WO2013136892A1 - Urethane-resin composition, coating agent, article, and leather-like sheet - Google Patents

Urethane-resin composition, coating agent, article, and leather-like sheet Download PDF

Info

Publication number
WO2013136892A1
WO2013136892A1 PCT/JP2013/053243 JP2013053243W WO2013136892A1 WO 2013136892 A1 WO2013136892 A1 WO 2013136892A1 JP 2013053243 W JP2013053243 W JP 2013053243W WO 2013136892 A1 WO2013136892 A1 WO 2013136892A1
Authority
WO
WIPO (PCT)
Prior art keywords
urethane resin
resin composition
mass
urethane
ethyl ketone
Prior art date
Application number
PCT/JP2013/053243
Other languages
French (fr)
Japanese (ja)
Inventor
智博 鉄井
直孝 後藤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2013524676A priority Critical patent/JP5429431B1/en
Publication of WO2013136892A1 publication Critical patent/WO2013136892A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3212Polyhydroxy compounds containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8016Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group

Definitions

  • the present invention relates to a urethane resin composition that can be used for various applications including a coating agent and an adhesive, and can also be used for manufacturing a leather-like sheet.
  • An aqueous urethane resin composition in which a urethane resin is dispersed in an aqueous medium can reduce the burden on the environment as compared with conventional organic solvent-based urethane resin compositions. It is used for various purposes.
  • aqueous urethane resin composition generally known is a urethane resin having a hydrophilic group such as an anionic group dispersed in an aqueous medium, for example, at least one active hydrogen-containing group and an anion.
  • a compound having a functional group or a cationic group, a compound having at least one active hydrogen-containing group and at least one unsaturated group, a polyol and / or a polyamine, and at least one active hydrogen-containing group A urethane resin composition obtained by reacting polysiloxane with polyisocyanate is known (see, for example, Patent Document 1).
  • the cationic group or anionic group as the hydrophilic group is generally a neutralized amino group or carboxyl group using an acidic compound or basic compound.
  • odors and air pollution caused by compounds have been a concern.
  • urethane resin composition a urethane resin composition having a nonionic group such as a polyoxyethylene structure as a hydrophilic group has been studied (for example, see Patent Document 2).
  • the nonionic urethane resin is inferior in water dispersibility as compared with a urethane resin having a cationic group or an anionic group, it may not be stably dispersed in an aqueous medium for a long period of time.
  • the use of the emulsifier causes a significant decrease in the tensile strength of the film formed using the urethane resin composition. Therefore, when force is applied to the film, the film may crack or break. It was.
  • the problem to be solved by the present invention is a urethane that does not cause problems of odor and air pollution caused by the neutralizing agent, can form a film having excellent dispersion stability and excellent tensile strength. It is to provide a resin composition.
  • the present inventors have an oxyethylene structure of 40% by mass to 100% by mass at the end of the main chain structure constituting the urethane resin or at the side chain with respect to the main chain structure.
  • the urethane resin having an alkoxypolyoxyalkylene structure (a1) and having a predetermined structure represented by the following general formula (1) is used in the main chain structure constituting the urethane resin, the above problems are solved. I found out that I can do it.
  • the present invention relates to a urethane resin (A) having an alkoxypolyoxyalkylene structure (a1) having an oxyethylene structure of 40% by mass to 100% by mass and a structure (a2) represented by the following general formula (1): And the urethane resin composition containing the aqueous medium (B), wherein the alkoxypolyoxyalkylene structure (a1) having 40% by mass to 100% by mass of the oxyethylene structure is an end of the urethane resin (A) or The present invention relates to a urethane resin composition which is present in the side chain of the urethane resin (A).
  • R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group.
  • M represents an average value of 0 to 20
  • n represents an average value of 0 to 20
  • the sum of n represents an average value of 1 to 40.
  • the urethane resin composition of the present invention does not cause problems of odor and air pollution caused by a neutralizing agent used when neutralizing an anionic group or a cationic group as a hydrophilic group. Even when it is not substantially used, a film having excellent dispersion stability and excellent tensile strength can be formed. Therefore, it can be used, for example, as a coating agent, particularly a coating agent for forming a topcoat layer. Moreover, the said urethane resin composition can be used for formation of the skin layer which comprises laminated bodies, such as a leather-like sheet
  • the urethane resin composition of the present invention comprises an urethane polyoxyalkylene structure (a1) having an oxyethylene structure of 40% by mass to 100% by mass and a structure (a2) represented by the following general formula (1)
  • the alkoxypolyoxyalkylene structure (a1) is at the end of the urethane resin (A) or the side chain of the urethane resin (A). It is characterized by existing.
  • R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group.
  • M represents an average value of 0 to 20
  • n represents an average value of 0 to 20
  • the sum of n represents an average value of 1 to 40.
  • the urethane resin composition of the present invention it is preferable to use the urethane resin (A) in which the urethane resin (A) is dispersed or dissolved in the aqueous medium (B) from the viewpoint of improving the handleability and coating workability.
  • the urethane resin (A) used for the urethane resin composition will be described.
  • the urethane resin (A) used in the present invention has the alkoxy polyoxyalkylene structure (a1) among those having the alkoxy polyoxyalkylene structure (a1) and the structure (a2) represented by the general formula (1). ) At the end of the urethane resin (A) or the side chain of the urethane resin (A).
  • the alkoxypolyoxyalkylene structure (a1) is a terminal of the main chain structure containing the urethane bond of the urethane resin (A), or the side of the urethane resin (A) with respect to the main chain structure. Use what you have in the chain.
  • the main chain structure referred to in the present invention is, for example, a urethane bond formed by reacting the hydroxyl group with an isocyanate group when a diol as a polyol is reacted with diisocyanate as a polyisocyanate to produce a urethane resin.
  • the structure which has mainly.
  • the alkoxypolyoxyalkylene structure (a1) is an oxyethylene unit represented by the following formula (2) with respect to the entire alkoxypolyoxyalkylene structure (a1) in the range of 40% by mass to 100% by mass. Use what you have.
  • the alkoxy polyoxyalkylene structure having 35% by mass of the oxyethylene unit is employed instead of the alkoxy polyoxyalkylene structure (a1), the dispersion stability of the urethane resin in an aqueous medium is significantly lowered. There is a case.
  • alkoxypolyoxyalkylene structure (a1) it is preferable to use the alkoxypolyoxyalkylene structure (a1) containing the oxyethylene unit in the range of 50% by mass to 100% by mass with respect to the entire alkoxypolyoxyalkylene structure (a1). In view of achieving both good dispersion stability and improvement in the tensile strength of the film to be formed, it is more preferable to use those containing in the range of 85% by mass to 100% by mass.
  • alkoxypolyoxyalkylene structure (a1) examples include an alkoxypolyoxyethylene structure.
  • the alkoxy polyoxyalkylene structure (a1) includes an alkoxy (polyoxyethylene-polyoxypropylene) structure, an alkoxy (polyoxyethylene-polyoxytetra) composed of oxyethylene units and other oxyalkylene units.
  • a block structure such as a methylene) structure, a random structure composed of the oxyethylene unit and the oxypropylene structure, and a random structure composed of the oxyethylene unit and the oxytetramethylene structure.
  • alkoxypolyoxyalkylene structures (a1) among those described above, a random structure composed of the oxyethylene units and oxypropylene units, and a random structure composed of the oxyethylene units and oxytetramethylene units. It is preferable to use such a material because the dispersion stability of the urethane resin (A) with respect to the water refrigerant (B) can be further improved.
  • alkoxy group constituting the terminal of the alkoxypolyoxyalkylene structure (a1) for example, a methyl group, an ethyl group, a butyl group, or the like is preferably used.
  • alkoxypolyoxyalkylene structure (a1) those having a number average molecular weight of 500 to 10,000 are preferably used, and those having a number average molecular weight of 500 to 5,000 are more preferably used. .
  • One alkoxypolyoxyalkylene structure (a1) may be present at one end of the urethane resin (A), or two or more may be present at one end of the urethane resin (A). .
  • One or two or more alkoxypolyoxyalkylene structures (a1) may be present at both ends of the urethane resin (A).
  • the said urethane resin (A) has a multi-branch structure
  • three or more hydroxyl groups such as a triol and a triisocyanate, are used as a polyol or a polyisocyanate.
  • the alkoxypolyoxyalkylene structure (a1) may be present at each terminal of the resulting urethane resin (A) at one or two or more. Good.
  • the alkoxy polyoxyalkylene structure (a1) may be present in the side chain of the main chain structure of the urethane resin (A) mainly composed of the polyol and polyisocyanate.
  • the alkoxypolyoxyalkylene structure (a1) is preferably present in the urethane resin (A) in the range of 0.1% by mass to 25% by mass with respect to the entire urethane resin (A).
  • the presence in the range of ⁇ 10% by mass is preferable because the urethane resin (A) can provide more excellent water dispersion stability and can form a film with even better tensile strength.
  • the urethane resin (A) can be used as long as it has the alkoxypolyoxyalkylene structure (a1), and together with the alkoxypolyoxyalkylene structure (a1), the following general formula (1) It is essential to use one having the structure (a2) represented by
  • R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group.
  • M represents an average value of 0 to 20
  • n represents an average value of 0 to 20
  • the sum of n represents an average value of 1 to 40.
  • a urethane resin having the alkoxypolyoxyalkylene structure (a1) but not having the structure (a2) represented by the general formula (1) is used instead of the urethane resin (A). In some cases, a film having excellent tensile strength cannot be formed.
  • R 1 and R 2 in the general formula (1) are each independently a hydrogen atom or an alkyl group, and both R 1 and R 2 are preferably a hydrogen atom or a methyl group.
  • m and n represent the average number of added moles of oxyethylene units, each having an average range of 0 to 20, preferably an average range of 1 to 20, and an average of 1 A range of from 5 to 5 is more preferable.
  • the total of m and n is an average range of 1 to 40, preferably an average range of 1 to 20, more preferably an average range of 1 to 10, and an average range of 1 to 5. More preferably.
  • urethane resin (A) having the general formula (1) By using the urethane resin (A) having the general formula (1), it is possible to maintain a good dispersion stability and to form a film having an excellent tensile strength.
  • the structure (a2) represented by the general formula (1) is preferably contained in the range of 0.1% by mass to 25% by mass with respect to the total amount of the urethane resin (A). It is more preferably contained in the range of 1% by mass, and it is preferably contained in the range of 1% by mass to 15% by mass in order to impart further excellent dispersion stability.
  • urethane resin (A) having the alkoxypolyoxyalkylene structure (a1) and the structure (a2) represented by the general formula (1) when forming a film having a further excellent tensile strength, Those having a weight average molecular weight of 000 to 1,000,000 are preferably used, and those having a weight average molecular weight in the range of 30,000 to 500,000 are more preferably used.
  • the urethane resin (A) is produced, for example, by reacting a polyol (a′-1) with a polyisocyanate (a′-2) to produce a urethane resin (A ′) having an isocyanate group at the terminal or side chain. Then, it can be produced by reacting the urethane resin (A ′) with a polyoxyalkylene monoalkyl ether in which one hydroxyl group of polyoxyalkylene glycol is sealed with an alkyl alcohol.
  • Examples of the polyol (a′-1) include a polyether polyol obtained by adding ethylene oxide to a bisphenol compound when the structure (a2) represented by the general formula (1) is introduced into the urethane resin (A).
  • a polyether ester polyol obtained by reacting the polyether polyol with a polycarboxylic acid can be used.
  • Bisphenol A, bisphenol F, and the like can be used as the bisphenol compound that can undergo addition reaction of ethylene oxide.
  • the ethylene oxide is preferably added in the range of 1 to 10 and more preferably in the range of 1 to 5 with respect to one hydroxyl group of the bisphenol compound.
  • polycarboxylic acid examples include succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecane.
  • Aliphatic polycarboxylic acids such as dicarboxylic acids, and aromatic polycarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid can be used.
  • polyether polyol and the polyether ester polyol those having a number average molecular weight of 500 to 5,000 are preferably used in order to further improve the tensile strength of the film.
  • polyether polyol and the polyether ester polyol are a total of 0.1% by mass to 25% by mass with respect to the total amount of the polyol (a′-1) used in producing the urethane resin (A). It is preferable to use in a range.
  • polyol (a′-1) in addition to the polyether polyol and the polyether ester polyol, other polyols can be used in appropriate combination as required.
  • Examples of the other polyol include polyether polyols, polyether ester polyols, polyester polyols, and polycarbonate polyols that do not have the structure (a2) represented by the general formula (1). In order to further improve the tensile strength of the film to be formed, it is preferable to use a polyether polyol or polycarbonate polyol that does not have the structure (a2) represented by 1).
  • polyether polyol not having the structure (a2) represented by the general formula (1) for example, addition polymerization of alkylene oxide is performed using one or more compounds having two or more active hydrogen atoms as an initiator. Can be used.
  • the initiator examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolethane, Trimethylolpropane and the like can be used.
  • alkylene oxide for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and the like can be used.
  • polyether polyol not having the structure (a2) represented by the general formula (1) specifically, polyoxytetramethylene glycol or the like can be used.
  • polyether ester polyol which does not have the structure (a2) shown by the said General formula (1)
  • polyether polyol and polycarboxylic acid which do not have the structure (a2) shown by the said General formula (1) What is obtained by reacting with can be used.
  • the polycarboxylic acid include aliphatic polycarboxylic acids such as succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid Aromatic polycarboxylic acids such as acids can be used.
  • polycarbonate polyol that can be used for the other polyols, for example, those obtained by reacting a carbonate or phosgene with a polyol can be used.
  • carbonate ester methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
  • polyol that can react with the carbonate ester examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-Butanediol, 1,2-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 2,5-hexanediol, 1,6-hexanediol, 1,7-heptane Diol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 3-methyl-1,5-pentanediol, 2- Ethyl-1,3-hexanediol, 2-methyl-1,3-
  • Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butane having a molecular weight of about 50 to 300.
  • An aliphatic polyol such as a diol, a polyol having an aliphatic cyclic structure such as cyclohexanedimethanol, and a polyol having an aromatic structure such as bisphenol A can be used.
  • polycarboxylic acid examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and the like.
  • Aromatic polycarboxylic acids and their anhydrides or esterifications can be used.
  • those having a number average molecular weight in the range of 500 to 5,000 are preferably used.
  • the other polyol is preferably used in the range of 30% by mass to 95% by mass with respect to the total amount of the polyol (a′-1), and may be used in the range of 50% by mass to 95% by mass. It is preferable for further improving the tensile strength of the coating film.
  • polyisocyanate (a′-2) that can react with the polyol (a′-1) include phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, carbodiimidized diphenylmethane polyisocyanate, and the like.
  • Aliphatic or aliphatic cyclic structures such as aromatic polyisocyanate, hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dimer acid diisocyanate, norbornene diisocyanate Having polyisocyanate etc. Alone in combination with the above use or two or may be used.
  • a polyisocyanate having an aliphatic cyclic structure it is particularly preferable to use isophorone diisocyanate or dicyclohexylmethane diisocyanate.
  • aromatic polyisocyanate such as diphenylmethane diisocyanate.
  • the reaction of the polyol (a′-1) and the polyisocyanate (a′-2) can be performed, for example, by mixing them in the absence of a solvent or in the presence of an organic solvent.
  • the reaction between the polyol (a′-1) and the polyisocyanate (a′-2) is a reaction between the hydroxyl group of the polyol (a′-1) and the isocyanate group of the polyisocyanate (a′-2).
  • the equivalent ratio [isocyanate group / hydroxyl group] is preferably in the range of 1.05 to 2.5, more preferably 1.1 to 2.
  • Examples of the organic solvent that can be used in producing the urethane resin (A ′) include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; acetate esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile; Amides such as dimethylformamide and N-methylpyrrolidone can be used alone or in combination of two or more.
  • a chain extender can be used as necessary.
  • the polyol (a′-1) and the polyisocyanate (a′-2) are mixed in the absence of a solvent or in the presence of an organic solvent, and at 50 ° C. to 100 ° C. for about 3 hours to 10 hours.
  • a urethane prepolymer having an isocyanate group at the terminal is produced by reacting to the extent, and then a urethane resin having a urea bond having a relatively high molecular weight is produced by reacting the urethane prepolymer with a chain extender. be able to.
  • chain extender examples include polyamines, hydrazine compounds, and other compounds having active hydrogen atoms.
  • polyamines examples include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'- Diamines such as dimethyl-4,4′-dicyclohexylmethanediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N -A diamine having one primary amino group and one secondary amino group such as methylaminopropylamine; polyamines such as diethylenetriamine, dipropylenetriamine and triethylenetetramine can be used. .
  • hydrazine compound examples include hydrazine, N, N′-dimethylhydrazine, 1,6-hexamethylenebishydrazine, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, ⁇ - Semicarbazide propionic acid hydrazide, 3-semicarbazide-propyl-carbazate, semicarbazide-3-semicarbazidemethyl-3,5,5-trimethylcyclohexane, and the like can be used.
  • Examples of the other active hydrogen-containing compounds include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, Use sucrose, methylene glycol, glycerin, sorbitol, bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, hydroquinone, water, etc. Can do.
  • the chain extender introduces a urea bond into the formed film, and as a result, further improves the durability of the film.
  • the chain extender is based on the total amount of raw materials used for the production of the urethane resin (A ′). It is preferably used in the range of 1% by mass to 10% by mass, and more preferably in the range of 1% by mass to 5% by mass.
  • the urethane resin (A) includes a urethane resin (A ′) having an isocyanate group at the terminal or side chain obtained above, and a polyoxyalkylene mono group in which one hydroxyl group of polyoxyalkylene glycol is sealed with an alkyl group. It can be produced by reacting with an alkyl ether. The reaction can be carried out, for example, by mixing them in the absence of a solvent or in the presence of an organic solvent and reacting at about 50 ° C. to 100 ° C. for about 3 hours to 10 hours.
  • polyoxyalkylene glycol monoalkyl ether used in the reaction one in which one of two hydroxyl groups of polyoxyalkylene glycol is sealed with an alkyl group can be used.
  • polyoxyalkylene glycol monoalkyl ether polyoxyethylene glycol monomethyl ether, polyoxyethyleneoxypropylene glycol monomethyl ether, dihydroxy polyoxyethylene monomethyl ether, or the like can be used.
  • polyoxyethylene glycol monomethyl ether is preferable for forming a film having further excellent dispersion stability and further excellent tensile strength.
  • polyoxyalkylene glycol monoalkyl ether those having a number average molecular weight of 500 to 10,000 are preferably used, and those having a number average molecular weight of 500 to 5,000 are preferably used.
  • Examples of a method for producing a urethane resin composition by mixing the urethane resin (A) obtained by the production method with an aqueous medium (B) include the urethane resin (A) obtained by the method or an organic solvent solution thereof.
  • the aqueous medium (B) can be mixed and stirred. It is preferable to remove the organic solvent that can be contained at that time by a distillation method or the like, if necessary.
  • a machine such as a homogenizer may be used as necessary.
  • Examples of the aqueous medium (B) in which the urethane resin (A) obtained by the production method can be dispersed or dissolved include water, an organic solvent miscible with water, and a mixture thereof.
  • Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycols And lactams such as N-methyl-2-pyrrolidone.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used.
  • water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.
  • the urethane resin composition of the present invention obtained by the above method preferably contains the urethane resin (A) in the range of 15% by mass to 60% by mass with respect to the total amount of the urethane resin composition. More preferably, the content is in the range of 20% by mass to 60% by mass, and even more preferably 30% by mass to 55% by mass in view of improving the coating workability.
  • the aqueous medium (B) is preferably contained in the range of 30% by mass to 80% by mass with respect to the total amount of the urethane resin composition, and contained in the range of 40% by mass to 80% by mass. It is more preferable that the content is 45 mass% to 70 mass%, in order to improve the coating workability.
  • an emulsifier is often used in combination from the viewpoint of further improving the dispersion stability.
  • the use of the emulsifier has contributed to a decrease in the appearance and water resistance of the resulting film.
  • the urethane resin composition of the present invention can maintain good dispersion stability without using the above-mentioned emulsifier together, it can also form a film excellent in appearance and water resistance.
  • the urethane resin composition of the present invention may contain an emulsifier in the range of 0% by mass to 5% by mass with respect to the total amount of the urethane resin composition, and 0% by mass to 0.5% by mass. % May be included, and it is more preferable not to include an emulsifier.
  • the urethane resin composition of the present invention may contain various additives as necessary.
  • additives such as brighteners, foaming agents, thermoplastic resins, thermosetting resins, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture permeability improvers, water repellents, oil repellents, hollow foams, crystals
  • associative thickeners such as brighteners, foaming agents, thermoplastic resins, thermosetting resins, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture permeability improvers, water repellents, oil repellents, hollow foams, crystals
  • antifoaming agents such as brighteners, foaming agents, thermoplastic resins, thermosetting resins, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture permeability improvers, water repellents, oil repellents, hollow foams, crystals
  • antifoaming agents such as brighteners, foaming agents, thermoplastic resins, thermosetting resins, pigment
  • the associative thickener examples include cellulose derivatives such as hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylate, polyvinyl pyrrolidone, urethane thickener, polyether thickener, and the like. Especially, it is preferable to use the thickener containing a polyacrylate with a high thickening effect with respect to the said urethane resin (A).
  • the associative thickener is preferably used in the range of 0.5% by mass to 5% by mass with respect to the total amount of the urethane resin (A).
  • the urethane resin composition can form a high-strength film, it can be suitably used as a coating agent used for surface coating of various substrates, preferably a coating agent for forming a topcoat layer.
  • the base material examples include fibrous base materials such as woven fabric and nonwoven fabric, plated steel plates such as galvanized steel plates and aluminum-zinc alloy steel plates, metal bases such as aluminum plates, aluminum alloy plates, electromagnetic steel plates, copper plates, and stainless steel plates.
  • Plastics such as materials, polycarbonate base, polyester base, acrylonitrile-butadiene-styrene base, polyacryl base, polystyrene base, polyurethane base, epoxy resin base, polyvinyl chloride base and polyamide base Substrates, glass substrates and leather-like sheets can be used.
  • the base material it is possible to use a leather-like sheet such as synthetic leather or artificial leather that is processed and used for shoes or bags, and other members are attached to the surface of the leather-like sheet using an adhesive. Affixing or applying a putty or the like is preferable because a leather-like sheet excellent in design can be efficiently produced.
  • the coating agent of the present invention can form a film by, for example, applying it directly to the surface of the substrate, and then drying and curing. It is also possible to form a film by applying the coating agent of the present invention to the release paper surface, drying and curing, and then laminating the substrate on the coated surface.
  • coating the said coating agent to the base-material surface has favorable coating workability
  • Examples of the method for applying the coating agent on the substrate include a spray method, a curtain coater method, a flow coater method, a roll coater method, a brush coating method, and a dipping method.
  • the method of drying and curing may be a method of curing for about 1 to 10 days at room temperature, but from the viewpoint of rapidly proceeding curing, at a temperature of 50 ° C. to 250 ° C. for 1 second to 600 ° C. A method of heating for about a second is preferable.
  • curing is preferably performed at a relatively low temperature of about 30 ° C. to 100 ° C.
  • the film thickness of the film formed using the coating agent of the present invention can be appropriately adjusted according to the use of the article provided with the film, but it is usually preferably about 0.5 ⁇ m to 100 ⁇ m.
  • an intermediate layer such as a primer layer may be provided on the surface of the base material in advance.
  • a primer layer for example, a conventionally known paint containing an acrylic resin, a paint containing a polyester resin, a paint containing an alkyd resin, a paint containing an epoxy resin, a paint containing a fatty acid-modified epoxy resin, Examples thereof include those formed using a paint containing a silicone resin, a paint containing a polyurethane resin, and the like.
  • an article provided with a film formed using the base material and the coating agent of the present invention includes, for example, mobile parts, home appliances, OA equipment, automobile parts such as automobile interior and exterior materials, and various home appliances. It can be used for product parts and building material products.
  • the urethane resin composition of the present invention can be used as a material for forming the skin layer constituting the leather-like sheet.
  • a leather-like sheet is generally a laminate in which an intermediate layer such as a porous layer is laminated on the surface of a fibrous base material impregnated with a resin as necessary, and a skin layer is laminated on the intermediate layer.
  • the urethane resin composition of the present invention can be suitably used for forming the skin layer.
  • the fibrous base material a nonwoven fabric, a woven fabric, a knitted fabric or the like can be used.
  • the material constituting the base material for example, polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, blended fiber thereof or the like is used. Can do.
  • the surface of the base material may be subjected to antistatic processing, mold release processing, water repellent processing, water absorption processing, antibacterial and deodorizing processing, antibacterial processing, ultraviolet blocking processing and the like as necessary.
  • a leather-like sheet in which a skin layer is laminated directly on the surface of the fibrous base material forms a skin layer by applying the urethane resin composition on a sheet subjected to a release treatment and drying it. Then, it can manufacture by laminating
  • the method for applying the urethane resin composition on the sheet include a gravure coater method, a knife coater method, a pipe coater method, and a comma coater method.
  • a method for drying and curing the urethane resin composition applied by the above method for example, it is allowed to stand for 1 to 10 days at room temperature, or heated at a temperature of 50 to 250 ° C. for 1 to 600 seconds. The method of doing is mentioned.
  • an intermediate layer such as a porous layer is provided between the fibrous base material and the skin layer.
  • the urethane resin composition is provided on a sheet subjected to a release treatment.
  • a skin layer is formed by coating and drying, and then a porous layer forming resin composition foamed by a conventionally known mechanical foaming method or water foaming method is applied and cured on the skin layer.
  • a layer can be formed, and then a fibrous base material can be laminated on the porous layer using a conventionally known adhesive.
  • the urethane resin composition of the present invention can be used for producing a leather-like sheet comprising an impregnated base material obtained by impregnating a fiber base material.
  • the fiber base material a nonwoven fabric, a woven fabric, a knitted fabric or the like can be used.
  • the constituent of the fiber base material for example, polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, and blended fibers thereof are used. be able to.
  • Examples of the method of impregnating the urethane resin of the fiber base material include a method of directly immersing the fiber base material in a tank storing the urethane resin composition and squeezing excess urethane resin with a mangle or the like.
  • the urethane resin composition is coagulated by heating the fiber substrate impregnated with the urethane resin composition to a temperature equal to or higher than the heat-sensitive coagulation temperature of the urethane resin (approximately 50 ° C. to 80 ° C.), and the urethane resin composition
  • the aqueous medium (B) contained therein is evaporated.
  • the base material which the fiber base material impregnated with urethane resin (A) can be manufactured.
  • leather-like sheets obtained by the above method are, for example, shoes, bags, clothing, furniture members such as chairs and sofas, automobile interior materials such as vehicle seats and handles, moisture-permeable and waterproof materials, synthetic leather, artificial leather, etc. It can be used for leather-like sheets, abrasives, felt pen cores, and the like.
  • the urethane resin composition of the present invention can be suitably used for the production of various layered product skin layers, particularly leather-like sheets, including various coating agents.
  • urethane resin composition (X1) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2000), 2 ethylene oxides in bisphenol A 65 g of the compound (M 1 in which R 1 and R 2 in the general formula (1) are methyl groups and the sum of m and n is 2) and 75 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) And 70 g of cyclohexanedimethanol and 360 g of dicyclohexylmethane diisocyanate are reacted at 70 ° C.
  • the NCO% represents the mass ratio of isocyanate groups to the total amount of the methyl ethyl ketone solution of the urethane prepolymer (X1 ′).
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X1 ′) with 2340 g of pure water and phase inversion emulsifying.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition (X1) having a nonvolatile content of 40% by mass Got.
  • urethane resin composition (X2) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 325 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 2) and polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) ) 350 g of cyclohexane dimethanol and 360 g of dicyclohexylmethane diisocyanate are reacted at 70 ° C. until the NCO% reaches 1.7% by mass, whereby the urethane prepolymer (X2 ′) having an isocyanate group at the terminal is reacted. A methyl ethyl ketone solution was obtained.
  • An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (X2 ′) with 2340 g of pure water and phase-inverting the mixture.
  • the obtained emulsion is supplied with 370 g of a chain extender aqueous solution containing 37 g of piperazine and mixed to cause a chain extension reaction, thereby distilling off methyl ethyl ketone, whereby a urethane resin composition (X2) having a nonvolatile content of 30% by mass is obtained.
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X3 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
  • the obtained emulsion is supplied with 250 g of a chain extender aqueous solution containing 25 g of piperazine and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition (X3) having a nonvolatile content of 40% by mass.
  • An emulsion was obtained by mixing 2220 g of a methyl ethyl ketone solution of urethane prepolymer (X4 ′) having an isocyanate group at the molecular end with 2220 g of pure water and phase-inverting and emulsifying.
  • the obtained emulsion was supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction.
  • urethane resin composition (X5) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 10) and polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) ) 75 g, cyclohexane dimethanol 70 g, and dicyclohexylmethane diisocyanate 360 g are reacted at 70 ° C. until the NCO% reaches 1.3% by mass, whereby the urethane prepolymer (X5 ′) having an isocyanate group at the terminal is reacted. A methyl ethyl ketone solution was obtained.
  • An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (X5 ′) with 2340 g of pure water and phase inversion emulsifying.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X5) Got.
  • urethane resin composition (X6) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the sum of m and n is 2) and monobutyl ether of a polyoxyethylene polyoxypropylene random copolymer (Oxyethylene structure / oxypropylene structure mass ratio: 75/25, number average molecular weight 3,400) 75 g, cyclohexanedimethanol 70 g, and dicyclohexylmethane diisocyanate 360 g, until NCO% reaches 1.3 mass% Isocyanate at the end by reacting at 70 ° C To obtain a methyl ethyl ketone solution
  • An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (X6 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X6) Got.
  • urethane resin composition (X7) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponporan N980R, number average molecular weight 2000), 65 g of a compound obtained by adding 2 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 2), and polyoxyethylene glycol monomethyl ether (several Urethane prepolymer having an isocyanate group at the terminal by reacting 75 g of average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate at 70 ° C.
  • polycarbonate diol manufactured by Nippon Polyurethane Industry Co
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X7 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X7) Got.
  • Example 8 Preparation of Urethane Resin Composition (X8) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 415 g of polycarbonate diol (Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2000), 250 g of a compound obtained by adding 2 moles of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the sum of m and n is 2), and polyoxyethylene glycol monomethyl ether (several Methyl ethyl ketone of urethane prepolymer (X8 ′) having an isocyanate group at the terminal end by reacting 75 g of average molecular weight 4,000) and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 1.2% by mass.
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X8 ′) with 2340 g of pure water and phase-inverting and emulsifying.
  • the obtained emulsion is supplied with 250 g of a chain extender aqueous solution containing 25 g of piperazine, and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X8) Got.
  • An emulsion was obtained by mixing 2220 g of a methyl ethyl ketone solution of urethane prepolymer (X9 ′) having an isocyanate group at the terminal with 2220 g of pure water and phase-inverting emulsifying it.
  • the obtained emulsion was supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction.
  • urethane resin composition (X10) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) 65 g of a compound obtained by adding 10 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 10), and polyoxyethylene glycol monomethyl ether Urethane having an isocyanate group at the end by reacting 75 g of (number average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 1.3% by mass.
  • Prepolymer (X10) In the presence of 11
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X10 ′) with 2340 g of pure water and phase inversion emulsifying.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X10) Got.
  • Example 11 Preparation of urethane resin composition (X11) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) And 65 g of a compound obtained by adding 2 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 2), and polyoxyethylene polyoxypropylene 75 g of random copolymer monobutyl ether (mass ratio of oxyethylene structure / oxypropylene structure: 75/25, number average molecular weight 3,400), 70 g of cyclohexanedimethanol, 360 g of dicyclohexylmethane diisocyanate, NCO% is 1 Until
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X11 ′) with 2340 g of pure water and phase inversion emulsifying.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition (X11) having a nonvolatile content of 40% by mass.
  • 1650 g of the methyl ethyl ketone solution of the urethane prepolymer (Y1 ′) was mixed with 1650 g of pure water, and phase emulsified to obtain an emulsion.
  • the obtained emulsion is supplied with 400 g of a chain extender aqueous solution containing 40 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y1) Got.
  • Methyl ethyl ketone solution 2340 g of urethane prepolymer (Y2 ′) having an isocyanate group at the terminal was mixed with 2340 g of pure water and phase-inversion emulsified, but a stable emulsion could not be obtained, and as a result, urethane resin composition (Y2) could not be obtained.
  • An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y3 ′) with 2340 g of pure water and phase inversion emulsifying.
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (Y4 ′) with 2340 g of pure water and phase inversion emulsifying.
  • the obtained emulsion is supplied with 430 g of a chain extender aqueous solution containing 43 g of piperazine, and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y4) Got.
  • the emulsion solution was obtained by mixing 31 g of triethylamine with 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y5 ′), further mixing with 2340 g of pure water, and phase inversion emulsifying.
  • the obtained emulsion is supplied with 60 g of a chain extender aqueous solution containing 6 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 30% by mass (Y5) Got.
  • 1650 g of the methyl ethyl ketone solution of the urethane prepolymer (Y7 ′) was mixed with 1650 g of pure water, and phase emulsified to obtain an emulsion.
  • the obtained emulsion is supplied with 400 g of a chain extender aqueous solution containing 40 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y7) Got.
  • Methyl ethyl ketone solution 2340 g of urethane prepolymer (Y8 ′) having an isocyanate group at the terminal was mixed with 2340 g of pure water and phase-inversion emulsified, but a stable emulsion could not be obtained, and as a result, urethane resin composition (Y8) could not be obtained.
  • An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (Y9 ′) with 2340 g of pure water and phase inversion emulsifying.
  • the obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y9) Got.
  • the emulsion solution was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y10 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
  • a urethane resin composition having a nonvolatile content of 40% by mass (Y10) Got.
  • the emulsion solution was obtained by mixing 31 g of triethylamine with 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y11 ′), further mixing with 2340 g of pure water, and phase-inverting and emulsifying.
  • the obtained emulsion is supplied with 60 g of a chain extender aqueous solution containing 6 g of piperazine and mixed to cause a chain extension reaction, thereby distilling off methyl ethyl ketone, whereby a urethane resin composition having a nonvolatile content of 30% by mass (Y11) Got.
  • each urethane resin composition obtained in the examples and comparative examples 0.2 g of TEGO Flow425 (manufactured by Degussa, silicone leveling agent), 0.2 g of TEGO Twin4000 (manufactured by Degussa, silicone antifoaming agent), Each coating agent was mixed with 1 g of BORCHIGEL ALA (manufactured by Borchers, alkali thickening type thickener) for 2 minutes using a mechanical mixer at 2000 rpm, and then defoamed using a vacuum defoamer. Prepared.
  • BORCHIGEL ALA manufactured by Borchers, alkali thickening type thickener
  • 100 g of the coating agent was applied onto release paper (155T flat made by Dai Nippon Printing Co., Ltd.) so that the film thickness after application was 150 ⁇ m.
  • a film was prepared by predrying at 70 ° C. for 2 minutes using a Warner Mathis (dryer) and then drying at 150 ° C. for 2 minutes.
  • the film was peeled from the release paper and cut into a size of 5 mm in width, 7 cm in length, and 30 ⁇ m in thickness, which was used as a test film.
  • the elongation of the test film was as follows: SHIMADZU AUTOGRAPH “AG-1” (Precision Universal Testing Machine Autograph manufactured by Shimadzu Corporation), test speed: 300 mm / min, between marked lines; 20 mm, between knuckles: 40 mm Measured under conditions.
  • the film was peeled from the release paper and cut into a size of 5 mm in width, 7 cm in length, and 30 ⁇ m in thickness, which was used as a test film.
  • the flow start temperature of the test film was as follows: SHIMADZU CFT-500D-1 (flow tester manufactured by Shimadzu Corporation) die; 1.0 mm ⁇ ⁇ 1.0 mm ⁇ , load; 98 N, hold time; 10 minutes, heating rate; 3 The measurement was performed under the conditions of ° C / min.
  • the coating agent 100g which consists of a urethane resin composition prepared above was apply
  • the urethane resin compositions obtained in Examples 1 and 6 were excellent in dispersion stability in water, had no odor due to the neutralizing agent, and were able to form a film excellent in tensile strength.
  • the urethane resin composition obtained in Example 2 was confirmed to have a decreased flow initiation temperature due to the excessive use of polyoxyethylene glycol monomethyl ether, it had excellent dispersion stability, no odor, and good tensile strength. It was possible to form a film with The urethane resin compositions obtained in Examples 3 and 8 were also excellent in dispersion stability, had no odor, and could form a film with good tensile strength.
  • the urethane resin compositions obtained in Examples 4 and 9 have an alkoxypolyoxyalkylene structure (a1) in the side chain of the urethane resin, have excellent dispersion stability, no odor, and good tensile strength. It was possible to form the provided film.
  • the urethane resin compositions of Examples 5 and 10 obtained by using 10 moles of bisphenol added with ethylene oxide also form a film with excellent dispersion stability, no odor, and good tensile strength. It was possible to do.
  • the urethane resin compositions of Examples 6 and 11 obtained by using monobutyl ether of polyoxyethylene polyoxypropylene random copolymer also have excellent dispersion stability, no odor, and a film having good tensile strength. It was possible to form.
  • the urethane resin compositions of Comparative Examples 1, 3, 4, 7, 9, and 10 that do not have the structure represented by the general formula (1) caused a significant decrease in tensile strength.
  • the urethane resin compositions of Comparative Examples 2 and 8 having the structure represented by the general formula (1) but not having the alkoxypolyoxyalkylene structure (a1) can maintain good water dispersion stability. Cause aggregation.
  • the urethane resin compositions described in Comparative Examples 5 and 11 having a carboxylate group formed by neutralizing a carboxyl group as a hydrophilic group can form a film having good water dispersion stability and excellent tensile strength. However, it caused odor caused by the neutralizing agent.
  • urethane resin compositions of Comparative Examples 6 and 12 having an alkoxypolyoxyalkylene structure in which the mass ratio of oxyethylene units is 35% by mass cannot maintain good water dispersion stability, and cause aggregation and the like. Caused.

