WO2020253491A1 - 充电电路、充电芯片、移动终端及充电系统 - Google Patents

充电电路、充电芯片、移动终端及充电系统 Download PDF

Info

Publication number
WO2020253491A1
WO2020253491A1 PCT/CN2020/092753 CN2020092753W WO2020253491A1 WO 2020253491 A1 WO2020253491 A1 WO 2020253491A1 CN 2020092753 W CN2020092753 W CN 2020092753W WO 2020253491 A1 WO2020253491 A1 WO 2020253491A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
charging
electrode
control
switch
Prior art date
Application number
PCT/CN2020/092753
Other languages
English (en)
French (fr)
Inventor
刘绍斌
田晨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20826619.7A priority Critical patent/EP3968491A4/en
Publication of WO2020253491A1 publication Critical patent/WO2020253491A1/zh
Priority to US17/551,699 priority patent/US20220109318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device

Definitions

  • This application relates to the field of charging technology, in particular to a charging circuit, a charging chip, a mobile terminal and a charging system.
  • an embodiment of the present invention provides a charging circuit, which includes a first transistor, a second transistor, and a control circuit;
  • the first electrode of the first transistor is connected to the energy storage device of the device to be charged, and the second electrode of the first transistor is connected to the second electrode of the second transistor;
  • the control electrode of the second transistor is connected to the control circuit, and the first electrode of the second transistor is connected to the power supply device; the control circuit is used to control the working state of the second transistor;
  • the control electrode of the first transistor is connected to the preset voltage terminal, and the difference between the voltage at the preset voltage terminal and the maximum voltage when the energy storage device is fully charged is less than Preset threshold.
  • the preset voltage terminal provides a turn-on voltage for the first transistor; the control circuit provides a turn-on voltage for the second transistor; the power supply device passes through the first transistor when the first transistor and the second transistor are both in the on state.
  • a transistor and a second transistor pass current to the energy storage device.
  • the charging circuit further includes a switch circuit connected to the controller of the device to be charged;
  • the switch circuit is respectively connected to the preset voltage terminal, the control circuit, the control electrode of the first transistor and the control electrode of the second transistor;
  • the controller is used to control the switching circuit to conduct the control circuit to electrically connect the control electrode of the first transistor when the charging signal is detected; or to control the switching circuit to conduct the predetermined voltage terminal and the first transistor when the charging signal is detected to be disconnected
  • the control electrode of the transistor is electrically connected
  • the control circuit is used to provide a turn-on voltage for the first transistor and the second transistor when electrically connected to the control electrode of the first transistor, so that the power supply device can charge the energy storage device through the first transistor and the second transistor.
  • the above-mentioned switch circuit includes a first switch and a second switch respectively connected to the controller of the device to be charged;
  • One end of the first switch is connected to the control electrode of the first transistor, and the other end of the first switch is connected to the preset voltage terminal;
  • One end of the second switch is connected to the control electrode of the first transistor, and the other end of the second switch is connected to the control circuit;
  • the controller is used to control the opening of the first switch and the closing of the second switch when the charging signal is detected, and the conduction control circuit is electrically connected to the control electrode of the first transistor; or, when the charging signal is detected to be disconnected, the controller
  • the first switch is controlled to be closed, and the second switch is controlled to open and conduct the predetermined voltage terminal to be electrically connected with the control electrode of the first transistor.
  • control circuit includes a conduction control unit and a switch control unit;
  • the input terminal of the conduction control unit is connected to the power supply device and the clock signal terminal, and the output terminal of the conduction control unit is connected to the control electrode of the second transistor;
  • the input terminal of the switch control unit is connected to the switch signal terminal, and the output terminal of the switch control unit is connected to the control electrode of the second transistor;
  • the conduction control unit is used to provide a conduction voltage for the second transistor when the switch control unit is turned off.
  • the aforementioned conduction control unit includes a charging signal input subunit, a clock signal input subunit, and a signal processing subunit;
  • the input end of the charging signal input subunit is connected to the power supply device, and the output end is connected to the input end of the signal processing subunit;
  • the input end of the clock signal input subunit is connected to the clock signal end, and the output end is connected to the input end of the signal processing subunit;
  • the output terminal of the unit is connected to the control electrode of the second transistor;
  • the charging signal input subunit is used to input the charging signal of the power supply device to the signal processing subunit;
  • the clock signal input subunit is used to input the clock signal to the signal processing subunit;
  • the signal processing subunit is used to input the charging signal and
  • the clock signal provides a turn-on voltage for the second transistor.
