WO2020255936A1 - 受光素子および光回路の遮光構造 - Google Patents

受光素子および光回路の遮光構造 Download PDF

Info

Publication number
WO2020255936A1
WO2020255936A1 PCT/JP2020/023475 JP2020023475W WO2020255936A1 WO 2020255936 A1 WO2020255936 A1 WO 2020255936A1 JP 2020023475 W JP2020023475 W JP 2020023475W WO 2020255936 A1 WO2020255936 A1 WO 2020255936A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor layer
receiving element
electrode
layer
Prior art date
Application number
PCT/JP2020/023475
Other languages
English (en)
French (fr)
Inventor
圭一 守田
敦志 村澤
宏樹 川尻
那須 悠介
Original Assignee
Nttエレクトロニクス株式会社
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nttエレクトロニクス株式会社, 日本電信電話株式会社 filed Critical Nttエレクトロニクス株式会社
Priority to CN202080044710.8A priority Critical patent/CN114008797B/zh
Priority to US17/619,070 priority patent/US20220399467A1/en
Publication of WO2020255936A1 publication Critical patent/WO2020255936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type

Definitions

  • the present invention relates to a light receiving element. More specifically, the present invention relates to a light-shielding structure of a light receiving element of an optical circuit.
  • Digital coherent optical transmission technology that realizes optical transmission of over 100 Gbps has become widespread, and high-speed and large-capacity optical networks have been realized. Along with this, further miniaturization of digital coherent optical transmission devices such as “digital coherent transceivers” is required.
  • the specifications of a digital coherent transceiver (hereinafter referred to as a transceiver for the sake of simplicity) that can be attached and detached by processing optical signals of a plurality of channels are specified in an optical transmission device.
  • the standards for the power consumption and size of transceivers are determined by the standardization organization OIF (The Optical Internetworking Forum) and the like.
  • the width of the first-generation 100 Gbps transceiver was about 80 mm, but in the next-generation 400 Gbps transceiver, it has been downsized to about 20 mm (CFP8, OSPF standard, etc.).
  • the optical transmission / reception device which is one of the main elements constituting the transceiver, is also required to have a size of about 10 to 20 mm square.
  • An optical transmission / reception device is a module in which optical components and electrical components are mounted on a multilayer wiring board, and integrates optical transmission / reception functions such as an optical modulator and a coherent receiver.
  • the optical component is configured as an optical integrated circuit (PIC: Photonic Integrated Circuit) on a single substrate such as silicon, quartz, or InP.
  • PIC Photonic Integrated Circuit
  • an optical transmission / reception device high-level light is supplied from the outside of the device via an optical fiber from a light source used in a transmitter or a light source that supplies locally oscillating light (Lo light) of a receiver. These lights are given to the transmitter and the receiver by optical coupling with the PIC, but the light that is not optical coupled behaves as stray light in the PIC. Stray light acts as noise on a light receiving element (for example, a photodetector) in a receiver and a level monitor element of transmitted light, and causes various performances of an optical transmitting / receiving device to deteriorate.
  • a light receiving element for example, a photodetector
  • Patent Document 1 discloses a conductive via structure formed in an empty area that does not have a transmission / reception function in a PIC.
  • FIG. 6 is a diagram showing a conductive via structure that suppresses stray light in a conventional optical circuit.
  • FIG. 6 is a top view of a part of the optical circuit 20 viewed perpendicular to the substrate surface, and shows the vicinity of the optical waveguide 21 connecting between the receiving unit including the light receiving element and the transmitting unit. It shows a situation in which stray lights 23 and 24 generated in the transmitting unit propagate in the substrate toward the receiving unit and are coupled to the light receiving element of the receiving unit.
  • the optical circuit 20 includes a large number of conductive vias 22 on both sides of the optical waveguide 21.
  • the conductive via 22 prevents the stray light 23 and 24 from traveling straight, and can suppress the stray light reaching the light receiving element of the receiving unit.
  • a conductive wall disclosed in Patent Document 1 As another configuration for suppressing stray light, a conductive wall disclosed in Patent Document 1 and a configuration in which a groove is formed on a substrate and stray light is reflected by an air layer in the groove are known. .. Each of the light-shielding structures was configured in an empty part of the substrate, which did not realize the light transmission / reception function.
  • the size of the silicon substrate in the PIC in the optical transmission / reception device is reduced to about 10 mm square, and the transmitter and receiver blocks are arranged without gaps on the substrate. Therefore, there is not enough free space that is not related to the light transmission / reception function, and it is difficult to arrange the conductive via as shown in FIG. 6 at an effective position against stray light. Even if the arrangement is possible, the conductive via must be close to the functional part for transmitting and receiving light.
  • Structures such as conductive vias, walls and grooves fluctuate the stress of the substrate. Due to this stress, for example, the branching ratio of the optical branching circuit does not reach the design value or varies. It is also known that the polarization separation performance of the polarization separator deteriorates or the optical path length difference of the interferometer changes due to the stress change of the substrate.
  • the places where the conductive vias, walls, and grooves are arranged are limited as a measure against stray light, and the scattered light and reflected light generated by the conductive vias and walls are limited. It was also difficult to handle. Even if they can be arranged, there is a problem that the characteristic values of the optical circuit function deviate from each other, causing fluctuations and variations, and it is difficult to design a circuit that effectively suppresses stray light reaching the light receiving element.
  • Optical transmission / reception devices are being integrated to incorporate new functions such as monitor circuits outside the board into a single silicon board, and it is thought that measures against stray light will become even more difficult in the future.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide an effective light-shielding structure in an optical circuit with advanced integration.
  • one embodiment of the present invention comprises a substrate, a first semiconductor layer configured above the substrate and operating as a light absorber, and the first semiconductor layer.
  • a light receiving element formed on or adjacent to the first semiconductor layer and provided with a second semiconductor layer having a semiconductor type different from that of the first semiconductor layer, and is a substrate surface of the substrate. Continuous to the upper surface of the end including one or more sides of the region of the first semiconductor layer, the side surface of the end, and the upper surface of the layer in contact with the lower side of the first semiconductor layer.
  • a wall-shaped or columnar wiring electrode formed vertically from the bottom of the stepped electrode toward the surface, and a wiring for extracting a detected electric signal from the light receiving element. It can be a light receiving element further including an electrode.
  • the wiring electrode is formed substantially parallel to one side of the one or more sides, and can have a width equal to or larger than the length of the one side of the region.
  • the wiring electrode may have a wall-like shape or an L-shape or a U-shape when looking inside the substrate surface. Further, the wiring electrode may be formed so as to be inclined with respect to one side of the one or more sides.
  • the wiring electrode is formed perpendicularly from the bottom of the stepped electrode toward the intermediate wiring layer on the surface side of the stepped electrode formed in the substrate. It is also possible to include a first interlayer wiring electrode and a second interlayer wiring electrode formed vertically from the intermediate wiring layer toward the surface. Further, a similar third interlayer wiring electrode may be further included.
  • the first semiconductor layer is a p-type silicon layer
  • the second semiconductor layer is an insulating i-type germanium layer and an n-type germanium layer.
  • a PIN-type photodiode can be configured by being sequentially laminated on the first semiconductor layer.
  • the light receiving element has the first semiconductor layer and the second semiconductor layer formed along the substrate surface with an intermediate region interposed therebetween, and has different semiconductor types from each other.
  • a PIN junction is formed by the first semiconductor layer, the intermediate region, and the second semiconductor layer, and is formed on one or more sides of the region including the first semiconductor layer and the second semiconductor layer.
  • the stepped electrode can also be formed. This embodiment corresponds to the light receiving element of the fourth embodiment.
  • the region of the first semiconductor layer can be a rectangular region.
  • the above-mentioned light receiving element can be configured as a digital coherent transmission / reception device.
  • the light-shielding structure of the optical circuit of the present invention can suppress stray light by utilizing a part of the structure of the light-receiving element itself in a light-receiving element that requires countermeasures against stray light.
  • shading was performed by a structure unrelated to the configuration of the light receiving element, but in the present invention, stray light is suppressed by utilizing a part of the structure constituting the electrode that outputs an electric signal from the light receiving element.
  • a wall-shaped or columnar structure that is approximately the same height as the optical waveguide in the optical circuit and extends substantially perpendicular to the surface layer of the optical circuit so as to shield the first semiconductor layer constituting the light absorbing portion of the light receiving element.
  • the light-shielding structure of the optical circuit of the present invention utilizes a part of the configuration of the light-receiving element and is formed integrally with the light-receiving element, and thus has an aspect of the invention of the light-receiving element.
  • the wiring electrode having a light-shielding function is a surface layer of an optical circuit from the bottom of a stepped electrode formed continuously and integrally with the upper surface and side surfaces of the first semiconductor layer and the upper surface of a layer in contact with the lower surface of the first semiconductor layer. It extends vertically to.
  • the wiring electrode having a light-shielding function constitutes a part of the electrode that obtains the detected electric signal from the light receiving element.
  • the wiring electrode having a light-shielding function is separated from the first semiconductor layer by a distance that does not affect the optical characteristics of the light receiving element, and is parallel to one side of the region of the first semiconductor layer.
  • the wiring electrode having a light-shielding function may be tilted with respect to the side of the region defined by the first semiconductor layer, or may have two or more sides at an angle. Therefore, the light-shielding electrode may have an L-shape, a U-shape, or the like, as well as a wall shape or a columnar shape. Further, an absorber that absorbs the reflected light or the scattered light from the wiring electrode having a light shielding function may be provided in the optical circuit.
  • the wiring electrode having the light-shielding function described above may be configured to extend from the surface layer of the optical circuit to the inside of the substrate beyond the lower surface of the first semiconductor layer. Further, the wiring electrodes may be continuously formed from the first layer to the surface of the optical circuit. A plurality of light-shielding electrodes may be formed over multiple layers via the internal electrode layer formed in the optical circuit.
  • FIG. 1 is a diagram showing a part of an optical circuit including a light-shielding structure according to the first embodiment of the present invention.
  • FIG. 1A is a top view of a part of the optical circuit 1 including the light receiving element, which is included in the optical transmission / reception device.
  • FIG. 1B is a view of a cross section perpendicular to the substrate surface including the IB-IB'line passing through the light receiving element.
  • the uppermost embedded layer 10 described later is removed to make it easier to see the internal configuration.
  • the optical waveguide 3 is connected to the first semiconductor layer 4, which is a doping region.
  • the doping layer will be described as an ion implantation layer in the following description, but various methods such as heat diffusion and the like can be used for doping in addition to ion implantation.