Abstract

The present invention addresses the problem of providing a urethane-resin composition exhibiting excellent dispersion stability, and capable of forming a film which exhibits excellent tensile strength, without producing an odor from the neutralizer or causing air-pollution problems. The present invention pertains to a urethane-resin composition containing an aqueous medium (B), and a urethane resin (A) having a structure (a2) and an alkoxy-polyoxyalkylene structure (a1) which contains 40-100 mass% of an oxyethylene structure, the urethane-resin composition being characterized in that the alkoxy-polyoxyalkylene structure (a1) containing 40-100 mass% of the oxyethylene structure is present in an end of the urethane resin (A) or a side chain of the urethane resin (A).

Description

ウレタン樹脂組成物、コーティング剤、物品及び皮革様シートUrethane resin composition, coating agent, article and leather-like sheet
 本発明は、コーティング剤や接着剤をはじめとする様々な用途に使用可能で、かつ、皮革様シートの製造にも使用可能なウレタン樹脂組成物に関する。 The present invention relates to a urethane resin composition that can be used for various applications including a coating agent and an adhesive, and can also be used for manufacturing a leather-like sheet.
 ウレタン樹脂が水性媒体に分散等した水性ウレタン樹脂組成物は、従来の有機溶剤系ウレタン樹脂組成物と比較して、環境への負荷を低減できることから、例えばコーティング剤や接着剤をはじめとする様々な用途で使用されている。 An aqueous urethane resin composition in which a urethane resin is dispersed in an aqueous medium can reduce the burden on the environment as compared with conventional organic solvent-based urethane resin compositions. It is used for various purposes.
 前記水性ウレタン樹脂組成物としては、一般にアニオン性基等の親水性基を備えたウレタン樹脂が、水性媒体に分散等したものが知られており、例えば、少なくとも1個の活性水素含有基とアニオン性基またはカチオン性基とを有する化合物と、少なくとも1個の活性水素含有基と少なくとも1個の不飽和基を有する化合物と、ポリオールおよび/またはポリアミンと、少なくとも1個の活性水素含有基を有するポリシロキサンと、ポリイソシアネートとを反応させて得られるウレタン樹脂組成物が知られている(例えば特許文献1参照。)。 As the aqueous urethane resin composition, generally known is a urethane resin having a hydrophilic group such as an anionic group dispersed in an aqueous medium, for example, at least one active hydrogen-containing group and an anion. A compound having a functional group or a cationic group, a compound having at least one active hydrogen-containing group and at least one unsaturated group, a polyol and / or a polyamine, and at least one active hydrogen-containing group A urethane resin composition obtained by reacting polysiloxane with polyisocyanate is known (see, for example, Patent Document 1).
 しかし、前記親水性基としてのカチオン性基やアニオン性基は、一般に、アミノ基やカルボキシル基を酸性化合物や塩基性化合物を用いて中和したものであることが多く、前記酸性化合物や塩基性化合物に起因した臭気や大気汚染が、近年、懸念されている。 However, the cationic group or anionic group as the hydrophilic group is generally a neutralized amino group or carboxyl group using an acidic compound or basic compound. In recent years, odors and air pollution caused by compounds have been a concern.
 一方、前記ウレタン樹脂組成物としては、親水性基として、ポリオキシエチレン構造等のノニオン性基を有するウレタン樹脂組成物が検討されている(例えば特許文献2参照。)。 On the other hand, as the urethane resin composition, a urethane resin composition having a nonionic group such as a polyoxyethylene structure as a hydrophilic group has been studied (for example, see Patent Document 2).
 しかし、前記ノニオン性ウレタン樹脂は、カチオン性基やアニオン性基を備えたウレタン樹脂と比較して水分散性能の点で劣るため、水性媒体中で長期間安定して分散できない場合があった。 However, since the nonionic urethane resin is inferior in water dispersibility as compared with a urethane resin having a cationic group or an anionic group, it may not be stably dispersed in an aqueous medium for a long period of time.
 前記ノニオン性のウレタン樹脂組成物の水分散性能を向上する方法としては、例えばポリオキシエチレンジスチレン化フェニルエーテル等の外部乳化剤を使用する方法が知られている。 As a method for improving the water dispersion performance of the nonionic urethane resin composition, a method using an external emulsifier such as polyoxyethylene distyrenated phenyl ether is known.
 しかし、前記乳化剤の使用は、ウレタン樹脂組成物を用いて形成される皮膜の引張強度の著しい低下を引き起こすため、前記皮膜に力が加わった場合に、前記皮膜のひび割れや破断を引き起こす場合があった。 However, the use of the emulsifier causes a significant decrease in the tensile strength of the film formed using the urethane resin composition. Therefore, when force is applied to the film, the film may crack or break. It was.
 このように、前記塩基性化合物等の中和剤に起因した臭気や大気汚染の問題を引き起こすことがなく、外部乳化剤を実質的に使用しない場合であっても水性媒体に対する分散安定性に優れ、かつ、高強度な皮膜を形成することのできるウレタン樹脂組成物は未だ見出されていないのが実情である。 Thus, without causing problems of odor and air pollution caused by the neutralizing agent such as the basic compound, even in the case of substantially not using an external emulsifier, excellent dispersion stability in an aqueous medium, In fact, a urethane resin composition capable of forming a high-strength film has not yet been found.
特開2009-248470号公報JP 2009-248470 A 特開2009-249635号公報JP 2009-249635 A
 本発明が解決しようとする課題は、前記中和剤に起因した臭気や大気汚染の問題を引き起こすことがなく、分散安定性に優れ、かつ、引張強度に優れた皮膜を形成することができるウレタン樹脂組成物を提供することである。 The problem to be solved by the present invention is a urethane that does not cause problems of odor and air pollution caused by the neutralizing agent, can form a film having excellent dispersion stability and excellent tensile strength. It is to provide a resin composition.
 本発明者等は、上記課題を解決すべく検討した結果、ウレタン樹脂を構成する主鎖構造の末端、または、前記主鎖構造に対する側鎖に、オキシエチレン構造を40質量%~100質量%有するアルコキシポリオキシアルキレン構造(a1)を有するとともに、前記ウレタン樹脂を構成する主鎖構造中に、下記一般式(1)で示される所定の構造を有するウレタン樹脂を使用した場合に、前記課題を解決できることを見出した。 As a result of investigations to solve the above problems, the present inventors have an oxyethylene structure of 40% by mass to 100% by mass at the end of the main chain structure constituting the urethane resin or at the side chain with respect to the main chain structure. When the urethane resin having an alkoxypolyoxyalkylene structure (a1) and having a predetermined structure represented by the following general formula (1) is used in the main chain structure constituting the urethane resin, the above problems are solved. I found out that I can do it.
 すなわち、本発明は、オキシエチレン構造を40質量%~100質量%有するアルコキシポリオキシアルキレン構造(a1)と、下記一般式(1)で示される構造(a2)とを有するウレタン樹脂(A)、及び、水性媒体(B)を含有するウレタン樹脂組成物であって、前記オキシエチレン構造を40質量%~100質量%有するアルコキシポリオキシアルキレン構造(a1)が、前記ウレタン樹脂(A)の末端または前記ウレタン樹脂(A)の側鎖に存在するものであることを特徴とするウレタン樹脂組成物に関するものである。 That is, the present invention relates to a urethane resin (A) having an alkoxypolyoxyalkylene structure (a1) having an oxyethylene structure of 40% by mass to 100% by mass and a structure (a2) represented by the following general formula (1): And the urethane resin composition containing the aqueous medium (B), wherein the alkoxypolyoxyalkylene structure (a1) having 40% by mass to 100% by mass of the oxyethylene structure is an end of the urethane resin (A) or The present invention relates to a urethane resin composition which is present in the side chain of the urethane resin (A).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中のR及びRは、それぞれ独立して水素原子またはアルキル基を表す。mは平均0~20の値を表し、nは平均0~20の値を表し、m及びnの合計は平均1~40の値を表す。) (R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group. M represents an average value of 0 to 20, n represents an average value of 0 to 20, And the sum of n represents an average value of 1 to 40.)
 本発明のウレタン樹脂組成物は、親水性基としてのアニオン性基やカチオン性基を中和する際に使用する中和剤に起因した臭気や大気汚染の問題を引き起こすことがなく、外部乳化剤を実質的に使用しない場合であっても分散安定性に優れ、かつ、引張強度に優れた皮膜を形成できることから、例えばコーティング剤、特にトップコート層形成用コーティング剤に使用することができる。また、前記ウレタン樹脂組成物は、例えば皮革様シート等の積層体を構成する表皮層の形成に使用することができる。また、前記ウレタン樹脂組成物を不織布等の繊維基材に含浸することによって、柔軟な風合いを備えた皮革様シートを製造することが可能となる。 The urethane resin composition of the present invention does not cause problems of odor and air pollution caused by a neutralizing agent used when neutralizing an anionic group or a cationic group as a hydrophilic group. Even when it is not substantially used, a film having excellent dispersion stability and excellent tensile strength can be formed. Therefore, it can be used, for example, as a coating agent, particularly a coating agent for forming a topcoat layer. Moreover, the said urethane resin composition can be used for formation of the skin layer which comprises laminated bodies, such as a leather-like sheet | seat, for example. Further, by impregnating a fiber base material such as a nonwoven fabric with the urethane resin composition, a leather-like sheet having a soft texture can be produced.
 本発明のウレタン樹脂組成物は、オキシエチレン構造を40質量%~100質量%有するアルコキシポリオキシアルキレン構造(a1)と、下記一般式(1)で示される構造(a2)とを有するウレタン樹脂(A)、及び、水性媒体(B)を含有するウレタン樹脂組成物のうち、前記アルコキシポリオキシアルキレン構造(a1)が、前記ウレタン樹脂(A)の末端または前記ウレタン樹脂(A)の側鎖に存在するものであることを特徴とする。 The urethane resin composition of the present invention comprises an urethane polyoxyalkylene structure (a1) having an oxyethylene structure of 40% by mass to 100% by mass and a structure (a2) represented by the following general formula (1) ( Of the urethane resin composition containing A) and the aqueous medium (B), the alkoxypolyoxyalkylene structure (a1) is at the end of the urethane resin (A) or the side chain of the urethane resin (A). It is characterized by existing.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中のR及びRは、それぞれ独立して水素原子またはアルキル基を表す。mは平均0~20の値を表し、nは平均0~20の値を表し、m及びnの合計は平均1~40の値を表す。) (R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group. M represents an average value of 0 to 20, n represents an average value of 0 to 20, And the sum of n represents an average value of 1 to 40.)
 本発明のウレタン樹脂組成物としては、前記ウレタン樹脂(A)が水性媒体(B)に分散または溶解したものを使用することが、取り扱い性、塗工作業性等を向上するうえで好ましい。 As the urethane resin composition of the present invention, it is preferable to use the urethane resin (A) in which the urethane resin (A) is dispersed or dissolved in the aqueous medium (B) from the viewpoint of improving the handleability and coating workability.
 はじめに、前記ウレタン樹脂組成物に使用するウレタン樹脂(A)について説明する。
 本発明で使用するウレタン樹脂(A)は、前記アルコキシポリオキシアルキレン構造(a1)と、前記一般式(1)で示される構造(a2)とを有するもののうち、前記アルコキシポリオキシアルキレン構造(a1)を、前記ウレタン樹脂(A)の末端または前記ウレタン樹脂(A)の側鎖に有するものである。
First, the urethane resin (A) used for the urethane resin composition will be described.
The urethane resin (A) used in the present invention has the alkoxy polyoxyalkylene structure (a1) among those having the alkoxy polyoxyalkylene structure (a1) and the structure (a2) represented by the general formula (1). ) At the end of the urethane resin (A) or the side chain of the urethane resin (A).
 前記ウレタン樹脂(A)としては、前記アルコキシポリオキシアルキレン構造(a1)を、ウレタン樹脂(A)のウレタン結合を含む主鎖構造の末端、または、前記ウレタン樹脂(A)の主鎖構造に対する側鎖に有するものを使用する。 As the urethane resin (A), the alkoxypolyoxyalkylene structure (a1) is a terminal of the main chain structure containing the urethane bond of the urethane resin (A), or the side of the urethane resin (A) with respect to the main chain structure. Use what you have in the chain.
 ここで、前記ウレタン樹脂(A)の代わりに、アルコキシポリオキシアルキレン構造をウレタン樹脂の主鎖構造中に有するウレタン樹脂を使用した場合、水性媒体に対して優れた分散安定性を維持できない場合がある。なお、本発明でいう主鎖構造とは、例えばポリオールとしてのジオールと、ポリイソシアネートとしてのジイソシアネートとを反応させウレタン樹脂を製造した際に、前記水酸基とイソシアネート基とが反応し形成されたウレタン結合を主として有する構造を指す。 Here, when a urethane resin having an alkoxypolyoxyalkylene structure in the main chain structure of the urethane resin is used instead of the urethane resin (A), it may not be possible to maintain excellent dispersion stability with respect to an aqueous medium. is there. The main chain structure referred to in the present invention is, for example, a urethane bond formed by reacting the hydroxyl group with an isocyanate group when a diol as a polyol is reacted with diisocyanate as a polyisocyanate to produce a urethane resin. The structure which has mainly.
 また、前記アルコキシポリオキシアルキレン構造(a1)としては、前記アルコキシポリオキシアルキレン構造(a1)全体に対して、下記式(2)で示されるオキシエチレン単位を、40質量%~100質量%の範囲で有するものを使用する。 The alkoxypolyoxyalkylene structure (a1) is an oxyethylene unit represented by the following formula (2) with respect to the entire alkoxypolyoxyalkylene structure (a1) in the range of 40% by mass to 100% by mass. Use what you have.
 -CHCHO-       (2) —CH 2 CH 2 O— (2)
 ここで、前記アルコキシポリオキシアルキレン構造(a1)の代わりに、前記オキシエチレン単位を35質量%有するアルコキシポリオキシアルキレン構造を採用した場合、ウレタン樹脂の水性媒体中における分散安定性の著しい低下を引き起こす場合がある。 Here, when the alkoxy polyoxyalkylene structure having 35% by mass of the oxyethylene unit is employed instead of the alkoxy polyoxyalkylene structure (a1), the dispersion stability of the urethane resin in an aqueous medium is significantly lowered. There is a case.
 前記アルコキシポリオキシアルキレン構造(a1)としては、前記アルコキシポリオキシアルキレン構造(a1)全体に対して、前記オキシエチレン単位を50質量%~100質量%の範囲で含むものを使用することが、良好な分散安定性と、形成する皮膜の引張強度の向上とを両立するうえで好ましく、85質量%~100質量%の範囲で含むものを使用することがより好ましい。 As the alkoxypolyoxyalkylene structure (a1), it is preferable to use the alkoxypolyoxyalkylene structure (a1) containing the oxyethylene unit in the range of 50% by mass to 100% by mass with respect to the entire alkoxypolyoxyalkylene structure (a1). In view of achieving both good dispersion stability and improvement in the tensile strength of the film to be formed, it is more preferable to use those containing in the range of 85% by mass to 100% by mass.
 前記アルコキシポリオキシアルキレン構造(a1)としては、例えばアルコキシポリオキシエチレン構造が挙げられる。また、前記アルコキシポリオキシアルキレン構造(a1)としては、オキシエチレン単位とその他のオキシアルキレン単位とから構成される、アルコキシ(ポリオキシエチレン-ポリオキシプロピレン)構造、アルコキシ(ポリオキシエチレン-ポリオキシテトラメチレン)構造等のブロック構造、または、前記オキシエチレン単位とオキシプロピレン構造とから構成されるランダム構造、前記オキシエチレン単位とオキシテトラメチレン構造とから構成されるランダム構造が挙げられる。 Examples of the alkoxypolyoxyalkylene structure (a1) include an alkoxypolyoxyethylene structure. The alkoxy polyoxyalkylene structure (a1) includes an alkoxy (polyoxyethylene-polyoxypropylene) structure, an alkoxy (polyoxyethylene-polyoxytetra) composed of oxyethylene units and other oxyalkylene units. A block structure such as a methylene) structure, a random structure composed of the oxyethylene unit and the oxypropylene structure, and a random structure composed of the oxyethylene unit and the oxytetramethylene structure.
 前記アルコキシポリオキシアルキレン構造(a1)としては、前記したなかでも、前記オキシエチレン単位とオキシプロピレン単位とから構成されるランダム構造、前記オキシエチレン単位とオキシテトラメチレン単位とから構成されるランダム構造からなるものを使用することが、水冷媒体(B)に対するウレタン樹脂(A)の分散安定性をより一層向上できるため好ましい。 Among the alkoxypolyoxyalkylene structures (a1), among those described above, a random structure composed of the oxyethylene units and oxypropylene units, and a random structure composed of the oxyethylene units and oxytetramethylene units. It is preferable to use such a material because the dispersion stability of the urethane resin (A) with respect to the water refrigerant (B) can be further improved.
 また、前記アルコキシポリオキシアルキレン構造(a1)の末端を構成するアルコキシ基としては、例えばメチル基、エチル基、ブチル基等を使用することが好ましい。 In addition, as the alkoxy group constituting the terminal of the alkoxypolyoxyalkylene structure (a1), for example, a methyl group, an ethyl group, a butyl group, or the like is preferably used.
 前記アルコキシポリオキシアルキレン構造(a1)としては、500~10,000の数平均分子量を有するものを使用することが好ましく、500~5,000の数平均分子量を有するものを使用することがより好ましい。 As the alkoxypolyoxyalkylene structure (a1), those having a number average molecular weight of 500 to 10,000 are preferably used, and those having a number average molecular weight of 500 to 5,000 are more preferably used. .
 前記アルコキシポリオキシアルキレン構造(a1)は、前記ウレタン樹脂(A)の1末端に、1個存在していてもよく、前記ウレタン樹脂(A)の1末端に2個以上存在していてもよい。また、前記アルコキシポリオキシアルキレン構造(a1)は、前記ウレタン樹脂(A)の両末端に、それぞれ1個または2個以上存在していてもよい。 One alkoxypolyoxyalkylene structure (a1) may be present at one end of the urethane resin (A), or two or more may be present at one end of the urethane resin (A). . One or two or more alkoxypolyoxyalkylene structures (a1) may be present at both ends of the urethane resin (A).
 また、前記ウレタン樹脂(A)が多分岐構造を有する場合、具体的には、前記ウレタン樹脂(A)を製造する際にポリオールやポリイソシアネートとして、トリオールやトリイソシアネート等の、水酸基を3個以上有するアルコールやイソシアネートを3個以上有するイソシアネートを使用した場合、前記アルコキシポリオキシアルキレン構造(a1)は、得られるウレタン樹脂(A)の各末端に、それぞれ1個または2個以上存在していてもよい。 Moreover, when the said urethane resin (A) has a multi-branch structure, specifically, when manufacturing the said urethane resin (A), three or more hydroxyl groups, such as a triol and a triisocyanate, are used as a polyol or a polyisocyanate. In the case of using an alcohol having three or more alcohols or isocyanates, the alkoxypolyoxyalkylene structure (a1) may be present at each terminal of the resulting urethane resin (A) at one or two or more. Good.
 また、前記アルコキシポリオキシアルキレン構造(a1)は、主として前記ポリオール及びポリイソシアネートによって構成される、ウレタン樹脂(A)の主鎖構造に対し、その側鎖に存在していてもよい。 The alkoxy polyoxyalkylene structure (a1) may be present in the side chain of the main chain structure of the urethane resin (A) mainly composed of the polyol and polyisocyanate.
 前記アルコキシポリオキシアルキレン構造(a1)は、前記ウレタン樹脂(A)の全体に対して0.1質量%~25質量%の範囲でウレタン樹脂(A)中に存在することが好ましく、1質量%~10質量%の範囲で存在することが、ウレタン樹脂(A)により一層優れた水分散安定性を付与するとともに、より一層優れた引張強度を備えた皮膜を形成できるため好ましい。 The alkoxypolyoxyalkylene structure (a1) is preferably present in the urethane resin (A) in the range of 0.1% by mass to 25% by mass with respect to the entire urethane resin (A). The presence in the range of ˜10% by mass is preferable because the urethane resin (A) can provide more excellent water dispersion stability and can form a film with even better tensile strength.
 また、前記ウレタン樹脂(A)としては、単に前記アルコキシポリオキシアルキレン構造(a1)を有するものであれば使用できるのではなく、前記アルコキシポリオキシアルキレン構造(a1)とともに、下記一般式(1)で示される構造(a2)を有するものを使用することが必須である。 In addition, the urethane resin (A) can be used as long as it has the alkoxypolyoxyalkylene structure (a1), and together with the alkoxypolyoxyalkylene structure (a1), the following general formula (1) It is essential to use one having the structure (a2) represented by
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中のR及びRは、それぞれ独立して水素原子またはアルキル基を表す。mは平均0~20の値を表し、nは平均0~20の値を表し、m及びnの合計は平均1~40の値を表す。)
 ここで、前記ウレタン樹脂(A)の代わりに、前記アルコキシポリオキシアルキレン構造(a1)を有するものの前記一般式(1)で示される構造(a2)を有さないウレタン樹脂を使用した場合には、優れた引張強度を備えた皮膜を形成できない場合がある。
(R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group. M represents an average value of 0 to 20, n represents an average value of 0 to 20, And the sum of n represents an average value of 1 to 40.)
Here, instead of the urethane resin (A), a urethane resin having the alkoxypolyoxyalkylene structure (a1) but not having the structure (a2) represented by the general formula (1) is used. In some cases, a film having excellent tensile strength cannot be formed.
 前記一般式(1)中のR及びRは、それぞれ独立して水素原子やアルキル基であり、R及びRともに水素原子またはメチル基であることが好ましい。 R 1 and R 2 in the general formula (1) are each independently a hydrogen atom or an alkyl group, and both R 1 and R 2 are preferably a hydrogen atom or a methyl group.
