WO2020253559A1 - 电动泵 - Google Patents

电动泵 Download PDF

Info

Publication number
WO2020253559A1
WO2020253559A1 PCT/CN2020/094809 CN2020094809W WO2020253559A1 WO 2020253559 A1 WO2020253559 A1 WO 2020253559A1 CN 2020094809 W CN2020094809 W CN 2020094809W WO 2020253559 A1 WO2020253559 A1 WO 2020253559A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
channel
projection
area
dividing line
Prior art date
Application number
PCT/CN2020/094809
Other languages
English (en)
French (fr)
Inventor
刘莉莉
叶葳
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to EP20825824.4A priority Critical patent/EP3988789A4/en
Priority to JP2021571333A priority patent/JP7372349B2/ja
Priority to US17/616,268 priority patent/US11976658B2/en
Publication of WO2020253559A1 publication Critical patent/WO2020253559A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0096Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Definitions

  • This application relates to the field of vehicles, in particular to components of vehicle lubrication systems and/or cooling systems.
  • Electric pumps are widely used in vehicle lubrication systems and/or cooling systems, and can well meet market requirements.
  • the electric pump mainly provides the power source for the vehicle's lubrication system and/or cooling system.
  • the electric pump includes the stator assembly.
  • the stator assembly generates heat during operation. The accumulated heat will not be discharged in time to a certain extent, which will affect the performance of the stator assembly. Reduce the service life of the electric pump.
  • the purpose of the present application is to provide an electric pump, which is beneficial to the heat dissipation of the stator assembly, thereby helping to improve the service life of the electric pump.
  • An electric pump includes a pump shaft, a first rotor assembly, a stator assembly, and a second rotor assembly. One end of the pump shaft is fixedly connected to a part of the first rotor assembly, and the other end of the pump shaft is connected to the The second rotor assembly is connected; the electric pump has a first containing portion and a second containing portion, the first containing portion has a first containing cavity, the second containing portion has a second containing cavity, the first rotor The assembly is disposed in the first accommodating cavity, the stator assembly and the second rotor assembly are disposed in the second accommodating cavity, and the first accommodating portion includes a bottom wall that can support the first A rotor assembly; the electric pump includes a first channel, the first channel penetrates the upper and lower surfaces of the bottom wall, the first channel can communicate with the first accommodating cavity and the second accommodating cavity, the first A accommodating cavity can have a working medium in circulation, and at least part of the working medium in the first accommodating cavity can flow into the second accommodating cavity through the first channel
  • the electric pump includes a first channel and a second channel.
  • the first channel can communicate with the first containing cavity and the second containing cavity. At least part of the working medium in the first containing cavity can flow into the second containing cavity through the first channel.
  • the second channel is arranged to penetrate the first end surface of the pump shaft and the second end surface of the pump shaft, and the working medium in the second accommodating cavity can be Leaving the second containing cavity, the outlet of the second channel is closer to the inlet channel than the inlet of the first channel, and the pressure of the working medium at the outlet of the second channel is less than the pressure of the working medium at the inlet of the first channel;
  • the electric pump is also It includes a branch channel, which connects the outflow channel with the second channel; this enables the working medium in the second containing cavity to flow. Since the stator assembly is arranged in the second containing cavity, the flowing working medium can take away the stator assembly Part of the heat can help to dissi
  • FIG. 1 is a schematic cross-sectional structure diagram of the first embodiment of the electric pump of the present application.
  • Figure 2 is a schematic front view of the partial structure of the electric pump in Figure 1 without a pump cover;
  • FIG. 3 is a perspective view of the three-dimensional structure of the first housing in FIG. 1;
  • Figure 4 is a schematic front view of the structure of the first housing in Figure 3;
  • FIG. 5 is a schematic cross-sectional structure view of the first housing in FIG. 4 along the A-A section;
  • Fig. 6 is a schematic front view of the structure formed by orthographic projection of the first rotor assembly in Fig. 1 to the bottom wall in Fig. 4;
  • FIG. 7 is a schematic cross-sectional structure diagram of the second embodiment of the electric pump of the present application.
  • FIG. 8 is a three-dimensional structural diagram of the first housing in FIG. 7 in one direction;
  • Fig. 9 is a schematic front view of the structure of the first housing in Fig. 8;
  • FIG. 10 is a schematic cross-sectional structure diagram of the first housing in FIG. 9 along the B-B section;
  • FIG. 11 is a schematic front view of the structure formed by orthographic projection of the first rotor assembly in FIG. 7 to the bottom wall in FIG. 9;
  • Figure 12 is a three-dimensional schematic diagram of the pump shaft in Figure 1 or Figure 7;
  • Fig. 13 is a perspective view of the three-dimensional structure of the first embodiment of the pump cover in Fig. 1 or Fig. 7;
  • Figure 14 is a schematic front view of the structure of the pump cover in Figure 13;
  • FIG. 15 is a schematic view of the three-dimensional structure of the first embodiment of the pump cover in FIG. 1 or FIG. 7 from another perspective;
  • Figure 16 is a schematic front view of the structure of the pump cover in Figure 15;
  • FIG. 17 is a schematic front view of the structure formed by projecting the first rotor assembly in FIG. 1 or FIG. 7 and the lower end surface of the pump cover in FIG. 16 in the axial direction of the pump;
  • FIG. 18 is a perspective structural diagram of the second embodiment of the pump cover in FIG. 1 or FIG. 7 in one direction;
  • Figure 19 is a schematic front view of the structure of the pump cover in Figure 18.
  • the electric pump in this embodiment can mainly provide flowing power for the working medium of the vehicle lubrication system and/or cooling system, and specifically can provide flowing power for the working medium of the lubrication system and/or cooling system in the vehicle transmission system.
  • the electric pump 100 includes a pump housing, a first rotor assembly 1, a stator assembly 4, a second rotor assembly 2, a pump shaft 3, and an electric control board 5; a first rotor assembly 1, a second rotor assembly 2, a stator The assembly 4 and the electric control board 5 are arranged along the axial direction of the electric pump 100, and the second rotor assembly 2 is located between the first rotor assembly 1 and the electric control board 5; the electric pump 100 has a first housing 80 and a second housing The first containing portion 80 has a first containing cavity 800, the second containing portion 90 has a second containing cavity 900, the first rotor assembly 1 is located in the first containing cavity 800, the stator assembly 4 and the second rotor assembly 2 are located in the first containing cavity 800.
  • the stator assembly 4 is located on the outer periphery of the second rotor assembly 2, the first rotor assembly 1 is close to one end of the pump shaft 3 and connected to the pump shaft 3, and the second rotor assembly 2 is close to the other end of the pump shaft 3 and is connected to the pump shaft
  • the shaft 3 is connected; referring to Figure 1, the stator assembly 4 includes a stator core 41 and a coil 42.
  • the electric control board 5 controls the current through the coil 42 of the stator assembly 4 to change according to a predetermined rule, thereby controlling
  • the stator assembly 4 generates a varying excitation magnetic field.
  • the second rotor assembly 2 rotates under the action of the excitation magnetic field.
  • the second rotor assembly 2 can directly or indirectly drive the first rotor assembly 1 to rotate.
  • the first rotor assembly 1 rotates, the first rotor assembly 1 rotates.
  • the volume of the volume cavity between the rotor assemblies 1 changes, so that the working medium is forced out to the outlet channel to generate flow power.
  • the pump housing includes a pump cover 6, a first housing 7 and a second housing 8.
  • the pump cover 6 is relatively fixedly connected with the first housing 7, and the first housing 7 and the second housing 8; Ground, in this embodiment, the pump cover 6 and the first housing 7 are connected by screws or bolts.
  • the pump cover 6 and the first housing 7 can also be connected in other ways, such as plug-in, snap-on, etc.;
  • the first housing 7 and the second housing 8 are connected by screws or bolts.
  • the first housing 7 and the second housing 8 can also be It is directly fixed and connected by screws or bolts.
  • the structure of the spacer 9 will be changed accordingly.
  • the spacer 9 can be positioned by tightly fitting with the inner peripheral side wall of the first casing 7; 7 and the second housing 8 are connected by screws or bolts to facilitate the disassembly and assembly of the electric pump.
  • the electric control board 5 is arranged in the cavity between the first housing 8 and the spacer 9 In the body, this is also beneficial to the maintenance of the electric control board 5 in the electric pump.
  • first housing 7 and the second housing 8 can also be connected by plugging, snapping, or other connection methods; in addition, in this embodiment,
  • the first housing portion 80 and the second housing portion 90 are formed by the pump housing. Specifically, the first housing portion 80 is formed between the pump cover 6 and the first housing 7, and the first housing 7 and the second housing 8 are The second accommodating portion 90 is formed in the middle.
  • the pump housing may not be included. Instead, other parts other than the pump housing are directly assembled with the gearbox of the automobile. In this case, a partition can be provided to support the first A rotor assembly 1 on the other hand serves as a partition between the first receiving portion 80 and the second receiving portion 90.
  • the first rotor assembly 1 includes a first rotor 11 and a second rotor 12.
  • the first rotor 11 includes a plurality of external teeth
  • the second rotor 12 includes a plurality of internal teeth
  • the electric pump 100 further includes an inlet channel 61 and an outlet channel 62.
  • the inlet channel 61 is used for the inflow of the working medium
  • the outlet channel 62 is used for the outflow of the working medium.
  • the working medium It can enter the volume cavity 801 through the inlet channel 61, and the working medium can leave the volume cavity 801 through the outlet channel 62; in this embodiment, both the inlet channel 61 and the outlet channel 62 are formed on the pump cover 6, of course, when there is no
  • the pump cover 6 is used, components other than the pump cover 6 can be directly assembled with the gearbox of the automobile.
  • the inlet passage 61 and the outlet passage 62 can be correspondingly arranged on the gearbox; see Fig.
  • the volume of the volume cavity formed between the external teeth of at least one first rotor 11 and the internal teeth of the second rotor 12 corresponding to the external teeth will change.
  • the volume of the volume cavity formed between the external teeth of at least one first rotor 11 and the internal teeth of the second rotor 12 corresponding to the external teeth will change It gradually increases to form a partial vacuum.
  • the working medium is sucked into the volume cavity 801 from the inlet passage 61.
  • the first accommodating portion 80 includes a bottom wall 802 that can support the first rotor assembly 1, the first accommodating cavity 800 is located on one side of the bottom wall 802, and the second accommodating cavity 900 is located on the other side of the bottom wall 802.
  • Side; the electric pump 100 also includes a first channel 10, the first channel 10 penetrates the upper and lower surfaces of the bottom wall 802, the first channel 10 can communicate with the first containing cavity 800 and the second containing cavity 900, the first containing cavity 800 can work The medium circulates, at least part of the working medium in the first accommodating cavity 800 can flow into the second accommodating cavity 900 through the first channel 10 and contact with at least part of the stator assembly 4 in the second accommodating cavity 900;
  • the electric pump 100 also includes a second The channel 20 and the second channel 20 are set to penetrate the first end surface of the pump shaft 3 and the second end surface of the pump shaft 3; the electric pump 100 further includes a branch channel 64, which communicates with the outflow channel 62 and passes through the branch channel.
  • the passage 64 makes the second passage 20 communicate with the outflow passage 62, and the working medium in the second accommodating cavity 900 can leave the second accommodating cavity 900 through the second passage 20; the outlet 201 of the second passage 20 is larger than that of the first passage 10.
  • the inlet 101 is closer to the inlet channel 61, and the pressure of the working medium at the outlet 201 of the second channel 20 is less than the pressure of the working medium at the inlet 101 of the first channel 10; A pressure difference is formed at the outlet of the second channel 20.
  • the working medium in the second containing chamber 900 can flow toward the outlet 201 of the second channel 20.
  • the flowing working medium can take away at least part of the heat of the stator assembly 4, thereby facilitating the heat dissipation of the stator assembly 4 and thereby improving the service life of the electric pump; Please refer to the following for a detailed description of the outflow channel 62" and the "branch channel 64".
  • the first housing 7 further includes a pump shaft support portion 72, the pump shaft support portion 72 and the bottom wall 802 are integrally formed, the pump shaft support portion 72 from the lower surface of the bottom wall 802 away from the lower surface of the bottom wall 802 direction
  • the pump shaft 3 passes through the pump shaft support portion 72, and the second passage 20 communicates with the second accommodating cavity 900 and the branch passage 64; this arrangement of the second passage 20 on the pump shaft 3 has a relatively simple structure.
  • Figure 1 shows the flow direction of the working medium.
  • the working medium has two flow directions.
  • the thick dashed line in Figure 1 is the first flow direction
  • the working medium flows from the inlet passage 61 into the volume cavity between the first rotor assemblies 1, and then the working medium flows out of the volume cavity from the outlet passage 62; in the second flow direction , Part of the working medium entering the volume cavity between the first rotor assemblies 1 flows from the first channel 10 to the second containing cavity 900, and then the working medium in the second containing cavity 900 flows out from the second channel 20 to the branch channel 64 , And then flow out from the branch channel 64 to the outflow channel 62; in this embodiment, the inflow direction of the working medium is the vertical direction, and the outflow direction of the working medium is the horizontal direction, where “vertical direction” and “horizontal direction” “Direction” is the direction when the electric pump is placed in the state shown in Figure 1.
  • FIG. 1 is a schematic diagram of the structure of the first embodiment of the electric pump in the present invention
  • FIG. 3 to FIG. 5 are schematic diagrams of the structure of the first housing in FIG. 1
  • a volume cavity can be formed between the external teeth of the first rotor 11 and the internal teeth of the second rotor 12.
  • the volume cavity is divided into a first area 101 and a second area 102, in order to better distinguish the first
  • the area 101 and the second area 102 see FIG. 6, the first area 101 and the second area 102 are distinguished by two different hatchings respectively.
  • the first rotor assembly rotates in a counterclockwise direction. The "counterclockwise" of the electric pump without the cross-section is viewed from the top view when the electric pump is placed in the state shown in Figure 1.
  • the working medium is It is sucked into the first area 101 from the inlet passage 61; in the second area 102, along the rotation direction of the first rotor assembly 1, an external tooth of the first rotor 11 and a second corresponding to the external tooth
  • the volume of the volume cavity formed between the inner teeth of the rotor 12 will gradually decrease, so that the working medium 102 is squeezed in the second area, and the pressure of the working medium in the second area is gradually increased; see figure 6.
  • Orthographic projection of the first rotor assembly 1 to the bottom wall 802 of the first accommodating part, at least part of the projection 10' of the first channel is located in the second area 102, and in this embodiment, the pressure in the second area 102 is greater than The pressure in the second accommodating cavity 900 in FIG.