  • a second semiconductor layer 5 and an electrode 6 having a smaller area and having a semiconductor type different from that of the first semiconductor layer 4 are sequentially formed in the substantially center of the region of the first semiconductor layer 4.
  • a light receiving element is formed substantially in the center of the region of the first semiconductor layer 4 which is an ion implantation region, and a light absorbing portion of the light receiving element is formed in the vicinity of the second semiconductor layer 5.
  • the second semiconductor layer 5 has, for example, a substantially rectangular shape when viewed from the upper surface, and has a trapezoidal cross section perpendicular to the substrate.
  • An electrode 6 is formed on the upper surface of the second semiconductor layer 5. The electrode 6 does not necessarily have to be on the entire surface above the second semiconductor layer 5 as shown in FIG.
  • the upper surface region of the first semiconductor layer 4 and the upper surface region of the second semiconductor layer 5 are shown as rectangular shapes, but the shape of the light receiving element can be various. is there. It should be noted that the configuration is not limited to the rectangular configuration shown in FIG. 1, but also includes trapezoidal, elliptical, and circular shapes, and those including a part of the circumference of the curve. Similarly, the cross-sectional shapes of the first semiconductor layer 4 and the second semiconductor layer 5 are not limited to rectangular or trapezoidal shapes.
  • the optical circuit 1 of FIGS. 1A and 1B only one light receiving element and the corresponding light-shielding structure are shown in the optical circuit of the optical transmission / reception device. The stray light 12 propagates through the substrate from the left side of the drawing and reaches the light receiving element.
  • the first semiconductor layer 4, the second semiconductor layer 5, and the electrode 6 which are the ion implantation regions are sequentially laminated on the substrate 2 as described above.
  • a wiring electrode 7 is formed from the electrode 6 toward the surface layer of the optical circuit so as to be perpendicular to the substrate surface.
  • the wiring electrode 7 is further connected to a wiring electrode on the surface layer of an optical circuit (not shown), and if the first semiconductor layer 4 is a p-type semiconductor (Si), the electrodes 6 and 7 serve as cathode electrodes of the light receiving element.
  • the cross-sectional region 11 including the first semiconductor layer 4 and the second semiconductor layer 5 constitutes a light receiving element.
  • the stepped electrode 8 and the wiring electrode 9 serve as anodes for the light receiving element.
  • the first semiconductor layer 4 is continuously integrated from the upper surface of one end close to the source of the stray light 12 to the upper surface of the substrate 2 in contact with the lower side of the first semiconductor layer 4 through the side surface of the end.
  • the stepped electrode 8 is formed.
  • the wiring electrode 9 is formed perpendicularly from the bottom of the stepped electrode 8 toward the surface layer of the optical circuit. The entire light receiving element described above is covered with the embedded layer 10.
  • FIGS. 1A and 1B a PD configuration in which different layers are sequentially laminated on a substrate is formed in consideration of the configuration of a photodiode (PD) often used in an integrated optical circuit.
  • PD photodiode
  • An example is shown. Therefore, it should be noted that all the light receiving elements in the present specification are rough representations of the actual device structure, and the layers not related to the photoelectric conversion function as the light receiving elements are omitted or simplified. I want to be.
  • a PIN diode is widely used as a light receiving element.
  • the first semiconductor layer 4 is formed by p-type silicon on the Si substrate 2, and the second semiconductor layer 5 is composed of two layers.
  • the second semiconductor layer 5 may be, for example, an insulating i-type germanium layer as a lower layer and an n-type germanium layer as an upper layer thereof. Therefore, when the light receiving element is a PIN diode, the second semiconductor layer 5 of FIGS. 1A and 1B corresponds to the i-type germanium layer and the n-type germanium layer.
  • a layer that does not contribute to light absorption such as a SiO2 layer, is formed between the first semiconductor layer 4 made of p-type silicon and the silicon substrate 2.
  • the layer on the lower surface side of the first semiconductor layer 4 that is not related to the light absorption function of the PD will be included in the substrate 2 in the following description.
  • the specific configuration of the PD differs depending on the type such as PN type PD, PIN type PD, and avalanche photodiode (APD), but all of the first semiconductor layer 4 and the second semiconductor layer 5 have a photoelectric conversion action. It should be noted that it constitutes a light absorber that is responsible for the above.
  • the first semiconductor layer 4 is a light absorbing portion at the lowest layer and is located at a position close to the substrate 2.
  • the stepped electrode 8 extends from the upper surface of the end including the side of the first semiconductor layer 4 near the source of the stray light 12 to the upper surface of the substrate 2 in contact with the lower side of the first semiconductor layer 4 via the side surface of the end. It is continuously and integrally formed. Since the wiring electrode 9 is formed vertically from the bottom of the stepped electrode 8 toward the surface layer of the optical circuit, it is configured to shield the front surface of the light absorbing portion when viewed from the source of the stray light 12. Please note.
  • the wiring electrode 9 is parallel to one side around the first semiconductor layer 4 constituting the light absorbing portion of the light receiving element, and is an end portion of the first semiconductor layer 4. It is configured away from.
  • the stepped electrode 8 covers the entire end side surface of the first semiconductor layer 4.
  • the wiring electrode 9 is further connected to another wiring electrode on the surface layer of an optical circuit (not shown), and if the substrate 2 is a p-type semiconductor, it becomes an anode electrode of a light receiving element. Normally, in a silicon optical circuit, the optical waveguide 3 and the first semiconductor layer 4 are formed by the same etching process.
  • the optical waveguide 3 and the first semiconductor layer 4 are at substantially the same height.
  • the source of stray light is often at the same height as the optical waveguide 3 or on the surface layer side of the optical circuit. Therefore, the wiring electrode 9 works effectively to prevent the coupling of stray light to the first semiconductor layer 4.
  • the stepped electrode 8 is continuously and integrally formed on the lower surface of the first semiconductor layer 4, that is, on the surface of the substrate 2 under the first semiconductor layer 4.
  • the wall-shaped wiring electrode 9 formed from the bottom of the stepped electrode 8 to the surface layer of the optical circuit blocks almost the entire cross-sectional region 11 corresponding to the light receiving element when viewed from the assumed source of stray light 12, and is a light-shielding electrode. Work as.
  • stray light 12 is generated.
  • the stray light 12 can come from various places. For example, since it is reflected by the end surface of the substrate 2 of the optical circuit and propagates in all directions, the stair light 12 is not sufficiently shielded only by the stepped electrode 8 configured in the source direction of the stray light 12.
  • the stray light 12 is formed in the middle of the propagation path before the stray light 12 propagates in the constituent plane of the optical circuit and reaches the light absorbing portion of the light receiving element. Reflected or scattered by.
  • the wiring electrode 9 having a size sufficiently larger than the light receiving element suppresses the coupling between the light receiving element and the stray light 12.
  • the light-shielding function in the light-shielding structure of the present invention is realized by using the wiring electrode 9 for extracting an electric signal from the light-receiving element. Therefore, a light-shielding structure can be realized by using some components of the light-receiving element without changing the conventional process of manufacturing various optical functions required for the light-transmitting device on the silicon substrate.
  • the present invention is formed on the substrate 2, the first semiconductor layer 4 that operates as a light absorbing unit, and the first semiconductor layer, which are formed above the substrate, and the first semiconductor layer.
  • a light receiving element provided with a second semiconductor layer 5 having a semiconductor type different from that of the above, and is an upper surface of an end portion of the substrate surface of the substrate including one or more sides of a region of the first semiconductor layer.
  • a stepped electrode 8 continuously and integrally formed on the side surface of the end portion and the upper surface of the layer in contact with the lower side of the first semiconductor layer, and a surface perpendicular to the bottom of the stepped electrode. It can be implemented as a light receiving element which is a wall-shaped or columnar wiring electrode 9 formed toward the surface and further includes a wiring electrode for extracting a detection electric signal from the light receiving element.
  • FIG. 2 is a diagram showing a part of an optical circuit including a light-shielding structure of a modified example of the first embodiment of the present invention.
  • the position of the stray light 12 and the shape of the wiring electrode having a light blocking function are different from those of the configuration of FIG.
  • the configuration of the optical circuit 1 including the light receiving element is almost the same as the configuration of FIG. 1, and the bottom surface of the stepped electrode 8 covering the upper surface and the side surface of the end including the side near the source of the stray light 12 of the first semiconductor layer 4 Therefore, the wiring electrodes 9-1 are formed vertically toward the surface layer of the optical circuit.
  • the wiring electrode 9-1 is not a wiring electrode 9 composed of only one wall-shaped portion as shown in FIG.
  • FIG. 2 shows only another example of the shape of the wiring electrode, and the angle between the two wall portions does not have to be 90 ° and can be appropriately changed depending on the mode of the stray light 12.
  • the shape may be not only L-shaped but also a U-shaped wiring electrode composed of three wall-shaped portions. Therefore, it is sufficient that a part of the wiring electrode has at least a wall shape or a columnar shape.
  • the stepped electrode is not formed in the direction of the optical waveguide 3 connected to the first semiconductor layer 4. This is to prevent the input light from being reflected by the stepped electrodes. Therefore, only the bottom portion of the stepped electrode having the same configuration as in FIG. 1 may be extended in the direction of the optical waveguide 3 connected to the first semiconductor layer 4.
  • the width We of the wiring electrode 9 for extracting the electric output from the light-receiving element is widened to be equal to or larger than the width Wpd of the light-absorbing portion of the light-receiving element to prevent stray light reaching the light-absorbing portion. It can be suppressed.
  • the light-shielding structure in the optical circuit of the present invention is one element constituting the light-receiving element, and is characterized in that a wiring electrode 9 that can be arranged very close to the light-absorbing portion of the light-receiving element is used as a structure for light-shielding. .. Since the light-shielding structure and the light-absorbing portion are very close to each other, the influence of stray light wraparound can be suppressed as compared with the conventional configuration in which the light-receiving element and the light-shielding structure are far apart.
  • the width We of the wiring electrode 9 may be about the width Wpd of the ion implantation region of the light receiving element. Further, if the width of the ion implantation region is up to several times the width Wpd, the light shielding performance can be further improved without affecting the design of the light receiving element. Further, by making the distance L between the wiring electrode 9 and the region of the first semiconductor layer 4 which is the ion implantation region close to the extent that the embedded layer 10 can be satisfactorily manufactured, the light shielding performance for the light receiving element can be further improved.
  • FIG. 3 is a diagram showing a part of an optical circuit including a light-shielding structure according to a second embodiment of the present invention.
  • (A) and (b) of FIG. 3 include wiring electrodes 9-2 having a light-shielding function with respect to the light receiving element, as shown in FIG.
  • the difference from the wiring electrode 9 having the configuration of FIG. 1 is that the direction of the light-shielding surface of the wiring electrode 9-2 is not parallel to one side of the ion implantation region 4 but is inclined.
