CN112823204B (ja)
ES (1) ES2963127T3 (ja)
SG (1) SG11202103024RA (ja)
WO (1) WO2020256079A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138101A1 (ja) * 2020-12-23 2022-06-30 三井化学株式会社 培養部材およびその用途
JPWO2023085019A1 (ja) * 2021-11-09 2023-05-19
WO2023136229A1 (ja) * 2022-01-11 2023-07-20 三井化学株式会社 薬剤の、心筋細胞に対する作用を評価する方法
WO2023234170A1 (ja) * 2022-05-30 2023-12-07 三井化学株式会社 培養容器、その製造方法、および培養方法
WO2024009636A1 (ja) * 2022-07-07 2024-01-11 三井化学株式会社 ウェルプレートおよび培養方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112697A (ja) 1987-10-26 1989-05-01 Mitsubishi Electric Corp マイクロ波放電光源装置用電源装置
JPH08149973A (ja) 1994-09-26 1996-06-11 Mitsubishi Chem Corp 培養容器
JPH11137241A (ja) 1997-11-05 1999-05-25 Otsuka Techno Kk 培養容器
JP2001190267A (ja) 2000-01-07 2001-07-17 Mitsui Chemicals Inc ポリオレフィン樹脂組成物からなる培養容器
JP2004290111A (ja) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd 細胞培養容器及びその製造方法
WO2006054613A1 (ja) 2004-11-17 2006-05-26 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン系重合体の製造方法
JP2009292911A (ja) * 2008-06-04 2009-12-17 Mitsui Chemicals Inc 表面親水性ポリオレフィン成形体およびその製造方法
JP2013169685A (ja) 2012-02-20 2013-09-02 Mitsui Chemicals Inc 表面保護フィルム、これを用いた半導体装置の製造方法
JP2016077164A (ja) 2014-10-10 2016-05-16 大日本印刷株式会社 細胞培養容器
JP2016520307A (ja) * 2013-04-30 2016-07-14 コーニング インコーポレイテッド スフェロイド細胞培養ウェル製品およびその方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112697U (ja) 1988-01-27 1989-07-28
JP4887222B2 (ja) * 2006-06-16 2012-02-29 ニプロ株式会社 細胞培養容器、その製造方法、及び細胞培養方法
JP2008061609A (ja) * 2006-09-08 2008-03-21 Sumitomo Bakelite Co Ltd 細胞培養容器の製造方法および細胞培養容器。
US8722164B2 (en) * 2012-05-11 2014-05-13 Cryovac, Inc. Polymeric film for use in bioprocessing applications
CN106459859B (zh) * 2014-04-10 2020-05-22 As细胞 八棱柱的细胞培养用容器
US11325152B2 (en) * 2018-03-27 2022-05-10 Sio2 Medical Products, Inc. Vessels, containers, and surfaces coated with water barrier coatings

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112697A (ja) 1987-10-26 1989-05-01 Mitsubishi Electric Corp マイクロ波放電光源装置用電源装置
JPH08149973A (ja) 1994-09-26 1996-06-11 Mitsubishi Chem Corp 培養容器
JPH11137241A (ja) 1997-11-05 1999-05-25 Otsuka Techno Kk 培養容器
JP2001190267A (ja) 2000-01-07 2001-07-17 Mitsui Chemicals Inc ポリオレフィン樹脂組成物からなる培養容器
JP2004290111A (ja) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd 細胞培養容器及びその製造方法
WO2006054613A1 (ja) 2004-11-17 2006-05-26 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン系重合体の製造方法
JP2009292911A (ja) * 2008-06-04 2009-12-17 Mitsui Chemicals Inc 表面親水性ポリオレフィン成形体およびその製造方法
JP2013169685A (ja) 2012-02-20 2013-09-02 Mitsui Chemicals Inc 表面保護フィルム、これを用いた半導体装置の製造方法
JP2016520307A (ja) * 2013-04-30 2016-07-14 コーニング インコーポレイテッド スフェロイド細胞培養ウェル製品およびその方法
JP2016077164A (ja) 2014-10-10 2016-05-16 大日本印刷株式会社 細胞培養容器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"G-plate", VECELL INC.
STEVENS, K. M.: "Oxygen requirements for liver cells in vitro.", NATURE, vol. 206, 1965, pages 199
XIAO WSHINOHARA MKOMORI KSAKAI YMATSUI HOSADA T, A: "The importance of physiological oxygen concentrations in the sandwichi cultures of rat hepatocytes on gas-permeable membranes", BIOTECHNOL. PROG., vol. 30, no. 6, 2014, pages 1401 - 1410
YASUYUKI SAKAI: "Enhanced oxygen supply in hepatocyte culture", 9 April 2019, THE JAPANESE SOCIETY FOR THE RESEARCH OF HEPATIC CELLS