  • the working medium makes the working medium to be flowed into the second accommodating cavity 900 in FIG. 1 at a relatively high pressure place.
  • the working medium flows from a place with high pressure to a place with low pressure
  • at least part of the working medium in the first accommodating cavity 800 can flow into the second accommodating cavity 900 through the first channel 10;
  • the cross-section of the first channel 10 is circular
  • the first channel 10 may also be in a square hole shape or other closed patterns.
  • the first rotor assembly 1 is orthographically projected to the bottom wall 802 of the first accommodating part.
  • a first dividing line L1 is defined.
  • An external tooth of the first rotor 11 meshes with an internal tooth of the second rotor 12 to form a first meshing point A.
  • the first dividing line L1 is the line connecting the first meshing point A and the center O of the first rotor 11, which defines The second demarcation line L2.
  • another external tooth of the first rotor 11 meshes with another internal tooth of the second rotor 12 to form a second meshing point B.
  • the second demarcation line L2 is the second The line connecting the meshing point B and the center O of the first rotor 11, the first dividing line L1 and the second dividing line L2 are the dividing lines of the first area 101 and the second area 102, and the first dividing line L1 is taken as the first area The dividing line between the end of the first area 101 and the beginning of the second area 102, and the second dividing line L2 is used as the dividing line between the beginning of the first area 101 and the end of the second area 102.
  • start and end of the first region 101 refer to the start and the end in the direction of rotation of the first rotor 1, where "the start of the second region 102" and “the second region
  • end of 102 refers to the beginning and the end of the rotation direction of the first rotor 1.
  • the first rotor assembly 1 rotates in a counterclockwise direction.
  • the electric pump without cross-section is viewed from a top view when it is placed in the state shown in Figure 1; in this embodiment, the projection 10' of the first channel is set closer to the second boundary L2 than the first boundary L1, because As the first rotor assembly 1 rotates, the pressure of the working medium in the second area 102 gradually increases, so that the pressure of the working medium relatively close to the second boundary line L2 is greater than that of the working medium relatively close to the first boundary line L1 In other words, along the counterclockwise direction, from the first demarcation line L1 to the second demarcation line L2, the pressure of the working medium in the second area 102 gradually increases, and the projection 10' of the first channel is relative to the first The boundary line L1 is set closer to the second boundary line L2, which can relatively increase the pressure difference of the working medium entering the second containing chamber 900, so that the working medium can effectively flow into the second containing chamber 900, and the working medium
  • the stator assembly 4 in the two accommodating cavities 900 is in contact, thereby facilitating the heat dis
  • FIG. 7 is a schematic diagram of the structure of the second embodiment of the electric pump in this application
  • FIG. 8 to FIG. 10 are schematic diagrams of the structure of the first housing in FIG.
  • a volume cavity can be formed between the external teeth of the first rotor 11 and the internal teeth of the second rotor 12.
  • the volume cavity is divided into a first area 101 and a second area 102, in order to better distinguish it in FIG. 11
  • the first area 101 and the second area 102 see FIG. 11, the first area 101 and the second area 102 are distinguished by two different hatchings respectively.
  • the first rotor assembly rotates in a counterclockwise direction , “Counterclockwise” here means that the electric pump without cross-section is viewed from a top view when it is placed in the state shown in Figure 1.
  • the first rotor 11 In the first area 101, along the rotation direction of the first rotor assembly 1, the first rotor 11 The volume of the volume cavity formed between one of the external teeth and the internal teeth of the second rotor 12 corresponding to the external teeth will gradually increase, so that a partial vacuum can be formed in the first area 101, in conjunction with Figure 7, at this time work
  • the medium is sucked into the first area 101 from the inlet passage 61; in the second area 102, along the rotation direction of the first rotor assembly 1, an external tooth of the first rotor 11 and the corresponding external tooth
  • the volume of the volume cavity formed between the inner teeth of the second rotor 12 will gradually decrease, so that the working medium is squeezed in the second region 102, and the pressure of the working medium in the second region 102 is gradually increased.
  • the first rotor assembly 1 is orthographically projected to the bottom wall 802a of the first accommodating portion, in the projection of the first rotor assembly 1, the first boundary line L1 is defined, at the first boundary line L1 , An external tooth of the first rotor 11 meshes with an internal tooth of the second rotor 12 to form a first meshing point A, and the first dividing line L1 is the line connecting the first meshing point A and the center O of the first rotor 11, A second demarcation line L2 is defined. At the second demarcation line L2, another external tooth of the first rotor 11 meshes with another internal tooth of the second rotor 12 to form a second meshing point B.
  • the second demarcation line L2 is the first The line connecting the two meshing points B and the center O of the first rotor 11, the first dividing line L1 and the second dividing line L2 are the dividing lines of the first area 101 and the second area 102, where the first dividing line L1 serves as the first The dividing line between the end of the area 101 and the beginning of the second area 102, the second dividing line L2 is used as the dividing line between the beginning of the first area 101 and the end of the second area 102, here "the first area 101 "The beginning of the first zone” and “the end of the first zone 101” refer to the beginning and end of the first rotor 1 in the direction of rotation, where "the beginning of the second zone 102" and “the second zone
  • the term “end of area 102” refers to the beginning and the end of the rotation direction of the first rotor 1.
  • the first rotor assembly 1 rotates in a counterclockwise direction.
  • the “hour hand” refers to the electric pump without cross-section when
  • the bottom wall 802a has a first groove 71, the first groove 71 is recessed from the upper surface of the bottom wall 802a to the lower surface of the bottom wall 802a, the first groove 71 does not penetrate the bottom of the bottom wall 802a
  • the first channel 10a is located in the first groove 71, and the first channel 10a penetrates the bottom surface of the first groove 71 and the lower surface of the bottom wall 802a;
  • the first rotor assembly 1 is directed to the bottom wall 802a orthographic projection, at least part of the second area 102 is located in the projection of the first groove 71; by setting the first groove 71, part of the working medium can be located in the first groove 71 during the operation of the electric pump, so that An oil film is formed between the first rotor assembly and the bottom wall 802a, thereby helping to reduce the friction between the first rotor assembly and the bottom wall 802a during rotation, thereby helping to reduce noise caused by friction;
  • this embodiment in this embodiment
  • the first groove 71 includes a first head 711 and a first tail 712, when the electric pump is working, along the rotation direction of the first rotor assembly, in the second area 102, the working medium
  • the first head 711 flows to the first tail 712.
  • the first rotor assembly 1 is orthographically projected to the bottom wall 802a of the first receiving part, and the projection 711' of the first head is closer to the first part than the second dividing line L2.
  • a dividing line L1 the projection 712' of the first tail is closer to the second dividing line L2 than the first dividing line L1.
  • the projection 711' of the first head and the first dividing line L1 can also overlap, and the projection of the first tail
  • the projection 712' and the second demarcation line L2 can also overlap.
  • the "coincidence" here refers to the theoretical overlap. However, there may be a coincidence error in actual processing. All offsets within the processing error are within the protection scope of this application.
  • the first channel 10a is closer to the first tail 712 relative to the first head 711; as the first rotor assembly 1 rotates, the pressure of the working medium in the second region 102 gradually Increase, that is, in the counterclockwise direction, from the first head 711 to the first tail 712, the pressure of the working medium gradually increases, and the first channel 10a is closer to the first tail 712 relative to the first head 711 In this way, the pressure difference of the working medium entering the second accommodating cavity 900 in FIG. 7 can be relatively increased, so that the working medium can effectively flow into the second accommodating cavity 900 in FIG.
  • the inner stator components are in contact, thereby facilitating the heat dissipation of the stator components.
  • the first groove 71 further includes a first side surface 713 and a second side surface 714.
  • the first side surface 713 is closer to the center axis of the first rotor 11 than the second side surface 714, and the first head 711 is located on the second side.
  • One end of one side surface 713 and one end of the second side surface 714, the first tail portion 712 is located at the other end of the first side surface 713 and the other end of the second side surface 714; see FIGS.
  • the first side surface 713 is larger than the first rotor 11
  • the tooth bottom of the external tooth is closer to the central axis of the first rotor 11, and the second side surface 714 is closer to the peripheral side wall of the first receiving portion 80 than the tooth bottom of the internal tooth of the second rotor 12, or the first rotor assembly 1 is directed toward the second rotor.
  • An orthographic projection of the bottom wall 802a of a receiving part, the projection 713' of the first side surface is tangent to the projection of the tooth bottom of the outer teeth of the first rotor 11, and the projection 714' of the second side surface is the same as the projection of the tooth bottom of the internal teeth of the second rotor 12.
  • the “tangency” here refers to the theoretical tangency, and there may be errors in the actual processing or assembly of the parts. All offsets within the processing error and assembly error range are within the protection scope of this application; see 8 and 9, the minimum distance between the outer peripheral edge of the first channel 10a and the first side surface 713 is greater than or equal to 0.2 mm, and the minimum distance between the outer peripheral edge of the first channel 10a and the second side surface 714 is greater than or equal to 0.2 mm; In this way, the first channel 10a will not damage the first side surface 713 and the second side surface 714; in this embodiment, the first side surface 713 and the second side surface 714 are arcuate, and the first side surface 713 and the second side surface 714 The minimum distance from the first head 711 to the first tail 712 gradually decreases.
  • the first side surface 713 and the second side surface 714 are smooth, that is, the first side surface 713 and the second side surface 714 are not provided with protrusions.
  • the above-mentioned "the minimum distance between the first side surface 713 and the second side surface 714" refers to the minimum distance between the smooth surface of the first side surface 713 and the smooth surface of the second side surface 714;
  • the first housing 7a is provided with a first groove 71, at least a part of the second area 102 is located in the first groove 71, and the first channel 10a is provided in In the first groove 71, and the first channel 10a penetrates the bottom surface of the first groove 71 and the lower surface of the bottom wall 802a of the first accommodating part; in this way, the first groove 71 is provided to enable the electric pump to have Part of the working medium is located in the first groove 71, so that an oil film can be formed between the first rotor assembly and the bottom wall 802a, thereby helping to reduce the friction between the first rotor assembly and the bottom wall 802a during rotation. Therefore, it is beneficial to reduce the noise caused by friction; other features of the electric pump in this embodiment can be referred to the first embodiment of the electric pump, which will not be repeated here.
  • the second passage 20 is set to penetrate through the second passage of the pump shaft 20.
  • the cross section of the second channel 20 is in the shape of a round hole.
  • the cross section of the second channel 20 can also be a square hole or other shapes or the second channel.
  • 20 can also be connected to the outer circumferential surface of the pump shaft 20.
  • the second passage 20 is equivalent to an opening along the radial direction of the pump shaft 3; specifically, in this embodiment, the center axis of the second passage 20 and the center of the pump shaft 3 The axes coincide.
  • the “coincidence” here refers to the theoretical coincidence. However, there may be coincidence errors in actual processing. All the offsets within the processing errors are within the protection scope of this application; combined with Figure 1, Figure 7 and Figures 10.
  • the aperture of the first channel 10, 10a is less than or equal to the aperture of the second channel 20.
  • the ratio of the aperture of the first channel 10, 10a to the aperture of the second channel 20 is greater than or equal to 1/5 and less than It is equal to 1, so that on the one hand, the flow rate of the working medium in the second channel 20 in the second containing cavity 900 can be relatively reduced, which is beneficial to relatively prolong the heat exchange time between the stator assembly and the working medium, and thus is beneficial to the stator assembly.
  • Heat dissipation since the heat exchange time between the stator assembly and the working medium is relatively prolonged, this is equivalent to prolonging the residence time of the working medium in the second accommodating cavity.
  • the flow rate of the working medium in the second accommodating cavity 900 in turn is beneficial to reduce the flow loss of the working medium in the first accommodating cavity 800, which in turn is beneficial to improve pump efficiency.
  • the second channel 20 communicates with the second accommodating cavity 900 and the branch channel 64, and the branch channel 64 communicates with the outlet channel 62; in this embodiment, the outlet channel 62 and the branch channel 64 are located On the pump cover 6, the outlet channel 62 and the branch channel 64 will be described in detail below.
  • Figs. 13 to 17 are schematic structural diagrams of the first embodiment of the pump cover in Figs. 1 and 7. The first embodiment of the pump cover will be described in detail below.
  • the inlet channel 61, the outlet channel 62, and the branch channel 64 are all formed on the pump cover 6.
  • the inlet channel 61 penetrates the upper and lower end surfaces of the pump cover 6, and the outlet
  • the flow channel 62 is recessed from the lower end surface 63 of the pump cover 6, and along the axial direction of the pump cover 6, the outflow channel 62 does not penetrate the upper end surface of the pump cover 6; of course, the pump cover 6 may not be included, but instead Components other than the pump cover are directly assembled with the gearbox of the automobile.
  • the outflow channel 62 and the inlet channel 61 can be formed on the gearbox correspondingly; see Figure 15 and Figure 17, the first area 101 and the inlet channel 61 is connected, the first area 101 is not connected with the outflow channel 62, the second area 102 is connected with the outflow channel 62, and the second area 102 is not connected with the inlet channel 61.
  • the first rotor assembly 1, the inlet channel 61 and The outflow channel 62 is orthographically projected in a direction parallel to the upper end surface of the first rotor 11, part of the projection of the first region 101 is located in the projection of the inflow channel 61, and the projection of the first region 101 is not located in the projection of the outflow channel 62,
  • the projection of the second region 102 is located in the projection of the outflow channel 62; this is beneficial to prevent the working medium in the second region 102 from flowing to the first region 101 again, thereby helping to reduce the flow loss and thereby improving the pump efficiency.
  • the outlet passage 62 includes a first circulation portion 621 and a second circulation portion 622.
  • the first circulation portion 621 and the second circulation portion 622 are in communication, and the second circulation portion 622 is closer to the pump cover 6 than the first circulation portion 621.