 また、前記一般式(1)中のm及びnは、オキシエチレン単位の平均付加モル数を表し、それぞれ平均0~20の範囲であり、平均1~20の範囲であることが好ましく、平均1~5の範囲であることがより好ましい。 In the general formula (1), m and n represent the average number of added moles of oxyethylene units, each having an average range of 0 to 20, preferably an average range of 1 to 20, and an average of 1 A range of from 5 to 5 is more preferable.
 また、前記m及びnの合計は、平均1~40の範囲であり、平均1~20の範囲であることが好ましく、平均1~10の範囲であることがより好ましく、平均1~5の範囲であることがさらに好ましい。 The total of m and n is an average range of 1 to 40, preferably an average range of 1 to 20, more preferably an average range of 1 to 10, and an average range of 1 to 5. More preferably.
 前記一般式(1)を有するウレタン樹脂(A)を使用することによって、良好な分散安定性を維持し、かつ、優れた引張強度を備えた皮膜を形成することができる。 By using the urethane resin (A) having the general formula (1), it is possible to maintain a good dispersion stability and to form a film having an excellent tensile strength.
 前記一般式(1)で示される構造(a2)は、前記ウレタン樹脂(A)の全量に対して、0.1質量%~25質量%の範囲で含まれることが好ましく、1質量%~20質量%の範囲で含まれることがより好ましく、1質量%~15質量%の範囲で含まれることが、より一層優れた分散安定性を付与するうえで好ましい。 The structure (a2) represented by the general formula (1) is preferably contained in the range of 0.1% by mass to 25% by mass with respect to the total amount of the urethane resin (A). It is more preferably contained in the range of 1% by mass, and it is preferably contained in the range of 1% by mass to 15% by mass in order to impart further excellent dispersion stability.
 前記アルコキシポリオキシアルキレン構造(a1)及び前記一般式(1)で示される構造(a2)を有するウレタン樹脂(A)としては、より一層優れた引張強度を有する皮膜を形成するうえで、10,000~1,000,000の重量平均分子量を有するものを使用することが好ましく、30,000~500,000の範囲の重量平均分子量を有するものを使用することがより好ましい。 As the urethane resin (A) having the alkoxypolyoxyalkylene structure (a1) and the structure (a2) represented by the general formula (1), when forming a film having a further excellent tensile strength, Those having a weight average molecular weight of 000 to 1,000,000 are preferably used, and those having a weight average molecular weight in the range of 30,000 to 500,000 are more preferably used.
 前記ウレタン樹脂(A)は、例えばポリオール(a’-1)とポリイソシアネート(a’-2)とを反応させることによって、末端または側鎖にイソシアネート基を有するウレタン樹脂(A’)を製造し、次いで、前記ウレタン樹脂(A’)と、ポリオキシアルキレングリコールの1個の水酸基がアルキルアルコールによって封止されたポリオキシアルキレンモノアルキルエーテルとを反応させることによって製造することができる。 The urethane resin (A) is produced, for example, by reacting a polyol (a′-1) with a polyisocyanate (a′-2) to produce a urethane resin (A ′) having an isocyanate group at the terminal or side chain. Then, it can be produced by reacting the urethane resin (A ′) with a polyoxyalkylene monoalkyl ether in which one hydroxyl group of polyoxyalkylene glycol is sealed with an alkyl alcohol.
 前記ポリオール(a’-1)としては、例えば前記一般式(1)で示される構造(a2)を前記ウレタン樹脂(A)に導入するうえで、ビスフェノール化合物にエチレンオキサイドが付加したポリエーテルポリオール、前記ポリエーテルポリオールとポリカルボン酸とを反応して得られるポリエーテルエステルポリオール等を使用することができる。 Examples of the polyol (a′-1) include a polyether polyol obtained by adding ethylene oxide to a bisphenol compound when the structure (a2) represented by the general formula (1) is introduced into the urethane resin (A). A polyether ester polyol obtained by reacting the polyether polyol with a polycarboxylic acid can be used.
 前記エチレンオキサイドが付加反応しうるビスフェノール化合物としては、例えばビスフェノールA、ビスフェノールF等を使用することができる。 Bisphenol A, bisphenol F, and the like can be used as the bisphenol compound that can undergo addition reaction of ethylene oxide.
 前記エチレンオキサイドは、前記ビスフェノール化合物が有する水酸基1個に対して、1~10の範囲で付加することが好ましく、1~5の範囲で付加することがより好ましい。 The ethylene oxide is preferably added in the range of 1 to 10 and more preferably in the range of 1 to 5 with respect to one hydroxyl group of the bisphenol compound.
 また、前記ビスフェノール化合物にエチレンオキサイドが付加したポリエーテルポリオールと反応しうるポリカルボン酸としては、例えばコハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族ポリカルボン酸を使用することができる。 Examples of the polycarboxylic acid that can react with the polyether polyol in which ethylene oxide is added to the bisphenol compound include succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecane. Aliphatic polycarboxylic acids such as dicarboxylic acids, and aromatic polycarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid can be used.
 前記ポリエーテルポリオールや前記ポリエーテルエステルポリオールとしては、皮膜の引張強度をより一層向上するうえで、500~5,000の数平均分子量を有するものを使用することが好ましい。 As the polyether polyol and the polyether ester polyol, those having a number average molecular weight of 500 to 5,000 are preferably used in order to further improve the tensile strength of the film.
 また、前記ポリエーテルポリオール及び前記ポリエーテルエステルポリオールは、前記ウレタン樹脂(A)を製造する際に使用するポリオール(a’-1)の全量に対して合計0.1質量%~25質量%の範囲で使用することが好ましい。 Further, the polyether polyol and the polyether ester polyol are a total of 0.1% by mass to 25% by mass with respect to the total amount of the polyol (a′-1) used in producing the urethane resin (A). It is preferable to use in a range.
 また、前記ポリオール(a’-1)としては、前記ポリエーテルポリオールや前記ポリエーテルエステルポリオールの他に、必要に応じてその他のポリオールを適宜組み合わせ使用することができる。 Further, as the polyol (a′-1), in addition to the polyether polyol and the polyether ester polyol, other polyols can be used in appropriate combination as required.
 前記その他のポリオールとしては、例えば前記一般式(1)で示される構造(a2)を有さないポリエーテルポリオールやポリエーテルエステルポリオール、ポリエステルポリオール、ポリカーボネートポリオールを使用することができ、前記一般式(1)で示される構造(a2)を有さないポリエーテルポリオールまたはポリカーボネートポリオールを使用することが、形成する皮膜の引張強度をより一層向上するうえで好ましい。 Examples of the other polyol include polyether polyols, polyether ester polyols, polyester polyols, and polycarbonate polyols that do not have the structure (a2) represented by the general formula (1). In order to further improve the tensile strength of the film to be formed, it is preferable to use a polyether polyol or polycarbonate polyol that does not have the structure (a2) represented by 1).
 前記一般式(1)で示される構造(a2)を有さないポリエーテルポリオールとしては、例えば活性水素原子を2個以上有する化合物の1種または2種以上を開始剤として、アルキレンオキサイドを付加重合させたものを使用することができる。 As the polyether polyol not having the structure (a2) represented by the general formula (1), for example, addition polymerization of alkylene oxide is performed using one or more compounds having two or more active hydrogen atoms as an initiator. Can be used.
 前記開始剤としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、グリセリン、トリメチロールエタン、トリメチロールプロパン等を使用することができる。 Examples of the initiator include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolethane, Trimethylolpropane and the like can be used.
 前記アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン等を使用することができる。 As the alkylene oxide, for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and the like can be used.
 前記一般式(1)で示される構造(a2)を有さないポリエーテルポリオールとしては、具体的にはポリオキシテトラメチレングリコール等を使用することができる。 As the polyether polyol not having the structure (a2) represented by the general formula (1), specifically, polyoxytetramethylene glycol or the like can be used.
 また、前記一般式(1)で示される構造(a2)を有さないポリエーテルエステルポリオールとしては、前記一般式(1)で示される構造(a2)を有さないポリエーテルポリオールとポリカルボン酸とを反応して得られるものを使用することができる。前記ポリカルボン酸としては、例えばコハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族ポリカルボン酸を使用することができる。 Moreover, as a polyether ester polyol which does not have the structure (a2) shown by the said General formula (1), the polyether polyol and polycarboxylic acid which do not have the structure (a2) shown by the said General formula (1) What is obtained by reacting with can be used. Examples of the polycarboxylic acid include aliphatic polycarboxylic acids such as succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid Aromatic polycarboxylic acids such as acids can be used.
 また、前記その他のポリオールに使用可能なポリカーボネートポリオールとしては、例えば炭酸エステルやホスゲンと、ポリオールとを反応させて得られるものを使用することができる。 As the polycarbonate polyol that can be used for the other polyols, for example, those obtained by reacting a carbonate or phosgene with a polyol can be used.
 前記炭酸エステルとしては、メチルカーボネート、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネ-ト等を使用することできる。 As the carbonate ester, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
 前記炭酸エステルと反応しうるポリオールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチルプロパンジオール、2-メチル-1,8-オクタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ハイドロキノン、レゾルシン、ビスフェノール-A、ビスフェノール-F、4,4’-ビフェノール等の比較的低分子量のジヒドロキシ化合物、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール等のポリエーテルポリオール、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオール等を使用することができる。 Examples of the polyol that can react with the carbonate ester include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,3- Butanediol, 1,2-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,5-hexanediol, 2,5-hexanediol, 1,6-hexanediol, 1,7-heptane Diol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 3-methyl-1,5-pentanediol, 2- Ethyl-1,3-hexanediol, 2-methyl-1,3-pro Diol, 2-methyl-1,8-octanediol, 2-butyl-2-ethylpropanediol, 2-methyl-1,8-octanediol, neopentyl glycol, 1,4-cyclohexanediol, 1,4-cyclohexane Relatively low molecular weight dihydroxy compounds such as dimethanol, hydroquinone, resorcin, bisphenol-A, bisphenol-F, 4,4′-biphenol, polyether polyols such as polyethylene glycol, polypropylene glycol, polyoxytetramethylene glycol, polyhexa Polyester polyols such as methylene adipate, polyhexamethylene succinate and polycaprolactone can be used.
 また、前記その他のポリオールに使用可能なポリエステルポリオールとしては、例えば低分子量のポリオールとポリカルボン酸とをエステル化反応して得られるもの、ε-カプロラクトン等の環状エステル化合物を開環重合反応して得られるポリエステル、これらの共重合ポリエステル等を使用することができる。 Examples of polyester polyols that can be used for the other polyols include those obtained by esterification of low molecular weight polyols and polycarboxylic acids, and ring-opening polymerization reactions of cyclic ester compounds such as ε-caprolactone. Polyester obtained, these copolyesters, etc. can be used.
 前記低分子量のポリオールとしては、例えば概ね分子量が50~300程度である、エチレングリコールやプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ネオペンチルグリコール、1,3-ブタンジオール等の脂肪族ポリオールや、シクロヘキサンジメタノール等の脂肪族環式構造を有するポリオール、ビスフェノールA等の芳香族構造を有するポリオールを使用することができる。 Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butane having a molecular weight of about 50 to 300. An aliphatic polyol such as a diol, a polyol having an aliphatic cyclic structure such as cyclohexanedimethanol, and a polyol having an aromatic structure such as bisphenol A can be used.
 前記ポリエステルポリオールの製造に使用可能な前記ポリカルボン酸としては、例えばコハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ポリカルボン酸、及びそれらの無水物またはエステル化物を使用することができる。 Examples of the polycarboxylic acid that can be used in the production of the polyester polyol include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and the like. Aromatic polycarboxylic acids and their anhydrides or esterifications can be used.
 前記その他のポリオールとしては、500~5,000の範囲の数平均分子量を有するものを使用することが好ましい。 As the other polyols, those having a number average molecular weight in the range of 500 to 5,000 are preferably used.
 前記その他のポリオールは、前記ポリオール(a’-1)の全量に対して30質量%~95質量%の範囲で使用することが好ましく、50質量%~95質量%の範囲で使用することが形成する皮膜の引張強度をより一層向上するうえで好ましい。 The other polyol is preferably used in the range of 30% by mass to 95% by mass with respect to the total amount of the polyol (a′-1), and may be used in the range of 50% by mass to 95% by mass. It is preferable for further improving the tensile strength of the coating film.
 前記ポリオール(a’-1)と反応しうるポリイソシアネート(a’-2)としては、例えばフェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、カルボジイミド化ジフェニルメタンポリイソシアネート等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等の脂肪族または脂肪族環式構造を有するポリイソシアネート等を、単独で使用または2種以上を併用して使用することができる。なかでも、脂肪族環式構造を有するポリイソシアネートを使用することが好ましく、とりわけイソホロンジイソシアネートまたはジシクロヘキシルメタンジイソシアネートを使用することがより好ましい。また、形成する皮膜等に優れた耐久性が求められる場合には、ジフェニルメタンジイソシアネート等の芳香族ポリイソシアネートを使用することが好ましい。 Examples of the polyisocyanate (a′-2) that can react with the polyol (a′-1) include phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, polymethylene polyphenyl polyisocyanate, carbodiimidized diphenylmethane polyisocyanate, and the like. Aliphatic or aliphatic cyclic structures such as aromatic polyisocyanate, hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, dimer acid diisocyanate, norbornene diisocyanate Having polyisocyanate etc. Alone in combination with the above use or two or may be used. Among them, it is preferable to use a polyisocyanate having an aliphatic cyclic structure, and it is particularly preferable to use isophorone diisocyanate or dicyclohexylmethane diisocyanate. Moreover, when the durability etc. which were excellent in the membrane | film | coat etc. to form are calculated | required, it is preferable to use aromatic polyisocyanate, such as diphenylmethane diisocyanate.
 前記ポリオール(a’-1)と前記ポリイソシアネート(a’-2)との反応は、例えば無溶剤下または有機溶剤の存在下、それらを混合することで行うことができる。 The reaction of the polyol (a′-1) and the polyisocyanate (a′-2) can be performed, for example, by mixing them in the absence of a solvent or in the presence of an organic solvent.
 前記ポリオール(a’-1)と前記ポリイソシアネート(a’-2)との反応は、前記ポリオール(a’-1)の有する水酸基と前記ポリイソシアネート(a’-2)の有するイソシアネート基との当量割合[イソシアネート基/水酸基]が1.05~2.5の範囲であることが好ましく、1.1~2であることが好ましい。 The reaction between the polyol (a′-1) and the polyisocyanate (a′-2) is a reaction between the hydroxyl group of the polyol (a′-1) and the isocyanate group of the polyisocyanate (a′-2). The equivalent ratio [isocyanate group / hydroxyl group] is preferably in the range of 1.05 to 2.5, more preferably 1.1 to 2.
 前記ウレタン樹脂(A’)を製造する際に使用可能な有機溶剤としては、例えばアセトン、メチルエチルケトン等のケトン;テトラヒドロフラン、ジオキサン等のエーテル;酢酸エチル、酢酸ブチル等の酢酸エステル;アセトニトリル等のニトリル;ジメチルホルムアミド、N-メチルピロリドン等のアミドを、単独で使用または2種以上を使用することができる。 Examples of the organic solvent that can be used in producing the urethane resin (A ′) include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; acetate esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile; Amides such as dimethylformamide and N-methylpyrrolidone can be used alone or in combination of two or more.
 前記ウレタン樹脂(A’)を製造する際には、必要に応じて鎖伸長剤を使用することができる。具体的には、無溶剤下または有機溶剤の存在下、前記ポリオール(a’-1)と前記ポリイソシアネート(a’-2)とを混合し、50℃~100℃で概ね3時間~10時間程度反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーを製造し、次いで、該ウレタンプレポリマーと鎖伸長剤とを反応させることによって、比較的高分子量でウレア結合を有するウレタン樹脂を製造することができる。 When producing the urethane resin (A ′), a chain extender can be used as necessary. Specifically, the polyol (a′-1) and the polyisocyanate (a′-2) are mixed in the absence of a solvent or in the presence of an organic solvent, and at 50 ° C. to 100 ° C. for about 3 hours to 10 hours. A urethane prepolymer having an isocyanate group at the terminal is produced by reacting to the extent, and then a urethane resin having a urea bond having a relatively high molecular weight is produced by reacting the urethane prepolymer with a chain extender. be able to.
 前記鎖伸長剤としては、例えばポリアミン、ヒドラジン化合物、その他活性水素原子を有する化合物等を使用することができる。 Examples of the chain extender include polyamines, hydrazine compounds, and other compounds having active hydrogen atoms.
 前記ポリアミンとしては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン等のジアミン;N-ヒドロキシメチルアミノエチルアミン、N-ヒドロキシエチルアミノエチルアミン、N-ヒドロキシプロピルアミノプロピルアミン、N-エチルアミノエチルアミン、N-メチルアミノプロピルアミン等の1個の1級アミノ基と1個の2級アミノ基を有するジアミン;ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン等のポリアミン等を使用することができる。 Examples of the polyamine include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'- Diamines such as dimethyl-4,4′-dicyclohexylmethanediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N -A diamine having one primary amino group and one secondary amino group such as methylaminopropylamine; polyamines such as diethylenetriamine, dipropylenetriamine and triethylenetetramine can be used. .
 また、前記ヒドラジン化合物としては、例えばヒドラジン、N,N’-ジメチルヒドラジン、1,6-ヘキサメチレンビスヒドラジン、コハク酸ジヒドラジッド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、β-セミカルバジドプロピオン酸ヒドラジド、3-セミカルバジッド-プロピル-カルバジン酸エステル、セミカルバジッド-3-セミカルバジドメチル-3,5,5-トリメチルシクロヘキサン等を使用することができる。 Examples of the hydrazine compound include hydrazine, N, N′-dimethylhydrazine, 1,6-hexamethylenebishydrazine, succinic acid dihydrazide, adipic acid dihydrazide, glutaric acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, β- Semicarbazide propionic acid hydrazide, 3-semicarbazide-propyl-carbazate, semicarbazide-3-semicarbazidemethyl-3,5,5-trimethylcyclohexane, and the like can be used.
 前記その他活性水素を有する化合物としては、例えば、エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール、ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、水素添加ビスフェノールA、ハイドロキノン及び水等を使用することができる。 Examples of the other active hydrogen-containing compounds include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, Use sucrose, methylene glycol, glycerin, sorbitol, bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, hydroquinone, water, etc. Can do.
 前記鎖伸長剤は、形成される皮膜中にウレア結合を導入し、その結果、皮膜の耐久性をより一層向上する観点から、ウレタン樹脂(A’)の製造に使用する原料の全量に対して1質量%~10質量%の範囲で使用することが好ましく、1質量%~5質量%の範囲であることがより好ましい。 The chain extender introduces a urea bond into the formed film, and as a result, further improves the durability of the film. From the viewpoint of further improving the durability of the film, the chain extender is based on the total amount of raw materials used for the production of the urethane resin (A ′). It is preferably used in the range of 1% by mass to 10% by mass, and more preferably in the range of 1% by mass to 5% by mass.
 前記ウレタン樹脂(A)は、前記で得た末端または側鎖にイソシアネート基を有するウレタン樹脂(A’)と、ポリオキシアルキレングリコールの1個の水酸基がアルキル基によって封止されたポリオキシアルキレンモノアルキルエーテルとを反応させることによって製造することができる。前記反応は、例えば無溶剤下または有機溶剤の存在下、それらを混合し、概ね50℃~100℃で3時間~10時間程度反応させることによって行うことができる。 The urethane resin (A) includes a urethane resin (A ′) having an isocyanate group at the terminal or side chain obtained above, and a polyoxyalkylene mono group in which one hydroxyl group of polyoxyalkylene glycol is sealed with an alkyl group. It can be produced by reacting with an alkyl ether. The reaction can be carried out, for example, by mixing them in the absence of a solvent or in the presence of an organic solvent and reacting at about 50 ° C. to 100 ° C. for about 3 hours to 10 hours.
 前記反応で使用するポリオキシアルキレングリコールモノアルキルエーテルは、ポリオキシアルキレングリコールの有する2個の水酸基のうち1個が、アルキル基によって封止されたものを使用することができる。 As the polyoxyalkylene glycol monoalkyl ether used in the reaction, one in which one of two hydroxyl groups of polyoxyalkylene glycol is sealed with an alkyl group can be used.
