WO2020255837A1 - 時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 - Google Patents
時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 Download PDFInfo
- Publication number
- WO2020255837A1 WO2020255837A1 PCT/JP2020/022921 JP2020022921W WO2020255837A1 WO 2020255837 A1 WO2020255837 A1 WO 2020255837A1 JP 2020022921 W JP2020022921 W JP 2020022921W WO 2020255837 A1 WO2020255837 A1 WO 2020255837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drug
- particles
- masking
- acid
- carbonate
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
- A61K9/5042—Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5383—1,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
- A61K9/2081—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4858—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4866—Organic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/501—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5031—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
Definitions
- the present invention relates to masking particles capable of suppressing the release of a drug in the oral cavity or pharynx, and not interfering with the release of the drug in the stomach or intestine, and controlling the release of the drug, and an oral pharmaceutical composition containing the same. More specifically, it relates to masking particles in which the taste of a drug felt when taken, particularly the taste of a drug having an unpleasant taste is reduced, and an oral pharmaceutical composition containing the same.
- Tablets and capsules are widely used as oral pharmaceutical preparations, but these are difficult to swallow for elderly people and children with low swallowing ability. For this reason, orally disintegrating tablets that rapidly disintegrate in the oral cavity are attracting attention because they are easy to swallow and have the convenience of being able to be taken without water. However, since the orally disintegrating tablet disintegrates in the oral cavity, there is a drawback that the unpleasant taste is strongly felt when a drug having an unpleasant taste such as bitterness is contained. In addition, granules, fine granules, powders, etc. are smaller in size than tablets and capsules, so they are easy to swallow.
- granules, fine granules, powders, tablets, etc. are used as water-insoluble polymers. It is coated with a coating agent containing.
- the taste of the drug component is not felt in the mouth, and the drug component is not absorbed from the oral cavity or pharynx, but the release of the drug is delayed, so that a sufficient amount of the drug is not absorbed.
- the desired medicinal effect may not be obtained.
- Drugs are usually absorbed from the stomach and intestine, but in the upper small intestine, the surface area involved in absorption is larger than in the lower small intestine and large intestine, and the permeability of the intercellular pathway is considered to be high. Drugs that are absorbed are thought to be absorbed primarily from the upper small intestine. Therefore, the oral pharmaceutical preparation is required to suppress the release of the drug in the oral cavity and to release the drug before the preparation reaches the stomach or the upper part of the small intestine or while it is retained.
- the preparation reaches the stomach and upper small intestine.
- the drug needs to be released before or while staying.
- the degree of unpleasant taste and absorption pattern differ depending on the type of drug, and the oral residence time differs depending on the dosage form of the preparation, it is desirable that the release suppression time of the drug can be arbitrarily controlled.
- Patent Document 1 describes nuclear particles containing a drug having an unpleasant taste in the center and two types of water-soluble components in the intermediate layer.
- a particulate pharmaceutical composition containing an acid-insoluble substance is disclosed.
- Patent Document 1 in this particulate composition, water does not infiltrate for a certain period of time due to the presence of the water intrusion control layer, and the insolubilizing agent promotes the insolubilization of the insolubilizing substance and suppresses the elution of the drug.
- the insolubilizing agent is released by the infiltration of water, so that the insolubilizing substance regains its original water solubility and the drug is released.
- the present invention includes masking particles in which the release of the drug in the oral cavity and the pharynx is sufficiently suppressed, the drug is released promptly after swallowing, and the release suppression time of the drug can be easily controlled.
- An object of the present invention is to provide an oral pharmaceutical composition.
- the present inventor has conducted extensive research to solve the above problems, and masking particles in which particles containing a drug, an acid, and a carbonate are coated with a coating layer containing a water-insoluble polymer can be produced in the mouth due to the presence of the coating layer. Elution of the drug is suppressed in the pharynx, but after that, water gradually invades the inside through the coating layer and foams due to the reaction between the acid and carbonate, destroying the masking particles, so that the drug is rapidly released. It was found that it was released into.
- the present invention has been completed based on the above findings, and provides the following [1] to [22].
- [1] Masking particles in which drug-containing particles containing a drug, an acid, and a carbonate are coated with a coating layer containing a water-insoluble polymer.
- [2] The masking particles according to [1], wherein the acid is one or more organic acids.
- [3] The masking particles according to [1] or [2], wherein the carbonate is one or more water-soluble carbonates.
- [5] The masking particle according to any one of [1] to [4], which contains 0.5 to 35% by weight of carbonate with respect to the total amount of the drug-containing particles.
- [6] The masking particle according to any one of [1] to [5], which contains 0.1 to 10 parts by weight of carbonate with respect to 1 part by weight of acid.
- [8] The masking particle according to any one of [1] to [7], wherein the drug-containing particles are uniform particles containing a drug, an acid, and a carbonate.
- the drug-containing particles are composed of nuclei particles and an intermediate layer covering the nuclei particles, and the nuclei particles contain a drug and an acid and a carbonate are contained in the intermediate layer, or the nuclei particles contain an acid and a carbonate.
- the masking particles according to [9], wherein the drug is contained in the intermediate layer.
- the masking particle according to [10] wherein the nuclear particle contains a disintegrant.
- the drug-containing particles consist of nuclear particles and an intermediate layer covering the nuclear particles, and an acid and a carbonate are separately contained in either the nuclear particles or the intermediate layer, and the drug is contained in the nuclear particles, the intermediate layer, or the intermediate layer thereof.
- the masking particle according to [13] which is contained in both.
- the drug-containing particles are composed of nuclear particles and the first and second intermediate layers, and the drug, acid, and carbonate are separately contained in any of the nuclear particles, the first intermediate layer, and the second intermediate layer. , [13].
- An orally disintegrating tablet comprising the masking particles according to any one of [1] to [19].
- From the drug-containing particles by adding an acid and a carbonate to the drug-containing particles and coating the drug-containing particles containing the drug, the acid, and the carbonate with a coating layer containing a water-insoluble polymer. A method of controlling the elution or release of a drug.
- the masking particles of the present invention since the particles containing the drug are coated with a coating layer containing a water-insoluble polymer, the taste of the drug is not felt in the mouth or the taste of the drug is reduced. Therefore, it can be suitably used for producing a pharmaceutical composition containing a drug having an unpleasant taste such as bitterness.
- the masking particles of the present invention can be suitably used as granules, fine particles, or powders which are generally easy to taste the taste of a drug in the mouth, and these preparations can taste the taste of the drug in the mouth. It will not be felt or will be difficult to feel.
- the masking particles of the present invention can be used for the production of tablets.
- the tablet produced by using the masking particles of the present invention is an orally disintegrating tablet, the taste of the drug is not felt or is hard to be felt in the mouth because the particles containing the drug are coated.
- Coating a tablet to suppress the taste of a drug generally does not result in an orally disintegrating tablet, but the masking particles of the present invention can be used to produce an orally disintegrating tablet in which the taste of a drug is suppressed.
- the particles containing the drug are coated with a coating layer containing a water-insoluble polymer, the release of the drug due to contact with water in the oral cavity is suppressed, and therefore, the release of the drug in the oral cavity is suppressed. And the absorption of drugs from the pharynx is suppressed. Therefore, the occurrence of unexpected side effects due to the absorption of the drug from the oral cavity or pharynx and the variation in drug efficacy among individuals are avoided. Further, since the masking particles of the present invention suppress the absorption of the drug from the oral cavity or pharynx, they can be suitably used for the production of gastric-soluble preparations and enteric-soluble preparations.
- the water in the digestive tract gradually permeates the coating layer, so that the water infiltrates into the inside, and the acid and carbonate rapidly react and foam to destroy the masking particles.
- the drug is released. Therefore, the drug can be sufficiently absorbed from the stomach and the intestine (particularly, the upper part of the small intestine).
- drugs targeting the stomach and intestines can also exert sufficient efficacy.
- the masking particles of the present invention can be prepared by adjusting the type of water-insoluble polymer, the thickness of the coating layer, the type and amount of acid and carbonate, the type and amount of other components, the layer composition of drug-containing particles, and the like.
- the drug can be released at the desired time. Therefore, the drug release suppression time can be arbitrarily controlled according to the type and dosage form of the drug. Further, since the acid and the carbonate react rapidly in the presence of water to foam, the masking particles of the present invention can accurately control the drug release suppression time. Therefore, a desired drug release pattern can be prepared according to the drug and dosage form.
- the figure which shows the drug dissolution test result of the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content of an acid and a carbonate is less than the masking particle of FIG. is there.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nucleus particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content of an acid and a carbonate is less than the masking particle of FIG. is there.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content ratio of an acid and a carbonate is different from the masking particle of FIG. Is.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content ratio of an acid and a carbonate is different from the masking particle of FIG. Is.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content ratio of an acid and a carbonate is different from the masking particle of FIG. Is.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content ratio of an acid and a carbonate is different from the masking particle of FIG. Is.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content ratio of an acid and a carbonate is different from the masking particle of FIG. Is.
- the figure which shows the drug dissolution test result which is the masking particle which comprises the nuclear particle containing a drug and an acid, the intermediate layer containing a carbonate, and a coating layer, and the content ratio of an acid and a carbonate is different from the masking particle of FIG. Is.
- FIG. 1 It is a figure which shows the drug dissolution test result of the nuclear particle containing a drug and an acid, the masking particle provided with the intermediate layer containing a carbonate, and the coating layer, and the orally disintegrating tablet produced using them.
- Masking particles including drug-coated nuclear particles, a first intermediate layer made of an excipient, a second intermediate layer containing an acid, a third intermediate layer containing a carbonate, and a coating layer, wherein the type of acid is shown in FIG. It is a figure which shows the drug dissolution test result though it is different from the masking particle of 16.
- the figure which shows the drug elution test result of the masking particle which comprises a nuclear particle coated with a drug, a 1st intermediate layer containing an acid, a 2nd intermediate layer composed of an excipient, a 3rd intermediate layer containing a carbonate, and a coating layer. is there.
- the masking particles of the present invention are particles in which particles containing a drug, an acid, and a carbonate are coated with a coating layer containing a water-insoluble polymer.
- the masking particles of the present invention can be made into tablets, granules, fine granules, powders, etc. alone or mixed with additives.
- granular portions containing drugs, acids, and carbonates are referred to as "drug-containing particles”
- those "drug-containing particles” coated with a coating layer containing a water-insoluble polymer are referred to as "masking particles".
- the granular portion containing the drug, acid, and carbonate may be particles having a single composition, or may consist of a central core and an intermediate layer surrounding the core.
- the portion excluding the coating layer is referred to as "drug-containing particles”.
- Acid acid is not particularly limited as long as the acidic substance which generates carbon dioxide by reaction with carbonate, a pharmaceutically acceptable acid additive, pharmaceutical active ingredients are also included.
- an acidic substance having a pKa value smaller than that of carbonic acid can be used, and an organic acid, an inorganic acid, or a salt thereof is preferable.
- Organic acids include carboxylic acids acetic acid, fumaric acid, maleic acid, succinic acid, malonic acid, lactic acid, tartaric acid, citric acid, malic acid, ascorbic acid (vinyl carboxylic acid), glycolic acid, adipic acid, and carboxymethyl cellulose.
- Toluene sulfonic acid which is a sulfonic acid; amino acid; gluconodeltalactone and the like.
- Examples of the organic acid salt include potassium tartrate.
- Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.
- Examples of the inorganic acid salt include primary calcium phosphate and the like.
- organic acids are preferable, carboxylic acids are more preferable, citric acid, tartaric acid and malic acid are even more preferable, and citric acid is particularly preferable.
- the acid may be a hydrate.
- the acid may be used alone or in combination of two or more.
- the acid content is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 5% by weight or more, based on the total amount of the drug-containing particles. Further, 35% by weight or less is preferable, 25% by weight or less is more preferable, and 20% by weight or less is even more preferable. Within this range, the masking particles can be rapidly destroyed by the reaction with carbonate in the stomach and intestine, and the drug can be released.
- Carbonate The carbonate may be any pharmaceutically acceptable carbonate, and examples of the water-soluble carbonate include sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, ammonium carbonate and the like.
- examples of water-insoluble or sparingly water-soluble carbonates include calcium carbonate and magnesium carbonate. Among them, water-soluble carbonate is preferable, hydrogen carbonate is more preferable, and sodium hydrogen carbonate and potassium hydrogen carbonate are even more preferable.
- One type of carbonate may be used alone, or two or more types may be used in combination.
- the carbonate content is preferably 0.1% by weight or more, more preferably 3% by weight or more, and even more preferably 5% by weight or more, based on the total amount of the drug-containing particles. Further, 35% by weight or less is preferable, 25% by weight or less is more preferable, and 20% by weight or less is even more preferable. Within this range, the masking particles can be rapidly destroyed by the reaction with the acid, and the drug can be released.
- the content ratio of the acid to the carbonate is preferably 0.1 part by weight or more, more preferably 0.3 part by weight or more, and further more preferably 0.5 part by weight or more with respect to 1 part by weight of the acid. preferable. Further, 10 parts by weight or less is preferable, 3 parts by weight or less is more preferable, and 1.5 parts by weight or less is even more preferable. Within this range, sufficient foaming can be produced to achieve the desired drug elution.
- Drugs Drugs are not particularly limited. Among them, drugs that exhibit unpleasant tastes such as bitterness, sourness, and pungent taste, drugs that irritate the pharynx, and drugs that are absorbed from the oral cavity and pharynx can be preferably used.
- drugs for example, therapeutic agents for hyperlipidemia (atrubastatin, pravastatin, simvastatin, losvasstatin, etc.), quinolone antibacterial agents (moxyfloxacin, gachifloxacin, spulfloxacin, tosfloxacin, citafloxacin, levofloxacin, romefloxacin, shi Profloxacin, freloxacin, galenoxacin, etc.), macrolide antibiotics (clarithromycin, azithromycin, loxythromycin, erythromycin, etc.), non-steroidal anti-inflammatory drugs (aspirin, mephenamic acid, ibprofen, naproxene, loxoprofen, selecoxib, etc.) ), Hypertension drugs (Amlogipin, Nifedipine, Azilsartan, Ormesartan Medoxomil, Ilbesartan, Rosaltan, Candesartan cilexetil, Termisart
- the content of the drug varies depending on the type of drug, but is preferably 90% by weight or less based on the total amount of masking particles.
- the lower limit of the drug content varies depending on the drug, but can be, for example, about 0.00001% by weight based on the total amount of masking particles.
- the masking particles of the present invention may contain any additives used for tablets, granules, fine granules, powders and the like in the drug-containing particles as long as the effects of the present invention are not impaired.
- Additives include excipients, disintegrants, binders, lubricants or fluidizers (anti-adhesion agents), colorants, fragrances, sweeteners, preservatives or preservatives. Additives may be used alone or in combination of two or more.
- Excipients include sugars such as lactose hydrate, sucrose, maltose, fructose, starch and trehalose; sugar alcohols such as mannitol (particularly D-mannitol), martitol, sorbitol, xylitol, erythritol and lactitol; Starches such as starch, pregelatinized starch, partially pregelatinized starch; celluloses such as crystalline cellulose; dextrin; dextrin; glycerin fatty acid ester; magnesium aluminometasilicate, inorganic powder such as synthetic hydrotalcite, etc. Can be mentioned.
- Binders include povidone; celluloses such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose (hypromellose), croscarmellose sodium; starch; gelatin; agar, alginic acid, sodium alginate, tragant.
- Thickening polysaccharides such as chitansan gum, arabic gum, purulan, dextrin; polyvinyl alcohol-polyethylene glycol implant copolymer; carboxyvinyl polymer; polyethylene oxide; copolyvidone; polyoxyethylene hydrogenated hypromellose; N-isopropylacrylamide and / or acrylamide Polymer containing a derivative having a hydrophobic group at the N-position of the above; polyoxyethylene-polyoxypropylene glycol; polyvinyl alcohol (including partially saponified polyvinyl alcohol); basic (meth) acrylate copolymer; polyethylene glycol, etc. Can be mentioned.
- Disintegrants include crospovidone; celluloses such as carboxymethyl cellulose (carmellose), carmellose sodium, carmellose calcium, low substitution hydroxypropyl cellulose, croscarmellose sodium, crystalline cellulose; starch, pregelatinized starch, partial alpha Starches such as modified starch, sodium carboxymethyl starch, sodium carboxystarch, hydroxypropyl starch; dextrin; calcium silicate; calcium citrate; light anhydrous silicic acid and the like.
- crospovidone celluloses such as carboxymethyl cellulose (carmellose), carmellose sodium, carmellose calcium, low substitution hydroxypropyl cellulose, croscarmellose sodium, crystalline cellulose
- starch pregelatinized starch, partial alpha Starches such as modified starch, sodium carboxymethyl starch, sodium carboxystarch, hydroxypropyl starch; dextrin; calcium silicate; calcium citrate; light anhydrous silicic acid and the like.
- stearic acid As a lubricant or fluidizing agent (anti-adhesion agent), stearic acid, stearate (magnesium stearate, calcium stearate, aluminum stearate, zinc stearate, etc.), sodium stearyl fumarate, glycerin monostearate, palmi Glycerin tostearate, sodium lauryl sulfate, polyethylene glycol, talc, glycerin fatty acid ester, sucrose fatty acid ester, sodium potassium tartrate, carnauba wax, L-leucine, polyethylene glycol, curing oil, silicic acid compound (light anhydrous silicic acid, metasilicic acid) Magnesium aluminate, hydrous silicon dioxide, synthetic aluminum silicate, etc.), titanium oxide and the like.
- silicic acid compound light anhydrous silicic acid, metasilicic acid
- Magnesium aluminate Magnesium aluminate, hydrous silicon dioxide,
- colorants include yellow iron sesquioxide, iron sesquioxide, titanium oxide, black iron oxide, edible tar pigments, and natural pigments ( ⁇ -carotene, riboflavin, etc.).
- sweeteners examples include sucralose, mannitol, sucrose, aspartame, stevia, and acesulfame potassium.
- preservatives or preservatives examples include ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, benzoic acid, and sodium benzoate.
- the coating layer contains a water-insoluble polymer used as a coating agent in a pharmaceutical formulation.
- the "water-insoluble polymer” includes not only those which are completely insoluble in water but also those which are poorly soluble in water.
- Water-insoluble polymers include cellulosic coating agents (methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl ethyl cellulose, sodium carboxymethyl cellulose, hypromellose phthalate, hypromellose succinate, cellulose acetate, cellulose acetate, etc.) and vinyl polymers.
- cellulosic coating agents methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl ethyl cellulose, sodium carboxymethyl cellulose, hypromellose phthalate, hypromellose succinate, cellulose acetate, cellulose acetate, etc.
- vinyl polymers Polyvinyl acetal diethylaminoacetate, polyvinyl acetate phthalate, etc.
- methacrylate polymer or methacrylic acid polymer polysiloxane-based coating agent (dimethylpolysiloxane, dimethylpolysiloxane /
- methacrylate polymers or methacrylic acid polymers such as Rehm's Eudragit E series, Eudragit L series, Eudragit S series, Eudragit R series, Eudragit NE series, and Eudragit FS series (registered trademark). Be done. Specifically, aminoalkyl methacrylate copolymer E (Eudragit E100, EPO, etc.), methacrylic acid copolymer LD (Eudragit L30D-55, L100-55, etc.), methacrylic acid copolymer L (Eudragit L100, etc.), methacrylic acid copolymer S (Eudragit).
- Water-insoluble polymers are classified into pH-independent polymers, enteric polymers, gastric-soluble polymers, etc., but in the present invention, all of them can be preferably used, and a desired release suppression time can be obtained for each drug. You can choose as follows. As shown in the item of Examples, the masking particles of the present invention are highly enteric, for example, because the acid and the carbonate react with each other to foam and destroy the masking particles when water gradually infiltrates through the coating layer. Even when using molecules, it is possible to design formulations in which the drug is released before it reaches the intestine.
- the coating layer can contain additives such as plasticizers, binders, fluidizers or lubricants (anti-adhesion agents), colorants, and sweeteners as long as the effects of the present invention are not impaired.
- additives such as plasticizers, binders, fluidizers or lubricants (anti-adhesion agents), colorants, and sweeteners as long as the effects of the present invention are not impaired.
- Additives may be used alone or in combination of two or more.
- Plasticizers include polyethylene glycol, propylene glycol, glycerin, glycerin fatty acid esters such as triacetin (glycerin triacetate), liquid paraffin, sorbitan monolaurate, monostealer, triethyl citrate, tributyl citrate, diethyl phthalate, phthalate. Examples thereof include dibutyl acid acid, diethyl sebacate, dibutyl sebacate, poroxamer, and polyoxyethylene hydrogenated castor oil.
- the binder, fluidizing agent or lubricant (adhesion inhibitor), coloring agent, and sweetening agent include those exemplified as additives for drug-containing particles.
- the content of the coating layer is preferably 0.01 part by weight or more, more preferably 0.05 part by weight or more, and even more preferably 0.1 part by weight or more with respect to 1 part by weight of the drug-containing particles. Further, 1 part by weight or less is preferable, 0.5 part by weight or less is more preferable, and 0.3 part by weight or less is even more preferable. Within this range, the permeation rate of water becomes appropriate, the release of the drug in the oral cavity or pharynx can be sufficiently suppressed, and the drug can be released promptly thereafter.
- the masking particles of the present invention may have various structures as long as the drug-containing particles containing a drug, an acid, and a carbonate are coated with a coating layer containing a water-insoluble polymer.
- the masking particles can be, for example, particles in which a uniform or single moiety drug-containing particle containing a drug, an acid, and a carbonate is coated with a coating layer.
- a uniform or single moiety drug-containing particle containing a drug, an acid, and a carbonate is coated with a coating layer.
- the acid and carbonate are contained in the same portion, the infiltration of water through the coating layer allows the foam to foam very quickly and release the drug.
- the drug-containing particles can further include any additive used in tablets, granules, fine granules, powders and the like.
- the masking particles may be particles in which a drug-containing particle having a portion containing a drug and a portion containing an acid and a carbonate is separately coated with a coating layer.
- a coating layer is used to coat drug-containing particles consisting of nuclear particles and a layer that coats the nuclear particles (this layer exists between the nuclear particles and the coating layer, and thus may be hereinafter referred to as an “intermediate layer”).
- the particles are those in which a drug is mixed in the nuclear particles and an acid and a carbonate are mixed in the intermediate layer, or an acid and a carbonate are mixed in the nuclear particles and a drug is mixed in the intermediate layer.
- the nuclear particles may also consist of a central core containing excipients and the like and a drug-containing layer surrounding the core.
- spherical drug-containing particles can be easily produced, so that a coating layer can be easily formed, and drug-containing particles having a narrow particle size distribution can be obtained.
- another intermediate layer made of an excipient or the like may be provided between the nuclear particles and the intermediate layer.