  • the second circulation portion 622 penetrates part of the outer edge of the pump cover 6; the first circulation portion 621 and the second circulation portion 622 are smoothly transitioned, which is beneficial to the smooth flow of the working medium;
  • the first circulation portion 621 includes a first distal wall 6212 and a first proximal wall 6211, the first proximal wall 6211 is closer to the central axis of the first rotor 11 than the first distal wall 6212;
  • the first rotor assembly 1 the inlet channel 61 and the outlet channel 62 are orthographically projected in a direction parallel to the upper end surface of the first rotor, and the projection of the second region 102 is located on the projection of the first proximal wall 6
  • the first area 101 is beneficial to reduce the outlet flow loss of the pump, thereby improving the pump efficiency; on the other hand, part of the working medium in the second area 102 is squeezed to the smallest volume after the volume change
  • the first circulation part 621 flows out in the extending direction, and there is another part of the working medium that does not have to wait to be squeezed to the smallest volume before being discharged, but directly flows into the first circulation part through the corresponding volume cavity and then is discharged to the outlet of the electric pump. It is beneficial to relatively increase the outlet flow of the electric pump, which in turn is beneficial to improve the pump efficiency.
  • the second circulation portion 622 includes a second distal wall 6222 and a second proximal wall 6221.
  • the second proximal wall 6221 is smoothly connected to the first proximal wall 6211, and the second distal wall 6222 is connected to the first proximal wall 6221.
  • the distal wall 6212 is smoothly connected, and the outflow channel 62 and the first rotor assembly 1 are orthographically projected in a direction parallel to the upper end surface of the first rotor 11, and the projection of the second proximal wall 6221 is not located in the first region 101, Specifically, in this embodiment, the projection of the second proximal wall 6221 coincides with the first demarcation line L1, where “coincidence” refers to the theoretical coincidence, and there may be errors in the actual processing or assembly of the parts. The error and the offset within the assembly error range are both within the scope of protection of the present application. Of course, the projection of the second proximal wall 6221 may not coincide with the first dividing line L1.
  • the projection of the second proximal wall 6221 It can pass through the first meshing point A or a point near the first meshing point A, as long as it is ensured that the projection of the second proximal wall 6221 is not in the first area 101; through the above method, the outflow channel 62 and the first area 101 is not connected, which in turn helps prevent the working medium from leaking into the first area 101 from the outflow channel 62, thereby helping to reduce the flow loss of the outlet, and thereby helping to improve the pump efficiency; see FIG. 15, in this embodiment, the first The depth of the depression of the one circulation portion 621 is equal to the depth of the depression of the second circulation portion 622, that is, the bottom surfaces of the first circulation portion 621 and the second circulation portion 622 are in the same plane.
  • the first proximal side wall 6211 and the first distal side wall 6212 are both arcuate, which facilitates the flow of the working medium; in addition, in this embodiment, the first proximal side The wall 6211 is arranged coaxially with the first rotor 11, and the first distal wall 6212 is arranged coaxially with the second rotor 12, where "coaxial" is theoretically coaxial, but there may be errors in the actual processing or assembly of parts , All the coaxiality within the range of processing error and assembly error are within the protection scope of the present application; referring to FIG.
  • the first circulation portion 621 also includes a first front end portion 6213, the first proximal side wall 6211 and the first far
  • the vertical distance between the side walls 6212 gradually increases from the first front end portion 6213 to the transitional connection between the first circulation portion 621 and the second circulation portion 622, which is beneficial to the smooth flow of the working medium, and on the one hand, it is beneficial to reduce Low noise, on the other hand, is beneficial to reduce the pressure loss of the working medium in the first circulation part;
  • the second circulation part 622 also includes a second rear end 6223, and the second rear end 6223 is the first The second circulation part 622 is at the open end of the outer edge of the pump cover 6, and the second rear end part 6223 forms part of the outlet of the electric pump.
  • the vertical distance between the second proximal wall 6221 and the second distal wall 6222 is from the first circulation
  • the transitional connection between the portion 621 and the second circulation portion 622 remains unchanged to the second rear end portion 6223; specifically, referring to FIGS. 15 and 16, in this embodiment, the second proximal side wall 6221 and the second distal side
  • the wall 6222 is planar, and the second proximal wall 6221 and the second distal wall 6222 are arranged in parallel; of course, the vertical distance between the second proximal wall 6221 and the second distal wall 6222 is from the first circulation portion 621 and the second
  • the transitional connection between the two circulation parts 622 to the second rear end 6223 may also gradually increase.
  • the first rotor assembly 1, the inlet passage 61 and the outlet passage 62 are orthographically projected in a direction parallel to the upper end surface of the first rotor 11, and the center of the projection of the first rotor 11 is used as the first front end.
  • the tangent Q1 of the 6213 projection, the angle ⁇ between the tangent Q1 projected by the first front end portion 6213 and the second demarcation line L2 is greater than or equal to 8° and less than or equal to 19°; this can effectively prevent the first circulation portion 621 from being The first area 101 is connected.
  • the first front end 6213 includes a first upper end 6214 and a first lower end 6215.
  • the first lower end 6215 is closer to the first rotor assembly 1 than the first upper end 6214;
  • the first upper end 6214 is closer to the second circulation portion 622 than the first lower end 6215, the surface of the first front end 6213 is inclined, and the first front end 6213 faces from the first upper end 6214 The first lower end 6215 is inclined.
  • the first lower end 6215 is formed on the lower end surface 63 of the pump cover 6, and the first upper end 6214 is formed on the bottom surface of the first circulation portion 621; this passes through the inclination of the first front end portion 6213.
  • the arrangement is beneficial to guide the working medium at the minimum volume cavity in the second area 102 into the first circulation portion 621, thereby helping to make the working medium at the minimum volume cavity in the second area 102 smoothly enter and exit the first circulation portion 621 , Which in turn helps reduce the generation of holes.
  • the pump cover 6 also includes a branch channel 64, which is recessed from the lower end surface 63 of the pump cover 6, and along the axial direction of the pump cover 6, the branch channel 64 does not penetrate through the pump cover
  • the inlet channel 61 is located on one side of the branch channel 64
  • the outlet channel 62 is located on the other side of the branch channel 64
  • the branch channel 64 is located on the first proximal wall 6122 of the first flow portion 621 and the inlet flow
  • one side of the branch channel 64 is connected to the outflow channel 62
  • the other side of the branch channel 64 is connected to the second channel 20, so through
  • the branch channel 64 enables the second channel 20 to communicate with the outflow channel 62, so that the working medium in the second accommodating cavity 900 can flow into the outflow channel 62 through the second channel 20 and the branch channel 64, and then follow the outflow channel 62.
  • the flow channel 62 is discharged in the extending direction. This way of dischar
  • the branch passage 64 is in communication with the first circulation portion 621; in this embodiment, the branch passage 64 includes a first communication portion 641 and a second communication portion 642, the first communication portion 641 and The second passage 20 is directly connected; along the radial direction of the pump cover 6, the second communication portion 642 is provided to penetrate through the first proximal side wall 6211 and part of the peripheral side wall of the first communication portion 641, so that the first communication portion 641 It communicates with the first communicating portion 621; referring to Figures 15 and 16, the flow cross-sectional area of the second communicating portion 642 is smaller than that of the first communicating portion 641, or the diameter of the second communicating portion 642 is smaller than that of the first communicating portion.
  • the diameter of the part 641 which is beneficial to relatively reduce the flow velocity of the working medium in the branch channel 64 into and out of the flow channel 62, because the branch channel 64 passes through the second channel 20 and the second containment in FIG. 1 or FIG.
  • the chamber 900 is connected, so that the flow rate of the working medium in the second containing chamber 900 flowing into the second channel 20 will be relatively reduced, so that when the second containing chamber 900 is filled with working medium, part of the working medium in the first containing chamber 800
  • the flow rate entering the second accommodating cavity 900 will also be relatively reduced, which is beneficial to prolong the residence time of the working medium in the second accommodating cavity 900, thereby helping to increase the relative increase along the first line in FIG. 1 or FIG. 7 within a certain period of time.
  • the flow rate of the working medium flowing in one flow direction is beneficial to improve the pump efficiency; referring to FIG. 15, in this embodiment, the second communication portion 642 is closer to the first circulation portion 621 and the second circulation portion 622 than the first front end portion 6213 The pressure of the working medium near the first front end 6213 is greater than the pressure of the working medium near the transition joint of the first circulation portion 621 and the second circulation portion 622.
  • the projections 10', 10a' of the first channel are closer to the first front end 6213 than the second communicating portion 642, so that the pressure of the working medium at the outlet of the second communicating portion 642 is lower than that of the working medium in the first channel 10, the pressure at the inlet of 10a, so that the inlet of the first passage 10, 10a and the outlet of the second communicating portion 642 can form a pressure difference, which is beneficial to enable the working medium in the second containing cavity to flow out.
  • the depth of the depression of the second communication portion 642 is equal to the depth of the depression of the first communication portion 641, that is, the bottom surface of the second communication portion 642 and the bottom surface of the first communication portion 641 are on the same plane. This is conducive to the smooth flow of the working medium in the branch channel; in addition, referring to FIG. 15, in this embodiment, the recess depth of the branch channel 64 is smaller than the recess depth of the first circulation portion 621, which is conducive to relatively reducing the unit time The working medium converging in the branch channel 64, because the branch channel 64 communicates with the second accommodating cavity 900 in FIG. 1 or FIG.
  • the branch channel 64 which in turn is beneficial to relatively extend the residence time of the working medium in the second accommodating cavity 900, thereby facilitating relatively reducing part of the working medium in the first accommodating cavity 800 from entering the second accommodating cavity 900
  • the second channel 20 is orthographically projected to the lower end surface 63 of the pump cover 6, and the projection 20' of the second channel is located in the first communicating portion 641, which is beneficial to make the working medium in the second channel 20 It can sufficiently communicate with the first circulation part 641.
  • the inlet passage 61 penetrates the upper and lower end surfaces of the pump cover 6; the inlet passage 61 includes a third proximal wall 611 and a third distal wall 612, the third proximal wall
  • the side wall 611 is closer to the center axis of the first rotor than the third far side wall 612.
  • the first rotor assembly 1 and the inlet channel 61 are orthographically projected in a direction parallel to the upper end surface of the first rotor.
  • the projection of the side wall 612 is tangent to the tooth bottom of the internal tooth projected by the second rotor 12, and the third proximal side wall 611 is tangent to the tooth bottom of the internal tooth projected by the first rotor 11, where the “tangent” is the theoretical tangent.
  • the “tangent” is the theoretical tangent.
  • the projection of the third far wall 612 can also be higher than the second
  • the tooth bottom of the internal teeth projected by the rotor 12 is closer to the outer edge of the second rotor 12, and the projection of the third proximal wall 611 can also be closer to the inner hole edge of the first rotor 11 than the tooth bottom of the first rotor 11 projected internal teeth ;
  • at least part of the projection of the first region 101 is located in the projection of the inlet channel 61, and the two boundaries of the projection of the first region 101 will not cross the projection of the third proximal wall 611 and the projection of the third distal wall 612, Therefore, the working medium in the inlet passage 61 can effectively flow into the first region 101, which is beneficial to further improve the pump efficiency.
  • the inlet passage 61 further includes a third front end portion 613 and a third rear end portion 614.
  • the third front end portion 613 is closer to the first front end portion 6213 of the first circulation portion than the third rear end portion 614.
  • the vertical distance between the third proximal wall 611 and the third distal wall 612 gradually increases from the third front end 613 to the third rear end 614; in this way, along the rotation direction of the first rotor assembly, the inlet channel
  • the volume change process of 61 is the same as the volume change process of the working medium in the first area 101, so that when the working medium enters the first area through the inlet passage 61, it is beneficial to relatively increase the working medium entering the first area in a unit time.
  • the flow rate is beneficial to improve pump efficiency.
  • the third front end 613 further includes a second upper end 6131 and a second lower end 6132.
  • the second upper end 6131 is formed on the upper end surface of the pump cover, and the second lower end 6132 is formed on the lower end surface of the pump cover;
  • the second lower end 6132 is closer to the third rear end 614 than the second upper end 6131, and the surface of the third front end 613 is inclined; refer to Figures 14 and 17, in this way, it passes through the second front end.
  • the inclined arrangement of 613 is beneficial to guide the working medium in the inflow channel 61 into the first area 101, thereby facilitating the smooth inflow of the working medium from the inflow channel 61 into the first area 101, thereby helping to reduce the generation of holes.
  • Figs. 18 to 19 are structural schematic diagrams of the second embodiment of the pump cover in Fig. 1 or Fig. 7. The second embodiment of the pump cover will be described in detail below.
  • the outflow channel 62' further includes a third circulation portion 623', which directly communicates with the second circulation portion 622' along the radial direction of the pump cover 6.
  • the third circulation portion 623' penetrates part of the outer edge of the pump cover 6; see FIG. 19, in order to facilitate the description of the third circulation portion 623', an interface is introduced here, and the second proximal side wall 6221' is located in the interface K.
  • the interface K is parallel to the second proximal wall 6221', the second circulation portion 622' is located on one side of the interface K, the third circulation portion 623' is located on the other side of the interface K, and the third circulation portion 623' includes a fourth The proximal wall 6231' and the fifth proximal wall 6232', the fourth proximal wall 6231' and the second proximal wall 6221' are smoothly transitioned, and the fifth proximal wall 6232' and the fourth proximal wall 6231' are smoothly transitioned Connected, the fifth proximal side wall 6232' is connected to the outer edge of the pump cover; in this embodiment, the third circulation portion 623' is provided to enable the electric pump to meet the relatively large-diameter interface requirements.
  • the pump cover further includes a third circulation portion 623'.
  • the electric pump can meet the requirements of a relatively large-diameter interface;
  • the pump cover please refer to the first embodiment of the pump cover, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

