WO2020255844A1 - Curable composition, cured product, and adhesive - Google Patents

Curable composition, cured product, and adhesive Download PDF

Info

Publication number
WO2020255844A1
WO2020255844A1 PCT/JP2020/022956 JP2020022956W WO2020255844A1 WO 2020255844 A1 WO2020255844 A1 WO 2020255844A1 JP 2020022956 W JP2020022956 W JP 2020022956W WO 2020255844 A1 WO2020255844 A1 WO 2020255844A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
polyol
composition according
epoxy resin
adhesive
Prior art date
Application number
PCT/JP2020/022956
Other languages
French (fr)
Japanese (ja)
Inventor
肇 菅沼
山崎 剛
太田黒 庸行
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202080043462.5A priority Critical patent/CN113966354A/en
Priority to JP2021528155A priority patent/JP7060162B2/en
Publication of WO2020255844A1 publication Critical patent/WO2020255844A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4045Mixtures of compounds of group C08G18/58 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives

Definitions

  • the present invention relates to a curable composition, a cured product thereof, and an adhesive, which are excellent in moisture and heat resistance characteristics in a cured product, have good flexibility and toughness, and are suitable for adhesive use.
  • the problem to be solved by the present invention is to obtain a curable composition, a cured product thereof, and an adhesive which are excellent in moisture and heat resistance properties, have good flexibility and toughness, and can be suitably used for adhesive applications. To provide.
  • a curable composition a cured product thereof, and an adhesive which have good flexibility and toughness in a cured product, excellent moisture and heat resistance characteristics, and are suitable for adhesive use.
  • the present invention is characterized in that the polyoxyethylene unit and the polyoxypropylene unit coexist in the polyol (a1) as described above.
  • the inclusion of the polyoxyethylene unit makes it possible to take in some water into the adhesive layer (cured product) when used as an adhesive, and as a result, even if peeling occurs, interfacial peeling can occur. Due to the fact that it suppresses and has high cohesive destructive property, it becomes possible to sufficiently perform the function as an adhesive.
  • the polyoxyethylene unit and the polyoxypropylene unit contained in the polyol (a1) do not have to be present in the same molecule, and for example, a polyol containing only polyoxyethylene and a polyol containing only a polyoxypropylene unit may be used. It may be used in combination and reacted with the polyisocyanate (a2) described later.
  • the repeating unit of the polyoxyethylene unit in polyoxyethylene is in the range of 2 to 10, which is the base material when used as an adhesive. It is preferable from the viewpoint of excellent adhesion to ethylene and an excellent balance between mechanical strength and moisture heat resistance.
  • the molecular weight of the polyoxypropylene unit in the polyol (a1) is preferably in the range of 2000 to 4000 as the number average molecular weight from the same viewpoint.
  • the mass ratio of the polyoxyethylene unit to the polyoxypropylene unit in the polyol (a1) is in the range of 25/70 to 1/99 from the viewpoint of suppressing interfacial peeling and adhesion to the substrate. It is preferable from the viewpoint of ensuring the property and the balance between the flexibility and toughness of the cured product, and particularly preferably in the range of 30/70 to 1/99. I.
  • the polyol (a1) may contain units other than polyoxyethylene and polyoxypropylene as long as the effects of the present invention are not impaired.
  • Other units include, for example, aliphatic dihydric alcohols such as tetramethylene glycol, neopentane glycol; glycerin, trioxyisobutane, 1,2,3-butanetriol, 1,2,3-pentanetriol, 2- Methyl-1,2,3-propanetriol, 2-methyl-2,3,4-butanetriol, 2-ethyl-1,2,3-butanetriol, 2,3,4-pentantriol, 2,3 4-Hexanetriol, 4-propyl-3,4,5-heptanetriol, 2,4-dimethyl-2,3,4-pentantriol, pentamethylglycerin, pentaglycerin, 1,2,4-butanetriol, 1 , 2,4-Pentantriol, trihydric alcohols such as trimethylolpropane; erythrit, pentaery
  • the polyol (a1) used in the present invention may contain a polyoxyethylene unit and a polyoxypropylene unit, and other structures are not particularly limited.
  • polyoxyethylene and polyoxypropylene having hydroxyl groups at both ends may be used as they are, and a polyether polyol which is a copolymer of polyoxyethylene and polyoxypropylene and is a compound having 2 to 3 hydroxyl groups. Is preferable.
  • it may be a polyester polyol which is a reaction product of polyoxyethylene or polyoxypropylene and a polycarboxylic acid, an ethylene oxide adduct of castor oil, a propylene oxide adduct, or the like.
  • a polyoxyethylene-polyoxypropylene copolymer from the viewpoint of being more excellent in the uniformity of function as an adhesive.
  • a mixture of the polyoxyethylene-polyoxypropylene copolymer and the polyoxypropylene it is also preferable to use a mixture of the polyoxyethylene-polyoxypropylene copolymer and the polyoxypropylene.
  • the polyol (a1) preferably contains 2 to 4 functional components, and particularly preferably contains trifunctional components from the viewpoint of excellent adhesion to the base material.
  • the number average molecular weight of the polyol (a1) is preferably in the range of 2000 to 5000, and more preferably in the range of 2000 to 4000.
  • the polyisocyanate (a2) used in the present invention may be a compound having two or more isocyanate groups in one molecule, and the compound having 2 to 4 isocyanate groups is particularly suitable for adjusting the molecular weight of the isocyanate prepolymer (A). It is preferable from the viewpoint of ease of use, and diisocyanate is most preferable.
  • polyisocyanate (a2) examples include propane-1,2-diisocyanate, 2,3-dimethylbutane-2,3-diisocyanate, 2-methylpentane-2,4-diisocyanate, and octane-3,6-diisocyanate.
  • hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane-4,4' -It is preferable to use diisocyanate, and it is particularly preferable to use isophorone diisocyanate.
  • a blocked isocyanate prepolymer obtained by blocking a polyurethane using a polyisocyanate (a2) with a blocking agent (a3) so as to form an excess isocyanate group with respect to a hydroxyl group in the polyol (a1).
  • a polymer is preferable from the viewpoint of better storage stability when the curable composition is obtained.
  • the reaction between the polyol (a1) and the polyisocyanate (a2) is not particularly limited, and may be carried out by a normal urethanization reaction.
  • the reaction temperature is 40 to 140 ° C., preferably 60 to 130 ° C.
  • various urethane polymerization catalysts for accelerating the reaction such as dioctyl tin dilaurate, dibutyl tin dilaurate, first tin octoate, and stanas octoate.
  • Organic metal compounds such as lead octylate, lead naphthenate and zinc octylate, and tertiary amine compounds such as triethylenediamine and triethylamine can be used.
  • the excess amount of the isocyanate group with respect to the hydroxyl group in the polyol (a1) is in the range of 2.05 to 3.50 mol of the isocyanate group with respect to 1 mol of the hydroxyl group, so that the molecular weight of the obtained prepolymer is adjusted. It is preferable from the viewpoint of ease of use and reduction of unreacted polyisocyanate.
  • the excess isocyanate group is preferably blocked with a blocking agent (a3) as described above, and examples of the blocking agent (a3) include malonic acid diester (diethyl malonate, etc.), acetylacetone, and acetoacetic acid.
  • Active methylene compounds such as esters (ethyl acetoacetate, etc.); oxime compounds such as acetoxime, methyl ethyl ketooxime (MEK oxime), methyl isobutyl keto oxime (MIBK oxime); methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, heptyl alcohol , Hexil alcohol, octyl alcohol, 2-ethylhexyl alcohol, isononyl alcohol, stearyl alcohol and other monovalent alcohols or isomers thereof; methyl glycol, ethyl glycol, ethyl diglycol, ethyl triglycol, butyl glycol, butyl diglycol and the like.
  • esters ethyl acetoacetate, etc.
  • oxime compounds such as acetoxime, methyl ethyl ketooxime (MEK oxime), methyl isobutyl keto
  • Glycol derivatives such as dicyclohexylamine; phenol, cresol, ethylphenol, n-propylphenol, isopropylphenol, butylphenol, tertiary butylphenol, octylphenol, nonylphenol, dodecylphenol, cyclohexylphenol, chlorophenol, bromophenol, etc.
  • Bivalent phenol compounds such as valent phenol compounds, resorcin, catechol, hydroquinone, bisphenol A, bisphenol S, bisphenol F, naphthol; ⁇ -caprolactone, ⁇ -caprolactam, etc. May be good.
  • a monovalent phenol compound is preferable, and an alkyl group having 1 to 8 carbon atoms is particularly preferable, from the viewpoint that it does not easily affect the reaction when the cured product is obtained after the curable composition is prepared. It is preferably an alkylphenol having, and from the viewpoint of safety, it is most preferable to use pt-butylphenol.
  • the blocking reaction can be carried out by a known reaction method, and the amount of the blocking agent (a3) used is usually 1 to 2 equivalents, preferably 1.05 to 1.5 equivalents, relative to the free isocyanate group. is there.
  • the blocking reaction with the blocking agent (a3) usually takes the method of adding the blocking agent (a3) in the final reaction of the polymerization of the polyurethane, but the blocking agent (a3) is used at any stage of the polymerization of the polyurethane. Can also be added and reacted to obtain a blocked isocyanate prepolymer.
  • the blocking agent (a3) As a method of adding the blocking agent (a3), a method such as adding at the end of a predetermined polymerization, adding at the beginning of polymerization, adding a part at the beginning of polymerization and adding the rest at the end of polymerization is possible. However, it is preferably added at the end of polymerization. In this case, the isocyanate% may be used as a reference as a guideline at the end of the predetermined polymerization.
  • the reaction temperature at the time of adding the blocking agent is usually 50 to 150 ° C, preferably 60 to 120 ° C.
  • the reaction time is usually about 1 to 7 hours.
  • the urethane polymerization catalyst At the time of the reaction, it is also possible to add the urethane polymerization catalyst to accelerate the reaction. In addition, an arbitrary amount of plasticizer may be added during the reaction.
  • the weight average molecular weight of the isocyanate prepolymer (A) in the present invention is preferably in the range of 4000 to 15000 from the viewpoint of good handling when the curable composition is used as an adhesive, particularly 5000 to 10000. It is preferably in the range of.
  • the number average molecular weight (Mn) of the polyol is a calculated value from the hydroxyl value and the number of functional groups, and the other weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) under the following conditions. Value.
  • the epoxy resin (B) used in the present invention is not particularly limited, and various ones can be used. When used as an adhesive, it is preferably an epoxy resin that is liquid at room temperature.
  • a bisphenol type or biphenol type epoxy resin such as a tetramethylbiphenol type epoxy resin, a bisphenol A type epoxy resin, or a bisphenol F type epoxy resin
  • Adipose polyol polyglycidyl ethers such as butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylpropan triglycidyl ether, glycerin triglycidyl ether; diglycidyl aniline, resorcinol diglycidyl ether, hydrogenation Ring-structure-containing polyglycidyl compounds such as bisphenol A diglycidyl ether; ring-structure-containing monofunctional glycidyl compounds such as
  • a bisphenol type or biphenol type epoxy resin is preferably used because a cured product having excellent flexibility and toughness can be obtained, and a bisphenol type epoxy resin is preferable from the viewpoint of industrial availability.
  • the ratio of the bisphenol type epoxy resin to the total mass of the epoxy resin (B) is preferably 50% by mass or more, and more preferably 70% by mass or more.
  • Examples of the bisphenol type or biphenol type epoxy resin include those obtained by using various bisphenol compounds or biphenol compounds and epihalohydrin as resin raw materials. Specifically, the following structural formula (1)
  • R 2 is independently any of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms
  • R 3 is independently 1 to 4 carbon atoms. It is either an alkyl group or an alkoxy group having 1 to 4 carbon atoms.
  • n is an integer of 0 or more.
  • the one represented by is mentioned. Each of these may be used alone, or two or more types may be used in combination.
  • X in the structural formula (1) is a structural part represented by any of the structural formulas (2-1) to (2-8), and a plurality of Xs existing in the molecule are the same structural part. It may be present, or it may be a different structural part. Above all, the structural portion represented by the general formula (2-1) or (2-2) is preferable because it is excellent in flexibility and toughness in the cured product.