  • the charging signal input subunit includes a first resistor, a first diode, and a first capacitor;
  • One end of the first resistor is connected to the power supply device, and the other end is connected to the anode of the first diode and one end of the first capacitor;
  • the cathode of the first diode is connected to the input terminal of the signal processing subunit;
  • the other end of the first capacitor is grounded.
  • the above-mentioned clock signal input subunit includes a second capacitor
  • One end of the second capacitor receives the clock signal, and the other end is connected to the input end of the signal processing subunit.
  • the aforementioned signal processing subunit includes a second diode, a second resistor, a third capacitor, and a third resistor;
  • the anode of the second diode is connected to the output terminal of the charging signal input subunit and the output terminal of the clock signal input subunit, and the cathode is connected to one end of the second resistor and one end of the third capacitor;
  • the other end of the second resistor is connected to the control electrode of the second transistor
  • the other end of the third capacitor is grounded
  • One end of the third resistor is connected to the control electrode of the second transistor, and the other end is grounded.
  • the above-mentioned switch control unit includes a third transistor and a third diode
  • the control electrode of the third transistor is connected to the switch signal terminal, the source of the third transistor is connected to the anode of the third diode, and the drain of the third transistor is connected to the control electrode of the second transistor;
  • the cathode of the third diode is grounded.
  • control circuit further includes a protection unit
  • the input end of the protection unit is connected to the power supply device, and the output end is connected to the control electrode of the second transistor; the protection unit is used to protect the second transistor when the power supply device inputs a negative voltage.
  • the above-mentioned protection unit includes a fourth transistor, a fifth transistor, and a fourth resistor;
  • the control electrode of the fourth transistor is connected to the control electrode of the fifth transistor and one end of the fourth resistor, the source of the fourth transistor is connected to the power supply device, and the drain of the fourth transistor is connected to the drain of the fifth transistor;
  • the source of the fifth transistor is connected to the control electrode of the second transistor
  • the other end of the fourth resistor is grounded.
  • the first electrode of the first transistor has a source, and the second electrode of the first transistor has a drain;
  • the first electrode of the second transistor has a source, and the second transistor has a drain.
  • the first electrode of the first transistor has a drain, and the second electrode of the first transistor has a source;
  • the first electrode of the second transistor has a drain, and the second electrode of the second transistor has a source.
  • the above-mentioned charging circuit further includes a fifth resistor
  • One end of the fifth resistor is connected to the second electrode of the first transistor, and the other end of the fifth resistor is grounded.
  • an embodiment of the present invention provides a charging chip, which includes the charging circuit as described above.
  • an embodiment of the present invention provides a mobile terminal, which includes the charging circuit as described above.
  • an embodiment of the present invention provides a charging system that includes a power adapter and the mobile terminal as described above; the power adapter charges the mobile terminal through a USB port of the mobile terminal.
  • the charging circuit includes a first transistor, a second transistor and a control circuit; the first pole of the first transistor is connected to the energy storage device of the device to be charged, and the second The control electrode of the second transistor is connected to the second electrode of the second transistor; the control electrode of the second transistor is connected to the control circuit, and the first electrode of the second transistor is connected to the power supply device; the control circuit is used to control the working state of the second transistor; /Or when the second transistor is in the off state, the control electrode of the first transistor is connected to the preset voltage terminal, and the difference between the voltage at the preset voltage terminal and the maximum voltage when the energy storage device is fully charged is smaller than the preset threshold.
  • the voltage at the preset voltage terminal makes the voltage difference between the gate and the source of the first transistor smaller, thereby avoiding electromigration of the first transistor.
  • there is no voltage difference between the gate and the source of the second transistor and no electromigration phenomenon occurs. Since the electromigration phenomenon in the two transistors is avoided when not charging, the gate-source impedance of the two transistors will not be reduced, and the on-resistance of the two transistors will not be increased, increasing the charging power, and finally avoiding the charging circuit A serious problem of heat generation during charging.