 具体的には、前記ポリオキシアルキレングリコールモノアルキルエーテルは、ポリオキシエチレングリコールモノメチルエーテルや、ポリオキシエチレンオキシプロピレングリコールモノメチルエーテル、ジヒドロキシポリオキシエチレンモノメチルエーテル等を使用することができる。なかでもポリオキシエチレングリコールモノメチルエーテルを使用することが、より一層優れた分散安定性と、より一層優れた引張強度を備えた皮膜を形成するうえで好ましい。 Specifically, as the polyoxyalkylene glycol monoalkyl ether, polyoxyethylene glycol monomethyl ether, polyoxyethyleneoxypropylene glycol monomethyl ether, dihydroxy polyoxyethylene monomethyl ether, or the like can be used. Among these, the use of polyoxyethylene glycol monomethyl ether is preferable for forming a film having further excellent dispersion stability and further excellent tensile strength.
 前記ポリオキシアルキレングリコールモノアルキルエーテルとしては、500~10,000の数平均分子量を有するものを使用することが好ましく、500~5,000の数平均分子量を有するものを使用することが好ましい。 As the polyoxyalkylene glycol monoalkyl ether, those having a number average molecular weight of 500 to 10,000 are preferably used, and those having a number average molecular weight of 500 to 5,000 are preferably used.
 前記製造方法によって得られたウレタン樹脂(A)を水性媒体(B)と混合しウレタン樹脂組成物を製造する方法としては、例えば、前記方法で得たウレタン樹脂(A)またはその有機溶剤溶液と、水性媒体(B)とを混合、撹拌することによって製造することができる。その際に含まれうる有機溶剤は、必要に応じて蒸留法等によって除去することが好ましい。前記ウレタン樹脂(A)と水性媒体(B)とを混合する際には、必要に応じてホモジナイザー等の機械を使用しても良い。 Examples of a method for producing a urethane resin composition by mixing the urethane resin (A) obtained by the production method with an aqueous medium (B) include the urethane resin (A) obtained by the method or an organic solvent solution thereof. The aqueous medium (B) can be mixed and stirred. It is preferable to remove the organic solvent that can be contained at that time by a distillation method or the like, if necessary. When mixing the urethane resin (A) and the aqueous medium (B), a machine such as a homogenizer may be used as necessary.
 前記製造方法によって得られたウレタン樹脂(A)を分散または溶解しうる水性媒体(B)としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール及びイソプロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタム等が挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、又は、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。 Examples of the aqueous medium (B) in which the urethane resin (A) obtained by the production method can be dispersed or dissolved include water, an organic solvent miscible with water, and a mixture thereof. Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycols And lactams such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.
 前記方法によって得られた本発明のウレタン樹脂組成物は、前記ウレタン樹脂組成物の全量に対して前記ウレタン樹脂(A)を15質量%~60質量%の範囲で含有するものであることが好ましく、20質量%~60質量%の範囲で含有するものであることがより好ましく、30質量%~55質量%含有するものであることが、塗工作業性を向上するうえでさらに好ましい。 The urethane resin composition of the present invention obtained by the above method preferably contains the urethane resin (A) in the range of 15% by mass to 60% by mass with respect to the total amount of the urethane resin composition. More preferably, the content is in the range of 20% by mass to 60% by mass, and even more preferably 30% by mass to 55% by mass in view of improving the coating workability.
 また、水性媒体(B)は、前記ウレタン樹脂組成物の全量に対して30質量%~80質量%の範囲で含有するものであることが好ましく、40質量%~80質量%の範囲で含有するものであることがより好ましく、45質量%~70質量%含有するものであることが、塗工作業性を向上するうえでさらに好ましい。 The aqueous medium (B) is preferably contained in the range of 30% by mass to 80% by mass with respect to the total amount of the urethane resin composition, and contained in the range of 40% by mass to 80% by mass. It is more preferable that the content is 45 mass% to 70 mass%, in order to improve the coating workability.
 一般のウレタン樹脂組成物においては、その分散安定性をより一層向上する観点から乳化剤を併用する場合が多い。しかし、前記乳化剤の使用は、得られる皮膜の外観や耐水性の低下を引き起こす一因となっていた。 In general urethane resin compositions, an emulsifier is often used in combination from the viewpoint of further improving the dispersion stability. However, the use of the emulsifier has contributed to a decrease in the appearance and water resistance of the resulting film.
 本発明のウレタン樹脂組成物は、前記乳化剤を併用しなくても、良好な分散安定性を維持できることから、外観や耐水性等に優れた皮膜を形成することもできる。具体的には、本発明のウレタン樹脂組成物は、前記ウレタン樹脂組成物の全量に対して0質量%~5質量%の範囲で乳化剤を含んでいてもよく、0質量%~0.5質量%の範囲で含んでいてもよく、乳化剤を含まないことがより好ましい。 Since the urethane resin composition of the present invention can maintain good dispersion stability without using the above-mentioned emulsifier together, it can also form a film excellent in appearance and water resistance. Specifically, the urethane resin composition of the present invention may contain an emulsifier in the range of 0% by mass to 5% by mass with respect to the total amount of the urethane resin composition, and 0% by mass to 0.5% by mass. % May be included, and it is more preferable not to include an emulsifier.
 本発明のウレタン樹脂組成物は、必要に応じて、各種添加剤を含んでいても良い。例えば、会合型増粘剤、アルカリ可溶型増粘剤、架橋剤、ウレタン化触媒、シランカップリング剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤等の添加剤、熱可塑性樹脂、熱硬化性樹脂、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、結晶水含有化合物、難燃剤、吸水剤、吸湿剤、消臭剤、整泡剤、消泡剤、防黴剤、防腐剤、防藻剤、顔料分散剤、ブロッキング防止剤、加水分解防止剤を併用することができる。 The urethane resin composition of the present invention may contain various additives as necessary. For example, associative thickeners, alkali-soluble thickeners, crosslinking agents, urethanization catalysts, silane coupling agents, fillers, thixotropic agents, tackifiers, waxes, heat stabilizers, light-resistant stabilizers, fluorescence Additives such as brighteners, foaming agents, thermoplastic resins, thermosetting resins, pigments, dyes, conductivity-imparting agents, antistatic agents, moisture permeability improvers, water repellents, oil repellents, hollow foams, crystals Combined use of water-containing compounds, flame retardants, water absorbents, moisture absorbents, deodorants, foam stabilizers, antifoaming agents, antifungal agents, antiseptics, algaeproofing agents, pigment dispersants, antiblocking agents, and hydrolysis inhibitors can do.
 前記会合型増粘剤としては、例えばヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロース等のセルロース誘導体や、ポリアクリル酸塩、ポリビニルピロリドン、ウレタン増粘剤、ポリエーテル増粘剤等を使用することができる。なかでも、前記ウレタン樹脂(A)に対する増粘効果の高い、ポリアクリル酸塩を含有する増粘剤を使用することが好ましい。前記会合型増粘剤は、前記ウレタン樹脂(A)の全量に対して0.5質量%~5質量%の範囲で使用することが好ましい。 Examples of the associative thickener include cellulose derivatives such as hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylate, polyvinyl pyrrolidone, urethane thickener, polyether thickener, and the like. Especially, it is preferable to use the thickener containing a polyacrylate with a high thickening effect with respect to the said urethane resin (A). The associative thickener is preferably used in the range of 0.5% by mass to 5% by mass with respect to the total amount of the urethane resin (A).
 前記ウレタン樹脂組成物は、高強度な皮膜を形成できることから、各種基材の表面被覆に使用するコーティング剤、好ましくはトップコート層形成用コーティング剤に好適に使用することができる。 Since the urethane resin composition can form a high-strength film, it can be suitably used as a coating agent used for surface coating of various substrates, preferably a coating agent for forming a topcoat layer.
 前記基材としては、例えば織布、不織布等の繊維質基材、亜鉛めっき鋼板、アルミニウム-亜鉛合金鋼板等のめっき鋼板、アルミ板、アルミ合金板、電磁鋼板、銅板、ステンレス鋼板等の金属基材、ポリカーボネート基材、ポリエステル基材、アクリロニトリル-ブタジエン-スチレン基材、ポリアクリル基材、ポリスチレン基材、ポリウレタン基材、エポキシ樹脂基材、ポリ塩化ビニル系基材及びポリアミド系基材等のプラスチック基材、ガラス基材、皮革様シートを使用することができる。なかでも、前記基材として、靴や鞄に加工され使用される合成皮革や人工皮革等の皮革様シートを使用することが、該皮革様シートの表面に、接着剤を用いて他の部材を貼付したり、パテ等を塗布したりすることによって、意匠性に優れた皮革様シートを効率よく生産できるため好ましい。 Examples of the base material include fibrous base materials such as woven fabric and nonwoven fabric, plated steel plates such as galvanized steel plates and aluminum-zinc alloy steel plates, metal bases such as aluminum plates, aluminum alloy plates, electromagnetic steel plates, copper plates, and stainless steel plates. Plastics such as materials, polycarbonate base, polyester base, acrylonitrile-butadiene-styrene base, polyacryl base, polystyrene base, polyurethane base, epoxy resin base, polyvinyl chloride base and polyamide base Substrates, glass substrates and leather-like sheets can be used. Among them, as the base material, it is possible to use a leather-like sheet such as synthetic leather or artificial leather that is processed and used for shoes or bags, and other members are attached to the surface of the leather-like sheet using an adhesive. Affixing or applying a putty or the like is preferable because a leather-like sheet excellent in design can be efficiently produced.
 本発明のコーティング剤は、例えばそれを前記基材表面に直接、塗布し、次いで乾燥、硬化させることによって、皮膜を形成することができる。また、本発明のコーティング剤を離型紙表面に塗布し、乾燥、硬化させ、次いで該塗布面に前記基材を積層することによっても皮膜を形成することは可能である。なお、前記架橋剤を使用する場合には、前記コーティング剤を基材表面に塗布する直前に、前記ウレタン樹脂(A)等と前記架橋剤とを混合することが、良好な塗工作業性を維持するうえで好ましい。 The coating agent of the present invention can form a film by, for example, applying it directly to the surface of the substrate, and then drying and curing. It is also possible to form a film by applying the coating agent of the present invention to the release paper surface, drying and curing, and then laminating the substrate on the coated surface. In addition, when using the said crosslinking agent, mixing the said urethane resin (A) etc. and the said crosslinking agent just before apply | coating the said coating agent to the base-material surface has favorable coating workability | operativity. It is preferable in maintaining.
 前記コーティング剤を前記基材上に塗布する方法としては、例えばスプレー法、カーテンコーター法、フローコーター法、ロールコーター法、刷毛塗り法、浸漬法等が挙げられる。 Examples of the method for applying the coating agent on the substrate include a spray method, a curtain coater method, a flow coater method, a roll coater method, a brush coating method, and a dipping method.
 前記乾燥及び硬化する方法としては、常温下で1日~10日程度養生する方法であってもよいが、硬化を迅速に進行させる観点から、50℃~250℃の温度で、1秒~600秒程度加熱する方法が好ましい。また、比較的高温で変形や変色をしやすいプラスチック基材を用いる場合には、30℃~100℃程度の比較的低温下で養生を行うことが好ましい。 The method of drying and curing may be a method of curing for about 1 to 10 days at room temperature, but from the viewpoint of rapidly proceeding curing, at a temperature of 50 ° C. to 250 ° C. for 1 second to 600 ° C. A method of heating for about a second is preferable. In the case of using a plastic substrate that is easily deformed or discolored at a relatively high temperature, curing is preferably performed at a relatively low temperature of about 30 ° C. to 100 ° C.
 本発明のコーティング剤を用いて形成する皮膜の膜厚は、その皮膜を備えた物品の使用される用途に応じて適宜調整可能であるが、通常0.5μm~100μm程度であることが好ましい。 The film thickness of the film formed using the coating agent of the present invention can be appropriately adjusted according to the use of the article provided with the film, but it is usually preferably about 0.5 μm to 100 μm.
 本発明のウレタン樹脂組成物をトップコート層形成用コーティング剤に使用する場合、前記基材の表面には、予めプライマー層等の中間層が設けられていても良い。前記プライマー層としては、例えば従来から知られているアクリル樹脂を含有する塗料、ポリエステル樹脂を含有する塗料、アルキド樹脂を含有する塗料、エポキシ樹脂を含有する塗料、脂肪酸変性エポキシ樹脂を含有する塗料、シリコーン樹脂を含有する塗料、ポリウレタン樹脂を含有する塗料等を用いて形成されたものが挙げられる。 When the urethane resin composition of the present invention is used as a coating agent for forming a topcoat layer, an intermediate layer such as a primer layer may be provided on the surface of the base material in advance. As the primer layer, for example, a conventionally known paint containing an acrylic resin, a paint containing a polyester resin, a paint containing an alkyd resin, a paint containing an epoxy resin, a paint containing a fatty acid-modified epoxy resin, Examples thereof include those formed using a paint containing a silicone resin, a paint containing a polyurethane resin, and the like.
 以上のように、前記基材と本発明のコーティング剤を用いて形成された皮膜を備えた物品は、例えば携帯電話、家電製品、OA機器をはじめ、自動車内外装材等の自動車部品や各種家電製品の部品、建材製品等に使用することが可能である。 As described above, an article provided with a film formed using the base material and the coating agent of the present invention includes, for example, mobile parts, home appliances, OA equipment, automobile parts such as automobile interior and exterior materials, and various home appliances. It can be used for product parts and building material products.
 また、本発明のウレタン樹脂組成物は、前記した皮革様シートを構成する表皮層の形成材料に使用することができる。皮革様シートは、必要に応じて樹脂が含浸された繊維質基材の表面に、必要に応じて多孔層等の中間層が積層され、該中間層上に表皮層が積層されたものが一般的であり、前記表皮層の形成に、本発明のウレタン樹脂組成物を好適に使用することができる。 Further, the urethane resin composition of the present invention can be used as a material for forming the skin layer constituting the leather-like sheet. A leather-like sheet is generally a laminate in which an intermediate layer such as a porous layer is laminated on the surface of a fibrous base material impregnated with a resin as necessary, and a skin layer is laminated on the intermediate layer. The urethane resin composition of the present invention can be suitably used for forming the skin layer.
 前記繊維質基材としては、不織布、織布、編み物等を使用することができる。前記基材を構成するものとしては、例えばポリエステル繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、アセテート繊維、レーヨン繊維、ポリ乳酸繊維、綿、麻、絹、羊毛、それらの混紡繊維等を使用することができる。 As the fibrous base material, a nonwoven fabric, a woven fabric, a knitted fabric or the like can be used. As the material constituting the base material, for example, polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, blended fiber thereof or the like is used. Can do.
 前記基材の表面には、必要に応じ制電加工、離型処理加工、撥水加工、吸水加工、抗菌防臭加工、制菌加工、紫外線遮断加工等が施されていてもよい。 The surface of the base material may be subjected to antistatic processing, mold release processing, water repellent processing, water absorption processing, antibacterial and deodorizing processing, antibacterial processing, ultraviolet blocking processing and the like as necessary.
 前記繊維質基材の表面に直接、表皮層が積層された皮革様シートは、例えば、離型処理の施されたシート上に前記ウレタン樹脂組成物を塗布し乾燥することによって表皮層を形成し、次いで該表皮層上に前記繊維質基材を、接着剤等を用いて積層することによって製造することができる。前記シート上に前記ウレタン樹脂組成物を塗布する方法としては、例えばグラビアコーター法やナイフコーター法、パイプコーター法、コンマコーター法等が挙げられる。また、前記方法で塗布したウレタン樹脂組成物を乾燥及び硬化する方法としては、例えば、常温下で1日~10日程度放置、または、50℃~250℃の温度で1秒~600秒程度加熱する方法が挙げられる。 A leather-like sheet in which a skin layer is laminated directly on the surface of the fibrous base material, for example, forms a skin layer by applying the urethane resin composition on a sheet subjected to a release treatment and drying it. Then, it can manufacture by laminating | stacking the said fiber base material on this skin layer using an adhesive agent etc. Examples of the method for applying the urethane resin composition on the sheet include a gravure coater method, a knife coater method, a pipe coater method, and a comma coater method. Further, as a method for drying and curing the urethane resin composition applied by the above method, for example, it is allowed to stand for 1 to 10 days at room temperature, or heated at a temperature of 50 to 250 ° C. for 1 to 600 seconds. The method of doing is mentioned.
 また、前記皮革様シートとして、前記繊維質基材と表皮層との間に、多孔層等の中間層を設けたものは、例えば離型処理の施されたシート上に前記ウレタン樹脂組成物を塗布し乾燥することによって表皮層を形成し、次いで該表皮層上に、従来から知られる機械発泡法や水発泡法等によって発泡させた多孔層形成用樹脂組成物を塗布及び硬化することによって多孔層を形成し、次いで、該多孔層上に、従来知られる接着剤を用いて繊維質基材を積層することができる。 Further, as the leather-like sheet, an intermediate layer such as a porous layer is provided between the fibrous base material and the skin layer. For example, the urethane resin composition is provided on a sheet subjected to a release treatment. A skin layer is formed by coating and drying, and then a porous layer forming resin composition foamed by a conventionally known mechanical foaming method or water foaming method is applied and cured on the skin layer. A layer can be formed, and then a fibrous base material can be laminated on the porous layer using a conventionally known adhesive.
 また、本発明のウレタン樹脂組成物は、繊維基材に含浸させることによって得た含浸基材からなる皮革様シートの製造に使用することができる。 Further, the urethane resin composition of the present invention can be used for producing a leather-like sheet comprising an impregnated base material obtained by impregnating a fiber base material.
 前記繊維基材としては、不織布、織布、編み物等を使用することができる。前記繊維基材を構成するものとしては、例えばポリエステル繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、アセテート繊維、レーヨン繊維、ポリ乳酸繊維、綿、麻、絹、羊毛、それらの混紡繊維等を使用することができる。 As the fiber base material, a nonwoven fabric, a woven fabric, a knitted fabric or the like can be used. As the constituent of the fiber base material, for example, polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, and blended fibers thereof are used. be able to.
 前記繊維基材の前記ウレタン樹脂を含浸する方法としては、例えば前記繊維基材を、前記ウレタン樹脂組成物を貯留した槽に直接浸漬し、マングル等で余分なウレタン樹脂を絞る方法が挙げられる。 Examples of the method of impregnating the urethane resin of the fiber base material include a method of directly immersing the fiber base material in a tank storing the urethane resin composition and squeezing excess urethane resin with a mangle or the like.
 次いで、前記ウレタン樹脂組成物を含浸した繊維基材を、前記ウレタン樹脂の感熱凝固温度以上(概ね50℃~80℃)に加熱することによって、前記ウレタン樹脂を凝固させるとともに、前記ウレタン樹脂組成物中に含まれる水性媒体(B)を蒸発させる。これにより、ウレタン樹脂(A)が繊維基材に含浸した基材を製造することができる。 Next, the urethane resin composition is coagulated by heating the fiber substrate impregnated with the urethane resin composition to a temperature equal to or higher than the heat-sensitive coagulation temperature of the urethane resin (approximately 50 ° C. to 80 ° C.), and the urethane resin composition The aqueous medium (B) contained therein is evaporated. Thereby, the base material which the fiber base material impregnated with urethane resin (A) can be manufactured.
 前記方法で得られた皮革様シートは、例えば靴、鞄、衣料、椅子やソファ等の家具の部材、車両シート及びハンドル等の自動車用内装材、透湿防水素材、合成皮革及び人工皮革等の皮革様シート、研磨材、フェルトペンの芯材等に使用することができる。 Leather-like sheets obtained by the above method are, for example, shoes, bags, clothing, furniture members such as chairs and sofas, automobile interior materials such as vehicle seats and handles, moisture-permeable and waterproof materials, synthetic leather, artificial leather, etc. It can be used for leather-like sheets, abrasives, felt pen cores, and the like.
 以上のように、本発明のウレタン樹脂組成物は、各種コーティング剤をはじめ、各種積層体の表皮層形成用樹脂組成物、とりわけ、皮革様シートの製造用途に好適に使用することができる。 As described above, the urethane resin composition of the present invention can be suitably used for the production of various layered product skin layers, particularly leather-like sheets, including various coating agents.
 以下、本発明を実施例と比較例により、一層、具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
 〔実施例1〕ウレタン樹脂組成物(X1)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X1’)のメチルエチルケトン溶液を得た。なお、前記NCO%は、前記ウレタンプレポリマー(X1’)のメチルエチルケトン溶液の全量に対するイソシアネート基の質量割合を示す。
[Example 1] Preparation of urethane resin composition (X1) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2000), 2 ethylene oxides in bisphenol A 65 g of the compound (M 1 in which R 1 and R 2 in the general formula (1) are methyl groups and the sum of m and n is 2) and 75 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) And 70 g of cyclohexanedimethanol and 360 g of dicyclohexylmethane diisocyanate are reacted at 70 ° C. until the NCO% reaches 1.3% by mass, whereby a methyl ethyl ketone solution of a urethane prepolymer having an isocyanate group at the terminal (X1 ′) is obtained. Got. The NCO% represents the mass ratio of isocyanate groups to the total amount of the methyl ethyl ketone solution of the urethane prepolymer (X1 ′).