  • the epoxy equivalent of the bisphenol type or biphenol type epoxy resin is preferably in the range of 150 to 250 g / eq, and is more preferably in the range of 160 to 200 g / eq because it is particularly excellent in flexibility and toughness in a cured product. preferable.
  • the bisphenol type or biphenol type epoxy resin can be produced by a method using various bisphenol compounds or biphenol compounds and epihalohydrin as resin raw materials.
  • Specific production methods include, for example, a method of further reacting a diglycidyl ether compound obtained by reacting a bisphenol compound or a biphenol compound with an epihalohydrin with a bisphenol compound or a biphenol compound (method 1), or a bisphenol compound or a biphenol. Examples thereof include a method of directly obtaining an epoxy resin by reacting a compound with epihalohydrin (method 2).
  • the bisphenol compound or biphenol compound used in the method 1 or 2 is, for example, the following structural formulas (3-1) to (3-8).
  • R 2 is independently any of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms
  • R 3 is independently 1 to 4 carbon atoms. It is either an alkyl group or an alkoxy group having 1 to 4 carbon atoms.
  • Examples thereof include compounds represented by any of the above. Each of these may be used alone, or two or more types may be used in combination. Among them, the compound represented by the general formula (3-1) or (3-2) is preferable because it is excellent in flexibility and toughness in the cured product.
  • the reaction ratio between the bisphenol compound or the biphenol compound and these diglycidyl ether compounds is preferably in the mass ratio of 50/50 to 5/95.
  • the reaction temperature is preferably about 120 to 160 ° C., and a reaction catalyst such as tetramethylammonium chloride may be used.
  • the epoxy resin (B) includes a bisphenol type or biphenol type epoxy resin, and a flexible epoxy such as a urethane-modified epoxy resin or a rubber-modified epoxy resin. It is preferable to use a resin together.
  • the structure of the urethane-modified epoxy resin is not particularly limited as long as it is a resin having a urethane bond and two or more epoxy groups in the molecule.
  • a urethane bond-containing compound having an isocyanate group obtained by reacting a polyhydroxy compound with a polyisocyanate and a hydroxy group-containing epoxy compound are obtained from the viewpoint that a urethane bond and an epoxy group can be efficiently introduced into one molecule. It is preferable that the resin is obtained by reacting with.
  • polyhydroxy compound used in producing the urethane-modified epoxy resin examples include polyether polyols, polyester polyols, adducts of hydroxycarboxylic acid and alkylene oxide, polybutadiene polyols, polyolefin polyols and the like.
  • the molecular weight of the polyhydroxy compound is preferably in the range of 300 to 5000, particularly 500 to 2000, as a weight average molecular weight from the viewpoint of excellent balance between flexibility and curability.
  • the polyisocyanate used in producing the urethane-modified epoxy resin is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • an aliphatic polyisocyanate, an aromatic polyisocyanate, and a polyisocyanate having an aromatic hydrocarbon group can be mentioned.
  • aromatic polyisocyanates are preferable.
  • the aromatic polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, and naphthalene diisocyanate.
  • a urethane prepolymer containing a free isocyanate group at the terminal is obtained.
  • Urethane is reacted with an epoxy resin having at least one hydroxyl group in one molecule (for example, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of aliphatic polyhydric alcohol and glycidol).
  • an epoxy resin having at least one hydroxyl group in one molecule for example, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of aliphatic polyhydric alcohol and glycidol.
  • a modified epoxy resin is obtained.
  • the urethane-modified epoxy resin preferably has an epoxy equivalent of 200 to 250 g / eq.
  • the rubber-modified epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups and a rubber skeleton.
  • examples of the rubber forming the skeleton include polybutadiene, acrylonitrile butadiene rubber (NBR), and carboxyl group-terminated NBR (CTBN).
  • the rubber-modified epoxy resin can be used alone or in combination of two or more.
  • the rubber-modified epoxy resin preferably has an epoxy equivalent of 200 to 350 g / eq.
  • the rubber-modified epoxy resin is not particularly limited in its production. For example, it can be produced by reacting rubber and epoxy in a large amount of epoxy.
  • the epoxy (for example, epoxy resin) used in producing the rubber-modified epoxy resin is not particularly limited.
  • the curable composition further contains a curing agent or a curing accelerator (C).
  • curing agent or curing accelerator (C) those generally used for curing epoxy resins can be widely used, and for example, polyamine compounds, amide compounds, acid anhydrides, and phenolic hydroxyl group-containing resins can be widely used. , Phosphorus compounds, imidazole compounds, imidazoline compounds, urea compounds, organic acid metal salts, Lewis acids, amine complex salts and the like.
  • the polyamine compound is, for example, trimethylenediamine, ethylenediamine, N, N, N', N'-tetramethylethylenediamine, pentamethyldiethylenetriamine, triethylenediamine, dipropylenediamine, N, N, N', N'-tetramethyl.
  • DBU undecene
  • Aromatic amines such as o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzylmethylamine, dimethylbenzylamine, m-xylenediamine, pyridine, picoline, ⁇ -methylbenzylmethylamine Compound;
  • Epoxy compound-added polyamines Epoxy compound-added polyamines, Michael-added polyamines, Mannig-added polyamines, thiourea-added polyamines, ketone-blocking polyamines, dicyandiamides, guanidines, organic acid hydrazides, diaminomaleonitrile, amineimides, boron trifluoride-piperidin complexes, boron trifluoride-mono Examples thereof include modified amine compounds such as ethylamine complexes.
  • the amide compound examples include dicyandiamide and polyamideamine.
  • the polyamide amine includes, for example, an aliphatic dicarboxylic acid such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid, a carboxylic acid compound such as a fatty acid and dimer acid, and an aliphatic polyamine or polyoxyalkylene. Examples thereof include those obtained by reacting a polyamine having a chain or the like.
  • the acid anhydrides include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro.
  • phthalic anhydride trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro.
  • phthalic anhydride include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic
  • the phenolic hydroxyl group-containing resin includes, for example, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadienephenol addition type resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and the like.
  • the phosphorus compound is, for example, an alkylphosphine such as ethylphosphine or butylphosphine, a first phosphine such as phenylphosphine; a dialkylphosphine such as dimethylphosphine or dipropylphosphine; a second phosphine such as diphenylphosphine or methylethylphosphine; , Triethylphosphine, third phosphine such as triphenylphosphine and the like.
  • alkylphosphine such as ethylphosphine or butylphosphine
  • a first phosphine such as phenylphosphine
  • a dialkylphosphine such as dimethylphosphine or dipropylphosphine
  • a second phosphine such as diphenylphosphine or methylethylphosphine
  • the imidazole compounds include, for example, imidazole, 1-methylimidazole, 2-methylimidazole, 3-methylimidazole, 4-methylimidazole, 5-methylimidazole, 1-ethyl imidazole, 2-ethyl imidazole, 3-ethyl imidazole, 4 -Ethyl imidazole, 5-ethyl imidazole, 1-n-propyl imidazole, 2-n-propyl imidazole, 1-isopropyl imidazole, 2-isopropyl imidazole, 1-n-butyl imidazole, 2-n-butyl imidazole, 1-isobutyl Imidazole, 2-isobutylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 1,3-dimethylimidazole, 2,4-dimethylimidazole, 2-
  • imidazoline compound examples include 2-methylimidazoline and 2-phenylimidazoline.
  • the urea compound includes, for example, p-chlorophenyl-N, N-dimethylurea, 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -N, N-dimethylurea, N- (3).
  • -Chloro-4-methylphenyl) -N', N'-dimethylurea and the like can be mentioned.
  • the ratio of the isocyanate prepolymer (A) to the epoxy resin (B) is usually (A) / (from the viewpoint of being more excellent in the balance between the flexibility, toughness and moist heat resistance of the obtained cured product.
  • the mass ratio represented by B) is in the range of 5/95 to 40/60, and more preferably in the range of 10/90 to 30/70.
  • the blending amount of the epoxy resin (B) and the curing agent or curing accelerator (C) is 1 mol of the epoxy group of the epoxy resin (B) when a curing agent having a functional group capable of reacting with the epoxy group is used.
  • a curing accelerator it is preferably blended in a proportion of 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin (B).
  • the curable composition of the present invention includes organic solvents, ultraviolet absorbers, antioxidants, silicon-based additives, fluorine-based additives, flame retardants, plasticizers, silane coupling agents, organic beads, inorganic fine particles, and the like. It may contain an inorganic filler, a rheology control agent, a defoaming agent, an antifogging agent, a coloring agent and the like. Any amount of these various components may be added depending on the desired performance.
  • the isocyanate prepolymer (A), the epoxy resin (B), the curing agent or the curing accelerator (C), and various optional components are added to a pot mill, a ball mill, a bead mill, a roll mill, and a homogenizer.
  • a homogenizer e.g., Super mill, homodisper, universal mixer, Banbury mixer, kneader and the like can be prepared by uniformly mixing.
  • the use of the curable composition of the present invention is not particularly limited, and it can be used for various uses such as paints, coating agents, molding materials, insulating materials, encapsulants, sealants, and fiber binders.
  • it can be suitably used as an adhesive for structural members in the fields of automobiles, trains, civil engineering and construction, electronics, aircraft, and the space industry by taking advantage of its excellent flexibility and toughness in cured products.
  • the adhesive of the present invention can be used not only for structural members but also as an adhesive for general office work, medical use, carbon fiber, electronic material, etc., and as an adhesive for electronic material, for example, build-up Interlayer adhesives for multilayer substrates such as substrates, adhesives for joining optical components, adhesives for bonding optical disks, adhesives for mounting printed wiring boards, die bonding adhesives, adhesives for semiconductors such as underfills, underfills for BGA reinforcement Examples thereof include a fill, an anisotropic conductive film, and an adhesive for mounting such as an anisotropic conductive paste.
  • Synthesis example 1 Polyether polyol (Actcol ED-28 number average molecular weight (Mn): 4000 functional groups: 2) which is a polyoxyethylene (PE) -polyoxypropylene (PP) copolymer manufactured by Mitsui Chemical & SKC Polyurethane (MCNS) under a nitrogen atmosphere. ) 834 parts by mass and 96 parts by mass of isophorone diisocyanate (IPDI) are mixed, 0.1 part of Neostan U-820 is added as a catalyst, and the reaction is carried out at 80 ° C. for 5 hours, and then the paratershary butylphenol (PTBP) is used as a blocking agent. ) 70 parts by mass was charged and reacted at 90 ° C. for 5 hours to obtain a blocked isocyanate prepolymer (1).
  • PE polyoxyethylene
  • PP polyoxypropylene copolymer manufactured by Mitsui Chemical & SKC Polyurethane
  • IPDI isophorone diisocyanate
  • Example 1 Block isocyanate prepolymer (1) synthesized in Synthesis Example 1 25 parts by mass, bisphenol A type epoxy resin EPICLON 850 75 parts by mass manufactured by DIC Co., Ltd., rubber modified epoxy resin EPICLON TSR-6019 9 parts by mass manufactured by DIC Co., Ltd., curing agent 5 parts by mass of dicyandiamide (DICY), 1 part by mass of 3,4-dichlorophenyl-N, N-dimethylurea (DCMU) as a curing accelerator, and 10 parts by mass of calcium carbonate (CaCO 3 ) as a filler are mixed to form a curable composition.
  • DIY dicyandiamide
  • DCMU N-dimethylurea
  • CaCO 3 calcium carbonate
  • Adhesiveness evaluation Tensile shear strength was measured using AUTOGRAPH AG-XPlus 100 kN manufactured by Shimadzu Corporation under the condition of 25 ° C. by the JIS K6859 (adhesive creep rupture test) method.
  • Moisture and heat resistance test After conducting a moisture and heat resistance test for 2 weeks under the conditions of 50 ° C and 90% for the test pieces prepared in the above ⁇ tensile shear test> and ⁇ T-shaped peeling test>, the tensile shear strength and peeling are performed with the same testing machine. The intensity was measured.
  • Example 2-10 The same evaluation was carried out for the curable composition blended in the same manner as in Example 1 except that the blocked isocyanate prepolymer shown in Table 2 was used instead of the blocked isocyanate prepolymer (1) of Example 1. The evaluation results are summarized in Table 2.