- the acid and carbonate and the drug are mixed in different parts, it is easy to use a drug that is sensitive to acid and alkali.
- the acid and carbonate are contained in the same portion, the infiltration of water through the coating layer causes foaming very quickly, and the drug can be released.
- the nuclear particles and the intermediate layer can further contain any additives used in granules, fine granules, powders and the like.
- the nuclear particles contain a disintegrant, water is attracted by the water absorption of the disintegrant, so that the reaction between the acid and the carbonate is likely to occur.
- the disintegrant celluloses such as crospovidone; carboxymethyl cellulose (carmellose), carmellose sodium, carmellose calcium, low-degree-of-substitution hydroxypropyl cellulose, and crystalline cellulose are preferable, and low-degree-of-substitution hydroxypropyl cellulose is more preferable.
- the content of the disintegrant is preferably about 0.5 to 50% by weight with respect to the total amount of the drug-containing particles.
- the intermediate layer preferably contains a binder to facilitate layer formation.
- As the binder hydroxypropyl cellulose, hydroxypropyl methyl cellulose (hypromellose), and polyethylene glycol are preferable.
- the content of the binder is preferably about 0.1 to 20% by weight based on the total amount of the drug-containing particles.
- the intermediate layer preferably contains a fluidizing agent or a lubricant (adhesion preventing agent) in order to suppress the charge of the particles and facilitate the manufacturing process.
- the content of the fluidizing agent or lubricant in the intermediate layer is preferably about 0.01 to 50% by weight based on the total amount of the drug-containing particles.
- the masking particles may be particles in which a drug-containing particle having a portion containing an acid and a portion containing a carbonate separately coated with a coating layer.
- a particulate composition in which drug-containing particles composed of nuclear particles and an intermediate layer are coated with a coating layer can be prepared, and an acid and a carbonate can be separately blended into either the nuclear particles or the intermediate layer.
- each or either of the nuclear particles and the intermediate layer can be formed with water, and in particular, the intermediate layer material is coated as an aqueous solution (intermediate layer). Can be used for formation).
- the acid and carbonate may be contained in either the nuclear particles or the intermediate layer, but the core particles contain the acid and the intermediate layer contains the carbonate because the coating layer which is unstable to the acid can be easily used. Particles are preferred.
- the drug may be blended in either or both of the nuclear particles and the intermediate layer. If the acid and the drug are mixed in different parts, the acid-sensitive drug can be easily used, and if the carbonate and the drug are mixed in the separate part, the alkali-sensitive drug can be easily used.
- the nuclear particles and the intermediate layer can further contain any additives used in granules, fine granules, powders and the like.
- the nuclei particles preferably contain a disintegrant
- the intermediate layer preferably contains a binder, a fluidizing agent, or a lubricant (anti-adhesion agent).
- Preferred types and contents of disintegrants, binders, fluidizers or lubricants (anti-adhesion agents) are as described for the nuclear particles and intermediate layers of the second aspect.
- the drug, the acid, and the carbonate can be contained in separate portions.
- the acid and carbonate are present in different parts, it is not necessary to restrict the use of water during production, and since the drug and acid and the drug and carbonate are present in different parts, the acid and alkali can be used. Easy to use even weak drugs.
- a drug-containing particle composed of a nuclear particle and two intermediate layers covering the nuclear particle is used as a particle coated with a coating layer, and the nuclear particle, an inner intermediate layer (hereinafter, may be referred to as “first intermediate layer”), and the like.
- the drug, acid, and carbonate can be separately blended in any of the outer intermediate layers (hereinafter, may be referred to as "second intermediate layer").
- the nuclear particles can contain the drug and the two intermediate layers can contain acids and carbonates, respectively.
- the first intermediate layer and the second intermediate layer may contain an acid and a carbonate, but it is preferable that the first intermediate layer contains an acid and the second intermediate layer contains a carbonate.
- the core particles can be composed of a core containing excipients and the like and a drug-containing layer surrounding the core. Another intermediate layer made of an excipient or the like may be provided between the portion (or layer) containing the drug and the portion (or layer) containing the acid or carbonate.
- the outer layer of the nuclear particle may be referred to as a first intermediate layer
- the outer layer thereof may be referred to as a second intermediate layer
- the outer layer thereof may be referred to as a third intermediate layer.
- each intermediate layer can further contain any additives used in tablets, granules, fine granules, powders and the like.
- the nuclear particles preferably contain a disintegrant, and the preferred types and contents of the disintegrant are as described for the nuclear particles of the second aspect.
- each intermediate layer preferably contains a binder, a fluidizing agent or a lubricant (anti-adhesion agent), and the preferred type of the binder, the fluidizing agent or the lubricant (anti-adhesion agent) is the second. This is as described for the intermediate layer of the above aspect.
- the total content is preferably 0.1 to 20% by weight based on the total amount of the drug-containing particles.
- each intermediate layer contains a fluidizing agent or a lubricant (adhesion inhibitor)
- the total content is preferably 0.01 to 50% by weight with respect to the total amount of the drug-containing particles.
- the masking particles of the present invention can be particles having various structures in addition to the first to third aspects.
- the drug-containing particles, the nuclei particles, and the core of the excipient are granulated by a wet or dry method according to a conventional method, and dried and sized as necessary. be able to.
- wet granulation methods fluidized bed granulation method, stirring granulation method, rolling granulation method, extrusion granulation method, crushing granulation method, kneading granulation method, continuous straight granulation method, composite fluidized bed Examples include a granulation method
- examples of the dry granulation method include a dry composite granulation method, a slab granulation method, a briquette granulation method, and a melt granulation method.
- the intermediate layer and the coating layer can be manufactured by using an apparatus such as a fluidized bed coating machine, a worster type fluidized bed coating machine, a centrifugal fluidized coating machine, and a rolling fluidized coating machine according to a conventional method.
- the shape of the drug-containing particles containing the drug, acid, and carbonate varies depending on the granulation method, but can be spherical, cylindrical, oblong (oblong), or the like.
- the particle size of the masking particles after being coated with the coating layer is not particularly limited, but D 50 may be about 50 to 1000 ⁇ m, and particularly about 100 to 800 ⁇ m. Further, D 50 can be 50 ⁇ m or more, 100 ⁇ m or more, 200 ⁇ m or more, 300 ⁇ m or more, and can be 1000 ⁇ m or less, 800 ⁇ m or less, 600 ⁇ m or less, 400 ⁇ m or less.
- D 50 is a value calculated by measuring the particle size according to the particle size measurement method by the laser diffraction method of the 17th revised Japanese Pharmacopoeia, and is specifically described in the item of Examples. It is a value measured by the method of.
- the masking particles of the present invention can be used in the production of tablets. Therefore, the present invention also provides tablets produced using the masking particles of the present invention. Tablets can be produced, for example, by tableting the masking particles of the present invention as they are, or by mixing them with one or more additives. Since the masking particles of the present invention mask the taste of the drug felt in the mouth, they can be suitably used for producing orally disintegrating tablets. Various methods for producing orally disintegrating tablets are known, and those skilled in the art can produce orally disintegrating tablets by appropriately selecting the type and amount of additives to be mixed with the masking particles of the present invention. Can be done.
- the content of the masking particles of the present invention is 1% by weight or more and 5% by weight or more based on the total amount of the orally disintegrating tablets. , Or 10% by weight or more. Further, it can be 90% by weight or less, 70% by weight or less, or 60% by weight or less.
- the masking particles of the present invention differ depending on the type of drug, but the dissolution rate measured using a pH 6.8 dissolution test solution according to the paddle method of the 17th revised Japanese Pharmacopoeia dissolution test method is the test. It is preferably substantially zero (substantially no drug elution) for at least 0.5 minutes, especially at least 1 minute, especially at least 1.5 minutes, and especially at least 3 minutes after the start.
- the masking particles of the present invention may have a drug release lag time of 0.5 minutes or longer, 1 minute or longer, or 3 minutes or longer.
- the drug release lag time can be 15 minutes or less, 10 minutes or less, or 8 minutes or less.
- the drug release lag time is a value measured by the method described in the item of Examples.
- the masking particles of the present invention preferably have a drug release rate of 1% / min or more, particularly 2% / min or more, particularly 10% / min or more, and particularly 30% / min or more.
- the drug release rate can be 80% / min or less, 70% / min or less, or 60% / min or less.
- the drug release rate is a value measured by the method described in the item of Examples.
- a drug is added by adding an acid and a carbonate to the particles containing the drug, and the drug-containing particles containing the drug, the acid, and the carbonate are coated with a coating layer containing a water-insoluble polymer. It includes a method of delaying the elution or release of a drug from the contained particles for a certain period of time, that is, a method of suppressing the elution or release of the drug for a certain period of time. In this method, the type, amount, and ratio of acids, carbonates, and other components contained in the drug-containing particles; the amount of the coating layer; the type, amount, and ratio of the components contained in the coating layer are adjusted.
- the drug elution suppression time can be adjusted.
- Types, amounts, ratios of acids, carbonates, and other components contained in drug-containing particles; amount of coating layer; types, amounts, ratios, etc. of components contained in the coating layer describe the masking particles of the present invention. That's right. Therefore, the present invention contains a drug by adding an acid and a carbonate to the particles containing the drug and coating the drug-containing particles containing the drug, the acid, and the carbonate with a coating layer containing a water-insoluble polymer. Includes methods of controlling the elution or release of the drug from the particles.
- Test method The dissolution test was performed according to the second method of the Japanese Pharmacopoeia dissolution test method.
- the rotation speed of the paddle was set to 50 rpm, and 900 mL of a phosphate buffer solution (2nd solution of the Japanese Pharmacopoeia Disintegration Test Method) having a pH of 6.8 was used as the test solution.
- Drug-containing particles or masking particles or tablets containing 250 mg of levofloxacin were charged into the vessel.
- the particle size was measured on a volume basis using a laser diffraction type particle size distribution measuring device (manufactured by Malvern).
- Nuclear particles containing levofloxacin hydrate and citric acid hydrate, drug-containing particles having an intermediate layer containing sodium hydrogen carbonate, and masking particles coated with the drug-containing particles were produced as follows. [Preparation of nuclear particles] 400 g of levofloxacin hydrate, 240 g of crushed citric acid hydrate (manufactured by Satsuma Kako Co., Ltd., the same applies hereinafter), and 160 g of low-substituted hydroxypropyl cellulose (manufactured by Shin-Etsu Chemical Industry Co., Ltd .; LHPC31, the same applies hereinafter) are stirred and mixed.
- coating liquid (1) for intermediate layer In a solution prepared by dissolving 12 g of hydroxypropyl cellulose (manufactured by Nippon Soda Co., Ltd .; HPCL, the same below) in 400 g of absolute ethanol (manufactured by Japan Alcohol Corporation, the same below), talc (manufactured by Hayashi Kasei Co., Ltd .; 25 g of the same) and 45 g of crushed sodium hydrogen carbonate (manufactured by AGC Corporation, the same applies hereinafter) were added and stirred to prepare a coating liquid (1) for forming an intermediate layer.
- Examples 1 and 12% have a mass ratio of 6% to the mass of the drug-containing particles of the masking layer (the coating layer containing the water-insoluble polymer is referred to as a masking layer; the same applies hereinafter).
- Examples 2, 18% were designated as Example 3, 24% were designated as Example 4, and 30% were designated as Example 5.
- Comparative Example 1 Drug-containing particles were prepared in the same manner as in Examples 1 to 5, and used as Comparative Example 1.
- the drug release lag time is the time until 1% of the drug is released in the dissolution test at pH 6.8, and was calculated from the time of measurement at two points straddling 1%.
- the drug release rate was calculated from the first two measurement points when the dissolution rate was measured in the dissolution rate range of 3 to 90% in the dissolution test at pH 6.8.
- Comparative Example 2 Effect of acid Comparative Example 2
- drug-containing particles were prepared in the same manner except that the citric acid hydrate was changed to erythritol (manufactured by Bussan Food Sciences; erythritol 100M, the same applies hereinafter), and used as Comparative Example 2.
- Comparative Example 3 190 g of the drug-containing particles of Comparative Example 2 was put into a rolling fluid coating apparatus, and the coating liquid (2) was sprayed to obtain masking particles. The mass ratio of the masking layer to the mass of the drug-containing particles is 18%, as in Example 3.
- Comparative Example 3 is the same as that of Example 3 except that the citric acid hydrate in the nuclear particles of Example 3 was changed to erythritol.
- Dissolution tests were performed on the masking particles of Example 3, the drug-containing particles of Comparative Example 2, and the masking particles of Comparative Example 3.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 2 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the drug release was rapid as in Comparative Example 1, but there was no lag time because there was no coating layer containing a water-insoluble polymer.
- the coating layer containing the water-insoluble polymer has a lag time of 6.5 minutes, but since film destruction due to foaming does not occur, the drug is released by slow diffusion, and as a result, the drug release rate is high. It was late, and the drug was not sufficiently eluted 90 minutes after the start of the test. It can be seen that acid is essential for the drug to be released promptly after the drug release is suppressed.
- the elution test was performed on the masking particles of Examples 6 and 7.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 3 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the coating layer containing the water-insoluble polymer after the infiltration of water was prevented for a certain period of time by the coating layer containing the water-insoluble polymer, the water permeated into the inside, and the drug was rapidly released by the film breaking from the inside by foaming. ..
- a lag time of 1.4 to 5.4 minutes and a rapid drug release of 3.7 to 5.1% / min were achieved at the same time.
- the water-soluble polymer in the coating layers of Examples 6 and 7 is ethyl cellulose, which is different from the aminoalkyl methacrylate copolymers E of Examples 1 to 5.
- ethyl cellulose which is different from the aminoalkyl methacrylate copolymers E of Examples 1 to 5.
- a slower drug release rate was obtained as compared with Examples 1 to 5. It can be seen that regardless of the type of water-insoluble polymer, it is possible to suppress drug release for a certain period of time and then rapidly release the drug. It is also found that the drug release suppression time and the subsequent drug release rate can be adjusted by selecting the type of water-insoluble polymer.
- Comparative Example 4 Drug-containing particles were prepared in the same manner as in Examples 8 to 11 and used as Comparative Example 4.
- Examples 12-15 [Preparation of nuclear particles] 487.5 g of levofloxacin hydrate, 32.5 g of crushed citric acid hydrate, and 130 g of low-substituted hydroxypropyl cellulose were put into a stirring and mixing granulator, and after mixing, 560 g of purified water was spray-sprayed and kneaded while stirring. I got a mixture. Next, the kneaded product was extruded and granulated using a wet extruding granulator Multigran, and sized using a spherical granulator Malmölyzer. After that, the particles passed through the 30 (500 ⁇ m) mesh and remained on the 42 (355 ⁇ m) mesh as nuclear particles.
- the mass ratio of the masking layer to the mass of the drug-containing particles was 12% in Example 12, 18% in Example 13, 24% in Examples 14, and 30% in Example 15. did.
- Comparative Example 5 Drug-containing particles were prepared in the same manner as in Examples 12 to 15, and used as Comparative Example 5.
- Dissolution tests were performed on the masking particles of Examples 8 to 11, the drug-containing particles of Comparative Example 4, the masking particles of Examples 12 to 15, and the drug-containing particles of Comparative Example 5.
- the transition of the elution rate of levofloxacin hydrate of the masking particles of Examples 8 to 11 and the drug-containing particles of Comparative Example 4 is shown in FIG. 4, and the elution of the masking particles of Examples 12 to 15 and the drug-containing particles of Comparative Example 5 is shown in FIG.
- the transition of the rate is shown in FIG.
- the upper part of FIGS. 4 and 5 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- Example 1 the content of citric acid hydrate per tablet is 153.8 mg, and the content of sodium hydrogen carbonate is 153.8 mg.
- the content of citric acid hydrate was as low as 59.1 mg and the content of sodium hydrogen carbonate was as low as 59.1 mg, and in Examples 12 to 15, the content of citric acid hydrate was as low as 59.1 mg.
- the content is 17.1 mg and the content of sodium hydrogen carbonate is 17.1 mg, which are even smaller.
- blending amounts of acids and carbonates can suppress drug release for a certain period of time and then rapidly release the drug. Further, it can be seen that the drug release suppression time and the drug release rate can be controlled by adjusting the blending amounts of the acid and the carbonate.
- Types of binder Example 16 [Preparation of coating liquid (4) for intermediate layer] 25 g of talc and 45 g of crushed sodium hydrogen carbonate are added to a solution of 12 g of polyethylene glycol (Sanyo Chemical Industries, Ltd .; Macrogol 6000, the same applies hereinafter) in 171 g of absolute ethanol, and the mixture is stirred to prepare the coating solution (4). Prepared. [Preparation of drug-containing particles] 150 g of the same nuclear particles as in Examples 1 to 5 and Comparative Example 1 were put into a rolling fluid coating apparatus, and the coating liquid (4) was sprayed to obtain drug-containing particles coated with 82 g of an intermediate layer. [Preparation of masking particles] 190 g of the obtained drug-containing particles were put into a rolling fluid coating device, and the coating liquid (2) was sprayed to obtain masking particles. The mass ratio of the masking layer to the drug-containing particles was 18%.
- Comparative Example 6 Drug-containing particles were prepared in the same manner as in Example 16 and used as Comparative Example 6.
- Example 16 Dissolution tests were performed on the masking particles of Example 16 and the drug-containing particles of Comparative Example 6.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 6 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the hydroxypropyl cellulose in the intermediate layer was replaced with polyethylene glycol in Example 3.
- Example 16 after the infiltration of water was prevented for a certain period of time by the coating layer containing the water-insoluble polymer, the water permeated into the inside, and the drug was rapidly released by the film breaking from the inside by foaming.
- Examples 18-20 Preparation of masking particles
- 200 g of the same drug-containing particles as in Example 17 were put into a rolling fluid coating apparatus, and the coating liquid (3) was sprayed to obtain masking particles.
- the mass ratio of the masking layer to the mass of the drug-containing particles is 6% in Example 18, 12% in Examples 19 and 18% in Example 20.
- Comparative Example 7 Drug-containing particles were prepared in the same manner as in Examples 17 to 20, and used as Comparative Example 7.
- Dissolution tests were performed on the masking particles of Examples 17 to 20 and the drug-containing particles of Comparative Example 7.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 7 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the nuclear particles contain sodium hydrogen carbonate, and the intermediate layer contains citric acid hydrate.
- a lag time of 1 to 5.1 minutes and a rapid drug release rate of 3.4 to 30.4% / min were compatible.
- compositions of the drug-containing particles of Examples 1 to 20 and Comparative Examples 1 to 7 are shown in Table 1.
- Comparative Example 8 Drug-containing particles were prepared in the same manner as in Example 21 and used as Comparative Example 8.
- Example 21 is a formulation in which the blending amount of low-substituted hydroxypropyl cellulose was reduced to 1/4 and the residue was replaced with erythritol in Example 3. In Example 21, a lag time of 3.1 minutes and a rapid drug release rate of 9.0% / min were both achieved.
- Comparative Example 9 Drug-containing particles were prepared in the same manner as in Examples 22 to 24, and used as Comparative Example 9.
- Examples 25-27 [Preparation of nuclear particles] 400 g of levofloxacin hydrate, 240 g of crushed citric acid hydrate and 160 g of low-substituted hydroxypropyl cellulose are put into a stirring and mixing granulator and mixed, and then 560 g of purified water is spray-sprayed with stirring to prepare a kneaded product. Obtained. Next, the kneaded product was extruded and granulated using a wet extruding granulator Multigran, and sized using a spherical granulator Malmölyzer. After that, the particles passed through the 30 (500 ⁇ m) mesh and remained on the 42 (355 ⁇ m) mesh as nuclear particles.
- the mass ratio of the masking layer to the mass of the drug-containing particles was 18% in Examples 25, 24% in Examples 26, and 30% in Example 27.
- Comparative Example 10 Drug-containing particles were prepared in the same manner as in Examples 25 to 27, and used as Comparative Example 10.
- Examples 28-30 [Preparation of nuclear particles] 390 g of levofloxacin hydrate, 90 g of crushed citric acid hydrate and 180 g of low-substituted hydroxypropyl cellulose are put into a stirring and mixing granulator and mixed, and then 480 g of purified water is spray-sprayed with stirring to prepare the kneaded product. Obtained. Next, the kneaded product was extruded and granulated using a wet extruding granulator Multigran, and sized using a spherical granulator Malmölyzer. After that, the particles passed through the 30 (500 ⁇ m) mesh and remained on the 42 (355 ⁇ m) mesh as nuclear particles.
- Comparative Example 11 Drug-containing particles were prepared in the same manner as in Examples 28 to 30, and used as Comparative Example 11.
- Examples 31-33 [Preparation of nuclear particles] 390 g of levofloxacin hydrate, 90 g of crushed citric acid hydrate and 180 g of low-substituted hydroxypropyl cellulose are put into a stirring and mixing granulator and mixed, and then 480 g of purified water is spray-sprayed with stirring to prepare the kneaded product. Obtained. Next, the kneaded product was extruded and granulated using a wet extruding granulator Multigran, and sized using a spherical granulator Malmölyzer. After that, the particles passed through the 30 (500 ⁇ m) mesh and remained on the 42 (355 ⁇ m) mesh as nuclear particles.
- the mass ratio of the masking layer to the mass of the drug-containing particles was 18% in Example 31, 24% in Examples 32, and 30% in Example 33.
- Comparative Example 12 Drug-containing particles were prepared in the same manner as in Examples 31 to 33, and used as Comparative Example 12.
- Example 34 [Preparation of nuclear particles] 600 g of levofloxacin hydrate, 40 g of crushed citric acid hydrate and 160 g of low-substituted hydroxypropyl cellulose are put into a stirring and mixing granulator and mixed, and then 560 g of purified water is spray-sprayed with stirring to prepare a kneaded product. Obtained. Next, the kneaded product was extruded and granulated using a wet extruding granulator Multigran, and sized using a spherical granulator Malmölyzer. After that, the particles passed through the 30 (500 ⁇ m) mesh and remained on the 42 (355 ⁇ m) mesh as nuclear particles.
- Comparative Example 13 Drug-containing particles were prepared in the same manner as in Example 34 and used as Comparative Example 13.
- Examples 35-36 [Preparation of nuclear particles] 600 g of levofloxacin hydrate, 40 g of crushed citric acid hydrate and 160 g of low-substituted hydroxypropyl cellulose are put into a stirring and mixing granulator and mixed, and then 560 g of purified water is spray-sprayed with stirring to prepare a kneaded product. Obtained. Next, the kneaded product was extruded and granulated using a wet extruding granulator Multigran, and sized using a spherical granulator Malmölyzer. After that, the particles passed through the 30 (500 ⁇ m) mesh and remained on the 42 (355 ⁇ m) mesh as nuclear particles.
- Comparative Example 14 Drug-containing particles were prepared in the same manner as in Examples 35 to 36, and used as Comparative Example 14.