  • the direction of arrival of the stray light 12 coincides with the intermediate portion of the optical waveguide 3 connected to the light receiving element as in the portion of the optical waveguide 3 on the left side in FIG.
  • the stray light does not arrive perpendicularly to one side of the rectangular region of the first semiconductor layer 4 from the left side of the figure, but arrives from a direction inclined with respect to one side of the rectangular region.
  • the direction of the wiring electrode 9-2 may be tilted according to the tilt so that the stray light can be blocked most effectively.
  • the wiring electrode 9-2 may be tilted with respect to the light receiving element so that the light-shielding surface (wall surface) formed by the wiring electrode 9-2 faces the front with respect to the source of stray light.
  • FIG. 3B is a diagram showing another configuration example of the optical circuit including the light-shielding structure of the second embodiment.
  • an absorber 13 that further absorbs the reflected / scattered light of stray light from the wiring electrode 9-3 is further provided. It differs in that.
  • the absorber the same ion implantation region as that of the first semiconductor layer 4 constituting the light absorbing portion can be formed.
  • a simulated PD that does not function as an optical transmission / reception device may be arranged and used as an absorber.
  • FIG. 4 is a diagram showing a part of an optical circuit including a light-shielding structure according to a third embodiment of the present invention.
  • FIGS. 4A to 4C are views showing a cross section of an optical circuit perpendicular to the substrate 2 including a light receiving element as in FIG. 1B, and are wirings having a light shielding function. An example of deformation of the electrode is shown.
  • FIGS. 4A and 4B are diagrams showing an example in which a wiring electrode having a light-shielding function is formed deeper than the lower surface of the first semiconductor layer 4 and into the inside of the substrate 2. In FIG.
  • a part of the stepped electrode covering the upper end surface, the side surface of the end portion, and the upper surface of the substrate 2 of the first semiconductor region 4 is once formed, and after digging into the substrate 2.
  • the stepped electrode 8-1 is completed up to the inside of the substrate 2.
  • the wiring electrodes 9-4 are formed perpendicular to the surface layer of the optical circuit.
  • FIG. 4B after digging into the substrate 2 at once, the stepped electrode 8-2 is completed, and finally the wiring electrode 9-4 is formed perpendicularly to the surface layer of the optical circuit. ..
  • stray light may also propagate in the substrate under the optical waveguide 3. Therefore, as shown in FIGS.
  • FIG. 4C shows an example in which wiring electrodes having a light-shielding function are formed between a plurality of layers by using the multilayer wiring existing in the optical circuit.
  • Optical circuits used in optical transmitter / receiver devices use multi-layer wiring to realize transmitter, receiver, and other functions.
  • a stepped electrode integrally formed on the upper end surface, the end side surface, and the upper surface of the substrate 2 of the first semiconductor layer 4. From 8 to the surface layer of the optical circuit was formed by continuous wiring electrodes 9, 9-1 to 9-4. As shown in FIG.
  • the wiring electrodes 9-5 and 9-6 formed between the layers are connected by using the available multilayer wiring configured in the optical circuit constituting the light receiving element. As a result, the light-shielding function can be realized as a whole.
  • the wiring electrodes 9-5 formed vertically from the bottom of the stepped electrode 8 toward the intermediate wiring layer and the wiring electrodes 9-5 are displaced from the intermediate wiring layer toward the surface layer at a position closer to the source side of the stray light.
  • An example of two wiring electrodes 9-6 formed vertically is shown. As long as stray light can be suppressed, the positional relationship between the two wiring electrodes on the substrate surface does not matter. That is, as shown in FIG.
  • the wiring electrodes in the lower layer may be displaced from the wiring electrodes in the upper layer so as to be closer to the source side of the stray light. On the contrary, the position may be shifted from the lower layer wiring electrode to the upper layer wiring electrode so as to be closer to the light receiving element. Further, in FIG. 4C, a configuration in which two wiring electrodes are connected is shown, but three or more wiring electrodes are sequentially connected over three or more layers to provide a wiring electrode having a light-shielding function. It may be formed.
  • Each of the wiring electrodes 9-4 to 9-6 shown in FIG. 4 is connected to a wiring electrode on the surface layer of an optical circuit (not shown) and operates as an electrode for extracting a detected electric signal from a light receiving element.
  • the wiring electrode is provided with a function for extracting an electric signal from the light-receiving element and a function for blocking stray light.
  • the wiring electrodes 9-4 to 9-6 have the same width as that of the wiring electrode 9 shown in FIG. 1 and have a width of the first semiconductor layer 4. It is preferable to have a width We of Wpd or more.
  • stray light can be suppressed by utilizing a part of the electrode structure that outputs an electric signal from the light-receiving element in the vicinity of the light-receiving element of the optical circuit. it can. Even in an optical circuit with an increased degree of integration, a light-shielding structure can be realized by simply modifying a part of the configuration of an existing light receiving element. It is possible to effectively prevent stray light from coupling with the light receiving element without newly creating conductive vias, walls, and grooves that affect the characteristics of the optical circuit.
  • the above-mentioned light-shielding structure can be applied regardless of the type of light receiving element such as a PN type photodiode (PD), a PIN type PD, and an avalanche photodiode (APD).
  • PD PN type photodiode
  • PIN type PD PIN type PD
  • APD avalanche photodiode
  • the first semiconductor layer 4 is a p-type silicon layer
  • the second semiconductor layer 5 is an i-type germanium layer and an n-type germanium layer
  • each of these layers is The laminated PIN type PD has been described.
  • Non-Patent Document 1 discloses a configuration in which a silicon optical waveguide, a photomultiplier tube, and a germanium light absorption region are sequentially laminated. Further, a configuration in which a germanium light absorption region is formed on a silicon optical waveguide and a photomultiplier region of the same layer is also disclosed. In such an APD configuration, the silicon optical waveguide region is the lowest light absorbing portion.
  • the wiring electrode is vertically connected to the surface layer of the optical circuit from the bottom of the stepped electrode integrally formed on the upper surface of the end including one side of the silicon optical waveguide region, the side surface of the end portion, and the upper surface of the layer in contact with the lower side of the silicon optical waveguide region.
  • Non-Patent Document 2 discloses a structure in which a PN junction is formed in the central portion of the Si waveguide structure in the lateral direction along the substrate surface as a configuration example of the Si modulator. In this way, the light absorption unit can be configured by using the PN junction in the lateral direction, and can be used as a PN type PD in an optical circuit.
  • a PN type PD formed in the lateral direction is used in an optical circuit, the p—Si layer and the n—Si layer are the lowest light absorbing portions.
  • a stepped electrode integrally formed on the upper surface of the end including one side thereof, the side surface of the end, and the upper surface of the layer (for example, the SiO2 layer) in contact under the Si layer can be formed.
  • the wiring electrode is formed vertically from the bottom of the stepped electrode to the surface layer of the optical circuit, and the light absorbing portion of the PN junction is configured to block light with the wiring electrode, thereby suppressing the coupling between the light absorbing portion and the stray light. Can be done.
  • a PIN-type PD is often used as the light receiving element for optical communication, and the above-described configurations of the first to fourth embodiments can be applied as they are.
  • FIG. 5 is a diagram showing a part of an optical circuit including a light-shielding structure according to a fourth embodiment of the present invention.
  • FIG. 5A is a top view of a part of the optical circuit 100 including the light receiving element, which is included in the optical transmission / reception device.
  • FIG. 5B is a view of a cross section perpendicular to the substrate surface including the VB-VB'wire passing through the light receiving element.
  • the light receiving element is formed with a PIN junction in the lateral direction along the substrate surface is shown.
  • the configuration of the wiring electrode 109 is the same as that of the first to fourth embodiments, except that the configuration of the light receiving element is different from the configuration in which the light receiving elements are laminated in the vertical direction (vertical direction) on the substrate surfaces of FIGS. 1 to 4. .. That is, in the light receiving element, a p-type region 104, an i-type region 105, and an n-type region 106 are formed on the substrate 102 along the substrate surface, and a PIN-type PD is formed in a cross-sectional region 101 in the lateral direction along the substrate surface. Is configured.
  • the optical waveguide 103 is configured to have substantially the same height as each of the semiconductor regions 104 to 106.
  • the wiring electrode 107 is also taken out from the n-type region 106 via the stepped electrode 111.
  • the electrodes can be used for shading. Therefore, as described below, in the configuration of the PIN type PD of FIG. 5, either the wiring electrode 109 on the p-type region 104 side, the wiring electrode 107 on the n-type region 106 side, or both the wiring electrodes 109 and 107 are simultaneously used. Note that it can be used for shading.
  • the stepped electrode 108 is continuously and integrally formed so as to cover the upper end surface, the end side surface, and the upper surface of the substrate 2 of the p-shaped region 104, and is formed from the bottom of the stepped electrode 108 to the surface layer of the optical circuit.
  • the wiring electrode 109 is formed perpendicular to the direction. By setting the wiring electrode 109 to a width equal to or larger than the width of the p-type region 104, it is possible to prevent the stray light 112 from being coupled to the light absorbing portion of the PIN-type PD which is the light receiving element.
  • the stepped electrode 111 is continuously and integrally formed so as to cover the upper end surface, the end side surface, and the upper surface of the substrate 2 of the n-shaped region 106, and the surface layer of the optical circuit is formed from the bottom of the stepped electrode 111.
  • the wiring electrode 107 is formed perpendicularly to the direction. In the example of FIG. 5, the wiring electrode 107 is on the opposite side of the source of the stray light 112 with respect to the light receiving element. However, when the reflected light or scattered light of stray light also arrives from the right side of FIG. 5, the wiring electrode 107 also prevents the reflected light or scattered light from binding to the light absorbing portion of the PIN type PD as in the wiring electrode 109. Can be prevented.
  • the present invention is formed adjacent to the substrate 102, the first semiconductor layer 104 that operates as a light absorbing unit and is formed above the substrate, and the first semiconductor layer, and the first semiconductor is formed.
  • a light receiving element including a second semiconductor layer 106 having a semiconductor type different from that of the layer, which is an end portion of the substrate surface of the substrate including one or more sides of a region of the first semiconductor layer.
  • Vertically from the bottom of the stepped electrode 108 which is continuously and integrally formed on the upper surface, the side surface of the end portion, and the upper surface of the layer in contact with the lower side of the first semiconductor layer. It can be implemented as a light receiving element which is a wall-shaped or columnar wiring electrode 109 formed toward the surface and further includes a wiring electrode for extracting a detection electric signal from the light receiving element.
  • the light-shielding structure of the optical circuit of the present invention shields the wiring electrodes for taking out electric signals from the electrodes formed on the lower surface of the semiconductor layer constituting the light absorbing portion to the surface layer of the optical circuit. It is applicable regardless of the type of light receiving element in that it can be used for functions.
  • the present invention can generally be used in optical communication systems.