Abstract

The present invention provides a curable composition, a cured product, and an adhesive thereof. The curable composition is characterized by comprising an isocyanate prepolymer (A), an epoxy resin (B), and a curing agent or curing accelerator (C), wherein the essential starting materials for the isocyanate prepolymer (A) are polyol (a1) containing a polyoxyethylene unit and polyoxypropylene unit and polyisocyanate (a2). The curable composition exhibits an excellent wet heat resistance performance, a good flexibility and toughness, and is capable of being suitably used in applications as an adhesive.

Description

硬化性組成物、硬化物及び接着剤Curable composition, cured product and adhesive
 本発明は、硬化物における耐湿熱性特性に優れ、柔軟性、靱性が良好であり、接着剤用途に好適な硬化性組成物とその硬化物、及び接着剤に関する。 The present invention relates to a curable composition, a cured product thereof, and an adhesive, which are excellent in moisture and heat resistance characteristics in a cured product, have good flexibility and toughness, and are suitable for adhesive use.
 近年、省エネルギーの観点から構造体材料としてアルミニウムや、マグネシウム、プラスチック等の軽量材料の採用が進んでおり、また、組み立てにおいても溶接による接合に替えて接着剤の利用が増えてきている。自動車等の構造体用接着剤には異素材間の接着性が良好であることや、使用環境の温度・湿度の変化に耐えられることなどが要求されている。これらの要求を満たすために、例えば、基材への追従性を向上させることで接着性を維持できるとの観点から、ビスフェノール型エポキシ樹脂とウレタン変性エポキシ樹脂やゴム変性エポキシ樹脂とを併用してなる接着剤が提供されている(例えば、特許文献1参照)。しかしながら、エポキシ樹脂を変性することで柔軟性骨格を導入する場合には、その導入量に上限があり、高度化する要求を十分に満たせない場合がある。更に、耐湿熱性の観点からは、硬化物(接着層)の疎水性に起因して、基材と硬化物との界面に水分が入り込むことで、界面剥離を起こしやすいという点においても、改良が求められている。 In recent years, from the viewpoint of energy saving, lightweight materials such as aluminum, magnesium, and plastic have been adopted as structural materials, and the use of adhesives has been increasing instead of welding by welding in assembly. Adhesives for structures such as automobiles are required to have good adhesiveness between different materials and to withstand changes in temperature and humidity in the usage environment. In order to satisfy these requirements, for example, from the viewpoint that the adhesiveness can be maintained by improving the followability to the base material, the bisphenol type epoxy resin and the urethane-modified epoxy resin or the rubber-modified epoxy resin are used in combination. (See, for example, Patent Document 1). However, when a flexible skeleton is introduced by modifying an epoxy resin, there is an upper limit to the amount of the flexible skeleton introduced, and the demand for sophistication may not be sufficiently satisfied. Furthermore, from the viewpoint of moisture and heat resistance, improvements have been made in that due to the hydrophobicity of the cured product (adhesive layer), moisture enters the interface between the base material and the cured product, which tends to cause interfacial peeling. It has been demanded.
特開2010-185034号公報Japanese Unexamined Patent Publication No. 2010-185034
 したがって、本発明が解決しようとする課題は、耐湿熱特性に優れ、柔軟性、靱性が良好であり、接着剤用途に好適に用いることができる硬化性組成物とその硬化物、及び接着剤を提供することにある。 Therefore, the problem to be solved by the present invention is to obtain a curable composition, a cured product thereof, and an adhesive which are excellent in moisture and heat resistance properties, have good flexibility and toughness, and can be suitably used for adhesive applications. To provide.
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、特定のポリオールを原料とするイソシアネートプレポリマーをエポキシ樹脂と併用することによって、前記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by using an isocyanate prepolymer made from a specific polyol as a raw material in combination with an epoxy resin, and completed the present invention. I came to let you.
 即ち、本発明は、ポリオキシエチレンユニットとポリオキシプロピレンユニットとを含むポリオール(a1)と、ポリイソシアネート(a2)と、を必須の原料とするイソシアネートプレポリマー(A)と、エポキシ樹脂(B)と、硬化剤又は硬化促進剤(C)と、を含有することを特徴とする硬化性組成物とその硬化物、並びに当該硬化性組成物からなる接着剤を提供するものである。 That is, in the present invention, an isocyanate prepolymer (A) containing a polyol (a1) containing a polyoxyethylene unit and a polyoxypropylene unit, a polyisocyanate (a2) as essential raw materials, and an epoxy resin (B) And a curing agent or a curing accelerator (C), a curable composition characterized by containing, a cured product thereof, and an adhesive composed of the curable composition.
 本発明によれば、硬化物における柔軟性と靭性が良好であり、耐湿熱性特性にも優れ、接着剤用途に好適な硬化性組成物とその硬化物、及び接着剤を提供することができる。 According to the present invention, it is possible to provide a curable composition, a cured product thereof, and an adhesive which have good flexibility and toughness in a cured product, excellent moisture and heat resistance characteristics, and are suitable for adhesive use.
 以下、本発明を詳細に説明する。
 本発明は、ポリオキシエチレンユニットとポリオキシプロピレンユニットとを含むポリオール(a1)と、ポリイソシアネート(a2)と、を必須の原料とするイソシアネートプレポリマー(A)と、エポキシ樹脂(B)と、硬化剤又は硬化促進剤(C)と、を含有することを特徴とする。
Hereinafter, the present invention will be described in detail.
In the present invention, an isocyanate prepolymer (A) containing a polyol (a1) containing a polyoxyethylene unit and a polyoxypropylene unit, a polyisocyanate (a2) as essential raw materials, an epoxy resin (B), and the like. It is characterized by containing a curing agent or a curing accelerator (C).
 本発明は、前記のようにポリオール(a1)中にポリオキシエチレンユニットとポリオキシプロピレンユニットとが併存することに特徴がある。とくにポリオキシエチレンユニットが含まれることによって、接着剤として用いた際に、接着層(硬化物)中に水分をある程度取り込むことが可能となり、その結果として、仮にはがれを起こしたとしても界面剥離を抑制し、凝集破壊性が高いことに起因し、接着剤としての機能を十分に奏することが可能となる。 The present invention is characterized in that the polyoxyethylene unit and the polyoxypropylene unit coexist in the polyol (a1) as described above. In particular, the inclusion of the polyoxyethylene unit makes it possible to take in some water into the adhesive layer (cured product) when used as an adhesive, and as a result, even if peeling occurs, interfacial peeling can occur. Due to the fact that it suppresses and has high cohesive destructive property, it becomes possible to sufficiently perform the function as an adhesive.
 前記ポリオール(a1)に含まれるポリオキシエチレンユニットとポリオキシプロピレンユニットとは、同一分子内に存在する必要はなく、例えば、ポリオキシエチレンのみを含むポリオールとポリオキシプロピレンユニットのみを含むポリオールとを併用して後述するポリイソシアネート(a2)と反応させてもよい。 The polyoxyethylene unit and the polyoxypropylene unit contained in the polyol (a1) do not have to be present in the same molecule, and for example, a polyol containing only polyoxyethylene and a polyol containing only a polyoxypropylene unit may be used. It may be used in combination and reacted with the polyisocyanate (a2) described later.
 ポリオール(a1)がポリオキシエチレンとポリオキシプロピレンのコポリマーである場合、ポリオキシエチレン中のポリオキシエチレンユニットの繰り返し単位は2~10の範囲であることが、接着剤として用いた際の基材への密着性と、機械的強度と耐湿熱性のバランスに優れる観点から好ましいものである。 When the polyol (a1) is a copolymer of polyoxyethylene and polyoxypropylene, the repeating unit of the polyoxyethylene unit in polyoxyethylene is in the range of 2 to 10, which is the base material when used as an adhesive. It is preferable from the viewpoint of excellent adhesion to ethylene and an excellent balance between mechanical strength and moisture heat resistance.
 また、ポリオール(a1)中のポリオキシプロピレンユニットとしての分子量は、数平均分子量として2000~4000の範囲であることが、同様の観点から好ましいものである。 Further, the molecular weight of the polyoxypropylene unit in the polyol (a1) is preferably in the range of 2000 to 4000 as the number average molecular weight from the same viewpoint.
 前記ポリオール(a1)中のポリオキシエチレンユニットとポリオキシプロピレンユニットとの質量比としては、25/70~1/99の範囲であることが、界面剥離を抑制できる観点と、基材との密着性の確保、並びに硬化物の柔軟性・靱性のバランスにより優れる観点から好ましく、特に30/70~1/99の範囲であることが好ましい。い。 The mass ratio of the polyoxyethylene unit to the polyoxypropylene unit in the polyol (a1) is in the range of 25/70 to 1/99 from the viewpoint of suppressing interfacial peeling and adhesion to the substrate. It is preferable from the viewpoint of ensuring the property and the balance between the flexibility and toughness of the cured product, and particularly preferably in the range of 30/70 to 1/99. I.
 前記ポリオール(a1)中には、ポリオキシエチレン、ポリオキシプロピレン以外のユニットを、本発明の効果を損なわない範囲で含んでいてもよい。その他のユニットとしては、例えば、テトラメチレングルコール、ネオペンタングリコール等の脂肪族二価アルコール;グリセリン、トリオキシイソブタン、1,2,3-ブタントリオール、1,2,3-ペンタントリオール、2-メチル-1,2,3-プロパントリオール、2-メチル-2,3,4-ブタントリオール、2-エチル-1,2,3-ブタントリオール、2,3,4-ペンタントリオール、2,3,4-ヘキサントリオール、4-プロピル-3,4,5-ヘプタントリオール、2,4-ジメチル-2,3,4-ペンタントリオール、ペンタメチルグリセリン、ペンタグリセリン、1,2,4-ブタントリオール、1,2,4-ペンタントリオール、トリメチロールプロパン等の三価アルコール;エリトリット、ペンタエリトリット、1,2,3,4-ペンタンテトロール、2,3,4,5-ヘキサンテトロール、1,2,3,5-ペンタンテトロール、1,3,4,5-ヘキサンテトロール等の四価アルコール;アドニット、アラビット、キシリット等の五価アルコール;ソルビット、マンニット、イジット等の六価アルコール等を単独で、或いは複数を繰返し単位として有するユニットが挙げられる。 The polyol (a1) may contain units other than polyoxyethylene and polyoxypropylene as long as the effects of the present invention are not impaired. Other units include, for example, aliphatic dihydric alcohols such as tetramethylene glycol, neopentane glycol; glycerin, trioxyisobutane, 1,2,3-butanetriol, 1,2,3-pentanetriol, 2- Methyl-1,2,3-propanetriol, 2-methyl-2,3,4-butanetriol, 2-ethyl-1,2,3-butanetriol, 2,3,4-pentantriol, 2,3 4-Hexanetriol, 4-propyl-3,4,5-heptanetriol, 2,4-dimethyl-2,3,4-pentantriol, pentamethylglycerin, pentaglycerin, 1,2,4-butanetriol, 1 , 2,4-Pentantriol, trihydric alcohols such as trimethylolpropane; erythrit, pentaerythrit, 1,2,3,4-pentantetrol, 2,3,4,5-hexanetetrol, 1,2 , 3,5-Pentantetrol, 1,3,4,5-Hexanetetrol and other tetravalent alcohols; Adnit, Arabit, Xylit and other pentavalent alcohols; Solbit, Mannit, Igit and other hexavalent alcohols Examples thereof include a unit having one or a plurality of repeating units.
 本発明で用いるポリオール(a1)は、ポリオキシエチレンユニットおよびポリオキシプロピレンユニットを含むものであればよく、その他の構造については特に限定されない。例えば、両末端が水酸基であるポリオキシエチレン、ポリオキシプロピレンをそのまま用いてもよく、ポリオキシエチレンとポリオキシプロピレンとの共重合体であって、水酸基を2~3有する化合物であるポリエーテルポリオールであることが好ましい。更に、ポリオキシエチレン、ポリオキシプロピレンとポリカルボン酸との反応物であるポリエステルポリオールや、ひまし油のエチレンオキシド付加物、プロピレンオキシド付加物等であってもよい。 The polyol (a1) used in the present invention may contain a polyoxyethylene unit and a polyoxypropylene unit, and other structures are not particularly limited. For example, polyoxyethylene and polyoxypropylene having hydroxyl groups at both ends may be used as they are, and a polyether polyol which is a copolymer of polyoxyethylene and polyoxypropylene and is a compound having 2 to 3 hydroxyl groups. Is preferable. Further, it may be a polyester polyol which is a reaction product of polyoxyethylene or polyoxypropylene and a polycarboxylic acid, an ethylene oxide adduct of castor oil, a propylene oxide adduct, or the like.
 これらの中でも、ポリオキシエチレン-ポリオキシプロピレン共重合体を用いることが、接着剤としての機能の均一性により優れる観点から好ましい。ポリオキシエチレンユニットの含有率の調整のために、ポリオキシエチレン-ポリオキシプロピレン共重合体と、ポリオキシプロピレンとを混合して用いることも好ましいものである。 Among these, it is preferable to use a polyoxyethylene-polyoxypropylene copolymer from the viewpoint of being more excellent in the uniformity of function as an adhesive. In order to adjust the content of the polyoxyethylene unit, it is also preferable to use a mixture of the polyoxyethylene-polyoxypropylene copolymer and the polyoxypropylene.
 更に、前記ポリオール(a1)としては、2~4官能成分を含むことが好ましく、特に3官能成分を含むことが、基材との密着性により優れる観点から好ましい。また、ポリオール(a1)の数平均分子量としては、2000~5000の範囲であることが好ましく、特に2000~4000の範囲であることがより好ましい。 Further, the polyol (a1) preferably contains 2 to 4 functional components, and particularly preferably contains trifunctional components from the viewpoint of excellent adhesion to the base material. The number average molecular weight of the polyol (a1) is preferably in the range of 2000 to 5000, and more preferably in the range of 2000 to 4000.
 本発明で用いるポリイソシアネート(a2)は、1分子中にイソシアネート基を2個以上有する化合物であればよく、特に2~4個有する化合物であることが、イソシアネートプレポリマー(A)の分子量調整が容易である観点から好ましく、ジイソシアネートであることが最も好ましい。 The polyisocyanate (a2) used in the present invention may be a compound having two or more isocyanate groups in one molecule, and the compound having 2 to 4 isocyanate groups is particularly suitable for adjusting the molecular weight of the isocyanate prepolymer (A). It is preferable from the viewpoint of ease of use, and diisocyanate is most preferable.
 前記ポリイソシアネート(a2)としては、例えば、プロパン-1,2-ジイソシアネート、2,3-ジメチルブタン-2,3-ジイソシアネート、2-メチルペンタン-2,4-ジイソシアネート、オクタン-3,6-ジイソシアネート、3,3-ジニトロペンタン-1,5-ジイソシアネート、オクタン-1,6-ジイソシアネート、1,6-ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート、メタテトラメチルキシリレンジイソシアネート、イソホロンジイソシアネート(3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート)、1,3-又は1,4-ビス(イソシアネートメチル)シクロヘキサン、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、水添トリレンジイソシアネート等、およびこれらの混合物が挙げられる。 Examples of the polyisocyanate (a2) include propane-1,2-diisocyanate, 2,3-dimethylbutane-2,3-diisocyanate, 2-methylpentane-2,4-diisocyanate, and octane-3,6-diisocyanate. , 3,3-Dinitropentane-1,5-diisocyanate, octane-1,6-diisocyanate, 1,6-hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate, lysine diisocyanate, tolylene diisocyanate (TDI), xylylene diisocyanate Isocyanate, metatetramethylxylylene diisocyanate, isophorone diisocyanate (3-isocyanate methyl-3,5,5-trimethylcyclohexylisocyanate), 1,3- or 1,4-bis (isocyanatemethyl) cyclohexane, diphenylmethane-4,4' -Diisocyanate (MDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), hydrogenated tolylene diisocyanate and the like, and mixtures thereof.