- FIGS. 9 to 14 show Changes in the elution rate of levofloxacin hydrate.
- FIG. 9 shows the results of the masking particles of Examples 22 to 24 and the drug-containing particles of Comparative Example 9
- FIG. 10 shows the results of the masking particles of Examples 25 to 27 and the drug-containing particles of Comparative Example 10.
- FIG. 11 shows the results of the masking particles of Examples 28 to 30 and the drug-containing particles of Comparative Example 11
- FIG. 12 shows the results of the masking particles of Examples 31 to 33 and the drug-containing particles of Comparative Example 12.
- FIG. 13 shows the results of the masking particles of Example 34 and the drug-containing particles of Comparative Example 13
- FIG. 14 shows the results of the masking particles of Examples 35 to 36 and the drug-containing particles of Comparative Example 14.
- the upper part of FIGS. 9 to 14 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- Example 22 to 24 the blending amount of sodium hydrogen carbonate was halved in Examples 3 to 5. That is, the weight ratio of sodium hydrogen carbonate to 1 part by weight of citric acid hydrate is 1 part by weight in Examples 3 to 5, whereas it is 0.5 parts by weight in Examples 22 to 24.
- Example 25 to 27 the blending amount of sodium hydrogen carbonate was reduced to 1/6 in Examples 3 to 5. That is, the weight ratio of sodium hydrogen carbonate to 1 part by weight of citric acid hydrate is 0.17 parts by weight in Examples 25 to 27, while 1 part by weight in Examples 3 to 5.
- Examples 28 to 30 the blending amount of sodium hydrogen carbonate was doubled in Examples 9 to 11.
- the weight ratio of sodium hydrogen carbonate to 1 part by weight of citric acid hydrate is 1 part by weight in Examples 9 to 11, while it is 2 parts by weight in Examples 28 to 30.
- the blending amount of sodium hydrogen carbonate was reduced to 1/3 in Examples 9 to 11. That is, the weight ratio of sodium hydrogen carbonate to 1 part by weight of citric acid hydrate is 1 part by weight in Examples 9 to 11, whereas it is 0.33 parts by weight in Examples 31 to 33.
- the blending amount of sodium hydrogen carbonate was increased 6 times in Example 12. That is, the weight ratio of sodium hydrogen carbonate to 1 part by weight of citric acid hydrate is 1 part by weight in Example 12 and 6 parts by weight in Example 34.
- Example 35 to 36 the blending amount of sodium hydrogen carbonate was tripled in Examples 12 to 13. That is, the weight ratio of sodium hydrogen carbonate to 1 part by weight of citric acid hydrate is 1 part by weight in Examples 12 to 13, whereas it is 3 parts by weight in Examples 35 to 36.
- Examples 22 to 24 a lag time of 1.3 to 2.6 minutes and a rapid drug release rate of 14.8 to 27.3% / minute were compatible (FIG. 9).
- Examples 25 to 27 a lag time of 1.1 to 2.2 minutes and a rapid drug release rate of 10.8 to 13.3% / min were compatible (FIG. 10).
- Examples 28 to 30 a lag time of 1.3 to 3.1 minutes and a rapid drug release rate of 3.5 to 14.7% / min were compatible (FIG. 11).
- Examples 31 to 33 a lag time of 1.6 to 1.8 minutes and a rapid drug release rate of 4.1 to 21.8% / min were compatible (FIG. 12).
- Example 34 both a 2.0 minute lag time and a rapid drug release rate of 7.5% / min were achieved (FIG. 13).
- Example 35 to 36 a lag time of 1.4 to 2.5 minutes and a rapid drug release rate of 5.2 to 18.7% / min were compatible (FIG. 14).
- a drug release suppression time for a certain period of time and rapid drug release were obtained.
- Comparative Examples 9 to 14 the drug was released rapidly due to foaming, but there was no lag time because there was no coating layer containing a water-insoluble polymer.
- compositions of the drug-containing particles of Examples 21 to 36 and Comparative Examples 8 to 14 are shown in Table 2.
- Comparative Example 15 Drug-containing particles were prepared in the same manner as in Examples 37 to 39 and used as Comparative Example 15.
- Dissolution tests were performed on the masking particles of Examples 37 to 39 and the drug-containing particles of Comparative Example 15.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 15 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the drug-containing particles obtained by coating the nuclear particles containing a drug with an intermediate layer I containing a citric acid hydrate and coating the intermediate layer containing sodium hydrogencarbonate on the intermediate layer I with a water-insoluble polymer are used. It is coated with a coating layer containing.
- a lag time of 1.3 to 2.2 minutes and a rapid drug release rate of 6.0 to 17.5% / min were compatible. Even when the drug-containing particles containing the drug, the acid, and the carbonate in different parts were used, the drug release suppression time and the drug release rate could be appropriately controlled.
- the masking particles having this structure can be suitably used for drugs that are unstable to acids and alkalis. Further, the content ratio of the coating layer to the drug-containing particles was 30 to 42% by weight, which was higher than that of 6 to 30% by weight of Examples 1 to 36, but an appropriate lag time and drug release rate were obtained. ..
- Drug-containing particles with drug-coated nuclear particles and three intermediate layers Examples 40-42 [Preparation of nuclear particles] 1000 g of D-mannitol spherical granules (Freund Sangyo Co., Ltd .; non-parel 108 (100), the same applies hereinafter) passed through a 100 (150 ⁇ m) mesh and remained on a 200 (75 ⁇ m) mesh as nuclear particles.
- Hypromellose manufactured by Shin-Etsu Chemical Co., Ltd .; TC-5R, the same applies hereinafter
- Hypromellose is added to a mixed solution of 158 g of purified water and 68 g of absolute ethanol to dissolve it, then 45 g of levofloxacin hydrate is added, and the mixture is stirred to prepare the coating solution (7).
- Examples 40 had a masking layer mass ratio of 54% with respect to the mass of the drug-containing particles, and Examples 41 and 78% had a masking layer of 66%.
- Comparative Example 16 Drug-containing particles were prepared in the same manner as in Examples 40 to 42, and used as Comparative Example 16.
- Dissolution tests were performed on the masking particles of Examples 40 to 42 and the drug-containing particles of Comparative Example 16.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 16 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the excipient nuclei particles coated with a drug are coated with an intermediate layer I made of an excipient, and an intermediate layer II containing a citric acid hydrate is coated thereto.
- the drug-containing particles coated with the intermediate layer III containing sodium hydrogen carbonate on it are coated with a coating layer containing a water-insoluble polymer.
- a lag time of 1.0 to 2.0 minutes and a rapid drug release rate of 10.9 to 27.2% / min were compatible.
- the drug release suppression time and the drug release rate can be obtained even when the drug-containing particles in which the drug does not come into contact with the acid or carbonate at all are used.
- the masking particles having this structure can be suitably used for drugs that are extremely unstable to acids and alkalis.
- the content ratio of the coating layer to the drug-containing particles was 54 to 78% by weight, which was much higher than 6 to 30% by weight of Examples 1 to 36, but an appropriate lag time and drug release rate were obtained.
- the masking particles of Examples 40 to 42 use smaller nuclear particles than those of Examples 1 to 39, the masking particles are also finer. In this technique, the drug release suppression time and the drug release rate can be appropriately controlled regardless of the particle size of the masking particles.
- compositions of the drug-containing particles of Examples 37 to 39 and Comparative Example 15 are shown in Table 3, and the compositions of the drug-containing particles of Examples 40 to 42 and Comparative Example 16 are shown in Table 4.
- the masking particles in which the drug-containing particles containing a drug, an acid, and a carbonate are coated with a coating layer containing a water-insoluble polymer, the appropriate lag time and promptness are achieved regardless of the composition of the drug-containing particles. It can be seen that the drug release rate is obtained.
- Dissolution test of the orally disintegrating tablet of Example 43, the masking particles of Example 3 (particles coated with a masking layer of 18% by weight based on the drug-containing particles of Comparative Example 1), and the drug-containing particles of Comparative Example 1. was done.
- the transition of the elution rate of levofloxacin hydrate is shown in FIG.
- the upper part of FIG. 17 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the tablets of Example 43 showed substantially the same dissolution profile as the masking particles of Example 3. It can be seen that the masking particles of the present invention can be used in the production of tablets, and the obtained tablets have the drug release in the mouth suppressed and the drug is released promptly thereafter.
- composition of the orally disintegrating tablet of Example 43 is shown in Table 5.
- Comparative Example 17 Drug-containing particles were prepared in the same manner as in Example 44 and used as Comparative Example 17.
- Example 44 Dissolution tests were performed on the masking particles of Example 44 and the drug-containing particles of Comparative Example 17. The transition of the elution rate of levofloxacin hydrate is shown in FIG. The upper part of FIG. 18 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- the drug-free nuclear particles are coated with a drug layer, an intermediate layer I made of an excipient is coated on the drug layer, an intermediate layer II containing an acid is coated on the intermediate layer I, and carbonic acid is coated on the intermediate layer II. It is coated with intermediate layer III containing salt.
- a lag time of 1.1 minutes and a rapid drug release of 22.7% / min were compatible.
- the masking particles of Example 44 are those in which citric acid is replaced with succinic acid in the masking particles of Example 42.
- Succinic acid has a pKa of 4.2 / 5.6 and is a weaker acid than citric acid having a pKa of 3.1 / 4.8 / 6.4, but the same effect was obtained.
- the type of acid in the present technology is not limited as long as it is stronger than carbonic acid.
- the masking particles of Example 44 are more useful for drugs that are unstable to acids and alkalis because the drugs do not come into direct contact with acids and carbonates. Since the masking particles of Example 44 use smaller nuclear particles than those of Examples 1 to 39, the masking particles are also finer. In this technique, the drug release suppression time and the drug release rate can be appropriately controlled regardless of the particle size of the masking particles.
- Example 45 [Preparation of nuclear particles] 1000 g of D-mannitol spherical granules passed through a 100 (150 ⁇ m) mesh and remained on a 200 (75 ⁇ m) mesh as nuclear particles. [Preparation of coating liquid (12)] Hypromellose was added to and dissolved in a mixed solution of 770 g of purified water and 330 g of absolute ethanol, 220 g of zolpidem tartrate was added, and the mixture was stirred to prepare a coating solution (12). [Preparation of drug layer particles] The above 358 g of nuclear particles were put into a rolling fluid coating apparatus, and the coating liquid (12) was sprayed to obtain drug layer particles coated with 275 g of drug layer.
- Comparative Example 18 Drug-containing particles were prepared in the same manner as in Example 45 and used as Comparative Example 18.
- Example 45 Dissolution tests were performed on the masking particles of Example 45 and the drug-containing particles of Comparative Example 18. The transition of the elution rate of zolpidem tartrate is shown in FIG. The upper part of FIG. 19 shows the result for 30 minutes after the start of the test, and the lower part shows the result for 90 minutes after the start of the test.
- a drug layer is coated on nuclear particles containing no drug
- an intermediate layer I containing an acid is coated on the drug layer
- an intermediate layer II composed of an excipient is coated on the intermediate layer I
- carbonic acid is coated on the intermediate layer II. It is coated with intermediate layer III containing salt.
- Example 45 a lag time of 3 minutes and a rapid drug release of 12.6% / min were compatible.