 前記ウレタンプレポリマー(X1’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X1 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X1)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition (X1) having a nonvolatile content of 40% by mass Got.
 〔実施例2〕ウレタン樹脂組成物(X2)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)325gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)350gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.7質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X2’)のメチルエチルケトン溶液を得た。
[Example 2] Preparation of urethane resin composition (X2) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 325 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 2) and polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) ) 350 g of cyclohexane dimethanol and 360 g of dicyclohexylmethane diisocyanate are reacted at 70 ° C. until the NCO% reaches 1.7% by mass, whereby the urethane prepolymer (X2 ′) having an isocyanate group at the terminal is reacted. A methyl ethyl ketone solution was obtained.
 前記ウレタンプレポリマー(X2’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (X2 ′) with 2340 g of pure water and phase-inverting the mixture.
 得られた乳化液に、ピペラジン37gを含む鎖伸長剤水溶液370gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分30質量%のウレタン樹脂組成物(X2)を得た。 The obtained emulsion is supplied with 370 g of a chain extender aqueous solution containing 37 g of piperazine and mixed to cause a chain extension reaction, thereby distilling off methyl ethyl ketone, whereby a urethane resin composition (X2) having a nonvolatile content of 30% by mass is obtained. Got.
 〔実施例3〕ウレタン樹脂組成物(X3)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2000)415gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)250gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.2質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X3’)のメチルエチルケトン溶液を得た。
[Example 3] Preparation of urethane resin composition (X3) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 415 g of polyoxytetramethylene glycol (number average molecular weight 2000) and 2 of ethylene oxide in bisphenol A Mole-added compound (a compound in which R 1 and R 2 in general formula (1) are methyl groups and m and n are 2) and 75 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) And 360 g of dicyclohexylmethane diisocyanate were reacted at 70 ° C. until the NCO% reached 1.2% by mass to obtain a methyl ethyl ketone solution of a urethane prepolymer (X3 ′) having an isocyanate group at the terminal.
 前記ウレタンプレポリマー(X3’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X3 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
 得られた乳化液に、ピペラジン25gを含む鎖伸長剤水溶液250gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X3)を得た。 The obtained emulsion is supplied with 250 g of a chain extender aqueous solution containing 25 g of piperazine and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition (X3) having a nonvolatile content of 40% by mass. Got.
 〔実施例4〕ウレタン樹脂組成物(X4)の調製
 メチルエチルケトン1110g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、側鎖にメトキシポリオキシエチレン構造を有するポリオール(YMER N120;Perstorp社)15gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマー(X4’)のメチルエチルケトン溶液を得た。
[Example 4] Preparation of urethane resin composition (X4) In the presence of 1110 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the sum of m and n is 2) and a polyol having a methoxypolyoxyethylene structure in the side chain (YMER) (N120; Perstorp) 15 g, cyclohexane dimethanol 70 g, and dicyclohexylmethane diisocyanate 360 g are reacted at 70 ° C. until the NCO% reaches 1.3% by mass, whereby a urethane prepolymer having an isocyanate group at the molecular end. (X4 ′) methyl ethyl keto To obtain a solution.
 前記分子末端にイソシアネート基を有するウレタンプレポリマー(X4’)のメチルエチルケトン溶液2220gを純水2220gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2220 g of a methyl ethyl ketone solution of urethane prepolymer (X4 ′) having an isocyanate group at the molecular end with 2220 g of pure water and phase-inverting and emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させた。 The obtained emulsion was supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction.
 次いで、前記反応混合物からメチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X4)を得た。 Next, by distilling off methyl ethyl ketone from the reaction mixture, a urethane resin composition (X4) having a nonvolatile content of 40% by mass was obtained.
 〔実施例5〕ウレタン樹脂組成物(X5)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが10モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が10である化合物)65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X5’)のメチルエチルケトン溶液を得た。
[Example 5] Preparation of urethane resin composition (X5) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 10) and polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000) ) 75 g, cyclohexane dimethanol 70 g, and dicyclohexylmethane diisocyanate 360 g are reacted at 70 ° C. until the NCO% reaches 1.3% by mass, whereby the urethane prepolymer (X5 ′) having an isocyanate group at the terminal is reacted. A methyl ethyl ketone solution was obtained.
 前記ウレタンプレポリマー(X5’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (X5 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X5)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X5) Got.
 〔実施例6〕ウレタン樹脂組成物(X6)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレンポリオキシプロピレンランダム共重合体のモノブチルエーテル(オキシエチレン構造/オキシプロピレン構造の質量比:75/25、数平均分子量3,400)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーウレタンプレポリマー(X6’)のメチルエチルケトン溶液を得た。
[Example 6] Preparation of urethane resin composition (X6) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the sum of m and n is 2) and monobutyl ether of a polyoxyethylene polyoxypropylene random copolymer (Oxyethylene structure / oxypropylene structure mass ratio: 75/25, number average molecular weight 3,400) 75 g, cyclohexanedimethanol 70 g, and dicyclohexylmethane diisocyanate 360 g, until NCO% reaches 1.3 mass% Isocyanate at the end by reacting at 70 ° C To obtain a methyl ethyl ketone solution of urethane prepolymer urethane prepolymer (X6 ') having an over preparative group.
 前記ウレタンプレポリマー(X6’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (X6 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X6)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X6) Got.
 〔実施例7〕ウレタン樹脂組成物(X7)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X7’)のメチルエチルケトン溶液を得た。なお、前記NCO%は、前記ウレタンプレポリマー(X7’)のメチルエチルケトン溶液の全量に対するイソシアネート基の質量割合を示す。
[Example 7] Preparation of urethane resin composition (X7) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponporan N980R, number average molecular weight 2000), 65 g of a compound obtained by adding 2 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 2), and polyoxyethylene glycol monomethyl ether (several Urethane prepolymer having an isocyanate group at the terminal by reacting 75 g of average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 1.3% by mass. (X7 ') A til ethyl ketone solution was obtained. The NCO% represents a mass ratio of isocyanate groups to the total amount of the methyl ethyl ketone solution of the urethane prepolymer (X7 ′).
 前記ウレタンプレポリマー(X7’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X7 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X7)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X7) Got.
 〔実施例8〕ウレタン樹脂組成物(X8)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2000)415gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)250gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.2質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X8’)のメチルエチルケトン溶液を得た。
Example 8 Preparation of Urethane Resin Composition (X8) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 415 g of polycarbonate diol (Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2000), 250 g of a compound obtained by adding 2 moles of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the sum of m and n is 2), and polyoxyethylene glycol monomethyl ether (several Methyl ethyl ketone of urethane prepolymer (X8 ′) having an isocyanate group at the terminal end by reacting 75 g of average molecular weight 4,000) and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 1.2% by mass. A solution was obtained.
 前記ウレタンプレポリマー(X8’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X8 ′) with 2340 g of pure water and phase-inverting and emulsifying.
 得られた乳化液に、ピペラジン25gを含む鎖伸長剤水溶液250gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X8)を得た。 The obtained emulsion is supplied with 250 g of a chain extender aqueous solution containing 25 g of piperazine, and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X8) Got.
 〔実施例9〕ウレタン樹脂組成物(X9)の調製
 メチルエチルケトン1110g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、側鎖にメトキシポリオキシエチレン構造を有するポリオール(YMER N120;Perstorp社)15gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X9’)のメチルエチルケトン溶液を得た。
[Example 9] Preparation of urethane resin composition (X9) In the presence of 1110 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) And 65 g of a compound obtained by adding 2 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 2), and methoxypolyoxy in the side chain By reacting 15 g of an ethylene-structured polyol (YMER N120; Perstorp) with 70 g of cyclohexanedimethanol and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until the NCO% reaches 1.3% by mass, the terminal isocyanato. Urethanes with groups A methyl ethyl ketone solution of prepolymer (X9 ′) was obtained.
 前記末端にイソシアネート基を有するウレタンプレポリマー(X9’)のメチルエチルケトン溶液2220gを純水2220gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2220 g of a methyl ethyl ketone solution of urethane prepolymer (X9 ′) having an isocyanate group at the terminal with 2220 g of pure water and phase-inverting emulsifying it.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させた。 The obtained emulsion was supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction.
 次いで、前記反応混合物からメチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X9)を得た。 Next, by distilling off methyl ethyl ketone from the reaction mixture, a urethane resin composition (X9) having a nonvolatile content of 40% by mass was obtained.
 〔実施例10〕ウレタン樹脂組成物(X10)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが10モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が10である化合物)65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(X10’)のメチルエチルケトン溶液を得た。
[Example 10] Preparation of urethane resin composition (X10) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) 65 g of a compound obtained by adding 10 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 10), and polyoxyethylene glycol monomethyl ether Urethane having an isocyanate group at the end by reacting 75 g of (number average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 1.3% by mass. Prepolymer ( To obtain a methyl ethyl ketone solution of 10 ').
 前記ウレタンプレポリマー(X10’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X10 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X10)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (X10) Got.
 〔実施例11〕ウレタン樹脂組成物(X11)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレンポリオキシプロピレンランダム共重合体のモノブチルエーテル(オキシエチレン構造/オキシプロピレン構造の質量比:75/25、数平均分子量3,400)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマーウレタンプレポリマー(X11’)のメチルエチルケトン溶液を得た。
[Example 11] Preparation of urethane resin composition (X11) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) And 65 g of a compound obtained by adding 2 mol of ethylene oxide to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 2), and polyoxyethylene polyoxypropylene 75 g of random copolymer monobutyl ether (mass ratio of oxyethylene structure / oxypropylene structure: 75/25, number average molecular weight 3,400), 70 g of cyclohexanedimethanol, 360 g of dicyclohexylmethane diisocyanate, NCO% is 1 Until it reaches 3% by mass By reacting at 70 ° C., to obtain a methyl ethyl ketone solution of urethane prepolymer urethane prepolymer (X11 ') having a terminal isocyanate group.
 前記ウレタンプレポリマー(X11’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (X11 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(X11)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition (X11) having a nonvolatile content of 40% by mass. Got.
 〔比較例1〕ウレタン樹脂組成物(Y1)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)665gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.8質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y1’)のメチルエチルケトン溶液を得た。
Comparative Example 1 Preparation of Urethane Resin Composition (Y1) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 665 g of polyoxytetramethylene glycol (number average molecular weight 2,000) and polyoxyethylene glycol monomethyl By reacting 75 g of ether (number average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until the NCO% reaches 1.8% by mass, the terminal has an isocyanate group. A methyl ethyl ketone solution of urethane prepolymer (Y1 ′) was obtained.
 前記ウレタンプレポリマー(Y1’)のメチルエチルケトン溶液1650gを純水1650gと混合し、転相乳化することによって乳化液を得た。 1650 g of the methyl ethyl ketone solution of the urethane prepolymer (Y1 ′) was mixed with 1650 g of pure water, and phase emulsified to obtain an emulsion.
 得られた乳化液に、ピペラジン40gを含む鎖伸長剤水溶液400gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(Y1)を得た。 The obtained emulsion is supplied with 400 g of a chain extender aqueous solution containing 40 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y1) Got.
 〔比較例2〕ウレタン樹脂組成物(Y2)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)675gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gとシクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端イソシアネート基にを有するウレタンプレポリマー(Y2’)のメチルエチルケトン溶液を得た。
Comparative Example 2 Preparation of Urethane Resin Composition (Y2) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 675 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 2 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 2), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate are mixed with NCO. By reacting at 70 ° C. until% reached 1.3% by mass, a methyl ethyl ketone solution of urethane prepolymer (Y2 ′) having a terminal isocyanate group was obtained.
 前記末端にイソシアネート基を有するウレタンプレポリマー(Y2’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化したが、安定な乳化液を得ることができず、その結果、ウレタン樹脂組成物(Y2)を得ることができなかった。 Methyl ethyl ketone solution 2340 g of urethane prepolymer (Y2 ′) having an isocyanate group at the terminal was mixed with 2340 g of pure water and phase-inversion emulsified, but a stable emulsion could not be obtained, and as a result, urethane resin composition (Y2) could not be obtained.
 〔比較例3〕ウレタン樹脂組成物(Y3)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)600gと、ビスフェノールAにプロピレンオキサイドが2モル付加した化合物65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y3’)のメチルエチルケトン溶液を得た。
Comparative Example 3 Preparation of Urethane Resin Composition (Y3) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and propylene oxide Until the NCO% reaches 1.3% by mass, 65 g of the compound having 2 moles added, 75 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate. By making it react at 70 degreeC, the methyl ethyl ketone solution of the urethane prepolymer (Y3 ') which has an isocyanate group at the terminal was obtained.
 前記ウレタンプレポリマー(Y3’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y3 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(Y3)を得た。 By supplying 270 g of a chain extender aqueous solution containing 27 g of piperazine to the obtained emulsion and mixing it to cause chain elongation reaction, and distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y3) Got.
 〔比較例4〕ウレタン樹脂組成物(Y4)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)600gと、ポリオキシエチレンポリオキシプロピレンランダム共重合体からなるジオール(オキシエチレン/オキシプロピレン質量比:75/25、数平均分子量3,000)65グラムと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が2.0質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y4’)のメチルエチルケトン溶液を得た。
[Comparative Example 4] Preparation of Urethane Resin Composition (Y4) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000) and polyoxyethylene polyoxy 65 grams of diol (oxyethylene / oxypropylene mass ratio: 75/25, number average molecular weight 3,000) made of a propylene random copolymer, 75 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000), and cyclohexane By reacting 70 g of dimethanol and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 2.0% by mass, a methyl ethyl ketone solution of a urethane prepolymer (Y4 ′) having an isocyanate group at the terminal is obtained. It was.
 前記ウレタンプレポリマー(Y4’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (Y4 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン43gを含む鎖伸長剤水溶液430gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(Y4)を得た。 The obtained emulsion is supplied with 430 g of a chain extender aqueous solution containing 43 g of piperazine, and mixed to cause a chain elongation reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y4) Got.
 〔比較例5〕ウレタン樹脂組成物(Y5)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)635gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ジメチロールプロピオン酸40gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマー(Y5’)のメチルエチルケトン溶液を得た。
Comparative Example 5 Preparation of Urethane Resin Composition (Y5) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 635 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are a methyl group and m and n are 2), 40 g of dimethylolpropionic acid, 70 g of cyclohexanedimethanol, By reacting 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until the NCO% reached 1.3% by mass, a methyl ethyl ketone solution of a urethane prepolymer (Y5 ′) having an isocyanate group at the molecular end was obtained.