 これらの中でも、前記ポリオール(a1)との反応制御がしやすい、原料入手容易性の観点から、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネートを用いることが好ましく、特にイソホロンジイソシアネートを用いることが好ましい。 Among these, from the viewpoint of easy control of the reaction with the polyol (a1) and easy availability of raw materials, hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane-4,4' -It is preferable to use diisocyanate, and it is particularly preferable to use isophorone diisocyanate.
 本発明では、特に前記ポリオール(a1)中の水酸基に対して、過剰のイソシアネート基となるようにポリイソシアネート(a2)を用いてなるポリウレタンをブロック化剤(a3)でブロックしてなるブロックイソシアネートプレポリマーであることが、硬化性組成物としたときの保存安定性がより良好である観点から好ましいものである。 In the present invention, a blocked isocyanate prepolymer obtained by blocking a polyurethane using a polyisocyanate (a2) with a blocking agent (a3) so as to form an excess isocyanate group with respect to a hydroxyl group in the polyol (a1). A polymer is preferable from the viewpoint of better storage stability when the curable composition is obtained.
 前記ポリオール(a1)と前記ポリイソシアネート(a2)との反応は特に限定されるものではなく、通常のウレタン化反応で実施すればよい。例えば、反応温度40~140℃、好ましくは60~130℃であり、反応を促進するために種々のウレタン重合用触媒、例えば、ジオクチルスズジラウレート、ジブチルスズジラウレート、第一スズオクトエート、スタナスオクトエート、オクチル酸鉛、ナフテン酸鉛、オクチル酸亜鉛等の有機金属化合物、トリエチレンジアミン、トリエチルアミン等の第三級アミン系化合物を使用することができる。 The reaction between the polyol (a1) and the polyisocyanate (a2) is not particularly limited, and may be carried out by a normal urethanization reaction. For example, the reaction temperature is 40 to 140 ° C., preferably 60 to 130 ° C., and various urethane polymerization catalysts for accelerating the reaction, such as dioctyl tin dilaurate, dibutyl tin dilaurate, first tin octoate, and stanas octoate. , Organic metal compounds such as lead octylate, lead naphthenate and zinc octylate, and tertiary amine compounds such as triethylenediamine and triethylamine can be used.
 前記ポリオール(a1)中の水酸基に対するイソシアネート基の過剰量としては、水酸基1モルに対し、イソシアネート基が2.05~3.50モルの範囲であることが、得られるプレポリマーの分子量を調整しやすいことや、未反応ポリイソシアネート低減の観点から好ましい。 The excess amount of the isocyanate group with respect to the hydroxyl group in the polyol (a1) is in the range of 2.05 to 3.50 mol of the isocyanate group with respect to 1 mol of the hydroxyl group, so that the molecular weight of the obtained prepolymer is adjusted. It is preferable from the viewpoint of ease of use and reduction of unreacted polyisocyanate.
 過剰のイソシアネート基は、前記のようにブロック化剤(a3)を用いてブロックすることが好ましく、ブロック化剤(a3)としては例えば、、マロン酸ジエステル(マロン酸ジエチル等)、アセチルアセトン、アセト酢酸エステル(アセト酢酸エチル等)等の活性メチレン化合物;アセトオキシム、メチルエチルケトオキシム(MEKオキシム)、メチルイソブチルケトオキシム(MIBKオキシム)等のオキシム化合物;メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ヘプチルアルコール、ヘキシルアルコール、オクチルアルコール、2-エチルヘキシルアルコール、イソノニルアルコール、ステアリルアルコール等の一価アルコール又はこれらの異性体;メチルグリコール、エチルグリコール、エチルジグリコール、エチルトリグリコール、ブチルグリコール、ブチルジグリコール等のグリコール誘導体;ジシクロヘキシルアミン等のアミン化合物;フェノール、クレゾール、エチルフェノール、n-プロピルフェノール、イソプロピルフェノール、ブチルフェノール、第三ブチルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノール、シクロヘキシルフェノール、クロロフェノール、ブロモフェノール等の1価のフェノール化合物、レゾルシン、カテコール、ハイドロキノン、ビスフェノールA、ビスフェノールS、ビスフェノールF、ナフトール等の2価のフェノール化合物;ε-カプロラクトン、ε-カプロラクタム等が挙げられ、単独でも2種以上を併用してもよい。 The excess isocyanate group is preferably blocked with a blocking agent (a3) as described above, and examples of the blocking agent (a3) include malonic acid diester (diethyl malonate, etc.), acetylacetone, and acetoacetic acid. Active methylene compounds such as esters (ethyl acetoacetate, etc.); oxime compounds such as acetoxime, methyl ethyl ketooxime (MEK oxime), methyl isobutyl keto oxime (MIBK oxime); methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, heptyl alcohol , Hexil alcohol, octyl alcohol, 2-ethylhexyl alcohol, isononyl alcohol, stearyl alcohol and other monovalent alcohols or isomers thereof; methyl glycol, ethyl glycol, ethyl diglycol, ethyl triglycol, butyl glycol, butyl diglycol and the like. Glycol derivatives; amine compounds such as dicyclohexylamine; phenol, cresol, ethylphenol, n-propylphenol, isopropylphenol, butylphenol, tertiary butylphenol, octylphenol, nonylphenol, dodecylphenol, cyclohexylphenol, chlorophenol, bromophenol, etc. Bivalent phenol compounds such as valent phenol compounds, resorcin, catechol, hydroquinone, bisphenol A, bisphenol S, bisphenol F, naphthol; ε-caprolactone, ε-caprolactam, etc. May be good.
 これらの中でも、硬化性組成物を調製したのち、硬化物を得る際の反応に影響を及ぼしにくい観点から、1価のフェノール化合物であることが好ましく、特に炭素原子数1~8のアルキル基を有するアルキルフェノールであることが好ましく、安全性の観点から、p-t-ブチルフェノールを用いることが最も好ましい。 Among these, a monovalent phenol compound is preferable, and an alkyl group having 1 to 8 carbon atoms is particularly preferable, from the viewpoint that it does not easily affect the reaction when the cured product is obtained after the curable composition is prepared. It is preferably an alkylphenol having, and from the viewpoint of safety, it is most preferable to use pt-butylphenol.
 ブロック化反応は、公知の反応方法により行なうことができ、ブロック化剤(a3)の使用量は、遊離のイソシアネート基に対し、通常1~2当量、好ましくは1.05~1.5当量である。 The blocking reaction can be carried out by a known reaction method, and the amount of the blocking agent (a3) used is usually 1 to 2 equivalents, preferably 1.05 to 1.5 equivalents, relative to the free isocyanate group. is there.
 前記ブロック化剤(a3)によるブロック化反応は、通常ポリウレタンの重合の最終の反応でブロック化剤(a3)を添加する方法をとるが、ポリウレタンの重合の任意の段階でブロック化剤(a3)を添加し反応させて、ブロックイソシアネートプレポリマーを得ることもできる。 The blocking reaction with the blocking agent (a3) usually takes the method of adding the blocking agent (a3) in the final reaction of the polymerization of the polyurethane, but the blocking agent (a3) is used at any stage of the polymerization of the polyurethane. Can also be added and reacted to obtain a blocked isocyanate prepolymer.
 ブロック化剤(a3)の添加方法としては、所定の重合終了時に添加するか、重合初期に添加するか、又は重合初期に一部添加し重合終了時に残部を添加する等の方法が可能であるが、好ましくは重合終了時に添加する。この場合、所定の重合終了時の目安としては、イソシアネート%を基準とすればよい。ブロック化剤を添加する際の反応温度は、通常50~150℃であり、好ましくは60~120℃である。反応時間は通常1~7時間程度とする。反応に際し、前記ウレタン重合用触媒を添加して反応を促進することも可能である。また、反応に際し、可塑剤を任意の量加えてもよい。 As a method of adding the blocking agent (a3), a method such as adding at the end of a predetermined polymerization, adding at the beginning of polymerization, adding a part at the beginning of polymerization and adding the rest at the end of polymerization is possible. However, it is preferably added at the end of polymerization. In this case, the isocyanate% may be used as a reference as a guideline at the end of the predetermined polymerization. The reaction temperature at the time of adding the blocking agent is usually 50 to 150 ° C, preferably 60 to 120 ° C. The reaction time is usually about 1 to 7 hours. At the time of the reaction, it is also possible to add the urethane polymerization catalyst to accelerate the reaction. In addition, an arbitrary amount of plasticizer may be added during the reaction.
 本発明におけるイソシアネートプレポリマー(A)の重量平均分子量としては、4000~15000の範囲であることが、硬化性組成物を接着剤として用いる際の取り扱いが良好である観点から好ましく、特に5000~10000の範囲であることが好ましい。 The weight average molecular weight of the isocyanate prepolymer (A) in the present invention is preferably in the range of 4000 to 15000 from the viewpoint of good handling when the curable composition is used as an adhesive, particularly 5000 to 10000. It is preferably in the range of.
 尚、本発明において、ポリオールの数平均分子量(Mn)は水酸基価と官能基数からの計算値であり、その他の重量平均分子量(Mw)は下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。 In the present invention, the number average molecular weight (Mn) of the polyol is a calculated value from the hydroxyl value and the number of functional groups, and the other weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) under the following conditions. Value.
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L
       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device; HLC-8220GPC manufactured by Tosoh Corporation
Column; TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation
+ TSK-GEL SuperHZM-M x 4 manufactured by Tosoh Corporation
Detector; RI (Differential Refractometer)
Data processing; Multi-station GPC-8020modelII manufactured by Tosoh Corporation
Measurement conditions; column temperature 40 ° C
Solvent tetrahydrofuran Tetrahydrofuran flow velocity 0.35 ml / min Standard; Monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)
 本発明で用いるエポキシ樹脂(B)としては、特に限定されるものではなく、種々のものを使用することができる。接着剤として用いる場合は、常温下で液状のエポキシ樹脂であることが好ましく、例えば、テトラメチルビフェノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型又はビフェノール型エポキシ樹脂;ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル等の脂肪族ポリオールポリグリシジルエーテル;ジグリシジルアニリン、レゾルシノールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル等の環構造含有ポリグリシジル化合物;アルキルフェノールモノグリシジルエーテル等の環構造含有単官能グリシジル化合物;ネオデカン酸グリシジルエステル等のポリグリシジルエステル化合物等が挙げられる。中でも、柔軟性、靱性等により優れた硬化物が得られることからビスフェノール型又はビフェノール型エポキシ樹脂を用いることが好ましく、工業的入手容易性の観点からは、ビスフェノール型エポキシ樹脂が好ましい。特に、エポキシ樹脂(B)の総質量に対するビスフェノール型エポキシ樹脂の割合が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The epoxy resin (B) used in the present invention is not particularly limited, and various ones can be used. When used as an adhesive, it is preferably an epoxy resin that is liquid at room temperature. For example, a bisphenol type or biphenol type epoxy resin such as a tetramethylbiphenol type epoxy resin, a bisphenol A type epoxy resin, or a bisphenol F type epoxy resin; Adipose polyol polyglycidyl ethers such as butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, trimethylpropan triglycidyl ether, glycerin triglycidyl ether; diglycidyl aniline, resorcinol diglycidyl ether, hydrogenation Ring-structure-containing polyglycidyl compounds such as bisphenol A diglycidyl ether; ring-structure-containing monofunctional glycidyl compounds such as alkylphenol monoglycidyl ether; polyglycidyl ester compounds such as neodecanoic acid glycidyl ester and the like can be mentioned. Of these, a bisphenol type or biphenol type epoxy resin is preferably used because a cured product having excellent flexibility and toughness can be obtained, and a bisphenol type epoxy resin is preferable from the viewpoint of industrial availability. In particular, the ratio of the bisphenol type epoxy resin to the total mass of the epoxy resin (B) is preferably 50% by mass or more, and more preferably 70% by mass or more.
 前記ビスフェノール型又はビフェノール型エポキシ樹脂としては、例えば、各種のビスフェノール化合物又はビフェノール化合物と、エピハロヒドリンとを樹脂原料として得られるものが挙げられ、具体的には、下記構造式(1) Examples of the bisphenol type or biphenol type epoxy resin include those obtained by using various bisphenol compounds or biphenol compounds and epihalohydrin as resin raw materials. Specifically, the following structural formula (1)
Figure JPOXMLDOC01-appb-C000001
[式中Xはそれぞれ独立に下記構造式(2-1)~(2-8)
Figure JPOXMLDOC01-appb-C000001
[X in the formula are independent of the following structural formulas (2-1) to (2-8).
Figure JPOXMLDOC01-appb-C000002
(式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基の何れかであり、Rはそれぞれ独立に炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基の何れかである。)
の何れかで表される構造部位であり、nは0以上の整数である。]
で表されるものが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 2 is independently any of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms, and R 3 is independently 1 to 4 carbon atoms. It is either an alkyl group or an alkoxy group having 1 to 4 carbon atoms.)
It is a structural part represented by any of, and n is an integer of 0 or more. ]
The one represented by is mentioned. Each of these may be used alone, or two or more types may be used in combination.
 前記構造式(1)中のXは、前記構造式(2-1)~(2-8)の何れかで表される構造部位であり、分子中に複数存在するXは同一の構造部位であっても良いし、それぞれ異なる構造部位であっても良い。中でも、硬化物における柔軟性と靱性に優れることから、前記一般式(2-1)又は(2-2)で表される構造部位であることが好ましい。 X in the structural formula (1) is a structural part represented by any of the structural formulas (2-1) to (2-8), and a plurality of Xs existing in the molecule are the same structural part. It may be present, or it may be a different structural part. Above all, the structural portion represented by the general formula (2-1) or (2-2) is preferable because it is excellent in flexibility and toughness in the cured product.
 前記ビスフェノール型又はビフェノール型エポキシ樹脂のエポキシ当量は150~250g/eqの範囲であることが好ましく、特に硬化物における柔軟性と靱性に優れることから、160~200g/eqの範囲であることがより好ましい。 The epoxy equivalent of the bisphenol type or biphenol type epoxy resin is preferably in the range of 150 to 250 g / eq, and is more preferably in the range of 160 to 200 g / eq because it is particularly excellent in flexibility and toughness in a cured product. preferable.