- the masking particles of Example 45 unlike Examples 1-44, contain zolpidem tartrate as a drug. It can be seen that the drug release suppression time and the drug release rate can be appropriately controlled regardless of the type of drug. Further, the masking particles of Example 45 are different from Examples 1 to 44 in that tartaric acid is used as the acid. It can be seen that the drug release suppression time and the drug release rate can be appropriately controlled regardless of the type of acid. Further, in the masking particles of Example 45, the mass ratio of the masking layer to the mass of the drug-containing particles is 90%, and the masking layer is very thick. In this case as well, the drug release suppression time and the drug release rate are appropriately controlled. did it.
- composition of the drug-containing particles of Example 44 and Comparative Example 17 is shown in Table 6, and the composition of the drug-containing particles of Example 45 and Comparative Example 18 is shown in Table 7.
- Particle Size Distribution Measurement Table 8 shows the results of measuring the particle size distributions of the masking particles of Examples 1 to 42, 44, and 45, and the nuclear particles, intermediate layer coating particles, and drug layer coating particles of Comparative Examples 1 to 18. Shown in 10.
- the masking particles of the present invention do not release the drug in the mouth after administration, and even if the masking particle contains a drug having an unpleasant taste, the taste is hard to be felt and the absorption of the drug from the oral cavity or pharynx is suppressed.
- the drug since the drug is released promptly after swallowing, the drug is sufficiently absorbed in the digestive tract.
- the release suppression time of the drug can be controlled arbitrarily and accurately, it is possible to prepare an appropriate preparation according to the type and dosage form of the drug.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Inorganic Chemistry (AREA)
- Zoology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Medicinal Preparation (AREA)
Abstract
薬物、酸、及び炭酸塩を含む薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したマスキング粒子は、口腔内及び咽頭部での薬物の放出が十分に抑制されており、かつ嚥下後は速やかに薬物が放出され、さらに薬物の放出抑制時間を制御し易い。酸は、1種以上の有機酸とすることができ、炭酸塩は、1種以上の水溶性炭酸塩とすることができる。マスキング粒子を含む経口医薬組成物としては、錠剤、顆粒剤、細粒剤、散剤が挙げられる。
Description
本発明は、口腔内または咽頭部での薬物の放出を抑制し、かつ、胃や腸での薬物放出を妨げず、薬物の放出を制御できるマスキング粒子、及びそれを含む経口医薬組成物に関する。さらに具体的には、服用時に感じられる薬物の味、特に、不快な味を有する薬物の味が低減されたマスキング粒子、及びそれを含む経口医薬組成物に関する。
経口医薬製剤としては、錠剤やカプセル剤が汎用されているが、これらは嚥下力が低い高齢者や小児には飲み込み難い。このため、口腔内で速やかに崩壊する口腔内崩壊錠剤が、嚥下し易く、また、水なしでも服用できるという利便性も備えることから、注目されている。しかし、口腔内崩壊錠剤は、口腔内で崩壊するため、苦みなどの不快な味を有する薬物を含む場合は、不快な味を強く感じるという難点がある。また、顆粒剤、細粒剤、散剤などは、錠剤やカプセル剤よりサイズが小さいため、飲み込み易い剤型である。しかし、これらの製剤は、重量当たりの表面積が大きいため、不快な味を有する薬物を含む場合は、不快な味を強く感じるという難点がある。
また、口腔内崩壊錠剤、顆粒剤、細粒剤、散剤などは、口腔内で水分と接することで薬物が速やかに放出されるため、薬物によっては口腔や咽頭から吸収されて、急激な血中濃度の上昇により予期せぬ副作用が生じたり、薬効のバラツキが生じるという問題がある。
また、口腔内崩壊錠剤、顆粒剤、細粒剤、散剤などは、口腔内で水分と接することで薬物が速やかに放出されるため、薬物によっては口腔や咽頭から吸収されて、急激な血中濃度の上昇により予期せぬ副作用が生じたり、薬効のバラツキが生じるという問題がある。
服用時に感じられる医薬成分の不快な味をマスキングするためや、口腔内又は咽頭部からの医薬成分の吸収を抑制するために、顆粒剤、細粒剤、散剤、錠剤などを、水不溶性高分子を含むコーティング剤で被覆することが行われている。経口医薬製剤にコーティングを施すと、口中で医薬成分の味は感じなくなり、また口腔内や咽頭部から医薬成分が吸収されなくなるが、薬物の放出が遅れるため、十分量の薬物が吸収されず、所望の薬効が得られない恐れがある。
薬物は、通常、胃や腸から吸収されるところ、小腸上部では、小腸下部や大腸に比べて吸収に関与する表面積が大きく、また細胞間隙経路の透過性も高いと考えられることから、腸から吸収される薬物は主に小腸上部から吸収されると考えられている。従って、経口医薬製剤は、口腔内での薬物の放出が抑制されていると共に、製剤が胃や小腸上部に到達する前又は滞留している間に薬物が放出されることが求められる。また、特に胃粘膜保護薬、制酸薬、消化薬、整腸薬、駆虫薬、胃腸鎮痛鎮痙薬、消泡薬のように胃や腸に作用させる薬物では、製剤が胃や小腸上部に到達する前又は滞留している間に薬物が放出される必要がある。
また、薬物の種類により不快な味の程度や吸収パターンが異なり、また製剤の剤型により口腔内滞留時間が異なることから、薬物の放出抑制時間を任意に制御できることが望ましい。
薬物は、通常、胃や腸から吸収されるところ、小腸上部では、小腸下部や大腸に比べて吸収に関与する表面積が大きく、また細胞間隙経路の透過性も高いと考えられることから、腸から吸収される薬物は主に小腸上部から吸収されると考えられている。従って、経口医薬製剤は、口腔内での薬物の放出が抑制されていると共に、製剤が胃や小腸上部に到達する前又は滞留している間に薬物が放出されることが求められる。また、特に胃粘膜保護薬、制酸薬、消化薬、整腸薬、駆虫薬、胃腸鎮痛鎮痙薬、消泡薬のように胃や腸に作用させる薬物では、製剤が胃や小腸上部に到達する前又は滞留している間に薬物が放出される必要がある。
また、薬物の種類により不快な味の程度や吸収パターンが異なり、また製剤の剤型により口腔内滞留時間が異なることから、薬物の放出抑制時間を任意に制御できることが望ましい。
口腔内での薬物の放出が抑制されている経口医薬組成物として、特許文献1は、中心部に不快な味を有する薬物を含有する核粒子と、中間層に2種類の水溶性成分である不溶化促進剤及び不溶化物質を含有する層と、最外層に水侵入制御層とを有し、中間層が塩析型不溶化促進剤と塩析不溶化物質を含有するか、又は酸型不溶化促進剤と酸不溶化物質を含有する粒子状医薬組成物を開示している。特許文献1によれば、この粒子状組成物は、水侵入制御層の存在により一定時間は水が浸入せず、不溶化促進剤が不溶化物質の不溶化を促進して薬物の溶出を抑制しているが、その後は、水の浸入により不溶化促進剤が放出されることで不溶化物質が本来の水溶性を取り戻して、薬物が放出される。
しかし、特許文献1の粒子状医薬組成物は、薬物の放出抑制時間を任意に制御することが難しく、特に、薬物の溶出が遅い。
しかし、特許文献1の粒子状医薬組成物は、薬物の放出抑制時間を任意に制御することが難しく、特に、薬物の溶出が遅い。
本発明は、口腔内および咽頭部での薬物の放出が十分に抑制されており、かつ嚥下後は速やかに薬物が放出され、さらに薬物の放出抑制時間を制御し易いマスキング粒子、及びそれを含む経口医薬組成物を提供することを課題とする。
本発明者は、上記課題を解決するために鋭意研究を重ね、薬物と酸と炭酸塩を含む粒子を、水不溶性高分子を含むコーティング層で被覆したマスキング粒子は、コーティング層の存在により口中や咽頭部では薬物の溶出が抑制されているが、その後は、コーティング層を通して内部に徐々に水分が侵入し、酸と炭酸塩との反応により発泡してマスキング粒子が破壊されるため、薬物が速やかに放出されることを見出した。
本発明は、上記知見に基づき完成されたものであり、下記〔1〕~〔22〕を提供する。
〔1〕 薬物、酸、及び炭酸塩を含む薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したマスキング粒子。
〔2〕 酸が、1種以上の有機酸である、〔1〕に記載のマスキング粒子。
〔3〕 炭酸塩が、1種以上の水溶性炭酸塩である、〔1〕又は〔2〕に記載のマスキング粒子。
〔4〕 酸を、薬物含有粒子の全量に対して0.5~30重量%含む、〔1〕~〔3〕の何れかに記載のマスキング粒子。
〔5〕 炭酸塩を、薬物含有粒子の全量に対して0.5~35重量%含む、〔1〕~〔4〕の何れかに記載のマスキング粒子。
〔6〕 炭酸塩を、酸の1重量部に対して0.1~10重量部含む、〔1〕~〔5〕の何れかに記載のマスキング粒子。
〔7〕 コーティング層の含有量が、薬物含有粒子1重量部に対して、0.005~2重量部である、〔1〕~〔6〕の何れかに記載のマスキング粒子。
〔8〕 薬物含有粒子が、薬物、酸、及び炭酸塩を含む均一粒子である、〔1〕~〔7〕の何れかに記載のマスキング粒子。
〔9〕 薬物含有粒子が、薬物を含む部分と、酸及び炭酸塩を含む部分を別に備えるものである、〔1〕~〔7〕の何れかに記載のマスキング粒子。
〔10〕 薬物含有粒子が、核粒子とそれを被覆する中間層からなり、薬物が核粒子に含まれ酸及び炭酸塩が中間層に含まれているか、又は酸及び炭酸塩が核粒子に含まれ薬物が中間層に含まれている、〔9〕に記載のマスキング粒子。
〔11〕 核粒子が崩壊剤を含む、〔10〕に記載のマスキング粒子。
〔12〕 中間層が結合剤、及び/又は流動化剤ないしは滑沢剤を含む、〔10〕又は〔11〕に記載のマスキング粒子。
〔13〕 薬物含有粒子が、酸を含む部分と、炭酸塩を含む部分を別に備えるものである、〔1〕~〔7〕の何れかに記載のマスキング粒子。
〔14〕 薬物含有粒子が核粒子とそれを被覆する中間層からなり、酸と炭酸塩が核粒子と中間層の何れかに別に含まれており、薬物が、核粒子、中間層、又はその両方に含まれている、〔13〕に記載のマスキング粒子。
〔15〕 核粒子が崩壊剤を含む、〔14〕に記載のマスキング粒子。
〔16〕 中間層が結合剤、及び/又は流動化剤ないしは滑沢剤を含む、〔14〕又は〔15〕に記載のマスキング粒子。
〔17〕 薬物含有粒子が核粒子と第1及び第2の中間層からなり、薬物、酸、炭酸塩が、核粒子、第1中間層、第2中間層の何れかに別に含まれている、〔13〕に記載のマスキング粒子。
〔18〕 核粒子が崩壊剤を含む、〔17〕に記載のマスキング粒子。
〔19〕 第1及び第2中間層の何れか一方又は両方が、結合剤、及び/又は流動化剤ないしは滑沢剤を含む、〔17〕又は〔18〕に記載のマスキング粒子。
〔20〕 〔1〕~〔19〕の何れかに記載のマスキング粒子を含んでなる、錠剤、顆粒剤、細粒剤、又は散剤。
〔21〕 〔1〕~〔19〕の何れかに記載のマスキング粒子を含んでなる、口腔内崩壊錠。
〔22〕 薬物を含む粒子に、酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子を水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を制御する方法。
〔1〕 薬物、酸、及び炭酸塩を含む薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したマスキング粒子。
〔2〕 酸が、1種以上の有機酸である、〔1〕に記載のマスキング粒子。
〔3〕 炭酸塩が、1種以上の水溶性炭酸塩である、〔1〕又は〔2〕に記載のマスキング粒子。
〔4〕 酸を、薬物含有粒子の全量に対して0.5~30重量%含む、〔1〕~〔3〕の何れかに記載のマスキング粒子。
〔5〕 炭酸塩を、薬物含有粒子の全量に対して0.5~35重量%含む、〔1〕~〔4〕の何れかに記載のマスキング粒子。
〔6〕 炭酸塩を、酸の1重量部に対して0.1~10重量部含む、〔1〕~〔5〕の何れかに記載のマスキング粒子。
〔7〕 コーティング層の含有量が、薬物含有粒子1重量部に対して、0.005~2重量部である、〔1〕~〔6〕の何れかに記載のマスキング粒子。
〔8〕 薬物含有粒子が、薬物、酸、及び炭酸塩を含む均一粒子である、〔1〕~〔7〕の何れかに記載のマスキング粒子。
〔9〕 薬物含有粒子が、薬物を含む部分と、酸及び炭酸塩を含む部分を別に備えるものである、〔1〕~〔7〕の何れかに記載のマスキング粒子。
〔10〕 薬物含有粒子が、核粒子とそれを被覆する中間層からなり、薬物が核粒子に含まれ酸及び炭酸塩が中間層に含まれているか、又は酸及び炭酸塩が核粒子に含まれ薬物が中間層に含まれている、〔9〕に記載のマスキング粒子。
〔11〕 核粒子が崩壊剤を含む、〔10〕に記載のマスキング粒子。
〔12〕 中間層が結合剤、及び/又は流動化剤ないしは滑沢剤を含む、〔10〕又は〔11〕に記載のマスキング粒子。
〔13〕 薬物含有粒子が、酸を含む部分と、炭酸塩を含む部分を別に備えるものである、〔1〕~〔7〕の何れかに記載のマスキング粒子。
〔14〕 薬物含有粒子が核粒子とそれを被覆する中間層からなり、酸と炭酸塩が核粒子と中間層の何れかに別に含まれており、薬物が、核粒子、中間層、又はその両方に含まれている、〔13〕に記載のマスキング粒子。
〔15〕 核粒子が崩壊剤を含む、〔14〕に記載のマスキング粒子。
〔16〕 中間層が結合剤、及び/又は流動化剤ないしは滑沢剤を含む、〔14〕又は〔15〕に記載のマスキング粒子。
〔17〕 薬物含有粒子が核粒子と第1及び第2の中間層からなり、薬物、酸、炭酸塩が、核粒子、第1中間層、第2中間層の何れかに別に含まれている、〔13〕に記載のマスキング粒子。
〔18〕 核粒子が崩壊剤を含む、〔17〕に記載のマスキング粒子。
〔19〕 第1及び第2中間層の何れか一方又は両方が、結合剤、及び/又は流動化剤ないしは滑沢剤を含む、〔17〕又は〔18〕に記載のマスキング粒子。
〔20〕 〔1〕~〔19〕の何れかに記載のマスキング粒子を含んでなる、錠剤、顆粒剤、細粒剤、又は散剤。
〔21〕 〔1〕~〔19〕の何れかに記載のマスキング粒子を含んでなる、口腔内崩壊錠。
〔22〕 薬物を含む粒子に、酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子を水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を制御する方法。
本発明のマスキング粒子は、薬物を含む粒子が水不溶性高分子を含むコーティング層で被覆されているため、口中では薬物の味を感じないか、又は薬物の味が低減されている。従って、苦みなどの不快な味を有する薬物を含む医薬組成物の製造に好適に使用できる。
また、本発明のマスキング粒子は、一般に薬物の味を口中で感じやすい剤型である顆粒剤、細粒剤、又は散剤として好適に使用することができ、これらの製剤は口中で薬物の味を感じない、又は感じ難いものとなる。
さらに、本発明のマスキング粒子は、錠剤の製造用に用いることができる。本発明のマスキング粒子を用いて製造された錠剤は、口腔内崩壊錠にしても、薬物を含む粒子がコーティングされているため、口中で薬物の味を感じない、又は感じ難い。薬物の味を抑制するために錠剤をコーティングすると一般に口腔内崩壊錠剤にならないが、本発明のマスキング粒子を用いれば、薬物の味が抑制された口腔内崩壊錠剤を製造することができる。
また、本発明のマスキング粒子は、一般に薬物の味を口中で感じやすい剤型である顆粒剤、細粒剤、又は散剤として好適に使用することができ、これらの製剤は口中で薬物の味を感じない、又は感じ難いものとなる。
さらに、本発明のマスキング粒子は、錠剤の製造用に用いることができる。本発明のマスキング粒子を用いて製造された錠剤は、口腔内崩壊錠にしても、薬物を含む粒子がコーティングされているため、口中で薬物の味を感じない、又は感じ難い。薬物の味を抑制するために錠剤をコーティングすると一般に口腔内崩壊錠剤にならないが、本発明のマスキング粒子を用いれば、薬物の味が抑制された口腔内崩壊錠剤を製造することができる。
また、本発明のマスキング粒子は、薬物を含む粒子が水不溶性高分子を含むコーティング層で被覆されているため、口腔内で水分と接することによる薬物の放出が抑制されており、従って、口腔内や咽頭部からの薬物の吸収が抑えられている。このため、口腔内や咽頭部からの薬物の吸収による予期せぬ副作用の発現や、個体間での薬効のバラツキが回避される。
また、本発明のマスキング粒子は、口腔内や咽頭部からの薬物の吸収が抑えられているため、胃溶性製剤や腸溶性製剤の製造に好適に使用できる。
また、本発明のマスキング粒子は、口腔内や咽頭部からの薬物の吸収が抑えられているため、胃溶性製剤や腸溶性製剤の製造に好適に使用できる。
本発明のマスキング粒子は、嚥下後は、消化管内の水分がコーティング層を徐々に浸透することで、内部に水分が浸入し、酸と炭酸塩が速やかに反応し発泡してマスキング粒子が破壊され、薬物が放出される。従って、胃や腸(特に、小腸上部)から、薬物を十分に吸収させることができる。また、胃や腸をターゲットとする薬物も十分に薬効を発揮させることができる。
本発明のマスキング粒子は、水不溶性高分子の種類、コーティング層の厚さ、酸と炭酸塩の種類や量、その他の成分の種類や量、薬物含有粒子の層構成などを調整することで、所望の時間に薬物を放出させることができる。従って、薬物の種類や剤型に応じて、薬物放出抑制時間を任意に制御できる。
また、酸と炭酸塩とは水の存在により速やかに反応して発泡するため、本発明のマスキング粒子は、薬物放出抑制時間を正確に制御できる。このため、薬物や剤型に応じた所望の薬物放出パターンの製剤とすることができる。
また、酸と炭酸塩とは水の存在により速やかに反応して発泡するため、本発明のマスキング粒子は、薬物放出抑制時間を正確に制御できる。このため、薬物や剤型に応じた所望の薬物放出パターンの製剤とすることができる。
以下、本発明を詳細に説明する。
本発明のマスキング粒子は、薬物、酸、及び炭酸塩を含む粒子を、水不溶性高分子を含むコーティング層で被覆した粒子である。本発明のマスキング粒子は、単独で、又は添加物と混合して、錠剤、顆粒剤、細粒剤、散剤などとすることができる。
本発明において、薬物、酸、及び炭酸塩を含む粒状の部分を「薬物含有粒子」と言い、この「薬物含有粒子」を水不溶性高分子を含むコーティング層で被覆したものを「マスキング粒子」と言う。後述するように、薬物、酸、及び炭酸塩を含む粒状の部分(コーティング層を除く部分)は、単一組成の粒子である場合と、中心核及びそれを取り巻く中間層からなる場合とがあるが、何れの場合も、コーティング層を除く部分を「薬物含有粒子」と称する。
本発明のマスキング粒子は、薬物、酸、及び炭酸塩を含む粒子を、水不溶性高分子を含むコーティング層で被覆した粒子である。本発明のマスキング粒子は、単独で、又は添加物と混合して、錠剤、顆粒剤、細粒剤、散剤などとすることができる。
本発明において、薬物、酸、及び炭酸塩を含む粒状の部分を「薬物含有粒子」と言い、この「薬物含有粒子」を水不溶性高分子を含むコーティング層で被覆したものを「マスキング粒子」と言う。後述するように、薬物、酸、及び炭酸塩を含む粒状の部分(コーティング層を除く部分)は、単一組成の粒子である場合と、中心核及びそれを取り巻く中間層からなる場合とがあるが、何れの場合も、コーティング層を除く部分を「薬物含有粒子」と称する。
酸
酸は、炭酸塩との反応により炭酸を生じさせる酸性物質であれば特に限定されず、薬学的に許容される酸性添加物、医薬有効成分も含まれる。通常、炭酸よりもpKa値が小さい酸性物質を用いることができ、有機酸、無機酸、又はそれらの塩が好ましい。有機酸としては、カルボン酸である酢酸、フマル酸、マレイン酸、コハク酸、マロン酸、乳酸、酒石酸、クエン酸、リンゴ酸、アスコルビン酸(ビニル性カルボン酸)、グリコール酸、アジピン酸、カルボキシメチルセルロース;スルホン酸であるトルエンスルホン酸;アミノ酸;グルコノデルタラクトンなどが挙げられる。有機酸塩としては、酒石酸カリウムなどが挙げられる。また、無機酸としては、塩酸、硝酸、硫酸、リン酸などが挙げられる。無機酸塩としては、第一リン酸カルシウムなどが挙げられる。中でも、有機酸が好ましく、カルボン酸がより好ましく、クエン酸、酒石酸、リンゴ酸がさらにより好ましく、クエン酸が特に好ましい。
酸は、水和物であってもよい。
酸は、1種を単独で、又は2種以上を組み合わせて使用できる。
酸は、炭酸塩との反応により炭酸を生じさせる酸性物質であれば特に限定されず、薬学的に許容される酸性添加物、医薬有効成分も含まれる。通常、炭酸よりもpKa値が小さい酸性物質を用いることができ、有機酸、無機酸、又はそれらの塩が好ましい。有機酸としては、カルボン酸である酢酸、フマル酸、マレイン酸、コハク酸、マロン酸、乳酸、酒石酸、クエン酸、リンゴ酸、アスコルビン酸(ビニル性カルボン酸)、グリコール酸、アジピン酸、カルボキシメチルセルロース;スルホン酸であるトルエンスルホン酸;アミノ酸;グルコノデルタラクトンなどが挙げられる。有機酸塩としては、酒石酸カリウムなどが挙げられる。また、無機酸としては、塩酸、硝酸、硫酸、リン酸などが挙げられる。無機酸塩としては、第一リン酸カルシウムなどが挙げられる。中でも、有機酸が好ましく、カルボン酸がより好ましく、クエン酸、酒石酸、リンゴ酸がさらにより好ましく、クエン酸が特に好ましい。
酸は、水和物であってもよい。
酸は、1種を単独で、又は2種以上を組み合わせて使用できる。
酸の含有量は、薬物含有粒子の全量に対して、1重量%以上が好ましく、3重量%以上がより好ましく、5重量%以上がさらにより好ましい。また、35重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらにより好ましい。この範囲であれば、胃や腸において、炭酸塩との反応により速やかにマスキング粒子を破壊させ、薬物を放出させることができる。
炭酸塩
炭酸塩は、薬学的に許容される炭酸塩であればよく、水溶性の炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸アンモニウムなどが挙げられる。また、水不溶性又は水難溶性の炭酸塩としては、炭酸カルシウム、炭酸マグネシウムなどが挙げられる。中でも、水溶性の炭酸塩が好ましく、炭酸水素塩がより好ましく、炭酸水素ナトリウム、炭酸水素カリウムがさらにより好ましい。
炭酸塩は、1種を単独で、又は2種以上を組み合わせて使用できる。
炭酸塩は、薬学的に許容される炭酸塩であればよく、水溶性の炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸アンモニウムなどが挙げられる。また、水不溶性又は水難溶性の炭酸塩としては、炭酸カルシウム、炭酸マグネシウムなどが挙げられる。中でも、水溶性の炭酸塩が好ましく、炭酸水素塩がより好ましく、炭酸水素ナトリウム、炭酸水素カリウムがさらにより好ましい。
炭酸塩は、1種を単独で、又は2種以上を組み合わせて使用できる。
炭酸塩の含有量は、薬物含有粒子の全量に対して、0.1重量%以上が好ましく、3重量%以上がより好ましく、5重量%以上がさらにより好ましい。また、35重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらにより好ましい。この範囲であれば、酸との反応により速やかにマスキング粒子を破壊させ、薬物を放出させることができる。
酸と炭酸塩の含有量比は、酸の1重量部に対して、炭酸塩が0.1重量部以上が好ましく、0.3重量部以上がより好ましく、0.5重量部以上がさらにより好ましい。また、10重量部以下が好ましく、3重量部以下がより好ましく、1.5重量部以下がさらにより好ましい。この範囲であれば、所望の薬物溶出を達成するために十分な発泡を生じさせることができる。
薬物
薬物は、特に限定されない。中でも、苦み、酸味、刺激味などの不快な味を呈する薬物、咽頭部に刺激のある薬物、口腔内や咽頭部から吸収される薬物を好適に使用できる。
薬物として、例えば、高脂血症治療薬(アトルバスタチン、プラバスタチン、シンバスタチン、ロスバスタチンなど)、キノロン系抗菌剤(モキシフロキサシン、ガチフロキサシン、スパルフロキサシン、トスフロキサシン、シタフロキサシン、レボフロキサシン、ロメフロキサシン、シプロフロキサシン、フレロキサシン、ガレノキサシンなど)、マクロライド系抗生物質(クラリスロマイシン、アジスロマイシン、ロキシスロマイシン、エリスロマイシンなど)、非ステロイド性抗炎症薬(アスピリン、メフェナム酸、イブプロフェン、ナプロキセン、ロキソプロフェン、セレコキシブなど)、高血圧治療薬(アムロジピン、ニフェジピン、アジルサルタン、オルメサルタンメドキソミル、イルベサルタン、ロサルタン、カンデサルタンシレキセチル、テルミサルタンなど)、糖尿病治療薬(メトホルミン、ミグリトール、ボグリボース、ナテグリニド、ミチグリニド、ピオグリタゾン、シタグリプチン、ビルダグリプチン、アログリプチン、リナグリプチン、アナグリプチン、サキサグリプチン、テネリグリプチン、イプラグリフロジン、ダパグリフロジン、カナグリフロジン、エンパグリフロジンなど)、血管拡張薬(リマプロスト、ベラプロスト、シルデナフィル、ボセニロン、ヘプロニカート、カリジノゲナーゼ、イソクスプリンなど)、抗うつ薬(エスシタロプラム、デュロキセチン、パロキセチンなど)、抗精神病薬(オランザピン、クエチアピン、クロザピン、アリピプラゾール、リスペリドン、ブロナンセリン、ペロスピロンなど)、抗不安薬(クロチアゼパム、ロラゼパム、ジアゼパムなど)、アルツハイマー型認知症治療薬(ドネペジル、ガランタミン、リバスチグミン、メマンチンなど)、抗てんかん薬(レベチラセタム、ガバペンチン、ラモトリギン、ゾニサミド、カルバマゼピン、フェニトイン、バルプロ酸など)、神経障害性疼痛治療薬(プレガバリン、ミロガバリンなど)、ドパミン作動薬(ガベルゴリン、プラミペキソール、ロピニロール、ブロモクリプチン、ペルコリド、アマンタジンなど)、抗ヒスタミン薬(レボセチリジン、セチリジン、エピナスチン、オロパタジン、ロラタジン、デスロラタジン、ルパタジン、エバスチン、ベポタスチン、ゼラスチン、フェキソフェナジン、ケトチフェン、エメダスチン、オキサトミド、メキタジン、アゼラスチンなど)、ロイコトリエン阻害薬(モンテルカスト、ザフィルルカスト、プランルカストなど)、過活動膀胱治療薬(ソリフェナシン、イミダフェナシン、トルテロジン、プロピベリン、フラボキサート、クロミプラミン、イミプラミン、アミトルプチリン、ミラベグロン、ビベグロンなど)、癌の分子標的治療薬(ボルデゾミブなど)、前立腺肥大症に伴う排尿障害治療薬(シロドシン、クロルマジノン、タムスロシン、ナフトピジルなど)、勃起不全治療薬(タダラフィル、バルデナフィルなど)、不眠症治療薬(ラメルテオン、ゾルピデム、トリアゾラム、ニメタゼパム、クアゼパムなど)、骨粗鬆症治療薬(リセドロン酸ナトリウム、アレンドロン酸など)、痛風・高尿酸血症治療薬(フェブキソスタット、トピロキソスタット、アロプリノールなど)、高リン血症治療薬(炭酸ランタンなど)など、及びこれらの塩、並びにこれらの溶媒和物が挙げられる。
薬物は、特に限定されない。中でも、苦み、酸味、刺激味などの不快な味を呈する薬物、咽頭部に刺激のある薬物、口腔内や咽頭部から吸収される薬物を好適に使用できる。