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138101A1 (ja) * 2020-12-23 2022-06-30 三井化学株式会社 培養部材およびその用途
JPWO2023085019A1 (ja) * 2021-11-09 2023-05-19
WO2023085019A1 (ja) 2021-11-09 2023-05-19 三井化学株式会社 培養容器及び培養方法
JP7364825B2 (ja) 2021-11-09 2023-10-18 三井化学株式会社 培養容器及び培養方法
WO2023136229A1 (ja) * 2022-01-11 2023-07-20 三井化学株式会社 薬剤の、心筋細胞に対する作用を評価する方法
WO2023234170A1 (ja) * 2022-05-30 2023-12-07 三井化学株式会社 培養容器、その製造方法、および培養方法
WO2024009636A1 (ja) * 2022-07-07 2024-01-11 三井化学株式会社 ウェルプレートおよび培養方法

Also Published As

Publication number Publication date
EP3839034C0 (en) 2023-10-25
EP3839034A1 (en) 2021-06-23
ES2963127T3 (es) 2024-03-25
JPWO2020256079A1 (ja) 2021-09-13
KR20220004613A (ko) 2022-01-11
EP3839034B1 (en) 2023-10-25
JP6826244B1 (ja) 2021-02-03
EP3839034A4 (en) 2021-11-10
US20210309954A1 (en) 2021-10-07
CN112823204B (zh) 2024-03-22
CN112823204A (zh) 2021-05-18
KR102646444B1 (ko) 2024-03-11
SG11202103024RA (en) 2021-04-29
US11254904B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
JP6826244B1 (ja) 培養材およびその用途
AU2017359330B2 (en) 3D vascularized human ocular tissue for cell therapy and drug discovery
Frampton et al. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture
Ai et al. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons
Bakirci et al. Cell sheet based bioink for 3D bioprinting applications
JP2008061609A (ja) 細胞培養容器の製造方法および細胞培養容器。
Kulikouskaya et al. Layer‐by‐layer buildup of polysaccharide‐containing films: Physico‐chemical properties and mesenchymal stem cells adhesion
Chou et al. Relationships between surface roughness/stiffness of chitosan coatings and fabrication of corneal keratocyte spheroids: Effect of degree of deacetylation
Palamà et al. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media
US11499136B2 (en) Cell culture substrate
US20220228108A1 (en) Cell culture base material and cell culture base material with cells
Shotorbani et al. Cell sheet biofabrication by co-administration of mesenchymal stem cells secretome and vitamin C on thermoresponsive polymer
Wong et al. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting
Bayramoglu et al. Preparation and characterization of poly (hydroxyethyl methacrylate-co-poly (ethyleneglycol-methacrylate)/hydroxypropyl-chitosan) hydrogel films: Adhesion of rat mesenchymal stem cells
Liu et al. A facile strategy for fabricating tissue engineering scaffolds with sophisticated prevascularized networks for bulk tissue regeneration
JP2008220205A (ja) 神経幹細胞凝集塊形成用容器、その製造方法、及び神経幹細胞凝集塊の作成方法。
Samanipour et al. Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold
JP7364825B2 (ja) 培養容器及び培養方法
Mancinelli et al. Recreating cellular barriers in human microphysiological systems in-vitro
JP2022099831A (ja) 培養部材およびその用途
WO2022138101A1 (ja) 培養部材およびその用途
Yilmaz et al. Development of plant-based biopolymer coatings for 3D cell culture: boron–silica-enriched quince seed mucilage nanocomposites
WO2023234170A1 (ja) 培養容器、その製造方法、および培養方法
JP2022157708A (ja) 多能性幹細胞の分化方法
JP2022154850A (ja) 心筋細胞の培養方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020562218

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020827278

Country of ref document: EP

Effective date: 20210316

NENP Non-entry into the national phase

Ref country code: DE