一种电动泵,包括泵轴(3)、第一转子组件(1)、定子组件以及第二转子组件,第一转子组件(1)设置于第一容纳腔(800),定子组件和第二转子组件设置于第二容纳腔(900);电动泵还包括第一通道(10)和第二通道(20),第一通道(10)贯穿第一容纳部底壁的上下表面,第一通道(10)能够连通第一容纳腔(800)和第二容纳腔(900),第一容纳腔(800)内的至少部分工作介质能够通过第一通道(10)流入第二容纳腔(900),第二通道(20)设置为贯穿泵轴(3)的第一端面和泵轴(3)的第二端面;第二通道(20)的出口比第一通道(10)的进口更靠近进流通道(61),工作介质在第二通道(20)的出口处的压力小于工作介质在第一通道(10)的进口处的压力;电动泵还包括支路通道(64),支路通道(64)连通出流通道(62)与第二通道(20)。该电动泵有利于定子组件的散热,进而有利于提高电动泵的使用寿命。

Description

电动泵
本申请要求于2019年06月19日提交中国专利局的申请号为201910529233.3、申请名称为“电动泵”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种车辆领域,尤其涉及车辆润滑系统和/或冷却系统的零部件。
背景技术
电动泵被大量运用于车辆润滑系统和/或冷却系统中,并能很好的满足市场的要求。
电动泵主要为车辆的润滑系统和/或冷却系统提供动力源,电动泵包括定子组件,定子组件在工作时会产生热量,热量累计到一定程度无法及时散出将会影响定子组件的性能,从而降低电动泵的使用寿命。
发明内容
本申请的目的在于提供一种电动泵,有利于定子组件的散热,从而有利于提高电动泵的使用寿命。
为实现上述目的,本申请的一种实施方式采用如下技术方案:
一种电动泵,包括泵轴、第一转子组件、定子组件以及第二转子组件,所述泵轴的一端与所述第一转子组件的部分固定连接,所述泵轴的另一端与所述第二转子组件连接;所述电动泵具有第一容纳部和第二容纳部,所述第一容纳部具有第一容纳腔,所述第二容纳部具有第二容纳腔,所述第一转子组件设置于所述第一容纳腔,所述定子组件和所述第二转子组件设置于所述第二容纳腔,所述第一容纳部包括底壁,所述底壁能够支撑所述第一转子组件;所述电动泵包括第一通道,所述第一通道贯穿所述底壁的上下表面,所述第一通道能够连通所述第一容纳腔和所述第二容纳腔,所 述第一容纳腔能够有工作介质流通,所述第一容纳腔内的至少部分工作介质能够通过所述第一通道流入所述第二容纳腔并与位于所述第二容纳腔内的至少部分所述定子组件接触;所述电动泵还包括第二通道,所述第二通道设置为贯穿所述泵轴的第一端面和所述泵轴的第二端面,通过所述第二通道使得所述第二容纳腔内的工作介质能够离开所述第二容纳腔;所述电动泵还包括进流通道和出流通道,所述进流通道用于工作介质的流入,所述出流通道用于工作介质的流出,所述第二通道的出口比所述第一通道的进口更靠近所述进流通道,工作介质在所述第二通道的出口处的压力小于工作介质在所述第一通道的进口处的压力;所述电动泵还包括支路通道,所述支路通道连通所述出流通道与所述第二通道。
本技术方案中,电动泵包括第一通道和第二通道,第一通道能够连通第一容纳腔和第二容纳腔,第一容纳腔内的至少部分工作介质能够通过第一通道流入第二容纳腔并与位于第二容纳腔内的至少部分定子组件接触;第二通道设置为贯穿泵轴的第一端面和泵轴的第二端面,通过第二通道使得第二容纳腔内的工作介质能够离开第二容纳腔,第二通道的出口比第一通道的进口更靠近进流通道,工作介质在第二通道的出口处的压力小于工作介质在第一通道的进口处的压力;电动泵还包括支路通道,支路通道连通出流通道与第二通道;这样使得第二容纳腔内的工作介质能够流动,由于定子组件设置于第二容纳腔内,流动的工作介质可以带走定子组件部分热量,从而能够有利于定子组件的散热,进而有利于提高电动泵的使用寿命。
附图说明
图1是本申请电动泵的第一种实施方式的一个剖面结构示意图;
图2是图1中未装配泵盖的电动泵的部分结构的一个正视结构示意图;
图3是图1中第一壳体的一个视角的立体结构示意图;
图4是图3中第一壳体的一个正视结构示意图;
图5是图4中第一壳体沿A-A截面的剖面结构示意图;
图6是将图1中的第一转子组件向图4中的底壁正投影形成的正视结 构示意图;
图7是本申请电动泵的第二种实施方式的一个剖面结构示意图;
图8是图7中第一壳体的一个方向上的立体结构示意图;
图9是图8中第一壳体的一个正视结构示意图;
图10是图9中第一壳体沿B-B截面的一个剖面结构示意图;
图11是将图7中的第一转子组件向图9中的底壁正投影形成的正视结构示意图;
图12是图1或图7中泵轴的一个立体结构示意图;
图13是图1或图7中泵盖的第一种实施方式一个视角的立体结构示意图;
图14是图13中泵盖的一个正视结构示意图;
图15是图1或图7中泵盖的第一种实施方式另一个视角的立体结构示意图;
图16是图15中泵盖的一个正视结构示意图;
图17是将图1或图7中第一转子组件以及泵轴向图16中泵盖的下端面投影形成的正视结构示意图;
图18是图1或图7中泵盖的第二种实施方式在一个方向上的一个立体结构示意图;
图19是图18中泵盖的一个正视结构示意图。
具体实施方式
为了使本领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施例对本申请作进一步的详细说明。
本实施例中的电动泵主要能够为车辆润滑系统和/或冷却系统的工作介质提供流动的动力,具体能够为车辆传动系统中的润滑系统和/或冷却系统的工作介质提供流动的动力。
参见图1,电动泵100包括泵壳体、第一转子组件1、定子组件4、第二转子组件2、泵轴3以及电控板5;第一转子组件1、第二转子组件2、定子组件4以及电控板5沿着电动泵100的轴向排布,第二转子组件2位 于第一转子组件1以及电控板5之间;电动泵100具有第一容纳部80和第二容纳部90,第一容纳部80具有第一容纳腔800,第二容纳部90具有第二容纳腔900,第一转子组件1位于第一容纳腔800,定子组件4、第二转子组件2位于第二容纳腔900;定子组件4位于第二转子组件2的外周,第一转子组件1靠近泵轴3的一端并与泵轴3连接,第二转子组件2靠近泵轴3的另一端并与泵轴3连接;参见图1,定子组件4包括定子铁芯41和线圈42,电动泵100工作时,电控板5通过控制通过定子组件4的线圈42中的电流按照预定的规律变化,从而控制定子组件4产生变化的激励磁场,第二转子组件2在激励磁场的作用下转动,第二转子组件2能够直接或间接地带动第一转子组件1转动,第一转子组件1转动时,第一转子组件1之间的容积腔的容积发生变化,从而使得工作介质被压出至出流通道从而产生流动的动力。
参见图1,泵壳体包括泵盖6、第一壳体7和第二壳体8,泵盖6与第一壳体7、第一壳体7与第二壳体8相对固定连接;具体地,本实施例中,泵盖6与第一壳体7通过螺钉或螺栓连接,当然泵盖6与第一壳体7也可以通过其他的方式连接,譬如插接、卡接等方式;第一壳体7与第二壳体8通过螺钉或螺栓连接,具体地,本实施例中,在第一壳体7和第二壳体8之间具有隔离件9的部分,螺钉或螺栓依次穿过第二壳体8、隔离件9和第一壳体7,从而使得第一壳体7和第二壳体8间接实现固定连接,当然,第一壳体7和第二壳体8也可以通过螺钉或螺栓直接固定连接,此时隔离件9的结构会相应改变,例如但不限于,隔离件9可以通过与第一壳体7的内周侧壁的紧配实现定位;第一壳体7和第二壳体8通过螺钉或螺栓连接的方式有利于使得电动泵的拆装更加方便,本实施例中,由于电控板5设置于第一壳体8和隔离件9之间的腔体内,这样还有利于电动泵中电控板5的维修,当然第一壳体7与第二壳体8也可以通过插接、卡接或等其他的连接方式;另外,本实施例中,通过泵壳体形成第一容纳部80和第二容纳部90,具体地,泵盖6和第一壳体7之间形成第一容纳部80,第一壳体7与第二壳体8之间形成第二容纳部90,当然也可以不包括泵壳体,而是将除泵壳体以外的其他零部件直接与汽车的变速箱进行装配,此时可设置一隔部,一方面支撑第一转子组件1,另一方面作为第一容纳部80和第 二容纳部90的分隔处。
参见图2,本实施例中,第一转子组件1包括第一转子11和第二转子12,第一转子11包括多个外齿,第二转子12包括多个内齿,第一转子11与图1中的泵轴3固定连接,第二转子12位于第一转子11的外周,第一转子11的外齿和第二转子12的内齿之间具有容积腔801,容积腔801也是第一容纳腔的一部分;本实施例中,第一转子11与第二转子12之间存在一定的偏心距,第一转子11在转动时,第一转子11的至少部分外齿与第二转子12的至少部分内齿啮合,从而使得第一转子11能够带动第二转子12转动。再参见图1和图2,电动泵100还包括进流通道61和出流通道62,进流通道61用于工作介质的流入,出流通道62用于工作介质的流出,具体地,工作介质能够通过进流通道61进入容积腔801,工作介质能够通过出流通道62离开容积腔801;本实施例中,进流通道61和出流通道62均成形于泵盖6上,当然当不含泵盖6时,可直接将除泵盖6以外的其他零部件与汽车的变速箱进行装配,此时进流通道61和出流通道62可对应设置于变速箱上;参见图2,在第一转子组件1旋转一圈的过程中,至少一个第一转子11的外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔的容积会发生变化,具体地,在第一转子组件1从起始处转动到某一角度的过程中,至少一个第一转子11的外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔的容积会逐渐增大,从而形成局部真空,此时工作介质就从进流通道61被吸入至该容积腔801内,在第一转子11和第二转子12继续转动的过程中,至少一个第一转子11的外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔的容积会逐渐减小,工作介质受到挤压,从而使得进入容积腔801内的工作介质被压出至出流通道62从而产生流动的动力。
参见图1,第一容纳部80包括底壁802,底壁802能够支撑第一转子组件1,第一容纳腔800位于底壁802的一侧,第二容纳腔900位于底壁802的另一侧;电动泵100还包括第一通道10,第一通道10贯穿底壁802的上下表面,第一通道10能够连通第一容纳腔800和第二容纳腔900,第一容纳腔800能够有工作介质流通,第一容纳腔800内的至少部分工作介质能够通过第一通道10流入第二容纳腔900并与位于第二容纳腔900内的 至少部分定子组件4接触;电动泵100还包括第二通道20,第二通道20设置为贯穿泵轴3的第一端面和泵轴3的第二端面;电动泵100还包括支路通道64,支路通道64与出流通道62连通,通过支路通道64使得第二通道20与出流通道62连通,通过第二通道20使得第二容纳腔900内的工作介质能够离开第二容纳腔900;第二通道20的出口201比第一通道10的进口101更靠近进流通道61,工作介质在第二通道20的出口201处的压力小于工作介质在第一通道10的进口101处的压力;这样使得工作介质在第一通道10的进口101和第二通道20的出口处形成压力差,根据工作介质从压力高的地方流向压力低的地方的原理,从而使得第二容纳腔900内的工作介质能够向第二通道20的出口201方向流动,由于定子组件4设置于第二容纳腔900内,流动的工作介质可以带走定子组件4至少部分热量,从而能够有利于定子组件4的散热,进而有利于提高电动泵的使用寿命;以上关于“出流通道62”和“支路通道64”的详细介绍请参见下文。
参见图1,第一壳体7还包括泵轴支撑部72,泵轴支撑部72与底壁802一体成形,泵轴支撑部72自底壁802的下表面向远离底壁802下表面的方向凸起设置,泵轴3穿过泵轴支撑部72,第二通道20连通第二容纳腔900与支路通道64;这种将第二通道20设置在泵轴3上结构相对简单。
参见图1,图1示出了工作介质的流动方向,具体地,工作介质有两条流动方向,为了更好地说明工作的流动方向,图1中粗虚线为第一流动方向,粗实线为第二流动方向,在第一流动方向中,工作介质从进流通道61流入第一转子组件1之间的容积腔,然后工作介质从出流通道62流出容积腔;在第二流动方向中,进入第一转子组件1之间的容积腔的部分工作介质从第一通道10流入至第二容纳腔900,然后第二容纳腔900内的工作介质从第二通道20流出至支路通道64,再从支路通道64流出至出流通道62;本实施例中,工作介质的进流方向为竖直方向,工作介质的出流方向为水平方向,这里的“竖直方向”和“水平方向”是将电动泵如图1状态安放时的方向。
参见图1至图6,图1为本发明中电动泵的第一种实施方式的结构示意图,图3至图5为图1中第一壳体的结构示意图,图6是将图1中第一转子组件向图4中第一容纳部的底壁正投影的投影示意图;以下将对电动 泵的第一种实施方式的结构进行详细说明。