薬物として、例えば、高脂血症治療薬(アトルバスタチン、プラバスタチン、シンバスタチン、ロスバスタチンなど)、キノロン系抗菌剤(モキシフロキサシン、ガチフロキサシン、スパルフロキサシン、トスフロキサシン、シタフロキサシン、レボフロキサシン、ロメフロキサシン、シプロフロキサシン、フレロキサシン、ガレノキサシンなど)、マクロライド系抗生物質(クラリスロマイシン、アジスロマイシン、ロキシスロマイシン、エリスロマイシンなど)、非ステロイド性抗炎症薬(アスピリン、メフェナム酸、イブプロフェン、ナプロキセン、ロキソプロフェン、セレコキシブなど)、高血圧治療薬(アムロジピン、ニフェジピン、アジルサルタン、オルメサルタンメドキソミル、イルベサルタン、ロサルタン、カンデサルタンシレキセチル、テルミサルタンなど)、糖尿病治療薬(メトホルミン、ミグリトール、ボグリボース、ナテグリニド、ミチグリニド、ピオグリタゾン、シタグリプチン、ビルダグリプチン、アログリプチン、リナグリプチン、アナグリプチン、サキサグリプチン、テネリグリプチン、イプラグリフロジン、ダパグリフロジン、カナグリフロジン、エンパグリフロジンなど)、血管拡張薬(リマプロスト、ベラプロスト、シルデナフィル、ボセニロン、ヘプロニカート、カリジノゲナーゼ、イソクスプリンなど)、抗うつ薬(エスシタロプラム、デュロキセチン、パロキセチンなど)、抗精神病薬(オランザピン、クエチアピン、クロザピン、アリピプラゾール、リスペリドン、ブロナンセリン、ペロスピロンなど)、抗不安薬(クロチアゼパム、ロラゼパム、ジアゼパムなど)、アルツハイマー型認知症治療薬(ドネペジル、ガランタミン、リバスチグミン、メマンチンなど)、抗てんかん薬(レベチラセタム、ガバペンチン、ラモトリギン、ゾニサミド、カルバマゼピン、フェニトイン、バルプロ酸など)、神経障害性疼痛治療薬(プレガバリン、ミロガバリンなど)、ドパミン作動薬(ガベルゴリン、プラミペキソール、ロピニロール、ブロモクリプチン、ペルコリド、アマンタジンなど)、抗ヒスタミン薬(レボセチリジン、セチリジン、エピナスチン、オロパタジン、ロラタジン、デスロラタジン、ルパタジン、エバスチン、ベポタスチン、ゼラスチン、フェキソフェナジン、ケトチフェン、エメダスチン、オキサトミド、メキタジン、アゼラスチンなど)、ロイコトリエン阻害薬(モンテルカスト、ザフィルルカスト、プランルカストなど)、過活動膀胱治療薬(ソリフェナシン、イミダフェナシン、トルテロジン、プロピベリン、フラボキサート、クロミプラミン、イミプラミン、アミトルプチリン、ミラベグロン、ビベグロンなど)、癌の分子標的治療薬(ボルデゾミブなど)、前立腺肥大症に伴う排尿障害治療薬(シロドシン、クロルマジノン、タムスロシン、ナフトピジルなど)、勃起不全治療薬(タダラフィル、バルデナフィルなど)、不眠症治療薬(ラメルテオン、ゾルピデム、トリアゾラム、ニメタゼパム、クアゼパムなど)、骨粗鬆症治療薬(リセドロン酸ナトリウム、アレンドロン酸など)、痛風・高尿酸血症治療薬(フェブキソスタット、トピロキソスタット、アロプリノールなど)、高リン血症治療薬(炭酸ランタンなど)など、及びこれらの塩、並びにこれらの溶媒和物が挙げられる。
薬物の含有量は、薬物の種類により異なるが、マスキング粒子の全量に対して、例えば、90重量%以下とすることが好ましい。薬物含有量の下限値は、薬物により異なるが、マスキング粒子の全量に対して、例えば0.00001重量%程度であり得る。
添加物
本発明のマスキング粒子は、本発明の効果を損なわない範囲で、薬物含有粒子中に、錠剤、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。添加物としては、賦形剤、崩壊剤、結合剤、滑沢剤ないし流動化剤(付着防止剤)、着色剤、香料、甘味剤、保存剤ないしは防腐剤などが挙げられる。添加物は、1種を単独で、又は2種以上を組み合わせて使用できる。
本発明のマスキング粒子は、本発明の効果を損なわない範囲で、薬物含有粒子中に、錠剤、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。添加物としては、賦形剤、崩壊剤、結合剤、滑沢剤ないし流動化剤(付着防止剤)、着色剤、香料、甘味剤、保存剤ないしは防腐剤などが挙げられる。添加物は、1種を単独で、又は2種以上を組み合わせて使用できる。
賦形剤としては、乳糖水和物、白糖、マルトース、果糖、ブドウ糖、トレハロースのような糖類;マンニトール(特に、D-マンニトール)、マルチトール、ソルビトール、キシリトール、エリスリトール、ラクチトールのような糖アルコール;デンプン、アルファー化デンプン、部分アルファー化デンプンのようなデンプン類;結晶セルロースのようなセルロース類;デキストリン;デキストラン;グリセリン脂肪酸エステル;メタケイ酸アルミン酸マグネシウム、合成ヒドロタルサイトのような無機粉体などが挙げられる。
結合剤としては、ポビドン;メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース(ヒプロメロース)、クロスカルメロースナトリウムのようなセルロース類;デンプン;ゼラチン;寒天、アルギン酸、アルギン酸ナトリウム、トラガント、キタンサンガム、アラビアゴム、プルラン、デキストリンのような増粘多糖類;ポリビニルアルコール-ポリエチレングリコール移植片コポリマー;カルボキシビニルポリマー;ポリエチレンオキサイド;コポリビドン;ポリオキシエチレン硬化ヒマシ油;N-イソプロピルアクリルアミド及び/又はアクリルアミドのN位に疎水性を有する基を導入した誘導体を含む高分子;ポリオキシエチレン-ポリオキシプロピレングリコール;ポリビニルアルコール(部分けん化ポリビニルアルコールを含む);塩基性(メタ)アクリレートコポリマー;ポリエチレングリコールなどが挙げられる。
崩壊剤としては、クロスポビドン;カルボキシメチルセルロース(カルメロース)、カルメロースナトリウム、カルメロースカルシウム、低置換度ヒドロキシプロピルセルロース、クロスカルメロースナトリウム、結晶セルロースのようなセルロース類;デンプン、アルファー化デンプン、部分アルファー化デンプン、カルボキシメチルスターチナトリウム、カルボキシスターチナトリウム、ヒドロキシプロピルスターチのようなデンプン類;デキストリン;ケイ酸カルシウム;クエン酸カルシウム;軽質無水ケイ酸などが挙げられる。
滑沢剤ないし流動化剤(付着防止剤)としては、ステアリン酸、ステアリン酸塩(ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛など)、フマル酸ステアリルナトリウム、モノステアリン酸グリセリン、パルミトステアリン酸グリセリン、ラウリル硫酸ナトリウム、ポリエチレングリコール、タルク、グリセリン脂肪酸エステル、ショ糖脂肪酸エステル、酒石酸ナトリウムカリウム、カルナウバロウ、L-ロイシン、ポリエチレングリコール、硬化油、ケイ酸化合物(軽質無水ケイ酸、メタケイ酸アルミン酸マグネシウム、含水二酸化ケイ素、合成ケイ酸アルミニウムなど)、酸化チタンなどが挙げられる。
着色剤としては、黄色三二酸化鉄、三二酸化鉄、酸化チタン、黒酸化鉄、食用タール色素、天然色素(βカロチン、リボフラビンなど)などが挙げられる。
甘味剤としては、スクラロース、マンニトール、ショ糖、アスパルテーム、ステビア、アセスルファムカリウムなどが挙げられる。
保存剤ないしは防腐剤としては、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル、安息香酸、安息香酸ナトリウムなどが挙げられる。
コーティング層
コーティング層は、医薬製剤においてコーティング剤として用いられる水不溶性高分子を含む。本発明において「水不溶性高分子」は、水に全く溶解しないものの他、水難溶性のものも包含する。
コーティング層は、医薬製剤においてコーティング剤として用いられる水不溶性高分子を含む。本発明において「水不溶性高分子」は、水に全く溶解しないものの他、水難溶性のものも包含する。
水不溶性高分子としては、セルロース系コーティング剤(メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルセルロースナトリウム、フタル酸ヒプロメロース、酢酸コハク酸ヒプロメロース、酢酸セルロース、酢酸フタル酸セルロースなど)、ビニル系高分子(ポリビニルアセタールジエチルアミノアセテート、酢酸フタル酸ポリビニルなど)、メタクリレートポリマー又はメタクリル酸ポリマー、ポリシロキサン系コーティング剤(ジメチルポリシロキサン、ジメチルポリシロキサン・二酸化ケイ素混合物など)などが挙げられる。
中でも、メタクリレートポリマー又はメタクリル酸ポリマー、セルロース系コーティング剤(特に、エチルセルロース)が好ましく、メタクリレートポリマー又はメタクリル酸ポリマーがより好ましい。
中でも、メタクリレートポリマー又はメタクリル酸ポリマー、セルロース系コーティング剤(特に、エチルセルロース)が好ましく、メタクリレートポリマー又はメタクリル酸ポリマーがより好ましい。
メタクリレートポリマー又はメタクリル酸ポリマーは、多種の市販品があり、例えば、レーム社のオイドラギッドEシリーズ、オイドラギッドLシリーズ、オイドラギッドSシリーズ、オイドラギッドRシリーズ、オイドラギッドNEシリーズ、オイドラギッドFSシリーズ(登録商標)などが挙げられる。具体的には、アミノアルキルメタクリレートコポリマーE(オイドラギットE100、EPOなど)、メタクリル酸コポリマーLD(オイドラギットL30D-55、L100-55など)、メタクリル酸コポリマーL(オイドラギットL100など)、メタクリル酸コポリマーS(オイドラギットS100など)、アンモニオアルキルメタクリレートコポリマー(オイドラギットRL100、RLPO、RS100、RSPO、RL30D、RS30Dなど)、アクリル酸エチル・メタクリル酸メチルコポリマー(オイドラギットNE30Dなど)などが挙げられる。
水不溶性高分子は、pH非依存性高分子、腸溶性高分子、胃溶性高分子などに分類されるが、本発明では、何れも好適に使用でき、薬物ごとに望ましい放出抑制時間が得られるように選択すればよい。実施例の項目に示す通り、本発明のマスキング粒子は、コーティング層を通して少しずつ水分が浸入することで、酸と炭酸塩が反応して発泡し、マスキング粒子を破壊するため、例えば、腸溶性高分子を使用する場合も、腸まで到達する前に薬物が放出される製剤設計も可能となる。
コーティング層は、本発明の効果を損なわない範囲で、可塑剤、結合剤、流動化剤ないしは滑沢剤(付着防止剤)、着色剤、甘味剤などの添加物を含有することができる。添加物は、1種を単独で、又は2種以上を組み合わせて使用できる。
可塑剤としては、ポリエチレングリコール、プロピレングリコール、グリセリン、トリアセチン(グリセリン三酢酸)のようなグリセリン脂肪酸エステル、流動パラフィン、ソルビタンモノラウレート、モノステアリン、クエン酸トリエチル、クエン酸トリブチル、フタル酸ジエチル、フタル酸ジブチル、セバシン酸ジエチル、セバシン酸ジブチル、ポロキサマー、ポリオキシエチレン硬化ヒマシ油などが挙げられる。
結合剤、流動化剤ないしは滑沢剤(付着防止剤)、着色剤、甘味剤は、薬物含有粒子の添加物として例示したものが挙げられる。
結合剤、流動化剤ないしは滑沢剤(付着防止剤)、着色剤、甘味剤は、薬物含有粒子の添加物として例示したものが挙げられる。
コーティング層の含有量は、薬物含有粒子1重量部に対して、0.01重量部以上が好ましく、0.05重量部以上がより好ましく、0.1重量部以上がさらにより好ましい。また、1重量部以下が好ましく、0.5重量部以下がより好ましく、0.3重量部以下がさらにより好ましい。この範囲であれば、水の浸透速度が適切になり、口腔内や咽頭部での薬物の放出を十分に抑制でき、かつその後は速やかに薬物を放出させることができる。
粒子構造
本発明のマスキング粒子は、薬物、酸、及び炭酸塩を含む薬物含有粒子が水不溶性高分子を含むコーティング層で被覆されていればよく、様々な構造の粒子にすることができる。
本発明のマスキング粒子は、薬物、酸、及び炭酸塩を含む薬物含有粒子が水不溶性高分子を含むコーティング層で被覆されていればよく、様々な構造の粒子にすることができる。
(第1の態様)
マスキング粒子は、例えば、薬物、酸、及び炭酸塩を含む均一な又は単一部分からなる薬物含有粒子をコーティング層で被覆した粒子とすることができる。この態様は、酸と炭酸塩を同じ部分に含むため、コーティング層を通した水の浸入により非常に速やかに発泡し、薬物を放出させることができる。薬物含有粒子は、さらに、錠剤、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。
マスキング粒子は、例えば、薬物、酸、及び炭酸塩を含む均一な又は単一部分からなる薬物含有粒子をコーティング層で被覆した粒子とすることができる。この態様は、酸と炭酸塩を同じ部分に含むため、コーティング層を通した水の浸入により非常に速やかに発泡し、薬物を放出させることができる。薬物含有粒子は、さらに、錠剤、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。
(第2の態様)
また、マスキング粒子は、薬物を含む部分と酸及び炭酸塩を含む部分とを別に備える薬物含有粒子をコーティング層で被覆した粒子とすることもできる。
また、マスキング粒子は、薬物を含む部分と酸及び炭酸塩を含む部分とを別に備える薬物含有粒子をコーティング層で被覆した粒子とすることもできる。
例えば、核粒子とそれを被覆する層(この層は、核粒子とコーティング層との間に存在するため、以下、「中間層」と称することがある)からなる薬物含有粒子をコーティング層で被覆した粒子とし、核粒子に薬物を配合し中間層に酸と炭酸塩を配合するか、又は核粒子に酸と炭酸塩を配合し中間層に薬物を配合したものが挙げられる。
核粒子が薬物を含む場合は、核粒子を、賦形剤などを含む中心核とそれを取り巻く薬物含有層からなるものとすることもできる。これにより、球形の薬物含有粒子を製造し易くなるため、コーティング層の形成が容易になり、また、粒度分布の狭い薬物含有粒子が得られる。
また、核粒子と上記中間層との間に、賦形剤などからなる別の中間層を設けることもできる。
この態様は、酸及び炭酸塩と薬物とを別部分に配合しているため、酸やアルカリに弱い薬物も使用し易い。また、酸と炭酸塩を同じ部分に含むため、コーティング層を通した水の浸入により非常に速やかに発泡し、薬物を放出させることができる。
核粒子が薬物を含む場合は、核粒子を、賦形剤などを含む中心核とそれを取り巻く薬物含有層からなるものとすることもできる。これにより、球形の薬物含有粒子を製造し易くなるため、コーティング層の形成が容易になり、また、粒度分布の狭い薬物含有粒子が得られる。
また、核粒子と上記中間層との間に、賦形剤などからなる別の中間層を設けることもできる。
この態様は、酸及び炭酸塩と薬物とを別部分に配合しているため、酸やアルカリに弱い薬物も使用し易い。また、酸と炭酸塩を同じ部分に含むため、コーティング層を通した水の浸入により非常に速やかに発泡し、薬物を放出させることができる。
この態様でも、核粒子及び中間層は、さらに、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。
中でも、核粒子が崩壊剤を含めば、崩壊剤の吸水性により水を呼び込むため、酸と炭酸塩との反応が起こり易くなる。崩壊剤としては、クロスポビドン;カルボキシメチルセルロース(カルメロース)、カルメロースナトリウム、カルメロースカルシウム、低置換度ヒドロキシプロピルセルロース、結晶セルロースのようなセルロース類が好ましく、低置換度ヒドロキシプロピルセルロースがより好ましい。また、崩壊剤の含有量は、薬物含有粒子の全量に対して、0.5~50重量%程度が好ましい。
中間層は、層形成を容易にするため結合剤を含むことが好ましい。結合剤としては、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース(ヒプロメロース)、ポリエチレングリコールが好ましい。また、結合剤の含有量は、薬物含有粒子の全量に対して、0.1~20重量%程度が好ましい。
また、中間層は、粒子の帯電を抑制して製造工程を円滑にするため、流動化剤ないしは滑沢剤(付着防止剤)を含むことが好ましい。中間層中の流動化剤ないしは滑沢剤の含有量は、薬物含有粒子の全量に対して、0.01~50重量%程度が好ましい。
中でも、核粒子が崩壊剤を含めば、崩壊剤の吸水性により水を呼び込むため、酸と炭酸塩との反応が起こり易くなる。崩壊剤としては、クロスポビドン;カルボキシメチルセルロース(カルメロース)、カルメロースナトリウム、カルメロースカルシウム、低置換度ヒドロキシプロピルセルロース、結晶セルロースのようなセルロース類が好ましく、低置換度ヒドロキシプロピルセルロースがより好ましい。また、崩壊剤の含有量は、薬物含有粒子の全量に対して、0.5~50重量%程度が好ましい。
中間層は、層形成を容易にするため結合剤を含むことが好ましい。結合剤としては、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース(ヒプロメロース)、ポリエチレングリコールが好ましい。また、結合剤の含有量は、薬物含有粒子の全量に対して、0.1~20重量%程度が好ましい。
また、中間層は、粒子の帯電を抑制して製造工程を円滑にするため、流動化剤ないしは滑沢剤(付着防止剤)を含むことが好ましい。中間層中の流動化剤ないしは滑沢剤の含有量は、薬物含有粒子の全量に対して、0.01~50重量%程度が好ましい。
(第3の態様)
また、マスキング粒子は、酸を含む部分と炭酸塩を含む部分とを別に備える薬物含有粒子をコーティング層で被覆した粒子とすることもできる。
また、マスキング粒子は、酸を含む部分と炭酸塩を含む部分とを別に備える薬物含有粒子をコーティング層で被覆した粒子とすることもできる。
酸と炭酸塩を同じ部分に配合した場合、溶解すると発泡が生じるため製造過程で水を使用することができず、製造方法が制限される場合がある。そこで、例えば、核粒子と中間層からなる薬物含有粒子をコーティング層で被覆した粒子状組成物とし、酸と炭酸塩を、核粒子と中間層の何れかに別々に配合することができる。この場合、酸と炭酸塩が別部分に存在するため、核粒子と中間層のそれぞれまたはいずれかを水を用いて形成することができ、特に、中間層材料を水溶解液としてコーティング(中間層形成)に用いることができる。
酸と炭酸塩は、核粒子と中間層の何れに含まれていてもよいが、酸に不安定なコーティング層も使用し易い点などで、核粒子に酸を含み中間層に炭酸塩を含む粒子が好ましい。
薬物は、核粒子と中間層の何れか一方、又は両方に配合すればよい。酸と薬物を別部分に配合すれば、酸に弱い薬物も使用し易く、炭酸塩と薬物を別部分に配合すれば、アルカリに弱い薬物も使用し易い。
酸と炭酸塩は、核粒子と中間層の何れに含まれていてもよいが、酸に不安定なコーティング層も使用し易い点などで、核粒子に酸を含み中間層に炭酸塩を含む粒子が好ましい。
薬物は、核粒子と中間層の何れか一方、又は両方に配合すればよい。酸と薬物を別部分に配合すれば、酸に弱い薬物も使用し易く、炭酸塩と薬物を別部分に配合すれば、アルカリに弱い薬物も使用し易い。
この態様でも、核粒子及び中間層は、さらに、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。核粒子は崩壊剤を含むことが好ましく、中間層は、結合剤や流動化剤ないしは滑沢剤(付着防止剤)を含むことが好ましい。崩壊剤、結合剤、流動化剤ないしは滑沢剤(付着防止剤)の好ましい種類や含有量は、第2の態様の核粒子と中間層について述べた通りである。
第3の態様は、薬物と酸と炭酸塩とを、それぞれ別部分に含むこともできる。この場合、酸と炭酸塩が別部分に存在するため、製造時に水の使用等を制限する必要がなく、また薬物と酸、薬物と炭酸塩とが別部分に存在するため、酸やアルカリに弱い薬物も使用し易い。
例えば、核粒子とそれを被覆する2つの中間層からなる薬物含有粒子をコーティング層で被覆した粒子とし、核粒子、内側の中間層(以下、「第1中間層」ということがある。)、外側の中間層(以下、「第2中間層」ということがある。)の何れかに、薬物、酸、炭酸塩を別々に配合することができる。好ましくは、核粒子が薬物を含み、2つの中間層がそれぞれ酸と炭酸塩を含むことができる。第1中間層、第2中間層の何れに酸と炭酸塩が含まれていても良いが、第1中間層が酸を含み、第2中間層が炭酸塩を含むことが好ましい。さらに、核粒子を、賦形剤などを含む中心核とそれを取り巻く薬物含有層からなるものとすることができる。薬物を含む部分(若しくは層)と酸又は炭酸塩を含む部分(若しくは層)との間に、賦形剤などからなる別の中間層を設けることもできる。この場合、核粒子の外側の層を第1中間層、その外側の層を第2中間層、その外側の層を第3中間層ということがある。
例えば、核粒子とそれを被覆する2つの中間層からなる薬物含有粒子をコーティング層で被覆した粒子とし、核粒子、内側の中間層(以下、「第1中間層」ということがある。)、外側の中間層(以下、「第2中間層」ということがある。)の何れかに、薬物、酸、炭酸塩を別々に配合することができる。好ましくは、核粒子が薬物を含み、2つの中間層がそれぞれ酸と炭酸塩を含むことができる。第1中間層、第2中間層の何れに酸と炭酸塩が含まれていても良いが、第1中間層が酸を含み、第2中間層が炭酸塩を含むことが好ましい。さらに、核粒子を、賦形剤などを含む中心核とそれを取り巻く薬物含有層からなるものとすることができる。薬物を含む部分(若しくは層)と酸又は炭酸塩を含む部分(若しくは層)との間に、賦形剤などからなる別の中間層を設けることもできる。この場合、核粒子の外側の層を第1中間層、その外側の層を第2中間層、その外側の層を第3中間層ということがある。
この態様でも、核粒子と各中間層は、さらに、錠剤、顆粒剤、細粒剤、散剤などに使用される任意の添加物を含むことができる。核粒子は崩壊剤を含むことが好ましく、崩壊剤の好ましい種類や含有量は、第2の態様の核粒子について述べた通りである。また、各中間層は、結合剤や流動化剤ないしは滑沢剤(付着防止剤)を含むことが好ましく、結合剤、流動化剤ないしは滑沢剤(付着防止剤)の好ましい種類は、第2の態様の中間層について述べた通りである。各中間層が結合剤を含む場合の含有量は、薬物含有粒子の全量に対して、総量で0.1~20重量%が好ましい。また、各中間層が流動化剤ないしは滑沢剤(付着防止剤)を含む場合の含有量は、薬物含有粒子の全量に対して、総量で0.01~50重量%が好ましい。
本発明のマスキング粒子は、第1~3の態様の他に、種々の構造の粒子とすることができる。
製造方法
本発明のマスキング粒子において、薬物含有粒子、核粒子、及び賦形剤の中心核は、常法に従い、湿式又は乾式で造粒し、必要に応じて乾燥、整粒することにより製造することができる。湿式造粒法としては、流動層造粒法、撹拌造粒法、転動造粒法、押出造粒法、破砕造粒法、練合造粒法、連続直顆粒化法、複合型流動層造粒法などが挙げられ、乾式造粒法としては、乾式複合造粒法、圧片造粒法、ブリケット造粒法、溶融造粒法などが挙げられる。
また、中間層やコーティング層は、常法に従い、流動層コーティング機、ワースター式流動層コーティング機、遠心流動コーティング機、転動流動コーティング機などの装置を用いて製造することができる。
本発明のマスキング粒子において、薬物含有粒子、核粒子、及び賦形剤の中心核は、常法に従い、湿式又は乾式で造粒し、必要に応じて乾燥、整粒することにより製造することができる。湿式造粒法としては、流動層造粒法、撹拌造粒法、転動造粒法、押出造粒法、破砕造粒法、練合造粒法、連続直顆粒化法、複合型流動層造粒法などが挙げられ、乾式造粒法としては、乾式複合造粒法、圧片造粒法、ブリケット造粒法、溶融造粒法などが挙げられる。
また、中間層やコーティング層は、常法に従い、流動層コーティング機、ワースター式流動層コーティング機、遠心流動コーティング機、転動流動コーティング機などの装置を用いて製造することができる。
性状
薬物、酸、及び炭酸塩を含む薬物含有粒子の形状は、造粒法により異なるが、球形、円柱形、長球形(長楕円体形)などとすることができる。
また、コーティング層で被覆後のマスキング粒子の粒径は、特に限定されないが、D50が50~1000μm程度、中でも100~800μm程度であればよい。また、D50は、50μm以上、100μm以上、200μm以上、300μm以上とすることもでき、1000μm以下、800μm以下、600μm以下、400μm以下とすることもできる。本発明において、D50は、第17改正日本薬局方の粒度測定法のレーザー回折法による粒子径測定法に従い粒度を測定し、算出した値であり、具体的には、実施例の項目に記載の方法で測定した値である。
薬物、酸、及び炭酸塩を含む薬物含有粒子の形状は、造粒法により異なるが、球形、円柱形、長球形(長楕円体形)などとすることができる。
また、コーティング層で被覆後のマスキング粒子の粒径は、特に限定されないが、D50が50~1000μm程度、中でも100~800μm程度であればよい。また、D50は、50μm以上、100μm以上、200μm以上、300μm以上とすることもでき、1000μm以下、800μm以下、600μm以下、400μm以下とすることもできる。本発明において、D50は、第17改正日本薬局方の粒度測定法のレーザー回折法による粒子径測定法に従い粒度を測定し、算出した値であり、具体的には、実施例の項目に記載の方法で測定した値である。
錠剤
本発明のマスキング粒子は錠剤の製造に供することができる。従って、本発明は、本発明のマスキング粒子を用いて製造した錠剤も提供する。錠剤は、例えば、本発明のマスキング粒子をそのまま打錠するか、又は1種又は2種以上の添加物と混合して打錠することにより製造することができる。
本発明のマスキング粒子は、口中で感じる薬物の味がマスキングされているため、口腔内崩壊錠剤の製造に好適に使用できる。口腔内崩壊錠剤の製造方法は種々知られており、当業者であれば、本発明のマスキング粒子と混合する添加物の種類と量などを適宜選択することにより、口腔内崩壊錠剤を製造することができる。
本発明のマスキング粒子と添加物を混合して口腔内崩壊錠を製造する場合、本発明のマスキング粒子の含有量は、口腔内崩壊錠剤の全量に対して、1重量%以上、5重量%以上、又は10重量%以上とすることができる。また、90重量%以下、70重量%以下、又は60重量%以下とすることができる。
本発明のマスキング粒子は錠剤の製造に供することができる。従って、本発明は、本発明のマスキング粒子を用いて製造した錠剤も提供する。錠剤は、例えば、本発明のマスキング粒子をそのまま打錠するか、又は1種又は2種以上の添加物と混合して打錠することにより製造することができる。
本発明のマスキング粒子は、口中で感じる薬物の味がマスキングされているため、口腔内崩壊錠剤の製造に好適に使用できる。口腔内崩壊錠剤の製造方法は種々知られており、当業者であれば、本発明のマスキング粒子と混合する添加物の種類と量などを適宜選択することにより、口腔内崩壊錠剤を製造することができる。
本発明のマスキング粒子と添加物を混合して口腔内崩壊錠を製造する場合、本発明のマスキング粒子の含有量は、口腔内崩壊錠剤の全量に対して、1重量%以上、5重量%以上、又は10重量%以上とすることができる。また、90重量%以下、70重量%以下、又は60重量%以下とすることができる。
薬物溶出率
本発明のマスキング粒子は、薬物の種類によっても異なるが、第17改正日本薬局方の溶出試験法のパドル法に従い、pH6.8の溶出試験液を用いて測定した溶出率が、試験開始後、少なくとも0.5分間、中でも少なくとも1分間、中でも少なくとも1.5分間、中でも少なくとも3分間は、実質的にゼロである(実質的に薬物が溶出しない)ことが好ましい。
また、本発明のマスキング粒子は、薬物放出のラグタイムが0.5分間以上、1分間以上、又は3分間以上であり得る。また、薬物放出のラグタイムは15分間以下、10分間以下、又は8分間以下であり得る。薬物放出のラグタイムは、実施例の項目に記載した方法で測定した値である。
また、本発明のマスキング粒子は、薬物放出速度が、1%/分以上、中でも2%/分以上、中でも10%/分以上、中でも30%/分以上であることが好ましい。また、薬物放出速度は、80%/分以下、70%/分以下、又は60%/分以下であり得る。薬物放出速度は、実施例の項目に記載した方法で測定した値である。
本発明のマスキング粒子は、薬物の種類によっても異なるが、第17改正日本薬局方の溶出試験法のパドル法に従い、pH6.8の溶出試験液を用いて測定した溶出率が、試験開始後、少なくとも0.5分間、中でも少なくとも1分間、中でも少なくとも1.5分間、中でも少なくとも3分間は、実質的にゼロである(実質的に薬物が溶出しない)ことが好ましい。
また、本発明のマスキング粒子は、薬物放出のラグタイムが0.5分間以上、1分間以上、又は3分間以上であり得る。また、薬物放出のラグタイムは15分間以下、10分間以下、又は8分間以下であり得る。薬物放出のラグタイムは、実施例の項目に記載した方法で測定した値である。
また、本発明のマスキング粒子は、薬物放出速度が、1%/分以上、中でも2%/分以上、中でも10%/分以上、中でも30%/分以上であることが好ましい。また、薬物放出速度は、80%/分以下、70%/分以下、又は60%/分以下であり得る。薬物放出速度は、実施例の項目に記載した方法で測定した値である。
薬物溶出制御方法