 前記ウレタンプレポリマー(Y5’)のメチルエチルケトン溶液2340gにトリエチルアミン31gを混合し、更に純水2340gと混合し、転相乳化することによって乳化液を得た。 The emulsion solution was obtained by mixing 31 g of triethylamine with 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y5 ′), further mixing with 2340 g of pure water, and phase inversion emulsifying.
 得られた乳化液に、ピペラジン6gを含む鎖伸長剤水溶液60gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分30質量%のウレタン樹脂組成物(Y5)を得た。 The obtained emulsion is supplied with 60 g of a chain extender aqueous solution containing 6 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 30% by mass (Y5) Got.
 〔比較例6〕ウレタン樹脂組成物(Y6)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリオキシテトラメチレングリコール(数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレンオキシプロピレンランダム共重合体モノブチルエーテル(オキシエチレン/オキシプロピレン質量比:35/65、数平均分子量3,700)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y6’)のメチルエチルケトン溶液を得た。
[Comparative Example 6] Preparation of urethane resin composition (Y6) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polyoxytetramethylene glycol (number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 2 in total) and a polyoxyethyleneoxypropylene random copolymer monobutyl ether (oxy) (Ethylene / oxypropylene mass ratio: 35/65, number average molecular weight 3,700) 75 g, 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate are reacted at 70 ° C. until NCO% reaches 1.3%. By means of a urea having an isocyanate group at the end To obtain a methyl ethyl ketone solution of emissions prepolymer (Y6 ').
 前記ウレタンプレポリマー(Y6’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化したが、安定な乳化液を得ることができず、その結果、ウレタン樹脂組成物(Y6)を得ることができなかった。 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y6 ′) was mixed with 2340 g of pure water and phase inversion emulsified, but a stable emulsion could not be obtained, and as a result, a urethane resin composition (Y6) was obtained. I could not.
 〔比較例7〕ウレタン樹脂組成物(Y7)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)665gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.8質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y7’)のメチルエチルケトン溶液を得た。
[Comparative Example 7] Preparation of urethane resin composition (Y7) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 665 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) And 70 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000), 70 g of cyclohexanedimethanol, and 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until NCO% reaches 1.8% by mass. A methyl ethyl ketone solution of a urethane prepolymer (Y7 ′) having an isocyanate group at the terminal was obtained.
 前記ウレタンプレポリマー(Y7’)のメチルエチルケトン溶液1650gを純水1650gと混合し、転相乳化することによって乳化液を得た。 1650 g of the methyl ethyl ketone solution of the urethane prepolymer (Y7 ′) was mixed with 1650 g of pure water, and phase emulsified to obtain an emulsion.
 得られた乳化液に、ピペラジン40gを含む鎖伸長剤水溶液400gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(Y7)を得た。 The obtained emulsion is supplied with 400 g of a chain extender aqueous solution containing 40 g of piperazine and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y7) Got.
 〔比較例2〕ウレタン樹脂組成物(Y8)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)675gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gとシクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端イソシアネート基にを有するウレタンプレポリマー(Y8’)のメチルエチルケトン溶液を得た。
[Comparative Example 2] Preparation of urethane resin composition (Y8) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 675 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) 65 g of a compound in which 2 mol of ethylene oxide is added to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups and m and n are 2), 70 g of cyclohexanedimethanol, and dicyclohexyl A methyl ethyl ketone solution of urethane prepolymer (Y8 ′) having a terminal isocyanate group was obtained by reacting 360 g of methane diisocyanate at 70 ° C. until NCO% reached 1.3% by mass.
 前記末端にイソシアネート基を有するウレタンプレポリマー(Y8’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化したが、安定な乳化液を得ることができず、その結果、ウレタン樹脂組成物(Y8)を得ることができなかった。 Methyl ethyl ketone solution 2340 g of urethane prepolymer (Y8 ′) having an isocyanate group at the terminal was mixed with 2340 g of pure water and phase-inversion emulsified, but a stable emulsion could not be obtained, and as a result, urethane resin composition (Y8) could not be obtained.
 〔比較例3〕ウレタン樹脂組成物(Y9)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)600gと、ビスフェノールAにプロピレンオキサイドが2モル付加した化合物65gと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y9’)のメチルエチルケトン溶液を得た。
[Comparative Example 3] Preparation of Urethane Resin Composition (Y9) 600 g of polycarbonate diol (Nippon Polyurethane Industry Co., Ltd., Nipponran N980R, number average molecular weight 2,000) in the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate And 65 g of a compound obtained by adding 2 mol of propylene oxide to bisphenol A, 75 g of polyoxyethylene glycol monomethyl ether (number average molecular weight 4,000), 70 g of cyclohexanedimethanol, 360 g of dicyclohexylmethane diisocyanate, and NCO% of 1 By reacting at 70 ° C. until reaching 3 mass%, a methyl ethyl ketone solution of a urethane prepolymer (Y9 ′) having an isocyanate group at the terminal was obtained.
 前記ウレタンプレポリマー(Y9’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 An emulsion was obtained by mixing 2340 g of a methyl ethyl ketone solution of the urethane prepolymer (Y9 ′) with 2340 g of pure water and phase inversion emulsifying.
 得られた乳化液に、ピペラジン27gを含む鎖伸長剤水溶液270gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(Y9)を得た。 The obtained emulsion is supplied with 270 g of a chain extender aqueous solution containing 27 g of piperazine, and mixed to cause a chain extension reaction, and by distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y9) Got.
 〔比較例10〕ウレタン樹脂組成物(Y10)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)600gと、ポリオキシエチレンポリオキシプロピレンランダム共重合体からなるジオール(オキシエチレン/オキシプロピレン質量比:75/25、数平均分子量3,000)65グラムと、ポリオキシエチレングリコールモノメチルエーテル(数平均分子量4,000)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が2.0質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y10’)のメチルエチルケトン溶液を得た。
[Comparative Example 10] Preparation of urethane resin composition (Y10) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponporan N980R, number average molecular weight 2,000) Diol (oxyethylene / oxypropylene mass ratio: 75/25, number average molecular weight 3,000) consisting of a polyoxyethylene polyoxypropylene random copolymer and polyoxyethylene glycol monomethyl ether (number average molecular weight 4) , 000) 75 g, cyclohexane dimethanol 70 g, and dicyclohexylmethane diisocyanate 360 g are reacted at 70 ° C. until NCO% reaches 2.0% by mass, whereby a urethane having an isocyanate group at the terminal is obtained. A methyl ethyl ketone solution of the prepolymer (Y10 ′) was obtained.
 前記ウレタンプレポリマー(Y10’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化することによって乳化液を得た。 The emulsion solution was obtained by mixing 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y10 ′) with 2340 g of pure water and carrying out phase inversion emulsification.
 得られた乳化液に、ピペラジン43gを含む鎖伸長剤水溶液430gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分40質量%のウレタン樹脂組成物(Y10)を得た。 By supplying 430 g of a chain extender aqueous solution containing 43 g of piperazine to the obtained emulsified liquid and mixing it to cause a chain extension reaction, and distilling off methyl ethyl ketone, a urethane resin composition having a nonvolatile content of 40% by mass (Y10) Got.
 〔比較例11〕ウレタン樹脂組成物(Y11)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(ニッポランN980R、数平均分子量2,000)635gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ジメチロールプロピオン酸40gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3質量%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y11’)のメチルエチルケトン溶液を得た。
[Comparative Example 11] Preparation of urethane resin composition (Y11) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 635 g of polycarbonate diol (Niporan N980R, number average molecular weight 2,000), bisphenol A and ethylene oxide 65 g of a compound (a compound in which R 1 and R 2 in the general formula (1) are a methyl group and m and n are 2), 40 g of dimethylolpropionic acid, 70 g of cyclohexanedimethanol, By reacting 360 g of dicyclohexylmethane diisocyanate at 70 ° C. until the NCO% reached 1.3% by mass, a methyl ethyl ketone solution of urethane prepolymer (Y11 ′) having an isocyanate group at the terminal was obtained.
 前記ウレタンプレポリマー(Y11’)のメチルエチルケトン溶液2340gにトリエチルアミン31gを混合し、更に純水2340gと混合し、転相乳化することによって乳化液を得た。 The emulsion solution was obtained by mixing 31 g of triethylamine with 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y11 ′), further mixing with 2340 g of pure water, and phase-inverting and emulsifying.
 得られた乳化液に、ピペラジン6gを含む鎖伸長剤水溶液60gを供給し、混合することで鎖伸長反応させ、メチルエチルケトンを留去することによって、不揮発分30質量%のウレタン樹脂組成物(Y11)を得た。 The obtained emulsion is supplied with 60 g of a chain extender aqueous solution containing 6 g of piperazine and mixed to cause a chain extension reaction, thereby distilling off methyl ethyl ketone, whereby a urethane resin composition having a nonvolatile content of 30% by mass (Y11) Got.
 〔比較例12〕ウレタン樹脂組成物(Y12)の調製
 メチルエチルケトン1170g及びオクチル酸第一錫0.1gの存在下、ポリカーボネートジオール(日本ポリウレタン工業株式会社製、ニッポランN980R、数平均分子量2,000)600gと、ビスフェノールAにエチレンオキサイドが2モル付加した化合物(一般式(1)中のR及びRがメチル基、m及びnの合計が2である化合物)65gと、ポリオキシエチレンオキシプロピレンランダム共重合体モノブチルエーテル(オキシエチレン/オキシプロピレン質量比:35/65、数平均分子量3,700)75gと、シクロヘキサンジメタノール70gと、ジシクロヘキシルメタンジイソシアネート360gとを、NCO%が1.3%に達するまで70℃で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー(Y12’)のメチルエチルケトン溶液を得た。
[Comparative Example 12] Preparation of urethane resin composition (Y12) In the presence of 1170 g of methyl ethyl ketone and 0.1 g of stannous octylate, 600 g of polycarbonate diol (manufactured by Nippon Polyurethane Industry Co., Ltd., Nipponporan N980R, number average molecular weight 2,000) 65 g of a compound in which 2 mol of ethylene oxide is added to bisphenol A (a compound in which R 1 and R 2 in the general formula (1) are methyl groups, and the total of m and n is 2), and polyoxyethyleneoxypropylene random Copolymer monobutyl ether (oxyethylene / oxypropylene mass ratio: 35/65, number average molecular weight 3,700) 75 g, cyclohexane dimethanol 70 g, dicyclohexylmethane diisocyanate 360 g, NCO% reaches 1.3% React at 70 ° C until And afforded the methyl ethyl ketone solution of urethane prepolymer (Y12 ') having a terminal isocyanate group.
 前記ウレタンプレポリマー(Y12’)のメチルエチルケトン溶液2340gを純水2340gと混合し、転相乳化したが、安定な乳化液を得ることができず、その結果、ウレタン樹脂組成物(Y12)を得ることができなかった。 2340 g of the methyl ethyl ketone solution of the urethane prepolymer (Y12 ′) was mixed with 2340 g of pure water and phase-inversion emulsified, but a stable emulsion could not be obtained, and as a result, a urethane resin composition (Y12) was obtained. I could not.
 前記実施例及び比較例で得た各ウレタン樹脂組成物100gと、TEGO Flow425(デグサ社製、シリコーンレベリング剤)0.2gと、TEGO Twin4000(デグサ社製、シリコーン消泡剤)0.2gと、BORCHIGEL ALA(Borchers社製、アルカリ増粘型増粘剤)1gとを、メカニカルミキサーを用いて2000rpmの条件で2分間混合し、次いで真空脱泡機を用いて脱泡することによって各コーティング剤を調製した。 100 g of each urethane resin composition obtained in the examples and comparative examples, 0.2 g of TEGO Flow425 (manufactured by Degussa, silicone leveling agent), 0.2 g of TEGO Twin4000 (manufactured by Degussa, silicone antifoaming agent), Each coating agent was mixed with 1 g of BORCHIGEL ALA (manufactured by Borchers, alkali thickening type thickener) for 2 minutes using a mechanical mixer at 2000 rpm, and then defoamed using a vacuum defoamer. Prepared.
 前記コーティング剤100gを、離型紙(大日本印刷(株)製の155T フラット)上に、塗布後の膜厚が150μmとなるようにそれぞれ塗布した。 100 g of the coating agent was applied onto release paper (155T flat made by Dai Nippon Printing Co., Ltd.) so that the film thickness after application was 150 μm.
 前記塗布後、直ちに、ワーナーマチス(乾燥機)を用い70℃で2分間予備乾燥し、次いで、150℃で2分間乾燥することによって皮膜を作製した。 Immediately after the coating, a film was prepared by predrying at 70 ° C. for 2 minutes using a Warner Mathis (dryer) and then drying at 150 ° C. for 2 minutes.
 〔引張強度の評価方法〕
 <モジュラスによる評価>
 前記皮膜を前記離型紙から剥離し、横が5mm、縦が7cm及び厚さが30μmの大きさに裁断したものを試験フィルムとした。前記試験フィルムの引張強度を、JIS K-7311に準拠しテンシロン((株)島津製作所製、ヘッドスピード300mm/分)を用いて評価した。
[Evaluation method of tensile strength]
<Evaluation by modulus>
The film was peeled from the release paper and cut into a size of 5 mm in width, 7 cm in length, and 30 μm in thickness, which was used as a test film. The tensile strength of the test film was evaluated using Tensilon (manufactured by Shimadzu Corporation, head speed 300 mm / min) in accordance with JIS K-7311.
 <伸度による評価>
 前記皮膜を前記離型紙から剥離し、横が5mm、縦が7cm及び厚さが30μmの大きさに裁断したものを試験フィルムとした。前記試験フィルムの伸度は、SHIMADZU AUTOGRAPH「AG-1」(株式会社島津製作所製の精密万能試験機オートグラフ)を用い、試験速度;300mm/分、標線間;20mm、ツカミ間;40mmの条件で測定した。
<Evaluation by elongation>
The film was peeled from the release paper and cut into a size of 5 mm in width, 7 cm in length, and 30 μm in thickness, which was used as a test film. The elongation of the test film was as follows: SHIMADZU AUTOGRAPH “AG-1” (Precision Universal Testing Machine Autograph manufactured by Shimadzu Corporation), test speed: 300 mm / min, between marked lines; 20 mm, between knuckles: 40 mm Measured under conditions.
 [流動開始温度による評価]
 前記皮膜を前記離型紙から剥離し、横が5mm、縦が7cm及び厚さが30μmの大きさに裁断したものを試験フィルムとした。前記試験フィルムの流動開始温度は、SHIMADZU CFT-500D-1(株式会社島津製作所製のフローテスター)ダイス;1.0mmφ×1.0mmι、荷重;98N、ホールドタイム;10分、昇温速度;3℃/分の条件で測定した。
[Evaluation by flow start temperature]
The film was peeled from the release paper and cut into a size of 5 mm in width, 7 cm in length, and 30 μm in thickness, which was used as a test film. The flow start temperature of the test film was as follows: SHIMADZU CFT-500D-1 (flow tester manufactured by Shimadzu Corporation) die; 1.0 mmφ × 1.0 mmι, load; 98 N, hold time; 10 minutes, heating rate; 3 The measurement was performed under the conditions of ° C / min.
 [臭気の評価方法]
 前記で調製したウレタン樹脂組成物からなるコーティング剤100gを、離型紙(大日本印刷(株)製の155T フラット)上に、塗布後の膜厚が150μmとなるようにそれぞれ塗布した。
[Odor evaluation method]
The coating agent 100g which consists of a urethane resin composition prepared above was apply | coated on the release paper (Dai Nippon Printing Co., Ltd. product 155T flat) so that the film thickness after application | coating might be set to 150 micrometers.
 前記塗布後、直ちに、ワーナーマチス(乾燥機)を用い70℃で2分間乾燥する際、乾燥機排風口から50cmの高さの位置で、1名がにおいを感じるか否か判定し、評価した。 Immediately after the application, when drying at 70 ° C. for 2 minutes using a Warner Mathis (dryer), it was determined whether or not one person smelled at a position 50 cm high from the air outlet of the dryer. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1及び6で得たウレタン樹脂組成物は、水に対する分散安定性に優れ、中和剤に起因した臭気がなく、引張強度に優れた皮膜を形成することが可能であった。実施例2で得たウレタン樹脂組成物は、ポリオキシエチレングリコールモノメチルエーテルを過剰に使用したことによって流動開始温度の低下が確認できたものの、分散安定性に優れ、臭気がなく、良好な引張強度を備えた皮膜を形成することが可能であった。実施例3及び8で得たウレタン樹脂組成物もまた、分散安定性に優れ、臭気がなく、良好な引張強度を備えた皮膜を形成することが可能であった。実施例4及び9で得たウレタン樹脂組成物は、アルコキシポリオキシアルキレン構造(a1)をウレタン樹脂の側鎖に有するものであって、分散安定性に優れ、臭気がなく、良好な引張強度を備えた皮膜を形成することが可能であった。 The urethane resin compositions obtained in Examples 1 and 6 were excellent in dispersion stability in water, had no odor due to the neutralizing agent, and were able to form a film excellent in tensile strength. Although the urethane resin composition obtained in Example 2 was confirmed to have a decreased flow initiation temperature due to the excessive use of polyoxyethylene glycol monomethyl ether, it had excellent dispersion stability, no odor, and good tensile strength. It was possible to form a film with The urethane resin compositions obtained in Examples 3 and 8 were also excellent in dispersion stability, had no odor, and could form a film with good tensile strength. The urethane resin compositions obtained in Examples 4 and 9 have an alkoxypolyoxyalkylene structure (a1) in the side chain of the urethane resin, have excellent dispersion stability, no odor, and good tensile strength. It was possible to form the provided film.
 ビスフェノールにエチレンオキサイドが10モル付加したものを使用して得られた実施例5及び10のウレタン樹脂組成物もまた、分散安定性に優れ、臭気がなく、良好な引張強度を備えた皮膜を形成することが可能であった。 The urethane resin compositions of Examples 5 and 10 obtained by using 10 moles of bisphenol added with ethylene oxide also form a film with excellent dispersion stability, no odor, and good tensile strength. It was possible to do.
 ポリオキシエチレンポリオキシプロピレンランダム共重合体のモノブチルエーテルを用いて得た実施例6及び11のウレタン樹脂組成物もまた、分散安定性に優れ、臭気がなく、良好な引張強度を備えた皮膜を形成することが可能であった。 The urethane resin compositions of Examples 6 and 11 obtained by using monobutyl ether of polyoxyethylene polyoxypropylene random copolymer also have excellent dispersion stability, no odor, and a film having good tensile strength. It was possible to form.
 一般式(1)で示される構造を有さない比較例1、3、4、7、9及び10のウレタン樹脂組成物は、引張強度の著しい低下を引き起こした。また、一般式(1)で示される構造を有するもののアルコキシポリオキシアルキレン構造(a1)を有さない比較例2及び8のウレタン樹脂組成物は、良好な水分散安定性を維持することができず、凝集などを引き起こした。 The urethane resin compositions of Comparative Examples 1, 3, 4, 7, 9, and 10 that do not have the structure represented by the general formula (1) caused a significant decrease in tensile strength. The urethane resin compositions of Comparative Examples 2 and 8 having the structure represented by the general formula (1) but not having the alkoxypolyoxyalkylene structure (a1) can maintain good water dispersion stability. Cause aggregation.
 親水性基としてカルボキシル基を中和して形成されたカルボキシレート基を有する比較例5及び11記載のウレタン樹脂組成物は、良好な水分散安定性を備え、引張強度に優れた皮膜を形成できるものの、中和剤に起因した臭気をもたらすものであった。 The urethane resin compositions described in Comparative Examples 5 and 11 having a carboxylate group formed by neutralizing a carboxyl group as a hydrophilic group can form a film having good water dispersion stability and excellent tensile strength. However, it caused odor caused by the neutralizing agent.
 また、オキシエチレン単位の質量割合が35質量%であるアルコキシポリオキシアルキレン構造を有する比較例6及び12のウレタン樹脂組成物は、良好な水分散安定性を維持することができず、凝集などを引き起こした。 In addition, the urethane resin compositions of Comparative Examples 6 and 12 having an alkoxypolyoxyalkylene structure in which the mass ratio of oxyethylene units is 35% by mass cannot maintain good water dispersion stability, and cause aggregation and the like. Caused.