参见图6,第一转子11的外齿与第二转子12的内齿之间能够形成容积腔,容积腔分为第一区域101和第二区域102,为了更好地在图上区分第一区域101和第二区域102,参见图6,第一区域101和第二区域102分别用了两种不同的剖面线进行区分,本实施例中,第一转子组件沿着逆时针方向转动,这里的“逆时针”是将未进行剖面的电动泵如图1状态安放时从俯视的角度看过去;在第一区域101内,沿着第一转子组件1的转动方向,第一转子11的一个外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔的容积会逐渐增大,从而在第一区域内101能够形成局部真空,结合图1,此时工作介质就从进流通道61被吸入至第一区域内101内;在第二区域102内,沿着第一转子组件1的转动方向,第一转子11的一个外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔的容积会逐渐减小,从而使得工作介质在第二区域内102受到挤压,进而使得位于第二区域内的工作介质的压力逐渐增大;参见图6,将第一转子组件1向第一容纳部的底壁802正投影,至少部分第一通道的投影10’位于第二区域102内,而本实施例中,第二区域102内的压力大于图1中第二容纳腔900内的压力,这样使得待流入图1中第二容纳腔900的工作介质处于一个压力相对高的地方,根据工作介质都是从压力大的地方流向压力小的地方的原理,这样第一容纳腔800内的至少部分工作介质能够通过第一通道10流入至第二容纳腔900;参见图3和图4,本实施例中,第一通道10的横截面呈圆孔状,当然第一通道10也可以呈方孔状等其他的封闭图形。
参见图4至图6,将第一转子组件1向第一容纳部的底壁802正投影,在第一转子组件1的投影中,定义第一分界线L1,在第一分界线L1处,第一转子11的一个外齿与第二转子12的一个内齿啮合从而形成第一啮合点A,第一分界线L1为第一啮合点A和第一转子11的中心O的连线,定义第二分界线L2,在第二分界线L2处,第一转子11的另一个外齿与第二转子12的另一个内齿啮合从而形成第二啮合点B,第二分界线L2为第二啮合点B和第一转子11的中心O的连线,第一分界线L1和第二分界线L2为第一区域101和第二区域102的划分线,其中第一分界线L1作为第一区域101的终止处和第二区域102的起始处的划分线,第二分界线L2 作为第一区域101的起始处与第二区域102的终止处的划分线,这里“第一区域101的起始处”和“第一区域101的终止处”是指顺着第一转子1的转动方向上的起始处和终止处,这里“第二区域102的起始处”和“第二区域102的终止处”是指顺着第一转子1的转动方向上的起始处和终止处,具体地,本实施例中,第一转子组件1沿着逆时针方向转动,这里的“逆时针”是将未进行剖面的电动泵如图1状态安放时从俯视的角度看过去;本实施例中,第一通道的投影10’相对第一分界线L1更靠近第二分界线L2设置,由于随着第一转子组件1的转动,工作介质在第二区域102内的压力逐渐增大,这样相对靠近第二分界线L2处的工作介质的压力大于相对靠近第一分界线处L1的工作介质的压力,或者说,沿着逆时针方向,从第一分界线L1到第二分界线L2,第二区域102内工作介质的压力逐渐增大,而第一通道的投影10’相对第一分界线L1更靠近第二分界线L2设置,这样能够相对提高进入第二容纳腔900内工作介质的压力差,从而使得工作介质能够有效地流入第二容纳腔900,进而使得工作介质能够与位于第二容纳腔900内的定子组件4接触,从而有利于定子组件4的散热。
参见图7至图11,图7为本申请中电动泵的第二种实施方式的结构示意图,图8至图10为图7中第一壳体的结构示意图,图11是将图7中第一转子组件向图8中第一容纳部的底壁正投影的投影示意图;以下将对电动泵的第二种实施方式的结构进行说明。
参见图11,第一转子11的外齿与第二转子12的内齿之间能够形成容积腔,容积腔内分为第一区域101和第二区域102,为了更好地在图11上区分第一区域101和第二区域102,参见图11,第一区域101和第二区域102分别用了两种不同的剖面线进行区分,本实施例中,第一转子组件沿着逆时针方向转动,这里的“逆时针”是将未进行剖面的电动泵如图1状态安放时从俯视的角度看过去;在第一区域101内,沿着第一转子组件1的转动方向,第一转子11的一个外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔的容积会逐渐增大,从而在第一区域内101能够形成局部真空,结合图7,此时工作介质就从进流通道61被吸入至第一区域内101内;在第二区域102内,沿着第一转子组件1的转动方向,第一转子11的一个外齿以及与该外齿对应的第二转子12的内齿之间形成的容积腔 的容积会逐渐减小,从而使得工作介质在第二区域102内受到挤压,进而使得位于第二区域102内的工作介质的压力逐渐增大;参见图10和图11,将第一转子组件1向第一容纳部的底壁802a正投影,在第一转子组件1的投影中,定义第一分界线L1,在第一分界线L1处,第一转子11的一个外齿与第二转子12的一个内齿啮合从而形成第一啮合点A,第一分界线L1为第一啮合点A和第一转子11的中心O的连线,定义第二分界线L2,在第二分界线L2处,第一转子11的另一个外齿与第二转子12的另一个内齿啮合从而形成第二啮合点B,第二分界线L2为第二啮合点B和第一转子11的中心O的连线,第一分界线L1和第二分界线L2为第一区域101和第二区域102的划分线,其中第一分界线L1作为第一区域101的终止处和第二区域102的起始处的划分线,第二分界线L2作为第一区域101的起始处与第二区域102的终止处的划分线,这里“第一区域101的起始处”和“第一区域101的终止处”是指顺着第一转子1的转动方向上的起始处和终止处,这里“第二区域102的起始处”和“第二区域102的终止处”是指顺着第一转子1的转动方向上的起始处和终止处,具体地,本实施例中,第一转子组件1沿着逆时针方向转动,这里的“逆时针”是将未进行剖面的电动泵如图1状态安放时从俯视的角度看过去。
参见图8至图10,底壁802a具有第一凹槽71,第一凹槽71自底壁802a的上表面向底壁802a的下表面凹陷,第一凹槽71未贯穿底壁802a的下表面,第一通道10a位于第一凹槽71内,第一通道10a贯穿第一凹槽71的底面和底壁802a的下表面;参见图10和图11,将第一转子组件1向底壁802a正投影,至少部分第二区域102位于第一凹槽71的投影内;通过设置第一凹槽71使得电动泵在工作过程中能够有部分工作介质位于第一凹槽71内,从而能够在第一转子组件与底壁802a之间形成油膜,进而有利于减小第一转子组件在转动过程中与底壁802a之间的摩擦力,从而有利于减小因摩擦而引起的噪音;另一方面,本实施例中,由于第一凹槽71位于容积腔压力相对高的地方,将第一通道10a设置于第一凹槽71内,有利于提高工作介质进入第二容纳腔900的压力差,从而有利于使得图7中第一容纳腔800内的部分工作介质流入至第二容纳腔900。
参见图8至图11,第一凹槽71包括第一头部711和第一尾部712,在 电动泵工作时,沿着第一转子组件的转动方向,在第二区域102内,工作介质从第一头部711流向第一尾部712,参见图11,将第一转子组件1向第一容纳部的底壁802a正投影,第一头部的投影711’比第二分界线L2更靠近第一分界线L1,第一尾部的投影712’比第一分界线L1更靠近第二分界线L2,当然,第一头部的投影711’与第一分界线L1也可以重合,第一尾部的投影712’与第二分界线L2也可以重合,这里的“重合”为理论重合,而实际在加工上可能会存在重合度误差,所有在加工误差内的偏移量均在本申请的保护范围内;参见图8,本实施例中,第一通道10a相对第一头部711更靠近第一尾部712;由于随着第一转子组件1的转动,工作介质在第二区域102内的压力逐渐增大,也就是说,沿着逆时针方向,从第一头部711到第一尾部712,工作介质的压力逐渐增大,而第一通道10a相对第一头部711更靠近第一尾部712,这样能够相对提高进入图7中第二容纳腔900内工作介质的压力差,从而使得工作介质能够有效地流入图7中第二容纳腔900,进而使得工作介质能够与位于第二容纳腔900内的定子组件接触,从而有利于定子组件的散热。
参见图8至图11,第一凹槽71还包括第一侧面713和第二侧面714,第一侧面713比第二侧面714更靠近第一转子11的中心轴线,第一头部711位于第一侧面713的一端和第二侧面714的一端,第一尾部712位于第一侧面713的另一端和第二侧面714的另一端;参见图8至图11,第一侧面713比第一转子11外齿的齿底更靠近第一转子11的中心轴线,第二侧面714比第二转子12内齿的齿底更靠近第一容纳部80的周侧壁,或者将第一转子组件1向第一容纳部的底壁802a正投影,第一侧面的投影713’与第一转子11外齿的齿底投影相切,第二侧面的投影714’与第二转子12内齿的齿底投影相切,这里的“相切”为理论相切,而实际在零件的加工或装配上可能会存在误差,所有在加工误差和装配误差范围内的偏移量均在本申请的保护范围内;参见图8和图9,第一通道10a的外周边缘与第一侧面713之间的最小距离大于等于0.2mm,第一通道10a的外周边缘与第二侧面714之间的最小距离大于等于0.2mm;这样能够使得第一通道10a不会破坏第一侧面713和第二侧面714;本实施例中,第一侧面713和第二侧面714呈弧面状,第一侧面713与第二侧面714之间的最小距离自第 一头部711到第一尾部712逐渐减小,本实施例中,第一侧面713和第二侧面714为光面,即第一侧面713和第二侧面714上未设置凸或凹等其他的结构特征,上述“第一侧面713与第二侧面714之间的最小距离”即指第一侧面713光面处和第二侧面714光面处之间的最小距离;这样当电动泵工作时,存储在第一凹槽71内的工作介质从第一头部711到第一尾部712的容积逐渐减小,这个容积逐渐减小的过程和第二区域102内的工作介质的容积变化过程相同,这样位于第一凹槽71内的工作介质也能随着第二区域102内的工作介质流出,从而有利于提高泵效率。
与电动泵的第一种实施方式相比,本实施方式中,第一壳体7a设置有第一凹槽71,至少部分第二区域102位于第一凹槽71内,第一通道10a设置于第一凹槽71内,且第一通道10a贯穿第一凹槽71的底面和第一容纳部的底壁802a的下表面;这样通过设置第一凹槽71使得电动泵在工作过程中能够有部分工作介质位于第一凹槽71内,从而能够在第一转子组件与底壁802a之间形成油膜,进而有利于减小第一转子组件在转动过程中与底壁802a之间的摩擦力,从而有利于减小因摩擦而引起的噪音;本实施例中的电动泵的其他特征可参考电动泵的第一种实施例,在此就不一一赘述了。
以下将对电动泵第一种实施例和第二种实施例中的第二通道进行详细说明;参见图12,沿着泵轴3的轴向,第二通道20设置为贯穿泵轴20的第一端面201和第二端面202,本实施例中,第二通道20的横截面呈圆孔状,当然,第二通道20的横截面形状也可以为方孔状等其他的形状或者第二通道20也可以连通泵轴20的外周面,此时第二通道20相当于沿着泵轴3的径向开口;具体地,本实施例中,第二通道20的中心轴线与泵轴3的中心轴线重合,这里的“重合”为理论重合,而实际在加工上可能会存在重合度误差,所有在加工误差内的偏移量均在本申请的保护范围内;结合图1、图7和图10,第一通道10、10a的孔径小于等于第二通道20的孔径,具体地,本实施例中,第一通道10、10a的孔径与第二通道20的孔径的比值大于等于1/5小于等于1,这样一方面能够相对减小位于第二容纳腔900内工作介质在第二通道20内的流速,从而有利于相对延长定子组件与工作介质进行热交换的时间,进而有利于定子组件的散热,另一方面,由于相 对延长了定子组件与工作介质进行热交换的时间,这样相当于延长了工作介质在第二容纳腔内的停留时间,从而在单位时间内有利于相对减小进入第二容纳腔900内的工作介质的流量,进而有利于减小第一容纳腔800内工作介质的流量损失,进而有利于提高泵效率。再参见图1和图7,第二通道20连通第二容纳腔900与支路通道64,支路通道64与出流通道62连通;本实施例中,出流通道62和支路通道64位于泵盖6上,以下将对出流通道62和支路通道64进行详细介绍。
参见图13至图17,图13至图17为图1和图7中泵盖的第一种实施方式的结构示意图,以下将对泵盖的第一种实施方式进行详细介绍。
参见图13至图17,本实施例中,进流通道61和出流通道62、支路通道64均成形于泵盖6上,具体地,进流通道61贯穿泵盖6的上下端面,出流通道62自泵盖6的下端面63凹陷设置,沿着泵盖6的轴向,出流通道62未贯穿泵盖6的上端面;当然,也可以不包括泵盖6,而是将除泵盖以外的其他零部件直接与汽车的变速箱进行装配,此时出流通道62和进流通道61可以对应成形于变速箱上;参见图15和图17,第一区域101与进流通道61连通,第一区域101与出流通道62不连通,第二区域102与出流通道62连通,第二区域102与进流通道61不连通,将第一转子组件1、进流通道61以及出流通道62向平行于第一转子11的上端面方向正投影,部分第一区域101的投影位于进流通道61的投影内,第一区域101的投影未位于出流通道62的投影内,第二区域102的投影位于出流通道62的投影内;这样有利于防止第二区域102内的工作介质再流向第一区域101,从而有利于减小流量损失,进而有利于提高泵效率。