Abstract

本発明の光回路の遮光構造は、迷光の対策を必要とする受光素子において、受光素子自体の構造の一部を利用して迷光を抑制する。光回路(1)中の光導波路(3)とほぼ同一の高さにあって、受光素子の光吸収部を構成する第1の半導体層(4)を上面および側面を覆う階段状電極(8)を形成し、光回路(1)表層へ概ね垂直に伸びた壁状または柱状の配線電極(9)によって受光素子の光吸収部への迷光(12)を遮蔽する。本発明の遮光構造は、受光素子の一部の構成を利用するものであり、受光素子と一体となって形成され、受光素子の発明の側面も持つ。遮光機能を有する配線電極(9)は、光回路(1)の表層から、第1の半導体層(4)の下面を越えて基板(2)内部にまで伸びて構成されても良い。また配線電極(9)は、第1の層(4)から光回路(1)の表面まで連続して形成されていても良い。

Description

受光素子および光回路の遮光構造
 本発明は、受光素子に関する。より詳細には、光回路の受光素子の遮光構造に関する。
 100Gbps超の光伝送を実現する「デジタルコヒーレント光伝送技術」の普及が進み、光ネットワークの高速大容量化を実現している。これに伴って、「デジタルコヒーレントトランシーバ」などのデジタルコヒーレント光伝送用装置の小型化がさらに求められている。光伝送用装置では、複数のチャンネルの光信号処理を行い、着脱が可能なデジタルコヒーレントトランシーバ(簡単のため以下トランシーバと言う)の仕様が規定されている。トランシーバの消費電力やサイズは、標準化団体のOIF(The Optical Internetworking Forum)等によってその規格が決定されている。
 OIF規格では、第1世代の100Gbpsトランシーバの幅が80mm程度であったものが、次世代の400Gbpsトランシーバでは、20mm程度にまで小型化されている(CFP8、OSFP規格等)。これに伴い、トランシーバを構成する主な要素の1つである光送受信デバイスにも、10~20mm角程度のサイズが要求されている。光送受信デバイスは多層配線基板上に光部品や電気部品を搭載したモジュールであって、光変調器やコヒーレント受信器などの光送受信機能を集積化したものである。光部品は、シリコン、石英、InP等の1枚の基板上に光集積回路(PIC:Photonic Integrated Circuit)として構成される。例えばシリコン基板上に構成されたPIC、電気信号IC、コンデンサ等の電子部品等をセラミック基板上に実装した光送受信デバイスが知られている。
 光送受信デバイスでは、送信器において使用する光源や、受信器の局部発振光(Lo光)を供給する光源から、高レベルの光がデバイスの外部から光ファイバを経由して供給される。これらの光はPICとの光結合によって送信器、受信器に与えられるが、光結合しなかった光は、PIC内で迷光として振る舞う。受信器における受光素子(例えばフォトディテクタ)や、送信光のレベルモニタ素子に対して、迷光はノイズとして働き、光送受信デバイスの様々な性能を悪化させる原因となる。光送受信デバイスにおける迷光対策として例えば特許文献1は、PIC中の送受信機能を担っていない空き領域に作製された導電ビア構造を開示している。
 図6は、従来技術の光回路における迷光を抑制する導電ビア構造を示す図である。図6は、光回路20の一部を基板面に垂直に見た上面図であって、受光素子を含む受信部と送信部との間を接続する光導波路21の近傍を示す。送信部において生じた迷光23、24が、受信部に向かって基板内を伝搬し、受信部の受光素子に結合する状況を示している。光回路20は、光導波路21の両脇に多数の導電性のビア22を備えている。導電性ビア22によって迷光23、24の直進が妨げられ、受信部の受光素子へ到達する迷光を抑えることができる。
 迷光を抑制する他の構成としては、特許文献1に開示されている導電性の壁や、基板上に溝を形成して、溝内の空気層によって迷光を反射する構成などが知られている。いずれの遮光構造も、光送受信機能を実現していない、基板の空き部分に構成されていた。
特許4626614号
小型に集積可能なフォトダイオードで受光感度21.8A/Wを達成、NEDO平成31年3月1日検索インターネット<URL:https://www.nedo.go.jp/news/press/AA5_101073.html> シリコンプラットフォーム上に高性能な光変調器を実現、NTT平成31年3月1日検索インターネット<URL:http://www.ntt.co.jp/news2017/1707/170718a.html>
 しかしながら、10~20mm角程度のサイズまで小型化が進んだ光送受信デバイスでは、従来技術の迷光を抑制する構成を適用することが難しくなっている。次世代の光送受信デバイスでは、光送受信デバイス内のPICにおけるシリコン基板サイズが10mm角程度まで小型化し、送信器および受信器のブロックが基板上に隙間なく配置される。したがって、光送受信機能に関係がない空き領域は十分に存在しておらず、迷光に対して効果的な位置に図6に示したような導電性ビアを配置することは難しい。たとえ配置が可能であっても、導電性ビアは光送受信のための機能部に近接せざるを得ない。
 導電性ビアや壁、溝のような構造物は基板の応力を変動させる。この応力によって、例えば光分岐回路の分岐比が設計通りの値とならなかったり、ばらついたりする。また基板の応力変化に起因して、偏波分離器の偏波分離性能が悪化したり、干渉計の光路長差を変化させたりすることも知られている。
 上述のように集積度が非常に上がったPICにおいては、迷光対策のために導電性ビアや壁、溝を配置する場所が限られており、導電性ビアや壁によって生じた散乱光や反射光を処理することも難しくなっていた。配置できたとしても光回路機能の特性値にずれ、変動、ばらつきを生じさせてしまう問題があり、受光素子に到達する迷光を効果的に抑制する回路設計が難しくなっていた。光送受信デバイスは基板外にあったモニタ回路などの新たな機能を1つのシリコン基板内に取り込む集積化が進んでおり、迷光対策は今後ますます難しくなると考えられる。
 本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、集積化が進んだ光回路における効果的な遮光構造を提供することにある。
 このような目的を達成するために本発明の1つの実施態様は、基板と、前記基板の上方に構成された、光吸収部として動作する第1の半導体層と、前記第1の半導体層の上に、または、前記第1の半導体層に隣接して形成され、前記第1の半導体層と異なる半導体タイプを有する第2の半導体層とを備えた受光素子であって、前記基板の基板面内の、前記第1の半導体層の領域の1つ以上の辺を含む端部の上面、当該端部の側面、および、前記第1の半導体層の下側に接する層の上面に、連続して一体に構成された階段状電極と、前記階段状電極の底部から、垂直に表面に向かって形成された壁状または柱状の配線電極であって、当該受光素子からの検出電気信号を取り出す配線電極とをさらに備えた受光素子であり得る。
 前記配線電極は、前記1つ以上の辺の内の1つの辺に概ね平行に形成され、前記領域の前記1つの辺の長さ以上の幅を有することができる。
 前記配線電極は、前記基板面内を見て、壁状の形状またはL字型もしくはコの字型の形状であり得る。また前記配線電極は、前記1つ以上の辺の内の1つの辺に対して傾斜して形成されることもできる。
 本発明のもう1つの実施態様では、前記配線電極は、前記階段状電極の前記底部から、前記基板内に構成された前記階段状電極よりも表面側の中間配線層に向かって垂直に形成された第1の層間配線電極と、前記中間配線層から表面に向かって垂直に形成された第2の層間配線電極とを含むこともできる。また、同様の第3の層間配線電極をさらに含むこともできる。
 本発明の別の実施態様では、受光素子は、前記第1の半導体層はp型シリコン層であり、前記第2の半導体層は、絶縁性のi型ゲルマニウム層およびn型のゲルマニウム層が、順次前記第1の半導体層の上に積層され、PIN型フォトダイオードを構成することができる。
 本発明のさらに別の実施態様では、受光素子は、前記第1の半導体層および前記第2の半導体層は中間領域を挟んで前記基板面に沿って形成され、相互に異なる半導体タイプを有しており、前記第1の半導体層、前記中間領域および前記第2の半導体層によってPIN接合が形成され、前記第1の半導体層および前記第2の半導体層を含む領域の1つ以上の辺に対して前記階段状電極が形成されることもできる。この実施態様は、第4の実施形態の受光素子に対応する。