本発明は、薬物を含む粒子に酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子に水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を一定時間遅らせる方法、即ち、薬物の溶出又は放出を一定時間抑制する方法を包含する。この方法では、薬物含有粒子に含まれる、酸、炭酸塩、及びその他の成分の種類、量、比率;コーティング層の量;コーティング層に含まれる成分の種類、量、比率などを調整することにより、薬物溶出抑制時間を調整することができる。薬物含有粒子に含まれる、酸、炭酸塩、及びその他の成分の種類、量、比率;コーティング層の量;コーティング層に含まれる成分の種類、量、比率などは、本発明のマスキング粒子について述べた通りである。従って、本発明は、薬物を含む粒子に、酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子を水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を制御する方法を包含する。
本発明は、薬物を含む粒子に酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子に水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を一定時間遅らせる方法、即ち、薬物の溶出又は放出を一定時間抑制する方法を包含する。この方法では、薬物含有粒子に含まれる、酸、炭酸塩、及びその他の成分の種類、量、比率;コーティング層の量;コーティング層に含まれる成分の種類、量、比率などを調整することにより、薬物溶出抑制時間を調整することができる。薬物含有粒子に含まれる、酸、炭酸塩、及びその他の成分の種類、量、比率;コーティング層の量;コーティング層に含まれる成分の種類、量、比率などは、本発明のマスキング粒子について述べた通りである。従って、本発明は、薬物を含む粒子に、酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子を水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を制御する方法を包含する。
以下、実施例を挙げて、本発明をより詳細に説明するが、本発明はこれらに限定されない。
(1)試験方法
(溶出試験)
日本薬局方溶出試験法第2法に従い、溶出試験を行った。パドルの回転数を50回転/分に設定し、試験液は、pH6.8のリン酸緩衝液(日本薬局方崩壊試験法第2液)900mLを使用した。レボフロキサシンを250mg含む薬物含有粒子あるいはマスキング粒子あるいは錠剤をベッセルへ投入した。試験時間1、2、3、5、10、15、30、45、90分時点で各ベッセルから10mLずつサンプリングし、紫外可視吸収度測定法にて溶出率を算出した。これを3回繰り返した平均値を平均溶出率として算出した。
(1)試験方法
(溶出試験)
日本薬局方溶出試験法第2法に従い、溶出試験を行った。パドルの回転数を50回転/分に設定し、試験液は、pH6.8のリン酸緩衝液(日本薬局方崩壊試験法第2液)900mLを使用した。レボフロキサシンを250mg含む薬物含有粒子あるいはマスキング粒子あるいは錠剤をベッセルへ投入した。試験時間1、2、3、5、10、15、30、45、90分時点で各ベッセルから10mLずつサンプリングし、紫外可視吸収度測定法にて溶出率を算出した。これを3回繰り返した平均値を平均溶出率として算出した。
(粒度分布測定)
本発明において粒子径は、レーザー回折式粒度分布測定装置(Malvern製)を用いて、体積基準で測定した。
本発明において粒子径は、レーザー回折式粒度分布測定装置(Malvern製)を用いて、体積基準で測定した。
(2)コーティング層の効果
実施例1~5
レボフロキサシン水和物とクエン酸水和物を含む核粒子と、炭酸水素ナトリウムを含む中間層を備えた薬物含有粒子、及びこの薬物含有粒子をコーティングしたマスキング粒子を、下記のようにして製造した。
[核粒子の調製]
レボフロキサシン水和物400g、粉砕したクエン酸水和物(サツマ化工株式会社製、以下同じ)240g、及び低置換度ヒドロキシプロピルセルロース(信越化学工業株式会社製;LHPC31、以下同じ)160gを撹拌混合造粒装置(株式会社パウレック製;バーチカルグラニュレーターFM-VG-05、以下同じ)に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグラン(DALTON製;MG-55-2、以下同じ)を用いて押し出し造粒し、球形整粒機マルメライザー(DALTON製;QJ-230T-2、以下同じ)を用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[中間層用コーティング液(1)の調製]
ヒドロキシプロピルセルロース(日本曹達株式会社製;HPCL、以下同じ)12gを無水エタノール400g(日本アルコール産業株式会社製、以下同じ)に溶解させた液に、タルク(林化成株式会社製;タルカンハヤシ、以下同じ)25g、及び粉砕した炭酸水素ナトリウム(AGC株式会社製、以下同じ)45gを加え、攪拌し、中間層形成用のコーティング液(1)を調製した。
[薬物含有粒子の調製]
得られた核粒子150gを転動流動コーティング装置(株式会社パウレック製;マルチプレックス、以下同じ)に投入し、コーティング液(1)を噴霧し、中間層82gを被覆した薬物含有粒子を得た。
[マスキング用コーティング液(2)の調製]
アミノアルキルメタクリレートコポリマーE(Evonik Nutrition&care GmbH製;オイドラギットE、以下同じ)30gをエタノール270g、精製水30gの混合液に溶解させ、タルク30gを加え、攪拌し、マスキング用のコーティング液(2)を調製した。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層(水不溶性高分子を含むコーティング層をマスキング層という。以下、同様である。)の質量比が6%のものを実施例1、12%のものを実施例2、18%のものを実施例3、24%のものを実施例4、30%のものを実施例5とした。
実施例1~5
レボフロキサシン水和物とクエン酸水和物を含む核粒子と、炭酸水素ナトリウムを含む中間層を備えた薬物含有粒子、及びこの薬物含有粒子をコーティングしたマスキング粒子を、下記のようにして製造した。
[核粒子の調製]
レボフロキサシン水和物400g、粉砕したクエン酸水和物(サツマ化工株式会社製、以下同じ)240g、及び低置換度ヒドロキシプロピルセルロース(信越化学工業株式会社製;LHPC31、以下同じ)160gを撹拌混合造粒装置(株式会社パウレック製;バーチカルグラニュレーターFM-VG-05、以下同じ)に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグラン(DALTON製;MG-55-2、以下同じ)を用いて押し出し造粒し、球形整粒機マルメライザー(DALTON製;QJ-230T-2、以下同じ)を用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[中間層用コーティング液(1)の調製]
ヒドロキシプロピルセルロース(日本曹達株式会社製;HPCL、以下同じ)12gを無水エタノール400g(日本アルコール産業株式会社製、以下同じ)に溶解させた液に、タルク(林化成株式会社製;タルカンハヤシ、以下同じ)25g、及び粉砕した炭酸水素ナトリウム(AGC株式会社製、以下同じ)45gを加え、攪拌し、中間層形成用のコーティング液(1)を調製した。
[薬物含有粒子の調製]
得られた核粒子150gを転動流動コーティング装置(株式会社パウレック製;マルチプレックス、以下同じ)に投入し、コーティング液(1)を噴霧し、中間層82gを被覆した薬物含有粒子を得た。
[マスキング用コーティング液(2)の調製]
アミノアルキルメタクリレートコポリマーE(Evonik Nutrition&care GmbH製;オイドラギットE、以下同じ)30gをエタノール270g、精製水30gの混合液に溶解させ、タルク30gを加え、攪拌し、マスキング用のコーティング液(2)を調製した。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層(水不溶性高分子を含むコーティング層をマスキング層という。以下、同様である。)の質量比が6%のものを実施例1、12%のものを実施例2、18%のものを実施例3、24%のものを実施例4、30%のものを実施例5とした。
比較例1
実施例1~5と同様にして薬物含有粒子を調製し、比較例1とした。
実施例1~5と同様にして薬物含有粒子を調製し、比較例1とした。
実施例1~5、比較例1について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図1に示す。図1の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
比較例1では、発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、薬物放出のラグタイムがなかった。一方、実施例1~5では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、1~5.9分間のラグタイムと、2.3~50.9%/分の速やかな薬物放出が両立された。
比較例1では、発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、薬物放出のラグタイムがなかった。一方、実施例1~5では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、1~5.9分間のラグタイムと、2.3~50.9%/分の速やかな薬物放出が両立された。
薬物放出のラグタイムは、pH6.8での溶出試験において、薬物が1%放出されるまでの時間であり、1%を跨ぐ2点の測定時点から算出した。
薬物放出速度は、pH6.8での溶出試験において、溶出率3~90%の範囲で、溶出率を測定した最初の2点の測定時点から算出した。
薬物放出速度は、pH6.8での溶出試験において、溶出率3~90%の範囲で、溶出率を測定した最初の2点の測定時点から算出した。
(3)酸の効果
比較例2
比較例1において、クエン酸水和物をエリスリトール(物産フードサイセンス製;エリスリトール100M、以下同じ)に変えた他は同様にして薬物含有粒子を調製し、比較例2とした。
比較例3
比較例2の薬物含有粒子190gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。薬物含有粒子の質量に対するマスキング層の質量比は、実施例3と同様に、18%である。
比較例3は、実施例3の核粒子内のクエン酸水和物をエリスリトールに変えた他は実施例3と同じである。
比較例2
比較例1において、クエン酸水和物をエリスリトール(物産フードサイセンス製;エリスリトール100M、以下同じ)に変えた他は同様にして薬物含有粒子を調製し、比較例2とした。
比較例3
比較例2の薬物含有粒子190gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。薬物含有粒子の質量に対するマスキング層の質量比は、実施例3と同様に、18%である。
比較例3は、実施例3の核粒子内のクエン酸水和物をエリスリトールに変えた他は実施例3と同じである。
実施例3のマスキング粒子、比較例2の薬物含有粒子、及び比較例3のマスキング粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図2に示す。図2の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
比較例2は、比較例1と同様に薬物放出は速やかであるが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
比較例3は水不溶性高分子を含むコーティング層によって6.5分間のラグタイムがあるが、発泡による膜破壊が生じないため、緩やかな拡散によって薬物が放出され、その結果、その薬物放出速度が遅く、試験開始90分後にも十分に薬物が溶出しなかった。
薬物放出抑制後に速やかに薬物が放出されるためには、酸が必須であることが分かる。
比較例2は、比較例1と同様に薬物放出は速やかであるが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
比較例3は水不溶性高分子を含むコーティング層によって6.5分間のラグタイムがあるが、発泡による膜破壊が生じないため、緩やかな拡散によって薬物が放出され、その結果、その薬物放出速度が遅く、試験開始90分後にも十分に薬物が溶出しなかった。
薬物放出抑制後に速やかに薬物が放出されるためには、酸が必須であることが分かる。
(4)コーティング層の水不溶性高分子の種類
実施例6、7
[マスキング用コーティング液(3)の調製]
エチルセルロース(THE DOW CHEMICAL製;エトセルスタンダード7プレミアム、以下同じ)40gをエタノール720g、精製水80gの混合液に溶解させ、タルク40gを加え、攪拌し、コーティング液(3)を調製した。
[マスキング粒子の調製]
比較例1の薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(3)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が9%のものを実施例6、12%のものを実施例7とした。
実施例6、7
[マスキング用コーティング液(3)の調製]
エチルセルロース(THE DOW CHEMICAL製;エトセルスタンダード7プレミアム、以下同じ)40gをエタノール720g、精製水80gの混合液に溶解させ、タルク40gを加え、攪拌し、コーティング液(3)を調製した。
[マスキング粒子の調製]
比較例1の薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(3)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が9%のものを実施例6、12%のものを実施例7とした。
実施例6、7のマスキング粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図3に示す。図3の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例6、7では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、1.4~5.4分間のラグタイムと、3.7~5.1%/分の速やかな薬物放出が両立された。
実施例6、7のコーティング層中の水溶性高分子はエチルセルロースであり、実施例1~5のアミノアルキルメタクリレートコポリマーEとは異なる。実施例6、7では、ラグタイム経過後に、実施例1~5に比べて緩やかな薬物放出速度が得られた。
水不溶性高分子の種類に拘わらず、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。また、水不溶性高分子の種類を選択することで、薬物放出抑制時間とその後の薬物放出速度を調整できることが分かる。
実施例6、7では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、1.4~5.4分間のラグタイムと、3.7~5.1%/分の速やかな薬物放出が両立された。
実施例6、7のコーティング層中の水溶性高分子はエチルセルロースであり、実施例1~5のアミノアルキルメタクリレートコポリマーEとは異なる。実施例6、7では、ラグタイム経過後に、実施例1~5に比べて緩やかな薬物放出速度が得られた。
水不溶性高分子の種類に拘わらず、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。また、水不溶性高分子の種類を選択することで、薬物放出抑制時間とその後の薬物放出速度を調整できることが分かる。
(5)酸及び炭酸塩の量
実施例8~11
[核粒子の調製]
レボフロキサシン水和物422.5g、粉砕したクエン酸水和物97.5g、及び低置換度ヒドロキシプロピルセルロース130gを撹拌混合造粒装置に投入し、混合後、撹拌しながら精製水565.5gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層54.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例8、18%のものを実施例9、24%のものを実施例10、30%のものを実施例11とした。
実施例8~11
[核粒子の調製]
レボフロキサシン水和物422.5g、粉砕したクエン酸水和物97.5g、及び低置換度ヒドロキシプロピルセルロース130gを撹拌混合造粒装置に投入し、混合後、撹拌しながら精製水565.5gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層54.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例8、18%のものを実施例9、24%のものを実施例10、30%のものを実施例11とした。
比較例4
実施例8~11と同様にして薬物含有粒子を調製し、比較例4とした。
実施例8~11と同様にして薬物含有粒子を調製し、比較例4とした。
実施例12~15
[核粒子の調製]
レボフロキサシン水和物487.5g、粉砕したクエン酸水和物32.5g、及び低置換度ヒドロキシプロピルセルロース130gを撹拌混合造粒装置に投入し、混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子150gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層13.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子150gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例12、18%のものを実施例13、24%のものを実施例14、30%のものを実施例15とした。
[核粒子の調製]
レボフロキサシン水和物487.5g、粉砕したクエン酸水和物32.5g、及び低置換度ヒドロキシプロピルセルロース130gを撹拌混合造粒装置に投入し、混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子150gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層13.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子150gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例12、18%のものを実施例13、24%のものを実施例14、30%のものを実施例15とした。
比較例5
実施例12~15と同様にして薬物含有粒子を調製し、比較例5とした。
実施例12~15と同様にして薬物含有粒子を調製し、比較例5とした。
実施例8~11のマスキング粒子、比較例4の薬物含有粒子、実施例12~15のマスキング粒子、比較例5の薬物含有粒子について、溶出試験を行った。実施例8~11のマスキング粒子と比較例4の薬物含有粒子のレボフロキサシン水和物の溶出率の推移を図4に示し、実施例12~15のマスキング粒子と比較例5の薬物含有粒子の溶出率の推移を図5に示す。図4、5の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例1~5では、1錠当たりのクエン酸水和物の含有量が153.8mg、炭酸水素ナトリウムの含有量が153.8mgである。これ対して、実施例8~11では、クエン酸水和物の含有量が59.1mg、炭酸水素ナトリウムの含有量が59.1mgと少なく、実施例12~15では、クエン酸水和物の含有量が17.1mg、炭酸水素ナトリウムの含有量が17.1mgとさらに少ない。
比較例4、5では、発泡により薬物放出は速やかであるが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
これに対して、実施例8~11及び実施例12~15では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、実施例8~11では、1~4.2分間のラグタイムと、9.7~34.5%/分の速やかな薬物放出速度が両立された。また、実施例12~15では、1~3.4分間のラグタイムと、3.5~34.3%/分の速やかな薬物放出速度が両立された。
酸及び炭酸塩の広い範囲の配合量で、一定時間の薬物放出抑制とその後の速やかな薬物放出が得られることが分かる。また、酸及び炭酸塩の配合量を調整することで薬物放出抑制時間と薬物放出速度をコントロールできることが分かる。
これに対して、実施例8~11及び実施例12~15では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、実施例8~11では、1~4.2分間のラグタイムと、9.7~34.5%/分の速やかな薬物放出速度が両立された。また、実施例12~15では、1~3.4分間のラグタイムと、3.5~34.3%/分の速やかな薬物放出速度が両立された。
酸及び炭酸塩の広い範囲の配合量で、一定時間の薬物放出抑制とその後の速やかな薬物放出が得られることが分かる。また、酸及び炭酸塩の配合量を調整することで薬物放出抑制時間と薬物放出速度をコントロールできることが分かる。
(6)結合剤の種類
実施例16
[中間層用コーティング液(4)の調製]
ポリエチレングリコール(三洋化成工業株式会社;マクロゴール6000、以下同じ)12gを無水エタノール171gに溶解させた液に、タルク25g、及び粉砕した炭酸水素ナトリウム45gを加え、攪拌し、コーティング液(4)を調製した。
[薬物含有粒子の調製]
実施例1~5及び比較例1と同じ核粒子150gを転動流動コーティング装置に投入し、コーティング液(4)を噴霧し、中間層82gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子190gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。薬物含有粒子に対するマスキング層の質量比は18%とした。
実施例16
[中間層用コーティング液(4)の調製]
ポリエチレングリコール(三洋化成工業株式会社;マクロゴール6000、以下同じ)12gを無水エタノール171gに溶解させた液に、タルク25g、及び粉砕した炭酸水素ナトリウム45gを加え、攪拌し、コーティング液(4)を調製した。
[薬物含有粒子の調製]
実施例1~5及び比較例1と同じ核粒子150gを転動流動コーティング装置に投入し、コーティング液(4)を噴霧し、中間層82gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子190gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。薬物含有粒子に対するマスキング層の質量比は18%とした。
比較例6
実施例16と同様にして薬物含有粒子を調製し、比較例6とした。
実施例16と同様にして薬物含有粒子を調製し、比較例6とした。
実施例16のマスキング粒子、比較例6の薬物含有粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図6に示す。図6の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例16は、実施例3において、中間層のヒドロキシプロピルセルロースをポリエチレングリコールに代えたものである。実施例16では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、2.1分間のラグタイムと、13.2%/分の速やかな薬物放出速度が両立された。結合剤の種類に拘わらず、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。
一方、比較例6は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例16は、実施例3において、中間層のヒドロキシプロピルセルロースをポリエチレングリコールに代えたものである。実施例16では、水不溶性高分子を含むコーティング層によって一定時間水の浸入が防がれた後、内部に水が浸透し、発泡によって内部からの膜破壊により速やかに薬物が放出された。その結果、2.1分間のラグタイムと、13.2%/分の速やかな薬物放出速度が両立された。結合剤の種類に拘わらず、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。
一方、比較例6は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
(7)酸及び炭酸塩を含有する層の変更
実施例17~20
[核粒子の調製]
レボフロキサシン水和物375g、粉砕した炭酸水素ナトリウム225g、及び低置換度ヒドロキシプロピルセルロース150gを撹拌混合造粒装置に投入し、混合後、撹拌しながら精製水525gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[中間層用コーティング液(5)の調製]
ヒドロキシプロピルセルロース16gを無水エタノール960gに溶解させた液に、タルク33.3gおよびクエン酸水和物60gを加え、攪拌し、コーティング液(5)を調製した。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(5)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。薬物含有粒子に対するマスキング層の質量比は30%である。
実施例17~20
[核粒子の調製]
レボフロキサシン水和物375g、粉砕した炭酸水素ナトリウム225g、及び低置換度ヒドロキシプロピルセルロース150gを撹拌混合造粒装置に投入し、混合後、撹拌しながら精製水525gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[中間層用コーティング液(5)の調製]
ヒドロキシプロピルセルロース16gを無水エタノール960gに溶解させた液に、タルク33.3gおよびクエン酸水和物60gを加え、攪拌し、コーティング液(5)を調製した。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(5)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。薬物含有粒子に対するマスキング層の質量比は30%である。
実施例18~20
[マスキング粒子の調製]
実施例17と同じ薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(3)を噴霧し、マスキング粒子を得た。薬物含有粒子の質量に対し、マスキング層の質量比が6%のものが実施例18、12%のものが実施例19、18%のものが実施例20である。
[マスキング粒子の調製]
実施例17と同じ薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(3)を噴霧し、マスキング粒子を得た。薬物含有粒子の質量に対し、マスキング層の質量比が6%のものが実施例18、12%のものが実施例19、18%のものが実施例20である。
比較例7
実施例17~20と同様にして薬物含有粒子を調製し、比較例7とした。
実施例17~20と同様にして薬物含有粒子を調製し、比較例7とした。
実施例17~20のマスキング粒子、比較例7の薬物含有粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図7に示す。図7の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例17~20は、実施例1~16と異なり、核粒子が炭酸水素ナトリウムを含み、中間層がクエン酸水和物を含む。実施例17~20でも、1~5.1分間のラグタイムと、3.4~30.4%/分の速やかな薬物放出速度が両立された。酸と炭酸塩を含有する部分を変えても、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。
一方、比較例7は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例17~20は、実施例1~16と異なり、核粒子が炭酸水素ナトリウムを含み、中間層がクエン酸水和物を含む。実施例17~20でも、1~5.1分間のラグタイムと、3.4~30.4%/分の速やかな薬物放出速度が両立された。酸と炭酸塩を含有する部分を変えても、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。
一方、比較例7は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
(8)崩壊剤の含有量
実施例21
[核粒子の調製]
レボフロキサシン水和物325gおよび粉砕したクエン酸水和物195gおよび低置換度ヒドロキシプロピルセルロース32.5gおよびエリスリトール97.5gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水195gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた上記の核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対するマスキング層の質量比は18重量%とした。