Claims (7)

  1. オキシエチレン単位を40質量%~100質量%有するアルコキシポリオキシアルキレン構造(a1)と、下記一般式(1)で示される構造(a2)とを有するウレタン樹脂(A)、及び、水性媒体(B)を含有するウレタン樹脂組成物であって、前記アルコキシポリオキシアルキレン構造(a1)が、前記ウレタン樹脂(A)の末端または前記ウレタン樹脂(A)の側鎖に存在するものであることを特徴とするウレタン樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    (一般式(1)中のR及びRは、それぞれ独立して水素原子またはアルキル基を表す。mは平均0~20の値を表し、nは平均0~20の値を表し、m及びnの合計は平均1~40の値を表す。)
    A urethane resin (A) having an alkoxypolyoxyalkylene structure (a1) having 40% by mass to 100% by mass of oxyethylene units and a structure (a2) represented by the following general formula (1), and an aqueous medium (B ) -Containing urethane resin composition, wherein the alkoxypolyoxyalkylene structure (a1) is present at the end of the urethane resin (A) or the side chain of the urethane resin (A). Urethane resin composition.
    Figure JPOXMLDOC01-appb-I000001
    (R 1 and R 2 in the general formula (1) each independently represents a hydrogen atom or an alkyl group. M represents an average value of 0 to 20, n represents an average value of 0 to 20, And the sum of n represents an average value of 1 to 40.)
  2. 前記ウレタン樹脂(A)が、前記ウレタン樹脂(A)全体に対して、前記アルコキシポリオキシアルキレン構造(a1)を0.1質量%~25質量%の範囲で有するものである請求項1に記載のウレタン樹脂組成物。 The urethane resin (A) has the alkoxypolyoxyalkylene structure (a1) in a range of 0.1% by mass to 25% by mass with respect to the entire urethane resin (A). Urethane resin composition.
  3. 前記ウレタン樹脂(A)が、前記ウレタン樹脂(A)全体に対して、前記一般式(1)で示される構造(a2)を0.1質量%~25質量%の範囲で有するものである請求項1に記載のウレタン樹脂組成物。 The urethane resin (A) has a structure (a2) represented by the general formula (1) in a range of 0.1% by mass to 25% by mass with respect to the entire urethane resin (A). Item 4. The urethane resin composition according to Item 1.
  4. 請求項1~3のいずれか1項に記載のウレタン樹脂組成物を含有するコーティング剤。 A coating agent comprising the urethane resin composition according to any one of claims 1 to 3.
  5. 請求項1~3のいずれか1項に記載のウレタン樹脂組成物を用いて形成された皮膜を備えた物品。 An article comprising a film formed using the urethane resin composition according to any one of claims 1 to 3.
  6. 請求項1~3のいずれか1項に記載のウレタン樹脂組成物を、繊維基材に含浸させることによって得られる皮革様シート。 A leather-like sheet obtained by impregnating a fiber base material with the urethane resin composition according to any one of claims 1 to 3.
  7. 請求項1~3のいずれか1項に記載のウレタン樹脂組成物を繊維基材に含浸させることによって得られる含浸基材からなる層と、表皮層とを少なくとも有する皮革様シート。 A leather-like sheet having at least a layer composed of an impregnated base material obtained by impregnating a fiber base material with the urethane resin composition according to any one of claims 1 to 3, and a skin layer.
PCT/JP2013/053243 2012-03-13 2013-02-12 Urethane-resin composition, coating agent, article, and leather-like sheet WO2013136892A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013524676A JP5429431B1 (en) 2012-03-13 2013-02-12 Urethane resin composition, coating agent, article and leather-like sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-055738 2012-03-13
JP2012055738 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013136892A1 true WO2013136892A1 (en) 2013-09-19