 前記ビスフェノール型又はビフェノール型エポキシ樹脂は、前述の通り、各種のビスフェノール化合物又はビフェノール化合物と、エピハロヒドリンとを樹脂原料とする方法などにより製造することができる。具体的な製造方法としては、例えば、ビスフェノール化合物又はビフェノール化合物とエピハロヒドリンとを反応させて得られるジグリシジルエーテル化合物を、更にビスフェノール化合物又はビフェノール化合物と反応させる方法(方法1)や、ビスフェノール化合物又はビフェノール化合物とエピハロヒドリンとを反応させて直接エポキシ樹脂を得る方法(方法2)等が挙げられる。 As described above, the bisphenol type or biphenol type epoxy resin can be produced by a method using various bisphenol compounds or biphenol compounds and epihalohydrin as resin raw materials. Specific production methods include, for example, a method of further reacting a diglycidyl ether compound obtained by reacting a bisphenol compound or a biphenol compound with an epihalohydrin with a bisphenol compound or a biphenol compound (method 1), or a bisphenol compound or a biphenol. Examples thereof include a method of directly obtaining an epoxy resin by reacting a compound with epihalohydrin (method 2).
 前記方法1又は2で用いるビスフェノール化合物又はビフェノール化合物は、例えば、下記構造式(3-1)~(3-8) The bisphenol compound or biphenol compound used in the method 1 or 2 is, for example, the following structural formulas (3-1) to (3-8).
Figure JPOXMLDOC01-appb-C000003
(式中、Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基の何れかであり、Rはそれぞれ独立に炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基の何れかである。)
の何れかで表される化合物などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、硬化物における柔軟性と靱性に優れることから、前記一般式(3-1)又は(3-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 2 is independently any of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms, and R 3 is independently 1 to 4 carbon atoms. It is either an alkyl group or an alkoxy group having 1 to 4 carbon atoms.)
Examples thereof include compounds represented by any of the above. Each of these may be used alone, or two or more types may be used in combination. Among them, the compound represented by the general formula (3-1) or (3-2) is preferable because it is excellent in flexibility and toughness in the cured product.
 前記方法1について、ビスフェノール化合物又はビフェノール化合物と、これらのジグリシジルエーテル化合物との反応割合は、両者の質量比が50/50~5/95の範囲であることが好ましい。反応温度は120~160℃程度であることが好ましく、テトラメチルアンモニウムクロライド等の反応触媒を用いても良い。 Regarding the above method 1, the reaction ratio between the bisphenol compound or the biphenol compound and these diglycidyl ether compounds is preferably in the mass ratio of 50/50 to 5/95. The reaction temperature is preferably about 120 to 160 ° C., and a reaction catalyst such as tetramethylammonium chloride may be used.
 本発明では、得られる硬化物の柔軟性や靱性をより向上させるために、エポキシ樹脂(B)として、ビスフェノール型又はビフェノール型エポキシ樹脂と、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂等の柔軟性エポキシ樹脂を併用することが好ましい。 In the present invention, in order to further improve the flexibility and toughness of the obtained cured product, the epoxy resin (B) includes a bisphenol type or biphenol type epoxy resin, and a flexible epoxy such as a urethane-modified epoxy resin or a rubber-modified epoxy resin. It is preferable to use a resin together.
 前記ウレタン変性エポキシ樹脂は、分子中にウレタン結合と2個以上のエポキシ基とを有する樹脂であれば、その構造として特に限定されるものではない。ウレタン結合とエポキシ基とを効率的に1分子中に導入することができる点から、ポリヒドロキシ化合物とポリイソシアネートとを反応させて得られるイソシアネート基を有するウレタン結合含有化合物と、ヒドロキシ基含有エポキシ化合物とを反応させて得られる樹脂であることが好ましい。 The structure of the urethane-modified epoxy resin is not particularly limited as long as it is a resin having a urethane bond and two or more epoxy groups in the molecule. A urethane bond-containing compound having an isocyanate group obtained by reacting a polyhydroxy compound with a polyisocyanate and a hydroxy group-containing epoxy compound are obtained from the viewpoint that a urethane bond and an epoxy group can be efficiently introduced into one molecule. It is preferable that the resin is obtained by reacting with.
 ウレタン変性エポキシ樹脂を製造する際に使用されるポリヒドロキシ化合物としては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ヒドロキシカルボン酸とアルキレンオキシドの付加物、ポリブタジエンポリオール、ポリオレフィンポリオール等が挙げられる。ポリヒドロキシ化合物の分子量は、柔軟性と硬化性のバランスに優れる点から、重量平均分子量として300~5000、特に500~2000の範囲のものを用いることが好ましい。 Examples of the polyhydroxy compound used in producing the urethane-modified epoxy resin include polyether polyols, polyester polyols, adducts of hydroxycarboxylic acid and alkylene oxide, polybutadiene polyols, polyolefin polyols and the like. The molecular weight of the polyhydroxy compound is preferably in the range of 300 to 5000, particularly 500 to 2000, as a weight average molecular weight from the viewpoint of excellent balance between flexibility and curability.
 ウレタン変性エポキシ樹脂を製造する際に使用されるポリイソシアネートは、イソシアネート基を2個以上有する化合物であれば特に制限されない。例えば、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、芳香族炭化水素基を有するポリイソシアネートが挙げられる。なかでも、芳香族ポリイソシアネートが好ましい。芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネートが挙げられる。 The polyisocyanate used in producing the urethane-modified epoxy resin is not particularly limited as long as it is a compound having two or more isocyanate groups. For example, an aliphatic polyisocyanate, an aromatic polyisocyanate, and a polyisocyanate having an aromatic hydrocarbon group can be mentioned. Of these, aromatic polyisocyanates are preferable. Examples of the aromatic polyisocyanate include tolylene diisocyanate, diphenylmethane diisocyanate, and naphthalene diisocyanate.
 上記の反応により、末端に遊離のイソシアネート基を含有するウレタンプレポリマーを得る。これに1分子中に少なくとも1個の水酸基を有するエポキシ樹脂(例えばビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、脂肪族多価アルコールのジグリシジルエーテルおよびグリシドールなど)を反応せしめることでウレタン変性エポキシ樹脂が得られる。 By the above reaction, a urethane prepolymer containing a free isocyanate group at the terminal is obtained. Urethane is reacted with an epoxy resin having at least one hydroxyl group in one molecule (for example, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of aliphatic polyhydric alcohol and glycidol). A modified epoxy resin is obtained.
 ウレタン変性エポキシ樹脂は、エポキシ当量が200~250g/eqであるのが好ましい。 The urethane-modified epoxy resin preferably has an epoxy equivalent of 200 to 250 g / eq.
 ゴム変性エポキシ樹脂は、エポキシ基を2個以上有し、骨格がゴムであるエポキシ樹脂であれば特に制限されない。骨格を形成するゴムとしては、例えば、ポリブタジエン、アクリロニトリルブタジエンゴム(NBR)、カルボキシル基末端NBR(CTBN)が挙げられる。ゴム変性エポキシ樹脂はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。 The rubber-modified epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups and a rubber skeleton. Examples of the rubber forming the skeleton include polybutadiene, acrylonitrile butadiene rubber (NBR), and carboxyl group-terminated NBR (CTBN). The rubber-modified epoxy resin can be used alone or in combination of two or more.
 ゴム変性エポキシ樹脂は、エポキシ当量が200~350g/eqであるのが好ましい。ゴム変性エポキシ樹脂はその製造について特に制限されない。例えば、多量のエポキシ中でゴムとエポキシとを反応させて製造することができる。ゴム変性エポキシ樹脂を製造する際に使用されるエポキシ(例えば、エポキシ樹脂)は特に制限されない。 The rubber-modified epoxy resin preferably has an epoxy equivalent of 200 to 350 g / eq. The rubber-modified epoxy resin is not particularly limited in its production. For example, it can be produced by reacting rubber and epoxy in a large amount of epoxy. The epoxy (for example, epoxy resin) used in producing the rubber-modified epoxy resin is not particularly limited.
 本発明では、硬化性組成物に更に硬化剤又は硬化促進剤(C)を含有する。 In the present invention, the curable composition further contains a curing agent or a curing accelerator (C).
 前記硬化剤又は硬化促進剤(C)は、エポキシ樹脂の硬化用に一般的に用いられるものを広く用いることができ、例えば、ポリアミン化合物、アミド化合物、酸無水物、フェノ-ル性水酸基含有樹脂、リン化合物、イミダゾール化合物、イミダゾリン化合物、尿素系化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。 As the curing agent or curing accelerator (C), those generally used for curing epoxy resins can be widely used, and for example, polyamine compounds, amide compounds, acid anhydrides, and phenolic hydroxyl group-containing resins can be widely used. , Phosphorus compounds, imidazole compounds, imidazoline compounds, urea compounds, organic acid metal salts, Lewis acids, amine complex salts and the like.
 前記ポリアミン化合物は、例えば、トリメチレンジアミン、エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、トリエチレンジアミン、ジプロピレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、テトラメチレンジアミン、ペンタンジアミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N-ジメチルシクロヘキシルアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジブチルアミノプロピルアミン、1,4-ジアザビシクロ(2,2,2)オクタン(トリエチレンジアミン)、ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルアミノエトキシエトキシエタノール、トリエタノールアミン、ジメチルアミノヘキサノール等の脂肪族アミン化合物; The polyamine compound is, for example, trimethylenediamine, ethylenediamine, N, N, N', N'-tetramethylethylenediamine, pentamethyldiethylenetriamine, triethylenediamine, dipropylenediamine, N, N, N', N'-tetramethyl. Propylenediamine, tetramethylenediamine, pentanediamine, hexamethylenediamine, trimethylhexamethylenediamine, N, N, N', N'-tetramethylhexamethylenediamine, N, N-dimethylcyclohexylamine, diethylenetriamine, triethylenetetramine, tetra Ethylenepentamine, dimethylaminopropylamine, diethylaminopropylamine, dibutylaminopropylamine, 1,4-diazabicyclo (2,2,2) octane (triethylenediamine), polyoxyethylenediamine, polyoxypropylenediamine, bis (2-dimethyl) Aminoethyl) Ether, dimethylaminoethoxyethoxyethanol, triethanolamine, dimethylaminohexanol and other aliphatic amine compounds;
 ピペリジン、ピペラジン、メンタンジアミン、イソホロンジアミン、メチルモルホリン、エチルモルホリン、N,N’,N”-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキシスピロ(5,5)ウンデカンアダクト、N-アミノエチルピペラジン、トリメチルアミノエチルピペラジン、ビス(4-アミノシクロヘキシル)メタン、N,N’-ジメチルピペラジン、1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)等の脂環式及び複素環式アミン化合物; Piperazine, piperazine, mentandiamine, isophoronediamine, methylmorpholin, ethylmorpholin, N, N', N "-tris (dimethylaminopropyl) hexahydro-s-triazine, 3,9-bis (3-aminopropyl) -2, 4,8,10-Tetraoxyspiro (5,5) undecane adduct, N-aminoethylpiperazine, trimethylaminoethylpiperazine, bis (4-aminocyclohexyl) methane, N, N'-dimethylpiperazine, 1,8-diazabicyclo -[5.4.0] -Alicyclic and heterocyclic amine compounds such as undecene (DBU);
 o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルメチルアミン、ジメチルベンジルアミン、m-キシレンジアミン、ピリジン、ピコリン、α-メチルベンジルメチルアミン等の芳香族アミン化合物; Aromatic amines such as o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzylmethylamine, dimethylbenzylamine, m-xylenediamine, pyridine, picoline, α-methylbenzylmethylamine Compound;
 エポキシ化合物付加ポリアミン、マイケル付加ポリアミン、マンニッヒ付加ポリアミン、チオ尿素付加ポリアミン、ケトン封鎖ポリアミン、ジシアンジアミド、グアニジン、有機酸ヒドラジド、ジアミノマレオニトリル、アミンイミド、三フッ化ホウ素-ピペリジン錯体、三フッ化ホウ素-モノエチルアミン錯体等の変性アミン化合物等が挙げられる。 Epoxy compound-added polyamines, Michael-added polyamines, Mannig-added polyamines, thiourea-added polyamines, ketone-blocking polyamines, dicyandiamides, guanidines, organic acid hydrazides, diaminomaleonitrile, amineimides, boron trifluoride-piperidin complexes, boron trifluoride-mono Examples thereof include modified amine compounds such as ethylamine complexes.
 前記アミド化合物は、例えば、ジシアンジアミドやポリアミドアミン等が挙げられる。前記ポリアミドアミンは、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸等の脂肪族ジカルボン酸や、脂肪酸、ダイマー酸等のカルボン酸化合物と、脂肪族ポリアミンやポリオキシアルキレン鎖を有するポリアミン等を反応させて得られるものが挙げられる。 Examples of the amide compound include dicyandiamide and polyamideamine. The polyamide amine includes, for example, an aliphatic dicarboxylic acid such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid, a carboxylic acid compound such as a fatty acid and dimer acid, and an aliphatic polyamine or polyoxyalkylene. Examples thereof include those obtained by reacting a polyamine having a chain or the like.
 前記酸無水物は、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。 The acid anhydrides include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro. Examples include phthalic anhydride.
 前記フェノ-ル性水酸基含有樹脂は、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。 The phenolic hydroxyl group-containing resin includes, for example, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadienephenol addition type resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and the like. Trimethylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nuclei are linked by bismethylene groups) , Biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nuclei are linked by bismethylene group), aminotriazine-modified phenol resin (polyvalent phenol compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.) and alkoxy group-containing aromatic ring modification Examples thereof include polyhydric phenol compounds such as novolak resin (polyhydric phenol compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).
 前記リン化合物は、例えば、エチルホスフィン、ブチルホスフィン等のアルキルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジプロピルホスフィン等のジアルキルホスフィン;ジフェニルホスフィン、メチルエチルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン等の第3ホスフィン等が挙げられる。 The phosphorus compound is, for example, an alkylphosphine such as ethylphosphine or butylphosphine, a first phosphine such as phenylphosphine; a dialkylphosphine such as dimethylphosphine or dipropylphosphine; a second phosphine such as diphenylphosphine or methylethylphosphine; , Triethylphosphine, third phosphine such as triphenylphosphine and the like.