 好ましくは、前記第1の半導体層の前記領域は、矩形領域であり得る。また、上述の受光素子は、デジタルコヒーレント送受信デバイスに構成されることができる。
 集積化が進んだ光回路における効果的な遮光構造、受光素子の構造を提供できる。
本発明の第1の実施形態の遮光構造を含む光回路の一部を示す図である。 第1の実施形態の変形例の遮光構造を含む光回路の一部を示す図である。 本発明の第2の実施形態の遮光構造を含む光回路の一部を示す図である。 本発明の第3の実施形態の遮光構造を含む光回路の一部を示す図である。 本発明の第4の実施形態の遮光構造を含む光回路の一部を示す図である。 従来技術の光回路における迷光を抑制する導電ビア構造を示す図である。
 本発明の光回路の遮光構造は、迷光の対策を必要とする受光素子において、受光素子自体の構造の一部を利用して迷光を抑制できる。従来技術では、受光素子の構成とは関係のない構造物によって遮光を行っていたが、本発明では、受光素子から電気信号を出力する電極を構成する構造の一部を利用して迷光を抑制する。光回路中の光導波路とほぼ同一の高さにあって、受光素子の光吸収部を構成する第1の半導体層を遮蔽するよう、光回路の表層へ概ね垂直に伸びた壁状または柱状の配線電極によって受光素子の光吸収部への迷光を遮蔽する。本発明の光回路の遮光構造は、受光素子の一部の構成を利用するものであって、受光素子と一体となって形成されるため、受光素子の発明の側面も持つ。
 遮光機能を有する配線電極は、第1の半導体層の上面、側面、および第1の半導体層の下に接する層の上面に連続して一体に形成された階段状電極の底部から光回路の表層へ垂直に伸びている。遮光機能を有する配線電極は、受光素子から検出電気信号を得る電極の一部を構成する。光回路の上面を見たとき、遮光機能を有する配線電極は、受光素子の光学特性に影響を与えない距離だけ第1の半導体層から離間し、第1の半導体層の領域の一辺に平行に、少なくとも第1の半導体層の幅以上の幅を持つ。遮光機能を有する配線電極は、第1の半導体層によって規定される領域の辺に対し、傾いていても良いし、角度を持って2辺以上を持っていても良い。したがって、遮光電極は、壁状または柱状の他、L字型、コの字型などの形状でも良い。さらに、遮光機能を有する配線電極からの反射光または散乱光を吸収する吸収体を光回路内に設けても良い。
 上述の遮光機能を有する配線電極は、光回路の表層から、第1の半導体層の下面を越えて基板内部にまで伸びて構成されても良い。また配線電極は、第1の層から光回路の表面まで連続して形成されていても良い。光回路に形成された内部の電極層を経由して、多層にわたって、複数の遮光電極が形成されていても良い。以下、図面とともに本発明の遮光構造について説明する。
 [第1の実施形態]
 図1は、本発明の第1の実施形態の遮光構造を含む光回路の一部を示す図である。図1の(a)は、光送受信デバイス内に含まれる光回路1であって、受光素子を含む光回路の一部分の上面図を示した図である。図1の(b)は、受光素子を通るIB-IB´線を含む基板面に垂直な断面を見た図である。図1の(a)の上面図では内部の構成を見易くするために後述する最上層の埋め込み層10を取り除いて示している。図1の(a)を参照すれば、光導波路3はドーピング領域である第1の半導体層4に接続されている。ドーピング層は、以下の説明ではイオン注入層として説明するが、ドーピングはイオン注入のほか熱拡散他を様々な手法を利用できる。
 第1の半導体層4の領域内の概ね中央に、より小さい面積を持し、第1の半導体層4とは異なる半導体タイプを持つ第2の半導体層5および電極6が順次形成されている。イオン注入領域である第1の半導体層4の領域内の概ね中央に受光素子が形成され、第2の半導体層5付近で受光素子の光吸収部が形成される。第2の半導体層5は、上面から見て例えば概ね矩形状であって、基板に垂直な断面が台形状である。第2の半導体層5の上面に電極6が形成されている。電極6は、必ずしも図1のように第2の半導体層5の上の全面にある必要はない。以後のすべての構成例では、第1の半導体層4の上面領域および第2の半導体層5の上面領域を、矩形のものとして示しているが、受光素子の形状には様々のものが可能である。図1に示した矩形の構成だけに限られず、台形状や楕円状、円形状のもの、一部に曲線の周部を含むものまで含まれることに留意されたい。同様に、第1の半導体層4および第2の半導体層5の断面形状についても、矩形または台形状だけに限られない。図1の(a)、(b)の光回路1では、光送受信デバイスの光回路において1つの受光素子および対応する遮光構造のみを示している。迷光12は基板内を、図面の左側から伝搬して、受光素子に到達する状況を示している。
 図1の(b)の断面図を参照すれば、上述のように基板2の上にイオン注入領域である第1の半導体層4、第2の半導体層5、電極6が順次積層して構成されている。電極6からは光回路の表層に向かって基板面に対して垂直に配線電極7が形成されている。配線電極7は図示しない光回路表層の配線電極にさらに接続され、第1の半導体層4がp型半導体(Si)であれば、電極6、7が受光素子のカソード電極となる。第1の半導体層4および第2の半導体層5を含む断面領域11は、受光素子を構成する。第1の半導体層4が、p型半導体であれば、階段状電極8および配線電極9は受光素子のアノードとなる。第1の半導体層4には、迷光12のソースに近い一辺の端部上面から、端部側面を経て、第1の半導体層4の下側に接する基板2の上面まで、連続して一体の階段状電極8が形成されている。階段状電極8の底部から光回路の表層に向かって垂直に配線電極9が形成されている。上述の受光素子の全体は、埋め込み層10によって覆われている。
 図1の(a)および(b)では、集積化した光回路で良く使用されるフォトダイオード(PD)の構成を念頭に、基板上に異なる層を順次積層して形成していくPDの構成例を示したものである。したがって本明細書におけるすべての受光素子は実際のデバイス構造を大まかに示したものであって、受光素子としての光電変換の機能に関わらない層などは省略しまたは簡略化して描いてある点に留意されたい。具体的には、シリコン基板上に作製されるPICによる光送受信デバイスでは、受光素子としてPINダイオードが広く利用されている。PINダイオードでは、Si基板2上にp型シリコンによって第1の半導体層4が形成され、第2の半導体層5は2つの層から成るものが知られている。第2の半導体層5は、例えば下層として絶縁性のi型ゲルマニウム層、その上層としてn型のゲルマニウム層であり得る。したがって受光素子がPINダイオードの場合、図1の(a)および(b)の第2の半導体層5は、i型ゲルマニウム層およびn型ゲルマニウム層に対応する。また実際のPINダイオードでは、p型シリコンによる第1の半導体層4と、シリコン基板2との間には、SiO2層などの光吸収には寄与しない層も形成されている。第1の半導体層4の下面側にあって、PDの光吸収機能に関係しない層は、以下の説明においては基板2に含めて考えることにする。
 上述のようにPDの具体構成は、PN型PD、PIN型PD、アバランシェフォトダイオード(APD)などのタイプによって異なるが、第1の半導体層4および第2の半導体層5のいずれも光電変換作用を担う光吸収部を構成することに留意されたい。また、第1の半導体層4は、最も下層にある光吸収部であって、基板2に近い位置にあるものである。階段状電極8は、第1の半導体層4の迷光12のソースに近い辺を含む端部上面から、端部側面を経て、第1の半導体層4の下側に接する基板2の上面まで、連続して一体に形成されている。配線電極9は、階段状電極8の底部から垂直に光回路の表層に向かって形成されているため、迷光12のソースから見て光吸収部の前面を遮蔽するように構成されている点に留意されたい。