  • FIG. 1 is one of the structural schematic diagrams of a charging circuit in an embodiment
  • FIG. 2 is a second structural diagram of a charging circuit in an embodiment
  • Fig. 3 is a third structural diagram of a charging circuit in an embodiment
  • Fig. 4 is a fourth structural diagram of a charging circuit in an embodiment
  • Fig. 5 is a fifth structural diagram of a charging circuit in an embodiment
  • Fig. 6 is a sixth structural diagram of a charging circuit in an embodiment
  • FIG. 7 is a seventh structural diagram of a charging circuit in an embodiment
  • FIG. 8 is the eighth structural diagram of a charging circuit in an embodiment
  • Fig. 9 is a ninth schematic diagram of a charging circuit in an embodiment
  • FIG. 10 is a tenth structural diagram of a charging circuit in an embodiment
  • FIG. 11 is an eleventh diagram of a structure of a charging circuit in an embodiment
  • FIG. 12 is a twelfth structural diagram of a charging circuit in an embodiment
  • Fig. 13 is a schematic structural diagram of a charging system in an embodiment.
  • An embodiment of the present invention provides a charging circuit.
  • the charging circuit includes a first transistor M1, a second transistor M2 and a control circuit 10; the first pole of the first transistor M1 is connected to the energy storage device V1 of the device to be charged, and the second pole of the first transistor M1 is connected to the second transistor M2.
  • the second pole; the control pole of the second transistor M2 is connected to the control circuit 10, and the first pole of the second transistor M2 is connected to the power supply device V2; the control circuit 10 is used to control the working state of the second transistor M2; where, when the first transistor M1 And/or when the second transistor M2 is in the off state, the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1, and the difference between the voltage of the preset voltage terminal Vg1 and the maximum voltage of the energy storage device V1 when fully charged is less than Preset threshold.
  • the equipment to be charged may include various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
  • the energy storage device V1 may include a rechargeable battery
  • the power supply equipment V2 may include a power adapter, a power bank, etc. .
  • the embodiment of the present invention does not make detailed limitations on the charging equipment, the energy storage device V1 and the power supply equipment V2, and can be set according to actual conditions.
  • the charging circuit includes a first transistor M1, a second transistor M2 and a control circuit 10.
  • the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1
  • the first electrode of the first transistor M1 is connected to the energy storage device V1 of the device to be charged
  • the second electrode of the first transistor M1 is connected to the second electrode of the second transistor M2. pole.
  • the control electrode of the second transistor M2 is connected to the control circuit 10, and the first electrode of the second transistor M2 is connected to the power supply device V2.
  • the first electrode of the first transistor M1 has a source
  • the second electrode of the first transistor M1 has a drain
  • the first electrode of the second transistor M2 has a source
  • the second transistor M2 has a drain. It will be explained as an example.
  • the control circuit 10 controls the second transistor M2 to be in an off state, and the difference between the voltage of the preset voltage terminal Vg1 and the maximum voltage when the energy storage device V1 is fully charged The value is less than the preset threshold.
  • the maximum voltage of the energy storage device V1 when it is fully charged is 5V
  • the preset threshold is 0.5V
  • the voltage of the preset voltage terminal Vg1 may be between 4.6V and 5V.
  • the predetermined voltage terminal Vg1 may be a voltage terminal provided by a voltage output terminal of an existing circuit in the device to be charged, or a circuit provided in the device to be charged to provide the predetermined voltage terminal.
  • the embodiment of the present invention does not limit this in detail, and can be set according to actual conditions. In this way, after the energy storage device V1 is fully charged, the voltage difference between the gate and the source of the first transistor M1 is very small, which can avoid electromigration between the gate and the source of the first transistor M1.
  • the voltage of the first pole of the second transistor M2 is 0V, and the control circuit 10 controls the second transistor M2 to be in an off state, and the gate of the second transistor M2 The voltage is less than the turn-on voltage of the second transistor M2. In this way, the voltage difference between the gate and the source of the second transistor M2 is also very small when it is not charged, which can avoid electromigration between the gate and the source of the second transistor M2.
  • the preset voltage terminal Vg1 provides the turn-on voltage for the first transistor M1; the control circuit 10 is used to provide the turn-on voltage for the second transistor M2; the power supply device V2 is connected to the first transistor M2.
  • the current is transferred to the energy storage device V1 through the first transistor M1 and the second transistor M2.