 前記イミダゾール化合物は、例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、3-メチルイミダゾール、4-メチルイミダゾール、5-メチルイミダゾール、1-エチルイミダゾール、2-エチルイミダゾール、3-エチルイミダゾール、4-エチルイミダゾール、5-エチルイミダゾール、1-n-プロピルイミダゾール、2-n-プロピルイミダゾール、1-イソプロピルイミダゾール、2-イソプロピルイミダゾール、1-n-ブチルイミダゾール、2-n-ブチルイミダゾール、1-イソブチルイミダゾール、2-イソブチルイミダゾール、2-ウンデシル-1H-イミダゾール、2-ヘプタデシル-1H-イミダゾール、1,2-ジメチルイミダゾール、1,3-ジメチルイミダゾール、2,4-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-フェニルイミダゾール、2-フェニル-1H-イミダゾール、4-メチル-2-フェニル-1H-イミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、1-ベンジル-2-フェニルイミダゾール塩酸塩等が挙げられる The imidazole compounds include, for example, imidazole, 1-methylimidazole, 2-methylimidazole, 3-methylimidazole, 4-methylimidazole, 5-methylimidazole, 1-ethyl imidazole, 2-ethyl imidazole, 3-ethyl imidazole, 4 -Ethyl imidazole, 5-ethyl imidazole, 1-n-propyl imidazole, 2-n-propyl imidazole, 1-isopropyl imidazole, 2-isopropyl imidazole, 1-n-butyl imidazole, 2-n-butyl imidazole, 1-isobutyl Imidazole, 2-isobutylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 1,3-dimethylimidazole, 2,4-dimethylimidazole, 2-ethyl-4- Methylimidazole, 1-phenylimidazole, 2-phenyl-1H-imidazole, 4-methyl-2-phenyl-1H-imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl- 2-Phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenylimidazole Isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-phenyl-4, Examples thereof include 5-di (2-cyanoethoxy) methylimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 1-benzyl-2-phenylimidazole hydrochloride and the like.
 前記イミダゾリン化合物は、例えば、2-メチルイミダゾリン、2-フェニルイミダゾリン等が挙げられる。 Examples of the imidazoline compound include 2-methylimidazoline and 2-phenylimidazoline.
 前記尿素化合物は、例えば、p-クロロフェニル-N,N-ジメチル尿素、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-N,N-ジメチル尿素、N-(3-クロロ-4-メチルフェニル)-N’,N’-ジメチル尿素等が挙げられる。 The urea compound includes, for example, p-chlorophenyl-N, N-dimethylurea, 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -N, N-dimethylurea, N- (3). -Chloro-4-methylphenyl) -N', N'-dimethylurea and the like can be mentioned.
 本発明において、前記イソシアネートプレポリマー(A)とエポキシ樹脂(B)との使用割合としては、得られる硬化物の柔軟性、靱性並びに耐湿熱特性のバランスにより優れる観点から、通常(A)/(B)で表される質量比として、5/95~40/60の範囲であり、10/90~30/70の範囲であることがより好ましい。また、エポキシ樹脂(B)と前記硬化剤又は硬化促進剤(C)との配合量は、エポキシ基と反応し得る官能基を有する硬化剤を用いる場合、エポキシ樹脂(B)のエポキシ基1モルに対し、硬化剤中の官能基が0.5~1.1モルの範囲となる割合で配合することが好ましい。また、硬化促進剤を用いる場合には、エポキシ樹脂(B)100質量部に対し、0.5~10質量部の割合で配合することが好ましい。 In the present invention, the ratio of the isocyanate prepolymer (A) to the epoxy resin (B) is usually (A) / (from the viewpoint of being more excellent in the balance between the flexibility, toughness and moist heat resistance of the obtained cured product. The mass ratio represented by B) is in the range of 5/95 to 40/60, and more preferably in the range of 10/90 to 30/70. The blending amount of the epoxy resin (B) and the curing agent or curing accelerator (C) is 1 mol of the epoxy group of the epoxy resin (B) when a curing agent having a functional group capable of reacting with the epoxy group is used. On the other hand, it is preferable to add the functional groups in the curing agent in a ratio of 0.5 to 1.1 mol. When a curing accelerator is used, it is preferably blended in a proportion of 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin (B).
 本発明の硬化性組成物は、この他、有機溶剤、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、難燃剤、可塑剤、シランカップリング剤、有機ビーズ、無機微粒子、無機フィラー、レオロジーコントロール剤、脱泡剤、防曇剤、着色剤等を含有していても良い。これら各種成分は所望の性能に応じて任意の量を添加してよい。 In addition, the curable composition of the present invention includes organic solvents, ultraviolet absorbers, antioxidants, silicon-based additives, fluorine-based additives, flame retardants, plasticizers, silane coupling agents, organic beads, inorganic fine particles, and the like. It may contain an inorganic filler, a rheology control agent, a defoaming agent, an antifogging agent, a coloring agent and the like. Any amount of these various components may be added depending on the desired performance.
 本発明の硬化性組成物は、前記イソシアネートプレポリマー(A)とエポキシ樹脂(B)、硬化剤又は硬化促進剤(C)、及び前記各種の任意成分を、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等を用いて均一に混合することにより調製することができる。 In the curable composition of the present invention, the isocyanate prepolymer (A), the epoxy resin (B), the curing agent or the curing accelerator (C), and various optional components are added to a pot mill, a ball mill, a bead mill, a roll mill, and a homogenizer. , Super mill, homodisper, universal mixer, Banbury mixer, kneader and the like can be prepared by uniformly mixing.
 本発明の硬化性組成物の用途は特に限定されず、塗料、コーティング剤、成形材料、絶縁材料、封止剤、シール剤、繊維の結束剤など様々な用途に用いることができる。中でも、硬化物における柔軟性と靭性に優れる特徴を生かし、自動車、電車、土木建築、エレクトロニクス、航空機、宇宙産業分野の構造部材の接着剤として好適に用いることができる。本発明の接着剤は、例えば、金属-非金属間のような異素材の接着に用いた場合にも、温度環境の変化に影響されず高い接着性を維持することができ、剥がれ等が生じ難い。また、本発明の接着剤は、構造部材用途の他、一般事務用、医療用、炭素繊維、電子材料用などの接着剤としても使用でき、電子材料用の接着剤としては、例えば、ビルドアップ基板などの多層基板の層間接着剤、光学部品接合用接着剤、光ディスク貼り合わせ用接着剤、プリント配線板実装用接着剤、ダイボンディング接着剤、アンダーフィルなどの半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム、異方性導電性ペーストなどの実装用接着剤などが挙げられる。 The use of the curable composition of the present invention is not particularly limited, and it can be used for various uses such as paints, coating agents, molding materials, insulating materials, encapsulants, sealants, and fiber binders. In particular, it can be suitably used as an adhesive for structural members in the fields of automobiles, trains, civil engineering and construction, electronics, aircraft, and the space industry by taking advantage of its excellent flexibility and toughness in cured products. Even when the adhesive of the present invention is used for bonding different materials such as between metal and non-metal, it can maintain high adhesiveness without being affected by changes in the temperature environment, and peeling or the like occurs. hard. Further, the adhesive of the present invention can be used not only for structural members but also as an adhesive for general office work, medical use, carbon fiber, electronic material, etc., and as an adhesive for electronic material, for example, build-up Interlayer adhesives for multilayer substrates such as substrates, adhesives for joining optical components, adhesives for bonding optical disks, adhesives for mounting printed wiring boards, die bonding adhesives, adhesives for semiconductors such as underfills, underfills for BGA reinforcement Examples thereof include a fill, an anisotropic conductive film, and an adhesive for mounting such as an anisotropic conductive paste.
 以下に、実施例および比較例をもって本発明をより詳しく説明する。 The present invention will be described in more detail below with reference to Examples and Comparative Examples.
 合成例1
 窒素雰囲気下、三井ケミカル&SKCポリウレタン(MCNS)社製ポリオキシエチレン(PE)-ポリオキシプロピレン(PP)コポリマーであるポリエーテルポリオール(アクトコールED-28 数平均分子量(Mn):4000 官能基数:2)834質量部、イソホロンジイソシアネート(IPDI)96質量部を混合し、触媒としてネオスタン U-820 0.1部を投入し、80℃で5時間反応させ、次いでブロック化剤としてパラターシャリーブチルフェノール(PTBP)70質量部を投入し、90℃で5時間反応させることによって、ブロックイソシアネートプレポリマー(1)を得た。
Synthesis example 1
Polyether polyol (Actcol ED-28 number average molecular weight (Mn): 4000 functional groups: 2) which is a polyoxyethylene (PE) -polyoxypropylene (PP) copolymer manufactured by Mitsui Chemical & SKC Polyurethane (MCNS) under a nitrogen atmosphere. ) 834 parts by mass and 96 parts by mass of isophorone diisocyanate (IPDI) are mixed, 0.1 part of Neostan U-820 is added as a catalyst, and the reaction is carried out at 80 ° C. for 5 hours, and then the paratershary butylphenol (PTBP) is used as a blocking agent. ) 70 parts by mass was charged and reacted at 90 ° C. for 5 hours to obtain a blocked isocyanate prepolymer (1).
 合成例2~10
 合成例1と同様の処方で、表1の配合組成より、ブロックイソシアネートプレポリマー(2)-(10)を得た。
Synthesis Examples 2 to 10
Blocked isocyanate prepolymers (2)-(10) were obtained from the compounding compositions in Table 1 with the same formulation as in Synthesis Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1中の化合物
 ED-28:MCNS社製PE-PPポリオール(Mn:4000 官能基数:2)
 EP-450:MCNS社製PE-PPポリオール(Mn:3800 官能基数:3)
 EP-530:MCNS社製PE-PPポリオール(Mn:3300 官能基数:3)
 D-3000:MCNS社製PPポリオール(Mn:3000 官能基数:2)
 D-1500:MCNS社製PPポリオール(Mn:1500 官能基数:2)
 T-4000:MCNS社製PPポリオール(Mn:4000 官能基数:3)
 T-3000:MCNS社製PPポリオール(Mn:3000 官能基数:3)
 T-2000:MCNS社製PPポリオール(Mn:2000 官能基数:3)
 T-1500:MCNS社製PPポリオール (Mn:1500 官能基数:3)
 IPDI:住化コベストロウレタン社製イソホロンジイソシアネート
 HMDI:東ソー社製ヘキサメチレンジイソシアネート
 TDI:MCNS社製トリレンジイソシアネート T-80
Compounds in Table 1 ED-28: PE-PP polyol manufactured by MCNS (Mn: 4000, number of functional groups: 2)
EP-450: PE-PP polyol manufactured by MCNS (Mn: 3800, number of functional groups: 3)
EP-530: PE-PP polyol manufactured by MCNS (Mn: 3300, number of functional groups: 3)
D-3000: PP polyol manufactured by MCNS (Mn: 3000, number of functional groups: 2)
D-1500: PP polyol manufactured by MCNS (Mn: 1500, number of functional groups: 2)
T-4000: PP polyol manufactured by MCNS (Mn: 4000, number of functional groups: 3)
T-3000: PP polyol manufactured by MCNS (Mn: 3000, number of functional groups: 3)
T-2000: PP polyol manufactured by MCNS (Mn: 2000, number of functional groups: 3)
T-1500: PP polyol manufactured by MCNS (Mn: 1500 functional groups: 3)
IPDI: Isophorone diisocyanate manufactured by Sumika Cobestro Urethane HMDI: Hexamethylene diisocyanate manufactured by Tosoh TDI: Toluene diisocyanate manufactured by MCNS T-80
 実施例1
 合成例1で合成したブロックイソシアネートプレポリマー(1)25質量部、DIC株式会社製ビスフェノールA型エポキシ樹脂EPICLON 850 75質量部、DIC株式会社製ゴム変性エポキシ樹脂EPICLON TSR-601 9質量部、硬化剤としてジシアンジアミド(DICY)5質量部、硬化促進剤として3,4-ジクロロフェニル-N,N-ジメチル尿素(DCMU)1質量部、フィラーとして炭酸カルシウム(CaCO)10質量部を混合し、硬化性組成物(1)を得た。この硬化性組成物(1)について、170℃で30分かけて硬化した硬化物について、下記に従い、接着性評価と耐湿熱試験を行い。結果を表2に示した。
Example 1
Block isocyanate prepolymer (1) synthesized in Synthesis Example 1 25 parts by mass, bisphenol A type epoxy resin EPICLON 850 75 parts by mass manufactured by DIC Co., Ltd., rubber modified epoxy resin EPICLON TSR-6019 9 parts by mass manufactured by DIC Co., Ltd., curing agent 5 parts by mass of dicyandiamide (DICY), 1 part by mass of 3,4-dichlorophenyl-N, N-dimethylurea (DCMU) as a curing accelerator, and 10 parts by mass of calcium carbonate (CaCO 3 ) as a filler are mixed to form a curable composition. I got the thing (1). With respect to this curable composition (1), the cured product cured at 170 ° C. for 30 minutes was evaluated for adhesiveness and subjected to a heat resistance test according to the following. The results are shown in Table 2.
 接着性評価
 <引張剪断試験>
 JIS K6859 (接着剤のクリープ破壊試験)方法で25℃の条件で島津製作所株式会社製 AUTOGRAPH AG-XPlus 100kNを用いて引張せん断強度を測定した。
 <T字剥離試験>
 JIS K6854-3 (接着剤の剥離接着強さ試験)方法で25℃の条件で島津製作所株式会社製 AUTOGRAPH AG-IS 1kNを用いて剥離強度を測定した。
Adhesiveness evaluation <Tensile shear test>
Tensile shear strength was measured using AUTOGRAPH AG-XPlus 100 kN manufactured by Shimadzu Corporation under the condition of 25 ° C. by the JIS K6859 (adhesive creep rupture test) method.
<T-shaped peeling test>
The peel strength was measured using AUTOGRAPH AG-IS 1kN manufactured by Shimadzu Corporation under the condition of 25 ° C. by the JIS K6854-3 (adhesive peeling adhesive strength test) method.
 耐湿熱性試験
 上記<引張剪断試験>、<T字剥離試験>で作製した試験片を50℃、90%の条件で2週間耐湿熱試験を行った後、同様の試験機で引張剪断強度と剥離強度を測定した。
Moisture and heat resistance test After conducting a moisture and heat resistance test for 2 weeks under the conditions of 50 ° C and 90% for the test pieces prepared in the above <tensile shear test> and <T-shaped peeling test>, the tensile shear strength and peeling are performed with the same testing machine. The intensity was measured.
 破壊状態確認
 上記50℃、90%の条件で2週間耐湿熱試験を行った後の<T字剥離試験>した試験片についてその破壊状態を評価した。その評価は凝集破壊の比率(%)で行い、高いものが良い破壊状態である。
Confirmation of fracture state The fracture state was evaluated for the test piece <T-shaped peeling test> after performing the moisture resistance test for 2 weeks under the above conditions of 50 ° C. and 90%. The evaluation is performed at the rate of cohesive fracture (%), and the higher the ratio, the better the fracture state.
 実施例2-10
 実施例1のブロックイソシアネートプレポリマー(1)に替えて表2に示したブロックイソシアネートプレポリマーを用いた以外は実施例1と同様にして配合した硬化性組成物について同様の評価を実施した。またその評価結果を表2にまとめた。
Example 2-10
The same evaluation was carried out for the curable composition blended in the same manner as in Example 1 except that the blocked isocyanate prepolymer shown in Table 2 was used instead of the blocked isocyanate prepolymer (1) of Example 1. The evaluation results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較合成例1~3
 合成例1と同様の処方で表3の配合組成より、比較用のブロックイソシアネートプレポリマー(1’)-(3’)を得た。
Comparative Synthesis Examples 1-3
Blocked isocyanate prepolymers (1')-(3') for comparison were obtained from the compounding compositions in Table 3 with the same formulation as in Synthesis Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 比較例1~3
 実施例1のブロックイソシアネートプレポリマー(1)に替えて表4に示したブロックイソシアネートプレポリマーを用いた以外は実施例1と同様にして配合した硬化性組成物について同様の評価を実施した。またその評価結果を表4にまとめた。
Comparative Examples 1 to 3
The same evaluation was carried out for the curable composition blended in the same manner as in Example 1 except that the blocked isocyanate prepolymer shown in Table 4 was used instead of the blocked isocyanate prepolymer (1) of Example 1. The evaluation results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (13)