参见图15,出流通道62包括第一流通部621和第二流通部622,第一流通部621和第二流通部622连通,第二流通部622比第一流通部621更靠近泵盖6的外边缘,沿着泵盖6的径向,第二流通部622贯穿泵盖6的部分外边缘;第一流通部621与第二流通部622平滑过渡连接,这样有利于工作介质顺畅流动;参见图16和图17,第一流通部621包括第一远侧壁6212和第一近侧壁6211,第一近侧壁6211比第一远侧壁6212更靠近第一转子11的中心轴线;参见图17,将第一转子组件1、进流通道61以及出流通道62向平行于第一转子的上端面方向正投影,第二区域102的投 影位于第一近侧壁6211的投影和第一远侧壁6212的投影之间,具体地,第一近侧壁6211的投影与第一转子11投影的外齿齿底相切或者第一近侧壁6211的投影比第一转子11投影的外齿齿底更靠近第一转子11的内孔边缘,第一远侧壁6212的投影与第二转子12投影的内齿的齿底相切或者第一远侧壁6212比第二转子12投影的内齿的齿底更靠近第二转子12的外边缘,这里的“相切”为理论相切,而实际在零件的加工或装配上可能会存在误差,所有在加工误差和装配误差范围内的偏移量均在本申请的保护范围内;通过以上方式使得第二区域102位于第一流通部621内,这样一方面有利于防止第二区域内的工作介质通过第一流通部621再流向第一区域101,从而有利于减小泵的出口流量损失,进而有利于提高泵效率;另一方面使得第二区域102内有部分工作介质经过容积的变化挤压至容积最小的地方后沿着第一流通部621的延伸方向流出,有另外部分工作介质不用等到挤压至容积最小的地方再排出,而是通过对应的容积腔直接流入第一流通部再排出至电动泵的出口,这样有利于相对提高电动泵的出口流量,进而有利于提高泵效率。
参见图15,第二流通部622包括第二远侧壁6222和第二近侧壁6221,第二近侧壁6221与第一近侧壁6211平滑过渡连接,第二远侧壁6222与第一远侧壁6212平滑过渡连接,将出流通道62和第一转子组件1向平行于第一转子11的上端面的方向正投影,第二近侧壁6221的投影未位于第一区域101内,具体地,本实施例中,第二近侧壁6221的投影与第一分界线L1重合,这里的“重合”为理论重合,而实际在零件的加工或装配上可能会存在误差,所有在加工误差和装配误差范围内的偏移量均在本申请的保护范围内,当然,第二近侧壁6221的投影也可以不与第一分界线L1重合,此时第二近侧壁6221的投影可以经过第一啮合点A或者经过第一啮合点A附近处的点,只要保证第二近侧壁6221的投影不在第一区域101内即可;通过以上方式使得出流通道62与第一区域101不连通,进而有利于防止工作介质从出流通道62泄漏至第一区域101内,从而有利于减小出口的流量损失,进而有利于提高泵效率;参见图15,本实施例中,第一流通部621的凹陷深度与第二流通部622的凹陷深度相等,即第一流通部621与第二流通部622的底面在同一个平面内。
参见图15和图16,本实施例中,第一近侧壁6211与第一远侧壁6212均呈弧面状,这样有利于工作介质的流动;另外,本实施例中,第一近侧壁6211与第一转子11同轴设置,第一远侧壁6212与第二转子12同轴设置,这里的“同轴”为理论同轴,而实际在零件的加工或装配上可能会存在误差,所有在加工误差和装配误差范围内的同轴度均在本申请的保护范围内;参见图15,第一流通部621还包括第一前端部6213,第一近侧壁6211与第一远侧壁6212之间的垂直距离自第一前端部6213到第一流通部621与第二流通部622之间的过渡连接处逐渐增大,这样有利于工作介质的平缓流动,一方面有利于减小噪音,另一方面有利于减小工作介质在第一流通部内的压力损失;参见图15和图16,第二流通部622还包括第二后端部6223,第二后端部6223为第二流通部622在泵盖6外边缘的开口端,第二后端部6223形成了电动泵的部分出口,第二近侧壁6221与第二远侧壁6222之间的垂直距离自第一流通部621与第二流通部622之间的过渡连接处到第二后端部6223不变;具体地,参见图15和图16,本实施例中,第二近侧壁6221与第二远侧壁6222呈平面状,第二近侧壁6221与第二远侧壁6222平行设置;当然,第二近侧壁6221与第二远侧壁6222之间的垂直距离自第一流通部621与第二流通部622之间的过渡连接处到第二后端部6223也可以逐渐增大。
参见图15和图17,将第一转子组件1、进流通道61以及出流通道62向平行于第一转子11的上端面方向正投影,过第一转子11投影的中心作第一前端部6213投影的切线Q1,第一前端部6213投影的切线Q1与第二分界线L2之间的角度α大于等于8°小于等于19°;这样一方面能够有效地使得第一流通部621不会与第一区域101连通,另一方面有利于相对增大第二区域102与第一流通部621的连通面积,从而有利于使得第二区域102内的工作介质尽可能多地从第一流通部62流出,进而有利于相对提高泵的出口流量,从而有利于提高泵效率。
参见图15和图16,第一前端部6213包括第一上端6214和第一下端6215,沿着电动泵的轴向,第一下端6215比第一上端6214更靠近第一转子组件1;沿着出流通道62的延伸方向,第一上端6214比第一下端6215更靠近第二流通部622,第一前端部6213的表面呈斜面状,第一前端部6213 自第一上端6214向第一下端6215倾斜,本实施例中,第一下端6215成形于泵盖6的下端面63,第一上端6214成形于第一流通部621的底面;这样通过第一前端部6213的倾斜设置有利于将第二区域102内位于最小容积腔处的工作介质引导入第一流通部621,从而有利于使得第二区域102内位于最小容积腔处的工作介质顺畅进入出第一流通部621,进而有利于减小空穴的产生。
参见图15和图16,泵盖6还包括支路通道64,支路通道64自泵盖6的下端面63凹陷设置,沿着泵盖6的轴向,支路通道64未贯穿泵盖的上端面,进流通道61位于支路通道64的一侧,出流通道62位于支路通道64的另一侧,支路通道64位于第一流通部621的第一近侧壁6122和进流通道61之间;结合参见图1、图7、图15和图16,支路通道64的一侧与出流通道62连通,支路通道64的另一侧与第二通道20连通,这样通过支路通道64使得第二通道20与出流通道62能够连通,从而使得第二容纳腔900内的工作介质能够通过第二通道20和支路通道64流入至出流通道62,然后沿着出流通道62的延伸方向排出,这种将第二容纳腔900内的工作介质排出至出流通道64的方式有利于提高泵的出口流量,进而有利于提高泵效率。
参见图15和图16,具体地,支路通道64与第一流通部621连通;本实施例中,支路通道64包括第一连通部641和第二连通部642,第一连通部641与第二通道20直接连通;沿着泵盖6的径向方向,第二连通部642设置为贯穿第一近侧壁6211和第一连通部641的部分周侧壁,从而使得第一连通部641与第一流通部621实现了连通;参见图15和图16,第二连通部642的流通截面积小于第一连通部641的流通截面积,或者说第二连通部642的口径小于第一连通部641的口径,这样有利于相对降低支路通道64内的工作介质汇入出流通道62内的流动速度,由于支路通道64通过第二通道20与图1或图7中的第二容纳腔900连通,这样第二容纳腔900内的工作介质流入第二通道20的流速也会相对降低,进而使得当第二容纳腔900内充满工作介质后,第一容纳腔800内的部分工作介质进入第二容纳腔900内的流速也会相对降低,进而有利于延长工作介质在第二容纳腔900内的停留时间,从而在一定时间内有利于相对提高沿着图1或图7中 的第一流动方向流动的工作介质的流量,从而有利于提高泵效率;参见图15,本实施例中,第二连通部642相对第一前端部6213更靠近第一流通部621和第二流通部622的过渡连接处设置,工作介质在靠近第一前端部6213处的压力大于工作介质在靠近第一流通部621和第二流通部622的过渡连接处的压力,结合参见图1、图7、图16和图17,第一通道的投影10’、10a’比第二连通部642更靠近第一前端部6213,从而使得工作介质在第二连通部642出口处的压力小于工作介质在第一通道10,10a进口处的压力,这样第一通道10,10a的进口和第二连通部642的出口能够形成压力差,从而有利于使得第二容纳腔的工作介质能够流出。
参见图15,本实施例中,第二连通部642的凹陷深度与第一连通部641的凹陷深度相等,即第二连通部642的底面与第一连通部641的底面在同一个平面上,这样有利于工作介质在支路通道内的顺畅流动;另外,参见图15,本实施例中,支路通道64的凹陷深度小于第一流通部621的凹陷深度,这样有利于相对减少单位时间内汇聚在支路通道64内的工作介质,由于支路通道64与图1或图7中第二容纳腔900通过第二通道20连通,这样有利于相对延长第二容纳腔900内的工作介质汇聚在支路通道64内的时间,进而有利于相对延长工作介质在第二容纳腔900内的停留时间,从而有利于相对减小第一容纳腔800内的部分工作介质进入第二容纳腔900内的流量,进而在一定时间内有利于相对提高沿着图1或图7中的第一流动方向流动的工作介质的流量,从而有利于相对提高泵效率;当然,支路通道64的凹陷深度也可以等于第一流通部621的凹陷深度。
参见图15至图17,将第二通道20向泵盖6的下端面63正投影,第二通道的投影20’位于第一连通部641内,这样有利于使得第二通道20内的工作介质能够与第一流通部641充分连通。
参见图13至图17,沿着泵盖6的轴向,进流通道61贯穿泵盖6的上下端面;进流通道61包括第三近侧壁611和第三远侧壁612,第三近侧壁611比第三远侧壁612更靠近第一转子的中心轴线,参见图17,将第一转子组件1和进流通道61向平行于第一转子的上端面方向正投影,第三远侧壁612的投影与第二转子12投影的内齿的齿底相切,第三近侧壁611与第一转子11投影内齿的齿底相切,这里的“相切”为理论相切,而实际在零 件的加工或装配上可能会存在误差,所有在加工误差和装配误差范围内的偏移均在本申请的保护范围内,当然第三远侧壁612的投影也可以比第二转子12投影的内齿的齿底更靠近第二转子12的外边缘,第三近侧壁611的投影也可以比第一转子11投影内齿的齿底更靠近第一转子11的内孔边缘;这样使得至少部分第一区域101的投影位于进流通道61的投影内,且第一区域101投影的两边界不会越过第三近侧壁611的投影和第三远侧壁612的投影,从而使得进流通道61内的工作介质能够有效地流入第一区域101,进而有利于进一步提高泵效率。
参见图16和图17,进流通道61还包括第三前端部613和第三后端部614,第三前端部613比第三后端部614更靠近第一流通部的第一前端部6213,第三近侧壁611和第三远侧壁612之间的垂直距离自第三前端部613到第三后端部614逐渐增大;这样沿着第一转子组件的转动方向,进流通道61的容积变化过程和第一区域101内的工作介质的容积变化过程相同,这样当工作介质通过进流通道61进入第一区域时,在单位时间内有利于相对提高工作介质进入第一区域内的流量,从而有利于提高泵效率。
参见图13和图14,第三前端部613还包括第二上端6131和第二下端6132,第二上端6131成形于泵盖的上端面,第二下端6132成形于泵盖的下端面;沿着泵盖6的周向,第二下端6132比第二上端6131更靠近第三后端部614,第三前端部613的表面呈斜面状;结合参见图14和图17,这样通过第二前端部613的倾斜设置有利于将进流通道61内的工作介质引导入第一区域101,从而有利于工作介质从进流通道61顺畅流入第一区域101,进而有利于减小空穴的产生。
参见图18至图19,参见图18至图19为图1或图7中泵盖的第二种实施方式的结构示意图,以下将对泵盖的第二种实施方式进行详细介绍。
参见图18至图19,本实施例中,出流通道62’还包括第三流通部623’,第三流通部623’与第二流通部622’直接连通,沿着泵盖6的径向,第三流通部623’贯穿泵盖6的部分外边缘;参见图19,为了便于描述第三流通部623’,这里引入一分界面,第二近侧壁6221’位于分界面K内,分界面K与第二近侧壁6221’平行,第二流通部622’位于分界面K的一侧,第三流通部623’位于分界面K的另一侧,第三流通部623’包括第四近侧壁6231’ 和第五近侧壁6232’,第四近侧壁6231’与第二近侧壁6221’平滑过渡连接,第五近侧壁6232’与第四近侧壁6231’平滑过渡连接,第五近侧壁6232’与泵盖的外边缘连接;本实施例中,通过设置第三流通部623’使得电动泵能够满足相对大口径的接口要求。
与泵盖的第一种实施方式相比,本实施方式中,泵盖还包括第三流通部623’,通过设置第三流通部623’使得电动泵能够满足相对大口径的接口要求;本实施例中泵盖的其他特征可参考泵盖的第一种实施例,在此就不一一赘述了。
以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,尽管本说明书参照上述的实施例对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内。