 図1の(a)を再び参照すれば、配線電極9は受光素子の光吸収部を構成する第1の半導体層4の周囲の一辺に沿って平行に、第1の半導体層4の端部から離間して構成されている。階段状電極8は第1の半導体層4の端部側面全体を覆っている。配線電極9は、図示しない光回路表層のもう1つの配線電極にさらに接続され、基板2がp型半導体であれば受光素子のアノード電極となる。通常シリコン光回路では、光導波路3と、第1の半導体層4とは、同一のエッチングプロセスによって形成される。その後、受光素子を形成するために第1の半導体層4の領域のみにイオン注入等のドーピングプロセスが実施され、受光素子の光吸収部の領域が区画される。したがって、光回路の基板の厚さ方向では、光導波路3および第1の半導体層4は、ほぼ同一の高さにある。迷光のソースは、光導波路3と同じ高さか、光回路のより表層側にある場合が多い。このため配線電極9は、第1の半導体層4に対して迷光の結合を防ぐのに効果的に働く。
 階段状電極8は、第1の半導体層4の下面、すなわち、第1の半導体層4の下にある基板2の面上に、連続して一体に形成されている。階段状電極8の底部から光回路の表層までに形成された壁状の配線電極9は、想定される迷光12のソースから見て受光素子に対応する断面領域11の概ね全体を遮り、遮光電極として働く。光送受信デバイス外部から光ファイバを経由して供給された光が、光回路上の光結合部において結合できなかったとき、迷光12が生じる。迷光12は様々な場所から到来する可能性がある。例えば、光回路の基板2の端面で反射されあらゆる方向に伝搬するため、迷光12のソース方向に構成された階段状電極8のみでは、迷光12の遮蔽は十分ではない。
 本発明の遮光構造を含む光回路では、迷光12が光回路の構成面内を伝搬して受光素子の光吸収部に到達する前に、迷光12は伝搬経路の途中に形成された配線電極9によって反射または散乱される。この結果、受光素子より十分大きなサイズの配線電極9は、受光素子と迷光12との結合を抑制する。本発明の遮光構造における遮光機能は、受光素子から電気信号を取り出すための配線電極9を利用して実現される点に留意されたい。したがって光送受信デバイスに必要な各種の光機能をシリコン基板上に作製する従来の工程に変更を加えることなく、光受光素子の一部の構成要素を利用して、遮光構造を実現できる。
 したがって本発明は、基板2と、前記基板の上方に構成された、光吸収部として動作する第1の半導体層4と、前記第1の半導体層の上に形成され、前記第1の半導体層と異なる半導体タイプを有する第2の半導体層5とを備えた受光素子であって、前記基板の基板面内の、前記第1の半導体層の領域の1つ以上の辺を含む端部の上面、当該端部の側面、および、前記第1の半導体層の下側に接する層の上面に、連続して一体に構成された階段状電極8と、前記階段状電極の底部から、垂直に表面に向かって形成された壁状または柱状の配線電極9であって、当該受光素子からの検出電気信号を取り出す配線電極とをさらに備えたことを特徴とする受光素子として実施できる。
 図2は、本発明の第1の実施形態の変形例の遮光構造を含む光回路の一部を示す図である。図2の構成では、図1の構成と比較して、迷光12の位置と、遮光機能を有する配線電極の形状が異なっている。受光素子を含む光回路1の構成は、図1の構成とほぼ同一であり、第1の半導体層4の迷光12のソースに近い辺を含む端部上面および側面を覆う階段状電極8の底部から、垂直に光回路の表層に向かって配線電極9-1が形成されている。ここで配線電極9-1は、図1のような1つの壁状部分のみからなる配線電極9ではなくて、図1の配線電極からさらに角度を持って第2の壁状部分が付加され、全体でL字型形状を持っている。迷光12のソースが図1のように光導波路3に沿ってではなく、斜め下方から受光素子に到達するような場合、図2のL字型の配線電極9-1が有効である。図2は、配線電極の形状の別の一例を示しているに過ぎず、2つの壁部分の角度は90°である必要はないし、迷光12の態様によって適宜変更が可能である。その形状もL字型だけでなく、3つの壁状部分からなるコの字型の配線電極でも良い。したがって、配線電極は、その一部が少なくとも壁状または柱状の形状を有していれば良い。なお、第1の半導体層4に接続する光導波路3の方向に階段状電極は形成しない。階段状電極による入力光の反射を防止するためである。したがって、図1の構成と同じ階段状電極の底部のみを、第1の半導体層4に接続する光導波路3の方向にまで広げても良い。
 従来技術では、受光素子から離れた場所に、光送受信デバイスの機能に関係の無い導電性ビア、壁または溝などによって遮光構造を形成していた。このため、光回路の集積度が高まるにつれて、これらの遮光構造を配置することが難しかった。図1に示した本発明の遮光構造では、受光素子から電気出力を取り出す配線電極9の幅Weを、受光素子の光吸収部の幅Wpd以上に広げることで、光吸収部に到達する迷光を抑制することができる。本発明の光回路における遮光構造は、受光素子を構成する一要素であり、受光素子の光吸収部にごく近接して配置できる配線電極9を遮光のための構造物として用いる点に特徴がある。遮光構造および光吸収部が非常に近接しているため、受光素子と遮光構造が遠く離れていた従来技術の構成と比べ、迷光の回り込みの影響を抑えることができる。
 受光素子の領域に対して配線電極9を形成する位置や向き、形状や大きさは、受光素子の各部の形状、光回路全体における対象とする迷光の発生場所とその伝搬状況を予め検討して、決定する必要があるのは言うまでもない。配線電極9の幅Weは、受光素子のイオン注入領域の幅Wpd程度あれば良い。さらにイオン注入領域の幅Wpdの数倍程度までであれば、受光素子の設計に影響を与えることなく、遮光性能をさらに上げることができる。また、配線電極9とイオン注入領域である第1の半導体層4の領域との距離Lを、埋め込み層10が良好に作製できる程度まで近接させることで、受光素子に対する遮光性能をさらに向上できる。
 [第2の実施形態]
 図3は、本発明の第2の実施形態の遮光構造を含む光回路の一部を示す図である。図3の(a)および(b)は、図1に示したのと同様に受光素子に対して遮光機能を有する配線電極9-2を備えている。図1の構成の配線電極9との相違点は、配線電極9-2の遮光面の向きがイオン注入領域4の一辺に対して平行ではなく、傾斜しているところにある。図3の(a)で左側の光導波路3の部分のように、受光素子に接続される光導波路3の途中部分と迷光12の到来方向が一致する場合、遮光機能を有する配線電極9-2を第1の半導体層4領域の一辺に対して傾けて形成することで、反射・散乱光が光導波路3に再結合するのを防止できる。また図3の(a)のように迷光が図の左側から第1の半導体層4の矩形領域の一辺に垂直に到来するのではなく、矩形領域の一辺に対して傾いた方向から到来する場合、最も効果的に迷光を遮断できるように、その傾きに応じて配線電極9-2の向きも傾けて配置すれば良い。配線電極9-2によってできる遮光面(壁面)が、迷光のソースに対して正面に相対する向きとなるように、受光素子に対して配線電極9-2を傾けて形成すれば良い。
 図3の(b)は、第2の実施形態の遮光構造を含む光回路の別の構成例を示す図である。図3の(a)の構成と比べて、遮光機能を有する配線電極9-3に加えて、配線電極9-3からの迷光の反射・散乱光をさらに吸収する吸収体13をさらに備えている点で相違する。吸収体としては、光吸収部を構成する第1の半導体層4と同じイオン注入領域を形成することができる。光送受信デバイスとしては機能しない模擬PDを配置して吸収体として利用しても良い。
 [第3の実施形態]
 図4は、本発明の第3の実施形態の遮光構造を含む光回路の一部を示す図である。図4の(a)~(c)は、いずれも図1の(b)と同様に受光素子を含む、基板2に垂直な光回路の断面を示した図であって、遮光機能を有する配線電極の変形例を示している。図4の(a)および(b)は、第1の半導体層4の下面よりもさらに深く、基板2の内部まで、遮光機能を有する配線電極が形成されている例を示す図である。図4の(a)では、一旦、第1の半導体領域4の端部上面、端部側面および基板2の上面を覆う階段状電極の一部を形成し、基板2内まで掘り込んだ後で、基板2の内部まで階段状電極8-1を完成させる。最後に、光回路の表層に向かって垂直に配線電極9-4を形成している。図4の(b)では、一気に基板2内部まで掘り込んだ後で、階段状電極8-2を完成させ、最後に光回路の表層に向かって垂直に配線電極9-4を形成している。光回路内において、迷光は光導波路3の下の基板内も伝搬する場合がある。したがって、図4の(a)および(b)のように光回路の表層から受光素子の第1の半導体層4の下側の基板面上にある階段状電極8を越えて、さらに内部側に配線電極9-4を形成することで、より効果的に受光素子と迷光の結合を抑えることができる。