  1. ポリオキシエチレンユニットとポリオキシプロピレンユニットとを含むポリオール(a1)と、ポリイソシアネート(a2)と、を必須の原料とするイソシアネートプレポリマー(A)と、
    エポキシ樹脂(B)と、
    硬化剤又は硬化促進剤(C)と、を含有することを特徴とする硬化性組成物。
    An isocyanate prepolymer (A) containing a polyol (a1) containing a polyoxyethylene unit and a polyoxypropylene unit, a polyisocyanate (a2), and an essential raw material,
    Epoxy resin (B) and
    A curable composition comprising a curing agent or a curing accelerator (C).
  2. 前記イソシアネートプレポリマー(A)が、前記ポリオール(a1)中の水酸基に対して、過剰のイソシアネート基となるようにポリイソシアネート(a2)を用いてなるポリウレタンをブロック化剤(a3)でブロックしてなるブロックイソシアネートプレポリマーである請求項1記載の硬化性組成物。 Polyurethane made of polyisocyanate (a2) is blocked by a blocking agent (a3) so that the isocyanate prepolymer (A) becomes an excess isocyanate group with respect to the hydroxyl group in the polyol (a1). The curable composition according to claim 1, which is a blocked isocyanate prepolymer.
  3. 前記ブロック化剤(a3)が1価のフェノール化合物である請求項2記載の硬化性組成物。 The curable composition according to claim 2, wherein the blocking agent (a3) is a monovalent phenol compound.
  4. 前記ポリオール(a1)がポリエーテルポリオールである請求項1~3の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the polyol (a1) is a polyether polyol.
  5. 前記ポリオール(a1)が、ポリオキシエチレン-ポリオキシプロピレン共重合体である請求項1~4の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the polyol (a1) is a polyoxyethylene-polyoxypropylene copolymer.
  6. 前記ポリオール(a1)が3官能成分を含むものである請求項1~5の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the polyol (a1) contains a trifunctional component.
  7. 前記ポリオール(a1)中のポリオキシエチレンユニットとポリオキシプロピレンユニットとの質量比が30/70~1/99の範囲である請求項1~6の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, wherein the mass ratio of the polyoxyethylene unit to the polyoxypropylene unit in the polyol (a1) is in the range of 30/70 to 1/99.
  8. 前記ポリイソシアネート(a2)がジイソシアネートである請求項1~7の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 7, wherein the polyisocyanate (a2) is a diisocyanate.
  9. 前記ポリオール(a1)の数平均分子量が2000~5000の範囲である請求項1~8の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein the number average molecular weight of the polyol (a1) is in the range of 2000 to 5000.
  10. 前記エポキシ樹脂(B)のエポキシ当量が150~250g/eqの範囲である請求項1~9の何れか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 9, wherein the epoxy equivalent of the epoxy resin (B) is in the range of 150 to 250 g / eq.
  11. 前記イソシアネートプレポリマー(A)と前記エポキシ樹脂(B)との使用割合が、(A)/(B)で表される質量比として10/90~30/70の範囲である請求項1~10の何れか1項記載の硬化性組成物。 Claims 1 to 10 in which the ratio of the isocyanate prepolymer (A) to the epoxy resin (B) used is in the range of 10/90 to 30/70 as the mass ratio represented by (A) / (B). The curable composition according to any one of the above.
  12. 請求項1~11の何れか1項記載の硬化性組成物の硬化物。 A cured product of the curable composition according to any one of claims 1 to 11.
  13. 請求項1~11の何れか1項記載の硬化性組成物からなる接着剤。 An adhesive comprising the curable composition according to any one of claims 1 to 11.
PCT/JP2020/022956 2019-06-18 2020-06-11 Curable composition, cured product, and adhesive WO2020255844A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080043462.5A CN113966354A (en) 2019-06-18 2020-06-11 Curable composition, cured product, and adhesive
JP2021528155A JP7060162B2 (en) 2019-06-18 2020-06-11 Curable Compositions, Cured Products and Adhesives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112764 2019-06-18
JP2019112764 2019-06-18