  • the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1, and the preset voltage terminal Vg1 provides conduction for the first transistor M1. Voltage, the first transistor M1 is turned on. At the same time, the control circuit 10 provides a turn-on voltage for the second transistor M2, and the second transistor M2 is turned on. Since the first transistor M1 and the second transistor M2 are both in a conducting state, the power supply device V2 can charge the energy storage device V1 through the first transistor M1 and the second transistor M2.
  • the charging circuit includes a first transistor, a second transistor and a control circuit; the control electrode of the first transistor is connected to the preset voltage terminal, the first electrode of the first transistor is connected to the energy storage device of the device to be charged, and the first transistor The second electrode of the second transistor is connected to the second electrode of the second transistor; the control electrode of the second transistor is connected to the control circuit, and the first electrode of the second transistor is connected to the power supply device; the control circuit is used to control the working state of the second transistor; When one transistor and/or the second transistor are in an off state, the difference between the voltage at the preset voltage terminal and the maximum voltage when the energy storage device is fully charged is less than the preset threshold.
  • the voltage at the preset voltage terminal makes the voltage difference between the gate and the source of the first transistor smaller, which can avoid electromigration of the first transistor.
  • there is no voltage difference between the gate and the source of the second transistor and no electromigration phenomenon occurs. Since the electromigration phenomenon in the two transistors is avoided when not charging, the gate-source impedance of the two transistors will not be reduced, and the on-resistance of the two transistors will not be increased, increasing the charging power, and finally avoiding charging A serious problem that the circuit heats up during charging.
  • the preset voltage terminal is only applicable when the power supply device is not charging the energy storage device of the device to be charged, and when the power supply device is charging the energy storage device of the device to be charged, the control circuit can be unified as the first transistor And the second transistor provides the turn-on voltage.
  • This embodiment relates to an optional structure of such a charging circuit.
  • the charging circuit further includes a switch circuit 20 connected to the controller of the device to be charged; the switch circuit 20 is connected to the preset voltage terminal Vg1 and the control circuit 10 respectively.
  • the control electrode of the first transistor M1 is connected to the control electrode of the second transistor M2; the controller is used to control the switch circuit 20 to turn on the control circuit 10 to be electrically connected to the control electrode of the first transistor M1 when the charging signal is detected; or , When it is detected that the charging signal is disconnected, the switch circuit 20 is controlled to turn on the preset voltage terminal Vg1 to be electrically connected to the control electrode of the first transistor M1; the control circuit 10 is used for electrically connecting to the control electrode of the first transistor M1, The turn-on voltage is provided for the first transistor M1 and the second transistor M2, so that the power supply device V2 charges the energy storage device V1 through the first transistor M1 and the second transistor M2.
  • the charging circuit may further include a switch circuit 20 connected to the controller of the device to be charged.
  • the switch circuit 20 is connected to the preset voltage terminal Vg1, the control circuit 10, the control electrode of the first transistor M1, and the second transistor M2, respectively.
  • the control pole is connected.
  • the switch circuit 20 is controlled to electrically connect the control circuit 10 to the control electrode of the first transistor M1.
  • the control circuit 10 simultaneously provides the turn-on voltage for the first transistor M1 and the second transistor M2.
  • the first transistor M1 and the second transistor M2 are both in a conducting state, and the power supply device V2 can charge the energy storage device V1 through the charging circuit.
  • the control switch circuit 20 electrically connects the preset voltage terminal Vg1 with the control electrode of the first transistor M1, so that the preset voltage terminal Vg1 makes the gate voltage of the first transistor M1 close to the storage.
  • the control circuit 10 controls the second transistor M2 to turn off, that is, the gate voltage of the second transistor M2 is less than The turn-on voltage of the second transistor M2. In this way, the voltage difference between the gate and the source of the second transistor M2 is also very small, and the phenomenon of electromigration between the gate and the source of the second transistor M2 can also be avoided.
  • a switch may be provided, one end of the switch is connected to the control electrode of the first transistor M1, and the other end is electrically connected to the control circuit 10 when the controller detects the charging signal, and when the controller detects that the charging signal is disconnected It is electrically connected to the preset voltage terminal Vg1.
  • the embodiment of the present invention does not limit the switch circuit 20 in detail, and can be set according to actual conditions.
  • the function of the above-mentioned switch circuit 20 can also be realized by setting multiple switches.
  • the switch circuit 20 includes a first switch K1 and a second switch K2 respectively connected to the controller of the device to be charged.