 図4の(c)は、光回路内に存在する多層配線を利用して、複数の層間に、遮光機能を有する配線電極をそれぞれ形成した例を示す。光送受信デバイスに使用される光回路では、送信器、受信器ほかの機能を実現するため、多層配線を利用する。図1~図3、図4の(a)および(b)で示した各構成では、第1の半導体層4の端部上面、端部側面および基板2の上面に一体に形成した階段状電極8から光回路の表層までを、連続した配線電極9、9-1~9-4で形成していた。図4の(c)に示すように、受光素子を構成する光回路の中に構成された利用可能な多層配線を利用して、各層間に形成した配線電極9-5、9-6を接続して、全体で遮光機能を実現することができる。図4の(c)では、階段状電極8の底部から中間配線層に向かって垂直に形成された配線電極9-5と、迷光のソース側に近い位置にずれて中間配線層から表層に向かって垂直に形成された配線電極9-6の2つの配線電極の例を示した。迷光を抑制できる限り、基板面内における2つの配線電極の位置関係は問わない。すなわち、図4の(c)のように下層の配線電極からより上層の配線電極ほど、迷光のソース側に接近するよう位置をずらして配置しても良い。逆に、下層の配線電極からより上層の配線電極ほど、受光素子に接近するよう位置をずらして配置しても良い。また、図4の(c)では2つの配線電極を繋げた構成を示したが、3つ以上の層に渡って、3つ以上の配線電極を順次接続して、遮光機能を有する配線電極を形成しても良い。
 図4に示したいずれの配線電極9-4~9-6も、図示していない光回路の表層の配線電極と接続されて、受光素子からの検出電気信号を取り出す電極として動作する。本発明の遮光構造では、受光素子が本来備えている配線電極の構造を利用して、配線電極に、受光素子からの電気信号を取り出すための機能と、迷光を遮光する機能とを持たせている。図4の(a)および(b)では断面図のみを示しているが、配線電極9-4~9-6は図1に示した配線電極9と同様に、第1の半導体層4の幅Wpd以上の幅Weを持つのが好ましい。
 以上詳細に説明したように、本発明の遮光構造によれば、光回路の受光素子に近接して、受光素子から電気信号を出力する電極構造の一部を利用して迷光を抑制することができる。集積度が上がった光回路においても、既存の受光素子の構成の一部を修正するだけで遮光構造を実現できる。光回路の特性に影響を与える導電ビアや壁、溝を新たに作成しないで、効果的に迷光と受光素子の結合を防ぐことができる。
 上述の遮光構造は、PN型フォトダイオード(PD)、PIN型PD、アバランシェフォトダイオード(APD)など受光素子のタイプに関わらず適用できることに留意されたい。上述の図1~図4の構成例では、第1の半導体層4がp型シリコン層であり、第2の半導体層5がi型ゲルマニウム層およびn型ゲルマニウム層であって、これらの各層が積層されたPIN型PDについて説明した。
 しかしながら、非特許文献1に示されたようなシリコン光導波路、増倍領域、ゲルマニウム光吸収領域からなるAPDに対しても、本発明の遮光構造を適用できる。非特許文献1では、シリコン光導波路、増倍領域、ゲルマニウム光吸収領域が順次積層された構成が開示されている。また、同一層のシリコン光導波路および増倍領域の上に、ゲルマニウム光吸収領域を形成した構成も開示されている。このようなAPDの構成では、シリコン光導波路領域が、最も下層にある光吸収部となる。シリコン光導波路領域の一辺を含む端部上面、端部側面およびシリコン光導波路領域の下に接する層の上面に一体に形成された階段状電極の底部から、光回路の表層へ配線電極を垂直に形成することで、図1~図4のPIN型PDの構成と同様に、光吸収部と迷光の結合を抑えることができる。
 [第4の実施形態]
 上述のPIN型PDおよびPN型PDは、いずれも異なる半導体層を基板面に垂直方向(縦方向)に積層した構成を持っている。非特許文献2には、Si変調器の構成例として、Si導波路構造の中央部に、基板面に沿って横方向にPN接合を構成した構造が開示されている。このように横方向にPN接合を利用して光吸収部を構成して、光回路におけるPN型PDとして利用できる。横方向に形成されたPN型PDを光回路に利用する場合では、p-Si層およびn―Si層が、最も下層にある光吸収部となる。p-Si層またはn―Si層から、その一辺を含む端部上面、端部側面、およびSi層の下に接する層(例えばSiO2層)の上面に一体に形成された階段状電極を形成できる。この階段状電極の底部からを光回路の表層へ配線電極を垂直に形成し、PN接合の光吸収部を配線電極で遮光するように構成することで、光吸収部と迷光の結合を抑えることができる。
 上述の基板面に沿って横方向にPIN型PDを構成することもできる。光通信の受光素子としては、PIN型PDを利用する場合も多く、上述の実施形態1~4の構成をそのまま適用できる。
 図5は、本発明の第4の実施形態の遮光構造を含む光回路の一部を示す図である。図5の(a)は、光送受信デバイス内に含まれる光回路100であって、受光素子を含む光回路の一部分の上面図を示した図である。図5の(b)は、受光素子を通るVB-VB´線を含む基板面に垂直な断面を見た図である。本実施形態の光回路では、受光素子を基板面に沿って横方向にPIN接合を構成した例を示す。受光素子の構成が、図1~図4の基板面に垂直方向(縦方向)に積層した構成とは異なっている点を除けば、配線電極109の構成は実施形態1~4と同じである。すなわち受光素子は、基板102上にp型領域104、i型領域105、n型領域106が、基板面に沿って形成されており、基板面に沿って横方向に断面領域101でPIN型PDが構成されている。光導波路103は、各半導体領域104~106と概ね同一の高さに構成されている。PIN型PDでは、n型領域106からも、階段状電極111を経由して配線電極107が取り出される。
 図5に示したPIN型PDの構成では、p型領域104およびn型領域106の位置を入れ替えても、PDのアノードおよびカソードの向きが変わるだけで、迷光のソース側に近いいずれかの配線電極を遮光のために利用できる。したがって、次に述べるように図5のPIN型PDの構成では、p型領域104側の配線電極109、n型領域106側の配線電極107いずれか、または、配線電極109、107の両方を同時に遮光のために利用できることに留意されたい。
 階段状電極108が、p型領域104の端部上面、端部側面および基板2の上面を覆うように連続して一体に形成されており、階段状電極108の底部から、光回路の表層に向かって垂直に配線電極109を形成している。配線電極109を、p型領域104の幅以上の幅とすることで、迷光112が受光素子であるPIN型PDの光吸収部に結合するのを防止する。同様に、階段状電極111が、n型領域106の端部上面、端部側面および基板2の上面を覆うように連続して一体に形成され、階段状電極111の底部から、光回路の表層に向かって垂直に配線電極107を形成している。図5の例では配線電極107は受光素子に対して迷光112のソースの反対側にある。しかしながら、迷光の反射光や散乱光が図5の右側からも到来する場合には、配線電極107も、配線電極109同様に反射光や散乱光がPIN型PDの光吸収部に結合するのを防止できる。
 したがって本発明は、基板102と、前記基板の上方に構成された、光吸収部として動作する第1の半導体層104と、前記第1の半導体層に隣接して形成され、前記第1の半導体層と異なる半導体タイプを有する第2の半導体層106とを備えた受光素子であって、前記基板の基板面内の、前記第1の半導体層の領域の1つ以上の辺を含む端部の上面、当該端部の側面、および、前記第1の半導体層の下側に接する層の上面に、連続して一体に構成された階段状電極108と、前記階段状電極の底部から、垂直に表面に向かって形成された壁状または柱状の配線電極109であって、当該受光素子からの検出電気信号を取り出す配線電極とをさらに備えたことを特徴とする受光素子として実施できる。
 上述のように、本発明の光回路の遮光構造は、光吸収部を構成する半導体層の下面に構成された電極から光回路の表層まで構成された、電気信号取り出し用の配線電極を、遮光機能ために利用できる点で、受光素子のタイプに関係なく適用可能である。
本発明は、一般的に光通信システムに利用することができる。