Publications (1)

Publication Number Publication Date
WO2020255844A1 true WO2020255844A1 (en) 2020-12-24

Family

ID=74040031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022956 WO2020255844A1 (en) 2019-06-18 2020-06-11 Curable composition, cured product, and adhesive

Country Status (3)

Country Link
JP (1) JP7060162B2 (en)
CN (1) CN113966354A (en)
WO (1) WO2020255844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022224829A1 (en) * 2021-04-20 2022-10-27

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867732A (en) * 1994-08-17 1996-03-12 Bayer Ag Isocyanate prepolymer,its preparation,and its use
JP2002206079A (en) * 2001-01-10 2002-07-26 Toyo Ink Mfg Co Ltd Adhesive and its use
JP2004512401A (en) * 2000-10-23 2004-04-22 ハンツマン・インターナショナル・エルエルシー High Performance Sealant Formulation Based on MDI Prepolymers
JP2004231880A (en) * 2003-01-31 2004-08-19 Konishi Co Ltd Curable resin composition
JP2006117706A (en) * 2004-10-19 2006-05-11 Yokohama Rubber Co Ltd:The Curable resin composition
JP2007023238A (en) * 2005-07-21 2007-02-01 Yokohama Rubber Co Ltd:The Room-temperature-curable resin composition
JP2008001789A (en) * 2006-06-22 2008-01-10 Konishi Co Ltd Curable resin composition and room temperature-curable adhesive composition
JP2019506471A (en) * 2015-12-21 2019-03-07 シーカ テクノロジー アクチェンゲゼルシャフト Polyurethane compositions with less plasticizer migration

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674319B2 (en) * 1986-10-24 1994-09-21 旭電化工業株式会社 Curable composition
DE4015302A1 (en) * 1990-05-12 1991-11-14 Bayer Ag Amine prods. contg. urethane and urea gps. prepn.
DE4138246A1 (en) * 1991-11-21 1993-05-27 Bayer Ag TWO-COMPONENT POLYURETHANE REACTIVE MATERIALS
JP3281661B2 (en) * 1992-12-25 2002-05-13 三井化学株式会社 Polyisocyanate composition and method for producing isocyanate-terminated prepolymer
JPH07109326A (en) * 1993-10-08 1995-04-25 Sanyo Chem Ind Ltd Quick-curing elastomer
JP3905638B2 (en) * 1997-05-28 2007-04-18 三井化学株式会社 Polyoxyalkylene polyol and derivatives thereof, and method for producing the polyoxyalkylene polyol
JP2001316618A (en) * 2000-05-09 2001-11-16 Dai Ichi Kogyo Seiyaku Co Ltd Resin composition for thermosetting one-component coating material
WO2003035760A2 (en) * 2001-10-25 2003-05-01 Asahi Kasei Chemicals Corporation Polyphenylene sulfide resin composition
JP5091386B2 (en) * 2003-07-16 2012-12-05 オート化学工業株式会社 Curable composition and sealant composition
JP5248798B2 (en) * 2007-03-28 2013-07-31 株式会社Adeka Curable resin composition and automotive structural adhesive containing the same
EP2236533B1 (en) * 2009-03-31 2011-11-09 Sika Technology AG Heat curing or heat activatable composition comprising a surface deactivated polyisocyanate
JP5659933B2 (en) * 2011-04-12 2015-01-28 横浜ゴム株式会社 Epoxy resin composition
WO2012165055A1 (en) * 2011-05-27 2012-12-06 Dic株式会社 Epoxy resin composition, fiber-sizing agent, fiber material, and molding material
EP2620459A1 (en) * 2012-01-26 2013-07-31 Huntsman International LLC Wood adhesive composition
WO2013136892A1 (en) * 2012-03-13 2013-09-19 Dic株式会社 Urethane-resin composition, coating agent, article, and leather-like sheet
JP5968111B2 (en) * 2012-06-25 2016-08-10 旭化成株式会社 Block polyisocyanate composition and curable composition
WO2014030452A1 (en) * 2012-08-20 2014-02-27 Dic株式会社 Urethane resin composition, leather-like sheet, and laminate
JP6588203B2 (en) * 2014-12-12 2019-10-09 旭化成株式会社 Block polyisocyanate composition
JP2016138237A (en) * 2015-01-22 2016-08-04 旭硝子株式会社 Polyol composition for pressure-sensitive adhesive, kit for pressure-sensitive adhesive, and laminate
JP6806488B2 (en) * 2016-07-29 2021-01-06 株式会社Adeka A curable resin composition and an adhesive for joining structural materials using the composition.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867732A (en) * 1994-08-17 1996-03-12 Bayer Ag Isocyanate prepolymer,its preparation,and its use
JP2004512401A (en) * 2000-10-23 2004-04-22 ハンツマン・インターナショナル・エルエルシー High Performance Sealant Formulation Based on MDI Prepolymers
JP2002206079A (en) * 2001-01-10 2002-07-26 Toyo Ink Mfg Co Ltd Adhesive and its use
JP2004231880A (en) * 2003-01-31 2004-08-19 Konishi Co Ltd Curable resin composition
JP2006117706A (en) * 2004-10-19 2006-05-11 Yokohama Rubber Co Ltd:The Curable resin composition
JP2007023238A (en) * 2005-07-21 2007-02-01 Yokohama Rubber Co Ltd:The Room-temperature-curable resin composition
JP2008001789A (en) * 2006-06-22 2008-01-10 Konishi Co Ltd Curable resin composition and room temperature-curable adhesive composition
JP2019506471A (en) * 2015-12-21 2019-03-07 シーカ テクノロジー アクチェンゲゼルシャフト Polyurethane compositions with less plasticizer migration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022224829A1 (en) * 2021-04-20 2022-10-27
WO2022224829A1 (en) * 2021-04-20 2022-10-27 Dic株式会社 Curable composition, cured product, and adhesive
JP7272515B2 (en) 2021-04-20 2023-05-12 Dic株式会社 Curable composition, cured product and adhesive

Also Published As

Publication number Publication date
CN113966354A (en) 2022-01-21
JPWO2020255844A1 (en) 2021-11-04
JP7060162B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US9181463B2 (en) Structural epoxy resin adhesives containing chain-extended elastomeric tougheners capped with phenol, polyphenol or aminophenol compounds
US7625977B2 (en) Adhesive of epoxy resin, toughener and blocked isocyanate polytetrahydrofuran toughener
US8097119B2 (en) Heat-resistant structural epoxy resins
US20110297317A1 (en) One-part structural epoxy resin adhesives containing dimerized fatty acid/epoxy resin adduct and a polyol
JP6766323B2 (en) Polyurethane modified epoxy resin and adhesive
JP6806488B2 (en) A curable resin composition and an adhesive for joining structural materials using the composition.
JP2016501928A (en) Amine composition for impact-resistant two-part epoxy adhesives
JP6739921B2 (en) Urethane-modified epoxy resin composition and cured product thereof
JP6911286B2 (en) Polycarbonate modified epoxy resin and adhesive
EP3347391A1 (en) Blocked polyurethane tougheners for epoxy adhesives
KR20200072358A (en) Two part adhesive composition and cured product thereof and vehicle material adhesive method
US20200190376A1 (en) Crash durable epoxy adhesive having improved low-temperature impact resistance
JP2017530233A (en) Epoxy compositions containing acrylate-based tougheners
JPWO2020095995A1 (en) Curable resin composition
JP7180822B2 (en) Curable composition, cured product and adhesive
JP7060162B2 (en) Curable Compositions, Cured Products and Adhesives
US20140343228A1 (en) Polymers with Carboxylic Ammonium Groups as Latent Catalysts for Epoxy Curing Applications
JP7272515B2 (en) Curable composition, cured product and adhesive
KR102297539B1 (en) Polyurethane tougheners for epoxy adhesives
JP6721855B2 (en) Epoxy resin composition and adhesive
JP2021084936A (en) Curable composition, cured product and adhesive
JP2021102701A (en) Curable composition, cured product and adhesive
JP2021066782A (en) Blocked isocyanate prepolymer, curable composition, cured product and adhesive
JP6628089B2 (en) Curable composition and adhesive
JP2021084950A (en) Curable composition, cured product and adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827342

Country of ref document: EP

Kind code of ref document: A1