実施例21
[核粒子の調製]
レボフロキサシン水和物325gおよび粉砕したクエン酸水和物195gおよび低置換度ヒドロキシプロピルセルロース32.5gおよびエリスリトール97.5gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水195gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた上記の核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対するマスキング層の質量比は18重量%とした。
比較例8
実施例21と同様にして薬物含有粒子を調製し、比較例8とした。
実施例21と同様にして薬物含有粒子を調製し、比較例8とした。
実施例21のマスキング粒子、比較例8の薬物含有粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図8に示す。図8の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例21は、実施例3において、低置換度ヒドロキシプロピルセルロースの配合量を1/4とし、残余をエリスリトールに置き換えた処方である。実施例21でも、3.1分間のラグタイムと、9.0%/分の速やかな薬物放出速度が両立された。崩壊剤の量が少なくても、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。
一方、比較例8は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例21は、実施例3において、低置換度ヒドロキシプロピルセルロースの配合量を1/4とし、残余をエリスリトールに置き換えた処方である。実施例21でも、3.1分間のラグタイムと、9.0%/分の速やかな薬物放出速度が両立された。崩壊剤の量が少なくても、一定時間の薬物放出抑制とその後の速やかな薬物放出を実現できることが分かる。
一方、比較例8は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
(9)酸と炭酸塩の含有比率
実施例22~24
[核粒子の調製]
レボフロキサシン水和物400gおよび粉砕したクエン酸水和物240gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層54.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が18%のものを実施例22、24%のものを実施例23、30%のものを実施例24とした。
実施例22~24
[核粒子の調製]
レボフロキサシン水和物400gおよび粉砕したクエン酸水和物240gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層54.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が18%のものを実施例22、24%のものを実施例23、30%のものを実施例24とした。
比較例9
実施例22~24と同様にして薬物含有粒子を調製し、比較例9とした。
実施例22~24と同様にして薬物含有粒子を調製し、比較例9とした。
実施例25~27
[核粒子の調製]
レボフロキサシン水和物400gおよび粉砕したクエン酸水和物240gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層18.23gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が18%のものを実施例25、24%のものを実施例26、30%のものを実施例27とした。
[核粒子の調製]
レボフロキサシン水和物400gおよび粉砕したクエン酸水和物240gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層18.23gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が18%のものを実施例25、24%のものを実施例26、30%のものを実施例27とした。
比較例10
実施例25~27と同様にして薬物含有粒子を調製し、比較例10とした。
実施例25~27と同様にして薬物含有粒子を調製し、比較例10とした。
実施例28~30
[核粒子の調製]
レボフロキサシン水和物390gおよび粉砕したクエン酸水和物90gおよび低置換度ヒドロキシプロピルセルロース180gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水480gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例28、18%のものを実施例29、24%のものを実施例30とした。
[核粒子の調製]
レボフロキサシン水和物390gおよび粉砕したクエン酸水和物90gおよび低置換度ヒドロキシプロピルセルロース180gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水480gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例28、18%のものを実施例29、24%のものを実施例30とした。
比較例11
実施例28~30と同様にして薬物含有粒子を調製し、比較例11とした。
実施例28~30と同様にして薬物含有粒子を調製し、比較例11とした。
実施例31~33
[核粒子の調製]
レボフロキサシン水和物390gおよび粉砕したクエン酸水和物90gおよび低置換度ヒドロキシプロピルセルロース180gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水480gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層18.23gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が18%のものを実施例31、24%のものを実施例32、30%のものを実施例33とした。
[核粒子の調製]
レボフロキサシン水和物390gおよび粉砕したクエン酸水和物90gおよび低置換度ヒドロキシプロピルセルロース180gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水480gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層18.23gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が18%のものを実施例31、24%のものを実施例32、30%のものを実施例33とした。
比較例12
実施例31~33と同様にして薬物含有粒子を調製し、比較例12とした。
実施例31~33と同様にして薬物含有粒子を調製し、比較例12とした。
実施例34
[核粒子の調製]
レボフロキサシン水和物600gおよび粉砕したクエン酸水和物40gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比は12%とした。
[核粒子の調製]
レボフロキサシン水和物600gおよび粉砕したクエン酸水和物40gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層109.3gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比は12%とした。
比較例13
実施例34と同様にして薬物含有粒子を調製し、比較例13とした。
実施例34と同様にして薬物含有粒子を調製し、比較例13とした。
実施例35~36
[核粒子の調製]
レボフロキサシン水和物600gおよび粉砕したクエン酸水和物40gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層54.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例35、18%のものを実施例36とした。
[核粒子の調製]
レボフロキサシン水和物600gおよび粉砕したクエン酸水和物40gおよび低置換度ヒドロキシプロピルセルロース160gを撹拌混合造粒装置に投入して混合後、撹拌しながら精製水560gをスプレー噴霧して練合物を得た。
次に、練合物を湿式押し出し造粒機マルチグランを用いて押し出し造粒し、球形整粒機マルメライザーを用いて整粒した。その後、30(500μm)メッシュを通過し、42(355μm)メッシュに残留したものを核粒子とした。
[薬物含有粒子の調製]
得られた核粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層54.7gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が12%のものを実施例35、18%のものを実施例36とした。
比較例14
実施例35~36と同様にして薬物含有粒子を調製し、比較例14とした。
実施例35~36と同様にして薬物含有粒子を調製し、比較例14とした。
実施例22~36のマスキング粒子、比較例9~14の薬物含有粒子について、溶出試験を行った。
レボフロキサシン水和物の溶出率の推移を図9~14に示す。図9は、実施例22~24のマスキング粒子、比較例9の薬物含有粒子の結果であり、図10は、実施例25~27のマスキング粒子、比較例10の薬物含有粒子の結果であり、図11は、実施例28~30のマスキング粒子、比較例11の薬物含有粒子の結果であり、図12は、実施例31~33のマスキング粒子、比較例12の薬物含有粒子の結果であり、図13は、実施例34のマスキング粒子、比較例13の薬物含有粒子の結果であり、図14は、実施例35~36のマスキング粒子、比較例14の薬物含有粒子の結果である。図9~14の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
レボフロキサシン水和物の溶出率の推移を図9~14に示す。図9は、実施例22~24のマスキング粒子、比較例9の薬物含有粒子の結果であり、図10は、実施例25~27のマスキング粒子、比較例10の薬物含有粒子の結果であり、図11は、実施例28~30のマスキング粒子、比較例11の薬物含有粒子の結果であり、図12は、実施例31~33のマスキング粒子、比較例12の薬物含有粒子の結果であり、図13は、実施例34のマスキング粒子、比較例13の薬物含有粒子の結果であり、図14は、実施例35~36のマスキング粒子、比較例14の薬物含有粒子の結果である。図9~14の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例22~24は、実施例3~5において、炭酸水素ナトリウムの配合量を1/2にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例3~5が1重量部であるのに対して、実施例22~24は0.5重量部である。
実施例25~27は、実施例3~5において、炭酸水素ナトリウムの配合量を1/6にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例3~5が1重量部であるのに対して、実施例25~27は0.17重量部である。
実施例28~30は、実施例9~11において、炭酸水素ナトリウムの配合量を2倍にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例9~11が1重量部であるのに対して、実施例28~30は2重量部である。
実施例31~33は、実施例9~11において、炭酸水素ナトリウムの配合量を1/3にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例9~11が1重量部であるのに対して、実施例31~33は0.33重量部である。
実施例34は、実施例12において、炭酸水素ナトリウムの配合量を6倍にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例12が1重量部であるのに対して、実施例34は6重量部である。
実施例35~36は、実施例12~13において、炭酸水素ナトリウムの配合量を3倍にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例12~13が1重量部であるのに対して、実施例35~36は3重量部である。
実施例25~27は、実施例3~5において、炭酸水素ナトリウムの配合量を1/6にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例3~5が1重量部であるのに対して、実施例25~27は0.17重量部である。
実施例28~30は、実施例9~11において、炭酸水素ナトリウムの配合量を2倍にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例9~11が1重量部であるのに対して、実施例28~30は2重量部である。
実施例31~33は、実施例9~11において、炭酸水素ナトリウムの配合量を1/3にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例9~11が1重量部であるのに対して、実施例31~33は0.33重量部である。
実施例34は、実施例12において、炭酸水素ナトリウムの配合量を6倍にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例12が1重量部であるのに対して、実施例34は6重量部である。
実施例35~36は、実施例12~13において、炭酸水素ナトリウムの配合量を3倍にしたものである。即ち、クエン酸水和物1重量部に対する炭酸水素ナトリウムの重量比は、実施例12~13が1重量部であるのに対して、実施例35~36は3重量部である。
実施例22~24では、1.3~2.6分間のラグタイムと、14.8~27.3%/分の速やかな薬物放出速度が両立された(図9)。実施例25~27では、1.1~2.2分間のラグタイムと、10.8~13.3%/分の速やかな薬物放出速度が両立された(図10)。実施例28~30では、1.3~3.1分間のラグタイムと、3.5~14.7%/分の速やかな薬物放出速度が両立された(図11)。実施例31~33では、1.6~1.8分間のラグタイムと、4.1~21.8%/分の速やかな薬物放出速度が両立された(図12)。実施例34では、2.0分間のラグタイムと、7.5%/分の速やかな薬物放出速度が両立された(図13)。実施例35~36では、1.4~2.5分間のラグタイムと、5.2~18.7%/分の速やかな薬物放出速度が両立された(図14)。
酸の1重量部に対して炭酸塩0.17~6重量部という広い範囲で、一定時間の薬物放出抑制時間と速やかな薬物放出が得られた。
一方、比較例9~14は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
酸の1重量部に対して炭酸塩0.17~6重量部という広い範囲で、一定時間の薬物放出抑制時間と速やかな薬物放出が得られた。
一方、比較例9~14は発泡により薬物放出は速やかであったが、水不溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
(10)薬物含有粒子の構造
核粒子と2層の中間層を有する薬物含有粒子
実施例37~39
[コーティング液(6)の調製]
無水エタノール857gにクエン酸水和物60gを加え、攪拌し、コーティング液(6)を調製した。
[中間層I粒子の調製]
比較例2の核粒子200gを転動流動コーティング装置に投入し、コーティング液(6)を噴霧し、中間層I 60gを被覆した中間層I粒子を得た。
[薬物含有粒子の調製]
得られた中間層I粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層II 84.1gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が30%のものを実施例37、36%のものを実施例38、42%のものを実施例39とした。
核粒子と2層の中間層を有する薬物含有粒子
実施例37~39
[コーティング液(6)の調製]
無水エタノール857gにクエン酸水和物60gを加え、攪拌し、コーティング液(6)を調製した。
[中間層I粒子の調製]
比較例2の核粒子200gを転動流動コーティング装置に投入し、コーティング液(6)を噴霧し、中間層I 60gを被覆した中間層I粒子を得た。
[薬物含有粒子の調製]
得られた中間層I粒子200gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層II 84.1gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が30%のものを実施例37、36%のものを実施例38、42%のものを実施例39とした。
比較例15
実施例37~39と同様にして薬物含有粒子を調製し、比較例15とした。
実施例37~39と同様にして薬物含有粒子を調製し、比較例15とした。
実施例37~39のマスキング粒子、比較例15の薬物含有粒子について、溶出試験を行った。
レボフロキサシン水和物の溶出率の推移を図15に示す。図15の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例37~39は、薬物を含む核粒子にクエン酸水和物を含む中間層Iをコーティングし、その上に炭酸水素ナトリウムを含む中間層をコーティングした薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したものである。実施例37~39でも、1.3~2.2分間のラグタイムと、6.0~17.5%/分の速やかな薬物放出速度が両立された。
薬物と酸と炭酸塩を別部分に含む薬物含有粒子を使用する場合も、薬物放出抑制時間と薬物放出速度を適切にコントロールすることができた。この構造のマスキング粒子は、酸やアルカリに不安定な薬物にも好適に使用できるものである。
また、薬物含有粒子に対するコーティング層の含有量比は30~42重量%であり、実施例1~36の6~30重量%に比べて多いが、適切なラグタイムと薬物放出速度が得られた。
レボフロキサシン水和物の溶出率の推移を図15に示す。図15の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例37~39は、薬物を含む核粒子にクエン酸水和物を含む中間層Iをコーティングし、その上に炭酸水素ナトリウムを含む中間層をコーティングした薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したものである。実施例37~39でも、1.3~2.2分間のラグタイムと、6.0~17.5%/分の速やかな薬物放出速度が両立された。
薬物と酸と炭酸塩を別部分に含む薬物含有粒子を使用する場合も、薬物放出抑制時間と薬物放出速度を適切にコントロールすることができた。この構造のマスキング粒子は、酸やアルカリに不安定な薬物にも好適に使用できるものである。
また、薬物含有粒子に対するコーティング層の含有量比は30~42重量%であり、実施例1~36の6~30重量%に比べて多いが、適切なラグタイムと薬物放出速度が得られた。
薬物をコーティングした核粒子と3層の中間層を有する薬物含有粒子
実施例40~42
[核粒子の調製]
D-マンニトール球状顆粒(フロイント産業株式会社;ノンパレル108(100)、以下同じ)1000gの、100(150μm)メッシュを通過し、200(75μm)メッシュに残留したものを核粒子とした。
[コーティング液(7)の調製]
精製水158g及び無水エタノール68gの混合液に、ヒプロメロース(信越化学工業株式会社製;TC-5R、以下同じ)を加え溶解後、レボフロキサシン水和物45gを加え、攪拌し、コーティング液(7)を調製した。
[薬物層粒子の調整]
上記核粒子593.7gを転動流動コーティング装置に投入し、コーティング液(7)を噴霧し、薬物層56.3gを被覆した薬物層粒子を得た。
[コーティング液(8)の調製]
精製水276gにD-マンニトール(ROQUETTE;PEALITOL50C、以下同じ)45gを加え、攪拌し、コーティング液(8)を調製した。
[中間層I粒子の調整]
上記の薬物層粒子150gを転動流動コーティング装置に投入し、コーティング液(8)を噴霧し、中間層I 45gを被覆した中間層I粒子を得た。
[コーティング液(9)の調製]
精製水420gおよび無水エタノール180gの混合液に、クエン酸水和物60gおよびD-マンニトール30gを加え、攪拌し、コーティング液(9)を調製した。
[中間層II粒子の調製]
上記の中間層I粒子125gを転動流動コーティング装置に投入し、コーティング液(9)を噴霧し、中間層II 43.3gを被覆した中間層II粒子を得た。
[薬物含有粒子の調製]
得られた中間層II粒子125gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層III 117.2gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が54%のものを実施例40、66%のものを実施例41、78%のものを実施例42とした。
実施例40~42
[核粒子の調製]
D-マンニトール球状顆粒(フロイント産業株式会社;ノンパレル108(100)、以下同じ)1000gの、100(150μm)メッシュを通過し、200(75μm)メッシュに残留したものを核粒子とした。
[コーティング液(7)の調製]
精製水158g及び無水エタノール68gの混合液に、ヒプロメロース(信越化学工業株式会社製;TC-5R、以下同じ)を加え溶解後、レボフロキサシン水和物45gを加え、攪拌し、コーティング液(7)を調製した。
[薬物層粒子の調整]
上記核粒子593.7gを転動流動コーティング装置に投入し、コーティング液(7)を噴霧し、薬物層56.3gを被覆した薬物層粒子を得た。
[コーティング液(8)の調製]
精製水276gにD-マンニトール(ROQUETTE;PEALITOL50C、以下同じ)45gを加え、攪拌し、コーティング液(8)を調製した。
[中間層I粒子の調整]
上記の薬物層粒子150gを転動流動コーティング装置に投入し、コーティング液(8)を噴霧し、中間層I 45gを被覆した中間層I粒子を得た。
[コーティング液(9)の調製]
精製水420gおよび無水エタノール180gの混合液に、クエン酸水和物60gおよびD-マンニトール30gを加え、攪拌し、コーティング液(9)を調製した。
[中間層II粒子の調製]
上記の中間層I粒子125gを転動流動コーティング装置に投入し、コーティング液(9)を噴霧し、中間層II 43.3gを被覆した中間層II粒子を得た。
[薬物含有粒子の調製]
得られた中間層II粒子125gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層III 117.2gを被覆した薬物含有粒子を得た。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(2)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対し、マスキング層の質量比が54%のものを実施例40、66%のものを実施例41、78%のものを実施例42とした。
比較例16
実施例40~42と同様にして薬物含有粒子を調製し、比較例16とした。
実施例40~42と同様にして薬物含有粒子を調製し、比較例16とした。
実施例40~42のマスキング粒子、比較例16の薬物含有粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図16に示す。図16の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例40~42は、薬物を含有するコーティングを施した賦形剤核粒子に、賦形剤からなる中間層Iをコーティングし、その上にクエン酸水和物を含む中間層IIをコーティングし、その上に炭酸水素ナトリウムを含む中間層IIIをコーティングした薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したものである。実施例40~42でも、1.0~2.0分間のラグタイムと、10.9~27.2%/分の速やかな薬物放出速度が両立された。
薬物含有層と酸含有層や炭酸塩含有層との間に中間層を設けることで、薬物と酸や炭酸塩が全く接触しない薬物含有粒子を使用する場合も、薬物放出抑制時間と薬物放出速度を適切にコントロールすることができた。この構造のマスキング粒子は、酸やアルカリに極めて不安定な薬物にも好適に使用できるものである。
また、薬物含有粒子に対するコーティング層の含有量比は54~78重量%であり、実施例1~36の6~30重量%に比べて非常に多いが、適切なラグタイムと薬物放出速度が得られた。
なお、実施例40~42のマスキング粒子は、実施例1~39に比べて小さい核粒子を用いているため、マスキング粒子も細かくなっている。本技術はマスキング粒子の粒子径によらず薬物放出抑制時間と薬物放出速度を適切にコントロールすることができる。
実施例40~42は、薬物を含有するコーティングを施した賦形剤核粒子に、賦形剤からなる中間層Iをコーティングし、その上にクエン酸水和物を含む中間層IIをコーティングし、その上に炭酸水素ナトリウムを含む中間層IIIをコーティングした薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したものである。実施例40~42でも、1.0~2.0分間のラグタイムと、10.9~27.2%/分の速やかな薬物放出速度が両立された。
薬物含有層と酸含有層や炭酸塩含有層との間に中間層を設けることで、薬物と酸や炭酸塩が全く接触しない薬物含有粒子を使用する場合も、薬物放出抑制時間と薬物放出速度を適切にコントロールすることができた。この構造のマスキング粒子は、酸やアルカリに極めて不安定な薬物にも好適に使用できるものである。
また、薬物含有粒子に対するコーティング層の含有量比は54~78重量%であり、実施例1~36の6~30重量%に比べて非常に多いが、適切なラグタイムと薬物放出速度が得られた。
なお、実施例40~42のマスキング粒子は、実施例1~39に比べて小さい核粒子を用いているため、マスキング粒子も細かくなっている。本技術はマスキング粒子の粒子径によらず薬物放出抑制時間と薬物放出速度を適切にコントロールすることができる。
以上より、薬物、酸、及び炭酸塩を含む薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したマスキング粒子であれば、薬物含有粒子の構成に拘わらず、適切なラグタイムと速やかな薬物放出速度が得られることが分かる。
(11)マスキング粒子を用いた口腔内崩壊錠剤の製造
実施例43
[速崩壊性顆粒の調製]
流動層造粒機にD-マンニトール374.5g、エチルセルロース10.5g、軽質無水ケイ酸5.3gを投入し、トウモロコシデンプン105.5gおよびクロスポピドン31.6gを精製水453.6gに分散した造粒液で造粒し、速崩壊性顆粒を調製した。
[錠剤の調製]
実施例3のマスキング粒子935.6mg、上記の速崩壊性粒子916.79mgを混合後、さらにステアリン酸マグネシウム18.71mgを加えて混合した後、単発式打錠機(市橋精機社;HANDTAB-200)に投入し、16mmの杵を用いて打錠し、錠厚が10.5mmの錠剤を得た。
実施例43
[速崩壊性顆粒の調製]
流動層造粒機にD-マンニトール374.5g、エチルセルロース10.5g、軽質無水ケイ酸5.3gを投入し、トウモロコシデンプン105.5gおよびクロスポピドン31.6gを精製水453.6gに分散した造粒液で造粒し、速崩壊性顆粒を調製した。
[錠剤の調製]
実施例3のマスキング粒子935.6mg、上記の速崩壊性粒子916.79mgを混合後、さらにステアリン酸マグネシウム18.71mgを加えて混合した後、単発式打錠機(市橋精機社;HANDTAB-200)に投入し、16mmの杵を用いて打錠し、錠厚が10.5mmの錠剤を得た。
実施例43の口腔内崩壊錠剤、実施例3のマスキング粒子(比較例1の薬物含有粒子に対して18重量%のマスキング層を被覆した粒子)、及び比較例1の薬物含有粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図17に示す。図17の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例43の錠剤は、実施例3のマスキング粒子とほぼ同じ溶出プロファイルを示した。本発明のマスキング粒子は錠剤製造に用いることができ、得られる錠剤は、口中での薬物放出が抑制されていると共に、その後は速やかに薬物が放出されるものとなることが分かる。
実施例43の錠剤は、実施例3のマスキング粒子とほぼ同じ溶出プロファイルを示した。本発明のマスキング粒子は錠剤製造に用いることができ、得られる錠剤は、口中での薬物放出が抑制されていると共に、その後は速やかに薬物が放出されるものとなることが分かる。