Claims (15)

  1. 一种电动泵,包括泵轴、第一转子组件、定子组件以及第二转子组件,所述泵轴的一端与所述第一转子组件的部分固定连接,所述泵轴的另一端与所述第二转子组件连接;所述电动泵具有第一容纳部和第二容纳部,所述第一容纳部具有第一容纳腔,所述第二容纳部具有第二容纳腔,所述第一转子组件设置于所述第一容纳腔,所述定子组件和所述第二转子组件设置于所述第二容纳腔,其特征在于:所述第一容纳部包括底壁,所述底壁能够支撑所述第一转子组件;所述电动泵包括第一通道,所述第一通道贯穿所述底壁的上下表面,所述第一通道能够连通所述第一容纳腔和所述第二容纳腔,所述第一容纳腔能够有工作介质流通,所述第一容纳腔内的至少部分工作介质能够通过所述第一通道流入所述第二容纳腔并与位于所述第二容纳腔内的至少部分所述定子组件接触;所述电动泵还包括第二通道,所述第二通道设置为贯穿所述泵轴的第一端面和所述泵轴的第二端面,通过所述第二通道使得所述第二容纳腔内的工作介质能够离开所述第二容纳腔;所述电动泵还包括进流通道和出流通道,所述进流通道用于工作介质的流入,所述出流通道用于工作介质的流出,所述第二通道的出口比所述第一通道的进口更靠近所述进流通道,工作介质在所述第二通道的出口处的压力小于工作介质在所述第一通道的进口处的压力;所述电动泵还包括支路通道,所述支路通道连通所述出流通道与所述第二通道。
  2. 根据权利要求1所述的电动泵,其特征在于:所述第一转子组件包括第一转子和第二转子,所述第一转子具有多个外齿,所述第二转子具有多个内齿,所述第一转子位于所述第二转子的外周,所述第一转子与所述泵轴连接,通过所述第一转子的至少部分外齿与所述第二转子的至少部分内齿的啮合使得所述第一转子与所述第二转子之间能够传动;所述第一转子的外齿与所述第二转子的内齿之间能够形成容积腔,所述容积腔分为第一区域和第二区域,在所述第一区域内,沿着所述第一转子组件的转动方向,所述第一转子的一个外齿以及与该外齿对应的所述第二转子的内齿之间形成的容积腔的容积逐渐增大,在所述第二区域内,沿着所述第一转子组件的转动方向,所述第一转子的一个外齿以及与该外齿对应的所述第二转子的内齿之间形成的容积腔的容积逐渐减小;将所述第一转子组件向所 述底壁正投影,至少部分所述第一通道的投影位于所述第二区域内。
  3. 根据权利要求2所述的电动泵,其特征在于:将所述第一转子组件向所述底壁正投影,在所述第一转子组件的投影中,定义第一分界线,在所述第一分界线处,所述第一转子的一个外齿与所述第二转子的一个内齿啮合从而形成第一啮合点,所述第一分界线为所述第一啮合点与所述第一转子的中心的连线;定义第二分界线,在所述第二分界线处,所述第一转子的另一个外齿与所述第二转子的另一个内齿啮合从而形成第二啮合点,所述第二分界线为所述第二啮合点与所述第一转子的中心的连线;所述第一分界线和所述第二分界线为所述第一区域和所述第二区域的划分线,其中所述第一分界线作为所述第一区域终止处和所述第二区域起始处的划分线,所述第二分界线作为所述第一区域起始处与所述第二区域终止处的划分线,所述第一通道的投影相对所述第一分界线更靠近所述第二分界线设置。
  4. 根据权利要求1所述的电动泵,其特征在于:所述第一转子组件包括第一转子和第二转子,所述第一转子具有多个外齿,所述第二转子具有多个内齿,所述第一转子与所述泵轴连接,通过所述第一转子的外齿与所述第二转子的内齿的啮合使得第一转子与第二转子之间能够传动;所述第一转子的外齿与所述第二转子的内齿之间能够形成容积腔,所述容积腔分为第一区域和第二区域,在所述第一区域内,沿着所述第一转子组件的转动方向,所述第一转子的一个外齿以及与该外齿对应的所述第二转子的内齿之间形成的容积腔的容积逐渐增大,在所述第二区域内,沿着所述第一转子组件的转动方向,所述第一转子的一个外齿以及与该外齿对应的所述第二转子的内齿之间形成的容积腔的容积逐渐减小;所述底壁具有第一凹槽,所述第一凹槽自所述底壁的上表面向所述底壁的下表面凹陷,所述第一凹槽未贯穿所述底壁的下表面;将所述第一转子组件向所述底壁正投影,所述第二区域的投影位于第一凹槽的投影内;所述第一通道位于所述第一凹槽内,所述第一通道贯穿所述第一凹槽的底面和所述底壁的下表面。
  5. 根据权利要求4所述的电动泵,其特征在于:所述第一凹槽包括第一头部和第一尾部,在所述电动泵工作时,沿着所述第一转子组件的转动方向,在所述第二区域内,工作介质从所述第一头部流向所述第一尾部; 将所述第一转子组件向所述底壁正投影,在所述第一转子组件的投影中,定义第一分界线,在所述第一分界线处,所述第一转子的一个外齿与所述第二转子的一个内齿啮合从而形成第一啮合点,所述第一分界线为所述第一啮合点与所述第一转子的中心的连线;定义第二分界线,在所述第二分界线处,所述第一转子的另一个外齿与所述第二转子的另一个内齿啮合从而形成第二啮合点,所述第二分界线为所述第二啮合点与所述第一转子的中心的连线;所述第一分界线和所述第二分界线为所述第一区域和所述第二区域的划分线,其中所述第一分界线作为所述第一区域终止处和所述第二区域起始处的划分线,所述第二分界线作为所述第一区域起始处与所述第二区域终止处的划分线,所述第一头部的投影与所述第一分界线重合或者所述第一头部的投影比所述第二分界线更靠近所述第一分界线,所述第一尾部的投影与所述第二分界线重合或者所述第一尾部的投影比所述第一分界线更靠近所述第二分界线;所述第一通道相对所述第一头部更靠近所述第一尾部。
  6. 根据权利要求5所述的电动泵,其特征在于:所述第一凹槽还包括第一侧面和第二侧面,所述第一侧面比所述第二侧面更靠近所述第一转子的中心轴线,所述第一头部位于所述第一侧面的一端和所述第二侧面的一端,所述第一尾部位于所述第一侧面的另一端和所述第二侧面的另一端;所述第一侧面比所述第一转子外齿的齿底更靠近所述第一转子的中心轴线,所述第二侧面比所述第二转子内齿的齿底更靠近所述第一容纳部的周侧壁;或者将所述第一转子组件向所述底壁正投影,所述第一侧面的投影与所述第一转子外齿的齿底投影相切,所述第二侧面的投影与所述第二转子内齿的齿底投影相切;所述第一通道的外周边缘与所述第一侧面之间的最小距离大于等于0.2mm,所述第一通道的外周边缘与所述第二侧面之间的最小距离大于等于0.2mm。
  7. 根据权利要求6所述的电动泵,其特征在于:所述第一侧面和所述第二侧面呈弧面状,所述第一侧面与所述第二侧面之间的最小距离自所述第一头部到所述第一尾部逐渐减小。
  8. 根据权利要求1至7任一项所述的电动泵,其特征在于:所述第一通道的横截面和所述第二通道的横截面均呈圆孔状,所述第一通道的孔径 小于等于所述第二通道的孔径。
  9. 根据权利要求8所述的电动泵,其特征在于:所述电动泵还包括第一壳体,所述第一壳体具有至少部分所述第一容纳部和至少部分所述第二容纳部,所述第一容纳腔位于所述底壁的一侧,所述第二容纳腔位于所述底壁的另一侧;所述第一壳体包括泵轴支撑部,所述泵轴支撑部与所述底壁一体成形,所述泵轴支撑部自所述底壁的下表面向远离所述底壁下表面的方向凸起设置,所述泵轴穿过所述泵轴支撑部,所述第二通道的中心轴线与所述泵轴的中心轴线重合,所述第二通道连通所述第二容纳腔与所述支路通道。
  10. 根据权利要求9所述的电动泵,其特征在于:所述电动泵还包括泵盖,所述泵盖具有所述进流通道、所述出流通道和所述支路通道;所述进流通道贯穿所述泵盖的上下端面,所述出流通道自所述泵盖的下端面凹陷设置,沿着所述泵盖的轴向,所述出流通道未贯穿所述泵盖的上端面,所述支路通道自所述泵盖的下端面凹陷设置,沿着所述泵盖的轴向,所述支路通道未贯穿所述泵盖的上端面,所述进流通道位于所述支路通道的一侧,所述出流通道位于所述支路通道的另一侧。
  11. 根据权利要求10所述的电动泵,其特征在于:所述支路通道的凹陷深度小于等于所述出流通道的凹陷深度;所述支路通道包括第一连通部和第二连通部,所述第一连通部与所述第二通道直接连通,将所述第二通道向所述泵盖的下端面正投影,所述第二通道的投影位于所述第一连通部内;所述出流通道包括第一流通部和第二流通部,所述第二流通部比所述第一流通部更靠近所述泵盖的外边缘,所述第一流通部和所述第二流通部平滑过渡连接,沿着所述泵盖的径向,所述第二流通部贯穿所述泵盖的部分外边缘;所述支路通道与所述第一流通部连通。
  12. 根据权利要求11所述的电动泵,其特征在于:所述支路通道包括第一连通部和第二连通部,所述第一连通部与所述第二通道连通,所述第二连通部与所述第一流通部连通;将所述第二通道向所述泵盖的下端面正投影,所述第二通道的投影位于所述第一连通部内;沿着所述泵盖的径向方向,所述第二连通部设置为贯穿所述第一近侧壁和所述第一连通部的部分周侧壁,所述第二连通部相对所述第一流通部的第一前端部更靠近所述 第一流通部和所述第二流通部的过渡连接处。
  13. 根据权利要求1所述的电动泵,其特征在于:所述第一转子的外齿与所述第二转子的内齿之间具有容积腔;所述容积腔分为第一区域和第二区域,在所述第一区域内,沿着所述第一转子组件的转动方向,所述第一转子的一个外齿以及与该外齿对应的所述第二转子的内齿之间形成的容积腔的容积逐渐增大,在所述第二区域内,沿着所述第一转子组件的转动方向,所述第一转子的一个外齿以及与该外齿对应的所述第二转子的内齿之间形成的容积腔的容积逐渐减小;将所述第一转子组件向平行于所述第一转子的上端面正投影,在所述第一转子组件的投影中,定义第一分界线,在所述第一分界线处,所述第一转子的一个外齿与所述第二转子的一个内齿啮合从而形成第一啮合点,所述第一分界线为所述第一啮合点与所述第一转子的中心的连线,所述第一分界线作为所述第一区域终止处和所述第二区域起始处的划分线;
    所述第一区域与所述进流通道连通,所述第一区域与所述出流通道不连通,所述第二区域与所述出流通道连通,所述第二区域与所述进流通道不连通;将所述第一转子组件、所述进流通道以及所述出流通道向平行于所述第一转子的上端面方向正投影,部分所述第一区域的投影位于所述进流通道的投影内,所述第一区域的投影未位于所述出流通道的投影内,所述第二区域的投影位于所述出流通道的投影内。
  14. 根据权利要求13所述的油泵,其特征在于:所述出流通道包括和第二流通部,所述第一流通部与所述第二流通部平滑过渡连接,所述第二流通部比所述第一流通部更靠近所述油泵的出口,所述第一流通部与所述第二流通部连通;所述第一流通部包括第一远侧壁和第一近侧壁,所述第一近侧壁比所述第一远侧壁更靠近所述第一转子的中心轴线;将所述第一转子组件和所述第一流通部向平行于所述第一转子的上端面方向正投影,所述第一近侧壁的投影与所述第一转子投影的外齿齿底相切或者所述第一近侧壁的投影比所述第一转子投影的内齿齿底更靠近所述第一转子的内孔边缘,所述第一远侧壁的投影与所述第二转子内齿的齿底相切或者所述第一远侧壁的投影比所述第二转子内齿的齿底更靠近所述第二转子的外边缘。
  15. 根据权利要求14所述的油泵,其特征在于:所述第一近侧壁与所述第一远侧壁呈弧面状,所述第一近侧壁与所述第一转子同轴设置,所述第一远侧壁与所述第二转子同轴设置;所述第一流通部还包括第一前端部,所述第一近侧壁与所述第一远侧壁之间的垂直距离自所述第一前端部到所述第一流通部与所述第二流通部之间的过渡连接处逐渐增大。
PCT/CN2020/094809 2019-06-19 2020-06-08 电动泵 WO2020253559A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20825824.4A EP3988789A4 (en) 2019-06-19 2020-06-08 ELECTRIC PUMP
JP2021571333A JP7372349B2 (ja) 2019-06-19 2020-06-08 電動ポンプ
US17/616,268 US11976658B2 (en) 2019-06-19 2020-06-08 Electric pump with cooling channel arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910529233.3A CN112112796A (zh) 2019-06-19 2019-06-19 电动泵
CN201910529233.3 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020253559A1 true WO2020253559A1 (zh) 2020-12-24