Claims (6)

  1.  基板と、
     前記基板の上方に構成された、光吸収部として動作する第1の半導体層と、
     前記第1の半導体層の上に、または、前記第1の半導体層に隣接して形成され、前記第1の半導体層と異なる半導体タイプを有する第2の半導体層と
     を備えた受光素子であって、
     前記基板の基板面内の、前記第1の半導体層の領域の1つ以上の辺を含む端部の上面、当該端部の側面、および、前記第1の半導体層の下側に接する層の上面に、連続して一体に構成された階段状電極と、
     前記階段状電極の底部から、垂直に表面に向かって形成された壁状または柱状の配線電極であって、当該受光素子からの検出電気信号を取り出す配線電極と
     をさらに備えたことを特徴とする受光素子。
  2.  前記配線電極は、前記1つ以上の辺の内の1つの辺に概ね平行に形成され、前記領域の前記1つの辺の長さ以上の幅を有することを特徴とする請求項1に記載の受光素子。
  3.  前記配線電極は、前記基板面内を見て、壁状電極、L字型またはコの字であることを特徴とする請求項1または2に記載の受光素子。
  4.  前記配線電極は、前記1つ以上の辺の内の1つの辺に対して傾斜して形成されたことを特徴とする請求項1乃至3いずれかに記載の受光素子。
  5.  前記配線電極は、
     前記階段状電極の前記底部から、前記基板内に構成された前記階段状電極よりも表面側の中間配線層に向かって垂直に形成された第1の層間配線電極と、
     前記中間配線層から表面に向かって垂直に形成された第2の層間配線電極と
    を含むこと特徴とする請求項1乃至4いずれかに記載の受光素子。
  6.  前記第1の半導体層および前記第2の半導体層は中間領域を挟んで前記基板面に沿って形成され、相互に異なる半導体タイプを有しており、
     前記第1の半導体層、前記中間領域および前記第2の半導体層によってPIN接合が形成され、
     前記第1の半導体層および前記第2の半導体層を含む領域の1つ以上の辺に対して前記階段状電極が形成されたこと
     を特徴とする請求項1乃至4いずれかに記載の受光素子。
     
PCT/JP2020/023475 2019-06-18 2020-06-15 受光素子および光回路の遮光構造 WO2020255936A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080044710.8A CN114008797B (zh) 2019-06-18 2020-06-15 受光元件以及光回路的遮光构造
US17/619,070 US20220399467A1 (en) 2019-06-18 2020-06-15 Light Reception Element And Light Shielding Structure For Optical Circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112841 2019-06-18
JP2019112841A JP6775641B1 (ja) 2019-06-18 2019-06-18 受光素子および光回路の遮光構造

Publications (1)

Publication Number Publication Date
WO2020255936A1 true WO2020255936A1 (ja) 2020-12-24

Family

ID=72938091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023475 WO2020255936A1 (ja) 2019-06-18 2020-06-15 受光素子および光回路の遮光構造

Country Status (4)

Country Link
US (1) US20220399467A1 (ja)
JP (1) JP6775641B1 (ja)
CN (1) CN114008797B (ja)
WO (1) WO2020255936A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133224A (ja) * 1992-10-16 1994-05-13 Casio Comput Co Ltd フォトセンサシステム及びフォトセンサシステムに使用されるフォトセンサ
WO2010004850A1 (ja) * 2008-07-07 2010-01-14 日本電気株式会社 光配線構造
JP2014049692A (ja) * 2012-09-03 2014-03-17 Japan Oclaro Inc アレイ型半導体受光素子
US20140145252A1 (en) * 2012-11-27 2014-05-29 Lg Display Co., Ltd. Thin Film Transistor Array Substrate for Digital Photo-Detector
JP2017022175A (ja) * 2015-07-07 2017-01-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2019016628A (ja) * 2017-07-03 2019-01-31 富士ゼロックス株式会社 光半導体素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910007142A (ko) * 1988-09-30 1991-04-30 미다 가쓰시게 박막 광트랜지스터와 그것을 사용한 광센서어레이
EP1233458A1 (en) * 2000-07-18 2002-08-21 Nippon Sheet Glass Co., Ltd. Photodetector array
DE10215414A1 (de) * 2002-04-08 2003-10-30 Ipag Innovative Proc Ag Lichtempfindliche Halbleiterdiodenanordnung mit passiver Anpassungsschaltung
JP6028233B2 (ja) * 2011-05-27 2016-11-16 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および光電変換装置
JP6099035B2 (ja) * 2012-10-12 2017-03-22 Nltテクノロジー株式会社 光電変換装置及びその製造方法並びにx線画像検出装置
JP6564329B2 (ja) * 2016-01-21 2019-08-21 浜松ホトニクス株式会社 受光モジュールおよび受光モジュールの製造方法
JP6748486B2 (ja) * 2016-06-08 2020-09-02 浜松ホトニクス株式会社 光検出ユニット、光検出装置、及び、光検出ユニットの製造方法
CN109659300B (zh) * 2017-10-06 2023-10-17 浜松光子学株式会社 光检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133224A (ja) * 1992-10-16 1994-05-13 Casio Comput Co Ltd フォトセンサシステム及びフォトセンサシステムに使用されるフォトセンサ
WO2010004850A1 (ja) * 2008-07-07 2010-01-14 日本電気株式会社 光配線構造
JP2014049692A (ja) * 2012-09-03 2014-03-17 Japan Oclaro Inc アレイ型半導体受光素子
US20140145252A1 (en) * 2012-11-27 2014-05-29 Lg Display Co., Ltd. Thin Film Transistor Array Substrate for Digital Photo-Detector
JP2017022175A (ja) * 2015-07-07 2017-01-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2019016628A (ja) * 2017-07-03 2019-01-31 富士ゼロックス株式会社 光半導体素子

Also Published As

Publication number Publication date
US20220399467A1 (en) 2022-12-15
JP6775641B1 (ja) 2020-10-28
JP2020205373A (ja) 2020-12-24
CN114008797A (zh) 2022-02-01
CN114008797B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US10444451B2 (en) Shielded photonic integrated circuit
US10158036B2 (en) Semiconductor device and its manufacturing method
US7616904B1 (en) Waveguide photodetector with integrated electronics
JP4626614B2 (ja) 光電気複合モジュール
EP2988164B1 (en) Optical semiconductor device
CN102694055B (zh) 光接收器件以及光接收模块
US8907266B2 (en) Light-receiving device array, optical receiver module, and optical transceiver
KR20180075454A (ko) 광-가이딩 피쳐를 갖는 광학 센서 그 제조 방법
JP5477148B2 (ja) 半導体光配線装置
US9500823B2 (en) Opto-electric integrated circuit and optical interposer
US20150214387A1 (en) Photodetector
JP2007266251A (ja) 光半導体装置
US9318516B2 (en) High-frequency optoelectronic detector, system and method
WO2020255936A1 (ja) 受光素子および光回路の遮光構造
US7924380B2 (en) Semiconductor light-receiving device
JP5150216B2 (ja) 導波路型光検出装置およびその製造方法
US20200249540A1 (en) Ground cage for an integrated optical device
JP7443672B2 (ja) 光半導体素子及び光伝送装置
JP5402893B2 (ja) 光センサ
US20220085084A1 (en) Pixel with an improved quantum efficiency
JP5278428B2 (ja) 半導体受光素子及びその製造方法
JP5278429B2 (ja) 半導体受光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826710

Country of ref document: EP

Kind code of ref document: A1