(12)酸の種類・薬物の種類
実施例44
[核粒子の調製]
D-マンニトール球状顆粒1000gの、100(150μm)メッシュを通過し、200(75μm)メッシュに残留したものを核粒子とした。
[薬物層粒子の調製]
上記の核粒子593.7gを転動流動コーティング装置に投入し、コーティング液(7)を噴霧し、薬物層56.3gを被覆した薬物層粒子を得た。
[中間層I粒子の調製]
上記の薬物層粒子150gを転動流動コーティング装置に投入し、コーティング液(8)を噴霧し、中間層I 45gを被覆した中間層I粒子を得た。
[コーティング液(10)の調製]
精製水420gおよび無水エタノール180gの混合液に、コハク酸 (和光純薬株式会社) 60gおよびD-マンニトール30gを加え、攪拌し、コーティング液(10)を調製した。
[中間層II粒子の調製]
上記の中間層I粒子125 gを転動流動コーティング装置に投入し、コーティング液(10)を噴霧し、中間層II 43.3gを被覆した中間層II粒子を得た。
[薬物含有粒子の調製]
上記の中間層II粒子125gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層III 117.2gを被覆した薬物含有粒子を得た。
[コーティング液(11)の調製]
アミノアルキルメタクリレートコポリマーE 30gをエタノール210 g、精製水90 gの混合液に溶解させ、タルク30gを加え、攪拌し、コーティング液(11)を調製した。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(11)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対するマスキング層の質量比は54重量%とした。
実施例44
[核粒子の調製]
D-マンニトール球状顆粒1000gの、100(150μm)メッシュを通過し、200(75μm)メッシュに残留したものを核粒子とした。
[薬物層粒子の調製]
上記の核粒子593.7gを転動流動コーティング装置に投入し、コーティング液(7)を噴霧し、薬物層56.3gを被覆した薬物層粒子を得た。
[中間層I粒子の調製]
上記の薬物層粒子150gを転動流動コーティング装置に投入し、コーティング液(8)を噴霧し、中間層I 45gを被覆した中間層I粒子を得た。
[コーティング液(10)の調製]
精製水420gおよび無水エタノール180gの混合液に、コハク酸 (和光純薬株式会社) 60gおよびD-マンニトール30gを加え、攪拌し、コーティング液(10)を調製した。
[中間層II粒子の調製]
上記の中間層I粒子125 gを転動流動コーティング装置に投入し、コーティング液(10)を噴霧し、中間層II 43.3gを被覆した中間層II粒子を得た。
[薬物含有粒子の調製]
上記の中間層II粒子125gを転動流動コーティング装置に投入し、コーティング液(1)を噴霧し、中間層III 117.2gを被覆した薬物含有粒子を得た。
[コーティング液(11)の調製]
アミノアルキルメタクリレートコポリマーE 30gをエタノール210 g、精製水90 gの混合液に溶解させ、タルク30gを加え、攪拌し、コーティング液(11)を調製した。
[マスキング粒子の調製]
得られた薬物含有粒子200gを転動流動コーティング装置に投入し、コーティング液(11)を噴霧し、マスキング粒子を得た。
薬物含有粒子の質量に対するマスキング層の質量比は54重量%とした。
比較例17
実施例44と同様にして薬物含有粒子を調製し、比較例17とした。
実施例44と同様にして薬物含有粒子を調製し、比較例17とした。
実施例44のマスキング粒子、比較例17の薬物含有粒子について、溶出試験を行った。レボフロキサシン水和物の溶出率の推移を図18に示す。図18の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例44は、薬物を含まない核粒子に薬物層をコーティングし、その上に賦形剤からなる中間層Iをコーティングし、その上に酸を含む中間層IIをコーティングし、その上に炭酸塩を含む中間層IIIをコーティングしたものである。実施例44では1.1分間のラグタイムと22.7%/分の速やかな薬物放出が両立された。一方、比較例17は、水溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例44のマスキング粒子は、実施例42のマスキング粒子において、クエン酸をコハク酸に置き換えたものである。コハク酸はpKaが4.2/5.6であり、pKaが3.1/4.8/6.4のクエン酸より弱い酸であるが、同様の効果が得られた。このように、本技術における酸は、炭酸より強い酸であれば、その種類を限定しない。
また、実施例44のマスキング粒子は、薬物が酸及び炭酸塩と直接接触しないため、酸やアルカリに不安定な薬物に一層有用である。
なお、実施例44のマスキング粒子は、実施例1~39に比べて小さい核粒子を用いているため、マスキング粒子も細かくなっている。本技術はマスキング粒子の粒子径によらず薬物放出抑制時間と薬物放出速度を適切にコントロールすることができる。
実施例44は、薬物を含まない核粒子に薬物層をコーティングし、その上に賦形剤からなる中間層Iをコーティングし、その上に酸を含む中間層IIをコーティングし、その上に炭酸塩を含む中間層IIIをコーティングしたものである。実施例44では1.1分間のラグタイムと22.7%/分の速やかな薬物放出が両立された。一方、比較例17は、水溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例44のマスキング粒子は、実施例42のマスキング粒子において、クエン酸をコハク酸に置き換えたものである。コハク酸はpKaが4.2/5.6であり、pKaが3.1/4.8/6.4のクエン酸より弱い酸であるが、同様の効果が得られた。このように、本技術における酸は、炭酸より強い酸であれば、その種類を限定しない。
また、実施例44のマスキング粒子は、薬物が酸及び炭酸塩と直接接触しないため、酸やアルカリに不安定な薬物に一層有用である。
なお、実施例44のマスキング粒子は、実施例1~39に比べて小さい核粒子を用いているため、マスキング粒子も細かくなっている。本技術はマスキング粒子の粒子径によらず薬物放出抑制時間と薬物放出速度を適切にコントロールすることができる。
実施例45
[核粒子の調製]
D-マンニトール球状顆粒1000gの、100(150μm)メッシュを通過し、200(75μm)メッシュに残留したものを核粒子とした。
[コーティング液(12)の調製]
精製水770g及び無水エタノール330gの混合液に、ヒプロメロースを加え溶解後、ゾルピデム酒石酸塩220 gを加え、攪拌し、コーティング液(12)を調製した。
[薬物層粒子の調製]
上記の核粒子358 gを転動流動コーティング装置に投入し、コーティング液(12)を噴霧し、薬物層275 gを被覆した薬物層粒子を得た。
[コーティング液(13)の調製]
精製水307 gにD-マンニトール15.36 g、粉砕した酒石酸(小堺製薬社製、以下同じ) 30.72 gを加え、攪拌し、コーティング液(13)を調製した。
[中間層I粒子の調製]
上記の薬物層粒子184.3 gを転動流動コーティング装置に投入し、コーティング液(13)を噴霧し、中間層I 46.08 gを被覆した中間層I粒子を得た。
[コーティング液(14)の調製]
精製水338gに、D-マンニトール54 gを加え、攪拌し、コーティング液(14)を調製した。
[中間層II粒子の調製]
上記の中間層I粒子180 gを転動流動コーティング装置に投入し、コーティング液(14)を噴霧し、中間層II 54 gを被覆した中間層II粒子を得た。
[コーティング液(15)の調製]
HPCL 6.7 gを無水エタノール135 gに溶解させた液に、タルク(日本タルク株式会社製;ミクロエース)13.5 gおよび粉砕した炭酸水素ナトリウム24.8 gを加え、攪拌し、コーティング液(15)を調製した。
[薬物含有粒子の調製]
上記の中間層II粒子210 gを転動流動コーティング装置に投入し、コーティング液(15)を噴霧し、中間層III 45 gを被覆した薬物含有粒子を得た。
[コーティング液(16)の調製]
アミノアルキルメタクリレートコポリマーE 92 gをエタノール644 g、精製水276 gの混合液に溶解させ、黄色三二酸化鉄 (癸巳化成株式会社製) 0.92 g、タルク(日本タルク株式会社製;ミクロエース)276 gを加え、攪拌し、コーティング液(16)を調製した。
[マスキング粒子の調製]
得られた薬物含有粒子227.2 gを転動流動コーティング装置に投入し、コーティング液(16)を噴霧し、マスキング粒子を得た。60(250μm)メッシュを通過し、83(180μm)メッシュに残留したものを選択した。
薬物含有粒子の質量に対するマスキング層の質量比は90重量%とした。
[核粒子の調製]
D-マンニトール球状顆粒1000gの、100(150μm)メッシュを通過し、200(75μm)メッシュに残留したものを核粒子とした。
[コーティング液(12)の調製]
精製水770g及び無水エタノール330gの混合液に、ヒプロメロースを加え溶解後、ゾルピデム酒石酸塩220 gを加え、攪拌し、コーティング液(12)を調製した。
[薬物層粒子の調製]
上記の核粒子358 gを転動流動コーティング装置に投入し、コーティング液(12)を噴霧し、薬物層275 gを被覆した薬物層粒子を得た。
[コーティング液(13)の調製]
精製水307 gにD-マンニトール15.36 g、粉砕した酒石酸(小堺製薬社製、以下同じ) 30.72 gを加え、攪拌し、コーティング液(13)を調製した。
[中間層I粒子の調製]
上記の薬物層粒子184.3 gを転動流動コーティング装置に投入し、コーティング液(13)を噴霧し、中間層I 46.08 gを被覆した中間層I粒子を得た。
[コーティング液(14)の調製]
精製水338gに、D-マンニトール54 gを加え、攪拌し、コーティング液(14)を調製した。
[中間層II粒子の調製]
上記の中間層I粒子180 gを転動流動コーティング装置に投入し、コーティング液(14)を噴霧し、中間層II 54 gを被覆した中間層II粒子を得た。
[コーティング液(15)の調製]
HPCL 6.7 gを無水エタノール135 gに溶解させた液に、タルク(日本タルク株式会社製;ミクロエース)13.5 gおよび粉砕した炭酸水素ナトリウム24.8 gを加え、攪拌し、コーティング液(15)を調製した。
[薬物含有粒子の調製]
上記の中間層II粒子210 gを転動流動コーティング装置に投入し、コーティング液(15)を噴霧し、中間層III 45 gを被覆した薬物含有粒子を得た。
[コーティング液(16)の調製]
アミノアルキルメタクリレートコポリマーE 92 gをエタノール644 g、精製水276 gの混合液に溶解させ、黄色三二酸化鉄 (癸巳化成株式会社製) 0.92 g、タルク(日本タルク株式会社製;ミクロエース)276 gを加え、攪拌し、コーティング液(16)を調製した。
[マスキング粒子の調製]
得られた薬物含有粒子227.2 gを転動流動コーティング装置に投入し、コーティング液(16)を噴霧し、マスキング粒子を得た。60(250μm)メッシュを通過し、83(180μm)メッシュに残留したものを選択した。
薬物含有粒子の質量に対するマスキング層の質量比は90重量%とした。
比較例18
実施例45と同様にして薬物含有粒子を調製し、比較例18とした。
実施例45と同様にして薬物含有粒子を調製し、比較例18とした。
実施例45のマスキング粒子、比較例18の薬物含有粒子について、溶出試験を行った。ゾルピデム酒石酸塩の溶出率の推移を図19に示す。図19の上段は試験開始後30分間の結果であり、下段は試験開始後90分間の結果である。
実施例45は、薬物を含まない核粒子に薬物層をコーティングし、その上に酸を含む中間層Iをコーティングし、その上に賦形剤からなる中間層IIをコーティングし、その上に炭酸塩を含む中間層IIIをコーティングしたものである。実施例45では3分間のラグタイムと12.6%/分の速やかな薬物放出が両立された。一方、比較例18は、水溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例45のマスキング粒子は、実施例1~44とは異なり、薬物としてゾルピデム酒石酸塩を含む。薬物の種類に拘わらず、薬物放出抑制時間と薬物放出速度を適切にコントロールできることが分かる。
また、実施例45のマスキング粒子は、酸として、酒石酸を用いている点も、実施例1~44とは異なる。酸の種類に拘わらず、薬物放出抑制時間と薬物放出速度を適切にコントロールできることが分かる。
また、実施例45のマスキング粒子は、薬物含有粒子の質量に対するマスキング層の質量比が90%であり、マスキング層が非常に厚いがこの場合も、薬物放出抑制時間と薬物放出速度を適切にコントロールできた。
実施例45は、薬物を含まない核粒子に薬物層をコーティングし、その上に酸を含む中間層Iをコーティングし、その上に賦形剤からなる中間層IIをコーティングし、その上に炭酸塩を含む中間層IIIをコーティングしたものである。実施例45では3分間のラグタイムと12.6%/分の速やかな薬物放出が両立された。一方、比較例18は、水溶性高分子を含むコーティング層がないため、ラグタイムがなかった。
実施例45のマスキング粒子は、実施例1~44とは異なり、薬物としてゾルピデム酒石酸塩を含む。薬物の種類に拘わらず、薬物放出抑制時間と薬物放出速度を適切にコントロールできることが分かる。
また、実施例45のマスキング粒子は、酸として、酒石酸を用いている点も、実施例1~44とは異なる。酸の種類に拘わらず、薬物放出抑制時間と薬物放出速度を適切にコントロールできることが分かる。
また、実施例45のマスキング粒子は、薬物含有粒子の質量に対するマスキング層の質量比が90%であり、マスキング層が非常に厚いがこの場合も、薬物放出抑制時間と薬物放出速度を適切にコントロールできた。
本発明のマスキング粒子は、服用後に口中では薬物が放出されず、不快な味を有する薬物を含む場合もその味を感じ難いと共に、口腔内や咽頭部からの薬物の吸収が抑えられる。また、嚥下後は、速やかに薬物が放出されるため、消化管内で薬物が十分に吸収される。また、薬物の放出抑制時間を任意、かつ正確に制御できるため、薬物の種類や剤型に応じて適切な製剤とすることができる。
Claims (22)
- 薬物、酸、及び炭酸塩を含む薬物含有粒子を、水不溶性高分子を含むコーティング層で被覆したマスキング粒子。
- 酸が、1種以上の有機酸である、請求項1に記載のマスキング粒子。
- 炭酸塩が、1種以上の水溶性炭酸塩である、請求項1又は2に記載のマスキング粒子。
- 酸を、薬物含有粒子の全量に対して0.5~30重量%含む、請求項1~3の何れかに記載のマスキング粒子。
- 炭酸塩を、薬物含有粒子の全量に対して0.5~35重量%含む、請求項1~4の何れかに記載のマスキング粒子。
- 炭酸塩を、酸の1重量部に対して0.1~10重量部含む、請求項1~5の何れかに記載のマスキング粒子。
- コーティング層の含有量が、薬物含有粒子1重量部に対して、0.005~2重量部である、請求項1~6の何れかに記載のマスキング粒子。
- 薬物含有粒子が、薬物、酸、及び炭酸塩を含む均一粒子である、請求項1~7の何れかに記載のマスキング粒子。
- 薬物含有粒子が、薬物を含む部分と、酸及び炭酸塩を含む部分を別に備えるものである、請求項1~7の何れかに記載のマスキング粒子。
- 薬物含有粒子が、核粒子とそれを被覆する中間層からなり、薬物が核粒子に含まれ酸及び炭酸塩が中間層に含まれているか、又は酸及び炭酸塩が核粒子に含まれ薬物が中間層に含まれている、請求項9に記載のマスキング粒子。
- 核粒子が崩壊剤を含む、請求項10に記載のマスキング粒子。
- 中間層が結合剤、及び/又は流動化剤ないしは滑沢剤を含む、請求項10又は11に記載のマスキング粒子。
- 薬物含有粒子が、酸を含む部分と、炭酸塩を含む部分を別に備えるものである、請求項1~7の何れかに記載のマスキング粒子。
- 薬物含有粒子が核粒子とそれを被覆する中間層からなり、酸と炭酸塩が核粒子と中間層の何れかに別に含まれており、薬物が、核粒子、中間層、又はその両方に含まれている、請求項13に記載のマスキング粒子。
- 核粒子が崩壊剤を含む、請求項14に記載のマスキング粒子。
- 中間層が結合剤、及び/又は流動化剤ないしは滑沢剤を含む、請求項14又は15に記載のマスキング粒子。
- 薬物含有粒子が核粒子と第1及び第2の中間層からなり、薬物、酸、炭酸塩が、核粒子、第1中間層、第2中間層の何れかに別に含まれている、請求項13に記載のマスキング粒子。
- 核粒子が崩壊剤を含む、請求項17に記載のマスキング粒子。
- 第1及び第2中間層の何れか一方又は両方が、結合剤、及び/又は流動化剤ないしは滑沢剤を含む、請求項17又は18に記載のマスキング粒子。
- 請求項1~19の何れかに記載のマスキング粒子を含んでなる、錠剤、顆粒剤、細粒剤、又は散剤。
- 請求項1~19の何れかに記載のマスキング粒子を含んでなる、口腔内崩壊錠。
- 薬物を含む粒子に、酸及び炭酸塩を添加すると共に、薬物、酸、及び炭酸塩を含む薬物含有粒子を水不溶性高分子を含むコーティング層で被覆することにより、薬物含有粒子からの薬物の溶出又は放出を制御する方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20826802.9A EP3984529A4 (en) | 2019-06-17 | 2020-06-10 | TIME-CONTROLLED-ELUTING MASKING PARTICLES AND ORAL PHARMACEUTICAL COMPOSITION CONTAINING THE SAME PARTICLES |
JP2021528149A JPWO2020255837A1 (ja) | 2019-06-17 | 2020-06-10 | |
US17/619,484 US12090233B2 (en) | 2019-06-17 | 2020-06-10 | Timed-elution masking particles and oral pharmaceutical composition containing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019111701 | 2019-06-17 | ||
JP2019-111701 | 2019-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020255837A1 true WO2020255837A1 (ja) | 2020-12-24 |
Family
ID=74040766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022921 WO2020255837A1 (ja) | 2019-06-17 | 2020-06-10 | 時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12090233B2 (ja) |
EP (1) | EP3984529A4 (ja) |
JP (1) | JPWO2020255837A1 (ja) |
WO (1) | WO2020255837A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022124243A1 (ja) * | 2020-12-08 | 2022-06-16 | 東和薬品株式会社 | 時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138150A (ja) * | 1993-05-31 | 1995-05-30 | Ekita Investments Nv | 中に含まれた活性成分を連続の時間で放出できる医薬錠剤 |
JP2000053563A (ja) * | 1998-08-07 | 2000-02-22 | Bayer Yakuhin Ltd | 苦味がマスクされた速放性細粒剤 |
CN1634073A (zh) * | 2004-10-01 | 2005-07-06 | 北京阜康仁生物制药科技有限公司 | 左氧氟沙星或其药用盐的口腔崩解片 |
WO2005105045A1 (ja) * | 2004-04-30 | 2005-11-10 | Astellas Pharma Inc. | 経口投与用時限放出型粒子状医薬組成物及び該組成物を含有する口腔内速崩壊錠 |
JP2008174511A (ja) * | 2007-01-22 | 2008-07-31 | Asakusa Jozai Kenkyusho:Kk | 苦味マスク組成物 |
JP2008231029A (ja) * | 2007-03-20 | 2008-10-02 | Ohara Yakuhin Kogyo Kk | 苦味遮蔽製剤 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998006385A1 (de) | 1996-08-15 | 1998-02-19 | Losan Pharma Gmbh | Gut schluckbare orale arzneiform |
US6139865A (en) * | 1996-10-01 | 2000-10-31 | Eurand America, Inc. | Taste-masked microcapsule compositions and methods of manufacture |
US6767557B2 (en) * | 2001-03-05 | 2004-07-27 | Ortho-Mcneil Pharmaceutical, Inc. | Taste masked pharmaceutical compositions |
-
2020
- 2020-06-10 EP EP20826802.9A patent/EP3984529A4/en active Pending
- 2020-06-10 WO PCT/JP2020/022921 patent/WO2020255837A1/ja unknown
- 2020-06-10 JP JP2021528149A patent/JPWO2020255837A1/ja active Pending
- 2020-06-10 US US17/619,484 patent/US12090233B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138150A (ja) * | 1993-05-31 | 1995-05-30 | Ekita Investments Nv | 中に含まれた活性成分を連続の時間で放出できる医薬錠剤 |
JP2000053563A (ja) * | 1998-08-07 | 2000-02-22 | Bayer Yakuhin Ltd | 苦味がマスクされた速放性細粒剤 |
WO2005105045A1 (ja) * | 2004-04-30 | 2005-11-10 | Astellas Pharma Inc. | 経口投与用時限放出型粒子状医薬組成物及び該組成物を含有する口腔内速崩壊錠 |
JP4277904B2 (ja) | 2004-04-30 | 2009-06-10 | アステラス製薬株式会社 | 経口投与用時限放出型粒子状医薬組成物及び該組成物を含有する口腔内速崩壊錠 |
CN1634073A (zh) * | 2004-10-01 | 2005-07-06 | 北京阜康仁生物制药科技有限公司 | 左氧氟沙星或其药用盐的口腔崩解片 |
JP2008174511A (ja) * | 2007-01-22 | 2008-07-31 | Asakusa Jozai Kenkyusho:Kk | 苦味マスク組成物 |
JP2008231029A (ja) * | 2007-03-20 | 2008-10-02 | Ohara Yakuhin Kogyo Kk | 苦味遮蔽製剤 |
Non-Patent Citations (2)
Title |
---|
"Japanese Pharmacopoeia" |
See also references of EP3984529A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022124243A1 (ja) * | 2020-12-08 | 2022-06-16 | 東和薬品株式会社 | 時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 |
Also Published As
Publication number | Publication date |
---|---|
US12090233B2 (en) | 2024-09-17 |
US20220401373A1 (en) | 2022-12-22 |
JPWO2020255837A1 (ja) | 2020-12-24 |
EP3984529A1 (en) | 2022-04-20 |
EP3984529A4 (en) | 2022-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101752014B1 (ko) | 고용량 및 저용량 약물들의 조합을 포함하는 구강붕해정 조성물 | |
ES2739888T3 (es) | Composiciones y comprimidos farmacéuticos con recubrimiento compresible y métodos de fabricación | |
EP1874273B1 (en) | Gastroresistant pharmaceutical formulations containing rifaximin | |
JP2022003098A (ja) | シロドシンの苦味をマスキングした経口投与製剤 | |
CA2753444A1 (en) | Controlled-release compositions comprising a proton pump inhibitor | |
JP5228359B2 (ja) | 主薬粒子及びその製造方法ならびに口腔内崩壊錠 | |
JP6919119B2 (ja) | 3位が置換されたγ−アミノ酪酸誘導体を含有する圧縮固形医薬組成物。 | |
JP2012240917A (ja) | 製剤化用微粒子とそれを含む製剤 | |
WO2004066924A2 (en) | Novel pharmaceutical formulation containing a proton pump inhibitor and an antacid | |
KR101828630B1 (ko) | 구강 내 붕괴 정제 | |
WO2016051782A1 (ja) | 苦味を有する薬剤の苦味をマスキングした経口投与製剤 | |
CA3194746A1 (en) | Oral delayed burst formulation of low-dose naltrexone or naloxone used for|treating fibromyalgia and long covid | |
WO2020255837A1 (ja) | 時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 | |
JPWO2007010930A1 (ja) | 口腔内崩壊製剤用の薬物含有被覆微粒子及びその製造方法 | |
WO2014171542A1 (ja) | 放出制御製剤 | |
JP2019099567A (ja) | 多層構造を有する粒子状医薬組成物 | |
EP3331502A1 (en) | Controlled release propiverine formulations | |
KR102568681B1 (ko) | 네포팜을 포함하는 경구 붕해 약학 조성물 및 그 제조 방법 | |
EP3251661B1 (en) | Raloxifene sprinkle composition | |
WO2022124243A1 (ja) | 時限式溶出マスキング粒子およびそれを含有する経口医薬組成物 | |
JP5919173B2 (ja) | 徐放性塩酸アンブロキソール口腔内崩壊錠 | |
JP6150564B2 (ja) | 口腔内速崩壊性錠剤 | |
US20080206338A1 (en) | Controlled release formulations of an alpha-adrenergic receptor antagonist | |
JP2007284394A (ja) | 被覆固形製剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20826802 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021528149 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020826802 Country of ref document: EP Effective date: 20220117 |