Family

ID=73795197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094809 WO2020253559A1 (zh) 2019-06-19 2020-06-08 电动泵

Country Status (5)

Country Link
US (1) US11976658B2 (zh)
EP (1) EP3988789A4 (zh)
JP (1) JP7372349B2 (zh)
CN (1) CN112112796A (zh)
WO (1) WO2020253559A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900014913A1 (it) * 2019-08-22 2021-02-22 Vhit Spa Pompa
CN115638104A (zh) * 2021-07-19 2023-01-24 杭州奥科美瑞科技有限公司 流体驱动装置
WO2024022482A1 (zh) * 2022-07-29 2024-02-01 浙江三花汽车零部件有限公司 一种电动泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170119A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 冷媒ポンプ及びその使用方法
EP1443210B1 (de) * 2003-01-31 2006-08-02 Voith Turbo GmbH Motorpumpenaggregat
JP2018025127A (ja) * 2016-08-09 2018-02-15 アイシン精機株式会社 ポンプ装置
WO2018062093A1 (ja) * 2016-09-30 2018-04-05 日本電産トーソク株式会社 ポンプ装置
CN109113954A (zh) * 2017-06-26 2019-01-01 比亚迪股份有限公司 电动油泵总成、转向系统和润滑系统
CN109563828A (zh) * 2016-08-09 2019-04-02 日本电产株式会社 驱动装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2254956T3 (es) 2002-02-28 2006-06-16 Standex International Corporation Motobomba.
US6863504B2 (en) * 2002-02-28 2005-03-08 Standex International Corp. Fluid pump relief valve
DE102011001041B9 (de) 2010-11-15 2014-06-26 Hnp Mikrosysteme Gmbh Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
TW201346141A (zh) * 2012-05-10 2013-11-16 Ji Ee Industry Co Ltd 電動水泵
JP6028406B2 (ja) * 2012-06-15 2016-11-16 株式会社ジェイテクト 電動ポンプ装置
CN106151054B (zh) 2015-03-26 2019-12-13 浙江三花汽车零部件有限公司 电驱动泵
KR101810430B1 (ko) * 2016-05-16 2017-12-19 주식회사 동희산업 축 확장형 냉각방식 공기압축기 및 연료전지 차량
US10914305B2 (en) 2016-05-27 2021-02-09 Ghsp, Inc. Thermistor flow path
CN109113946B (zh) * 2017-06-26 2020-11-06 比亚迪股份有限公司 电动油泵总成、转向系统和润滑系统
US11821420B2 (en) * 2017-06-30 2023-11-21 Tesla, Inc. Electric pump system and method
CN109424539A (zh) 2017-08-31 2019-03-05 杭州三花研究院有限公司 电子油泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443210B1 (de) * 2003-01-31 2006-08-02 Voith Turbo GmbH Motorpumpenaggregat
JP2006170119A (ja) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd 冷媒ポンプ及びその使用方法
JP2018025127A (ja) * 2016-08-09 2018-02-15 アイシン精機株式会社 ポンプ装置
CN109563828A (zh) * 2016-08-09 2019-04-02 日本电产株式会社 驱动装置
WO2018062093A1 (ja) * 2016-09-30 2018-04-05 日本電産トーソク株式会社 ポンプ装置
CN109113954A (zh) * 2017-06-26 2019-01-01 比亚迪股份有限公司 电动油泵总成、转向系统和润滑系统

Also Published As

Publication number Publication date
EP3988789A4 (en) 2023-07-12
JP2022539958A (ja) 2022-09-14
US11976658B2 (en) 2024-05-07
US20220325712A1 (en) 2022-10-13
EP3988789A1 (en) 2022-04-27
JP7372349B2 (ja) 2023-10-31
CN112112796A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2020253559A1 (zh) 电动泵
EP3115612B1 (en) Electrically driven pump and method for manufacturing the same
US20210239115A1 (en) Electric oil pump
JP2017061921A (ja) 電気駆動ポンプ
JP6910467B2 (ja) モーター
TWI407018B (zh) Flat miniature pump
CN110131163B (zh) 电动泵
CN111725939A (zh) 一种冷却系统、定子组件以及轴向磁场电机
EP3677778A1 (en) Electric oil pump
CN211039017U (zh) 油泵
WO2018153350A1 (zh) 叶轮以及电动泵
CN214424690U (zh) 泵转子组件以及油泵
CN112112797B (zh) 油泵
US20200200168A1 (en) Oil pump
WO2018198367A1 (ja) ベーンポンプ
CN210218135U (zh) 一种用于发动机冷却系统的离心泵
CN116600526A (zh) 流体驱动装置
CN220522814U (zh) 一种电子水泵
JP4158269B2 (ja) 外部駆動形ラインポンプ
CN220566283U (zh) 电子水泵和车辆
CN210397085U (zh) 油泵
CN113550896A (zh) 泵转子组件以及油泵
CN221053856U (zh) 一种轮胎抬升用液压油泵
CN211573766U (zh) 泵转子组件和油泵
CN220505336U (zh) 智能双驱泵及供水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020825824

Country of ref document: EP

Effective date: 20220119