Family

ID=49160811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053243 WO2013136892A1 (en) 2012-03-13 2013-02-12 Urethane-resin composition, coating agent, article, and leather-like sheet

Country Status (3)

Country Link
JP (1) JP5429431B1 (en)
TW (1) TW201348331A (en)
WO (1) WO2013136892A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160083063A (en) * 2013-11-04 2016-07-11 바스프 에스이 Methods for producing transparent, thermoplastic polyurethane having high mechanical strength and hardness
CN113966354A (en) * 2019-06-18 2022-01-21 Dic株式会社 Curable composition, cured product, and adhesive
JP7465097B2 (en) 2020-01-24 2024-04-10 三井化学株式会社 Polyurethane resins and coating materials

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232113A (en) * 1988-07-20 1990-02-01 Dainippon Ink & Chem Inc Application material containing bitumen
JPH04261481A (en) * 1991-02-15 1992-09-17 Toyobo Co Ltd Resin composition for coating
JP2003073447A (en) * 2001-08-31 2003-03-12 Nippon Polyurethane Ind Co Ltd Self-emulsifying polyisocyanate composition and water- based coating material using the same
JP2004155934A (en) * 2002-11-07 2004-06-03 Dainippon Ink & Chem Inc Polyalkylene ether chain-containing diol compound, method for producing the same and polyurethane resin
JP2005008888A (en) * 2003-06-20 2005-01-13 Bayer Material Science Llc Uv-curable aqueous polyurethane dispersion for soft touch coating film
JP2007023178A (en) * 2005-07-19 2007-02-01 Dainippon Ink & Chem Inc Active energy ray-curing type aqueous urethane resin dispersion
JP2007238943A (en) * 2006-03-08 2007-09-20 Byk Chem Gmbh Biuret compound for rheology control
JP2008255196A (en) * 2007-04-03 2008-10-23 Adeka Corp Aqueous polyurethane resin composition
JP2010007059A (en) * 2008-05-26 2010-01-14 Tokai Carbon Co Ltd Pigment dispersant, pigment dispersion composition and photoresist composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232113A (en) * 1988-07-20 1990-02-01 Dainippon Ink & Chem Inc Application material containing bitumen
JPH04261481A (en) * 1991-02-15 1992-09-17 Toyobo Co Ltd Resin composition for coating
JP2003073447A (en) * 2001-08-31 2003-03-12 Nippon Polyurethane Ind Co Ltd Self-emulsifying polyisocyanate composition and water- based coating material using the same
JP2004155934A (en) * 2002-11-07 2004-06-03 Dainippon Ink & Chem Inc Polyalkylene ether chain-containing diol compound, method for producing the same and polyurethane resin
JP2005008888A (en) * 2003-06-20 2005-01-13 Bayer Material Science Llc Uv-curable aqueous polyurethane dispersion for soft touch coating film
JP2007023178A (en) * 2005-07-19 2007-02-01 Dainippon Ink & Chem Inc Active energy ray-curing type aqueous urethane resin dispersion
JP2007238943A (en) * 2006-03-08 2007-09-20 Byk Chem Gmbh Biuret compound for rheology control
JP2008255196A (en) * 2007-04-03 2008-10-23 Adeka Corp Aqueous polyurethane resin composition
JP2010007059A (en) * 2008-05-26 2010-01-14 Tokai Carbon Co Ltd Pigment dispersant, pigment dispersion composition and photoresist composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160083063A (en) * 2013-11-04 2016-07-11 바스프 에스이 Methods for producing transparent, thermoplastic polyurethane having high mechanical strength and hardness
JP2016538384A (en) * 2013-11-04 2016-12-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing transparent thermoplastic polyurethane having high mechanical strength and hardness
JP2020007556A (en) * 2013-11-04 2020-01-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of transparent thermoplastic polyurethane having high mechanical strength and hardness
KR102294776B1 (en) 2013-11-04 2021-08-27 바스프 에스이 Methods for producing transparent, thermoplastic polyurethane having high mechanical strength and hardness
JP2021138955A (en) * 2013-11-04 2021-09-16 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se Methods for producing transparent thermoplastic polyurethane having high mechanical strength and hardness
CN113966354A (en) * 2019-06-18 2022-01-21 Dic株式会社 Curable composition, cured product, and adhesive
JP7465097B2 (en) 2020-01-24 2024-04-10 三井化学株式会社 Polyurethane resins and coating materials

Also Published As

Publication number Publication date
JPWO2013136892A1 (en) 2015-08-03
JP5429431B1 (en) 2014-02-26
TW201348331A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5013233B2 (en) Urethane resin composition, coating agent, urethane resin composition for skin layer formation of leather-like sheet, laminate and leather-like sheet
JP5196088B1 (en) Leather-like sheet and manufacturing method thereof
JP5240533B1 (en) Polyurethane composition, water repellent, polyurethane resin composition for skin layer formation of leather-like sheet and leather-like sheet
TWI293962B (en) Polyurethane-polyurea dispersions
EP2436724B1 (en) Process for producing porous object, and porous object, layered product, and leather-like sheet each obtained thereby
JP2014012820A (en) Method for manufacturing polyurethane foam sheet and leather-like sheet-shaped material using the polyurethane foam sheet
JP5413703B1 (en) Urethane resin composition, leather-like sheet and laminate
JP5429431B1 (en) Urethane resin composition, coating agent, article and leather-like sheet
JP6187030B2 (en) Urethane resin composition, leather-like sheet and laminate
JP4927621B2 (en) Aqueous polyurethane resin composition for skin layer formation and leather-like laminate using the same
JP6769570B2 (en) Urethane resin composition and laminate
TWI801668B (en) Porous layer structure and its manufacturing method
TWI835056B (en) Porous layer structure and manufacturing method of porous layer structure
TW202243869A (en) Porous layer structure, and method for producing porous layer structure
JP2024046144A (en) Polyurethane and synthetic leather for synthetic leather
JP2021091750A (en) Aqueous resin composition, film and medical patch material
JP2000027079A (en) Leather like sheet and production thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013524676

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761308

Country of ref document: EP

Kind code of ref document: A1