  • One end of the first switch K1 is connected to the control electrode of the first transistor M1, the other end of the first switch K1 is connected to the preset voltage terminal Vg1; one end of the second switch K2 is connected to the control electrode of the first transistor M1, and the second switch K1 The other end is connected to the control circuit 10.
  • the controller is used to control the first switch K1 to open and the second switch K2 to close when the charging signal is detected, and the conduction control circuit 10 is electrically connected to the control electrode of the first transistor M1; the controller is used to control the When the charging signal is disconnected, the first switch K1 is controlled to be closed, and the second switch K2 is controlled to be opened, so that the predetermined voltage terminal Vg1 is electrically connected to the control electrode of the first transistor M1.
  • the device to be charged further includes a controller
  • the switch circuit 20 includes a first switch K1 and a second switch K2
  • the controller is respectively connected to the first switch K1 and the second switch K2.
  • One end of the first switch K1 is connected to the control electrode of the first transistor M1, the other end of the first switch K1 is connected to the preset voltage terminal Vg1;
  • one end of the second switch K2 is connected to the control electrode of the first transistor M1, and the other end of the second switch K2 One end is connected to the control circuit 10.
  • the controller When the controller detects the charging signal, it controls the first switch K1 to open and controls the second switch K2 to close, so that the control circuit 10 is connected to the control electrode of the first transistor M1.
  • the control circuit 10 can provide a turn-on voltage for the first transistor M1 and the second transistor M2, so that the first transistor M1 and the second transistor M2 are both in a conductive state. In this way, it is possible to realize that the power supply device V2 charges the energy storage device V1 through the charging circuit.
  • the controller When the controller detects that the charging signal is disconnected, the controller controls the first switch K1 to close, and controls the second switch K2 to open, so that the preset voltage terminal Vg1 is connected to the control electrode of the first transistor M1. Since the voltage difference between the voltage of the preset voltage terminal Vg1 and the maximum voltage when the energy storage device V1 is fully charged is less than the preset threshold, the voltage difference between the gate and the source of the first transistor M1 is small, which can Avoid electromigration between the gate and source of the first transistor M1.
  • the control circuit 10 controls the second transistor M2 to be turned off, and the voltage difference between the gate and the source of the second transistor M2 is also very small, which can avoid the phenomenon of electromigration between the gate and the source of the second transistor M2.
  • the charging circuit further includes a switching circuit connected to the controller of the device to be charged; when the controller detects the charging signal, the controller controls the switching circuit to turn on and the control circuit is electrically connected to the control electrode of the first transistor; When the signal is disconnected, the switch circuit is controlled to conduct the predetermined voltage terminal to be electrically connected to the control electrode of the first transistor.
  • the power supply device can charge the energy storage device when the first transistor and the second transistor are both in the on state, and when the first transistor and/or the second transistor are in the off state, the first transistor and the second transistor can be avoided. Electromigration occurs in the second transistor.
  • the switch circuit is flexible in control, can be applied to various scenarios, and can also reduce the cost of the charging circuit.
  • this embodiment relates to an optional structure of the control circuit.
  • the control circuit 10 includes a conduction control unit 101 and a switch control unit 102; the input end of the conduction control unit 101 is connected to the power supply device V2 and the clock signal terminal CLK , The output terminal of the conduction control unit 101 is connected to the control electrode of the second transistor M2; the input terminal of the switch control unit 102 is connected to the switch signal terminal SW, and the output terminal of the switch control unit 102 is connected to the control electrode of the second transistor M2;
  • the unit 101 is used to provide a turn-on voltage for the second transistor M2 when the switch control unit 102 is turned off.
  • the control circuit 10 includes a conduction control unit 101 and a switch control unit 102.
  • the input terminal of the conduction control unit 101 is connected to the power supply device V2 and the clock signal terminal CLK, and the output terminal of the conduction control unit 101 is connected to the control electrode of the second transistor M2.
  • the input terminal of the switch control unit 102 is connected to the switch signal terminal SW, and the output terminal of the switch control unit 102 is connected to the control electrode of the second transistor M2.
  • Both the clock signal terminal CLK and the switch signal terminal SW can be set on the controller of the device to be charged.
  • the clock signal terminal CLK and the switch signal terminal SW can also be set in other positions, which are not limited in detail in the embodiment of the present invention, and can be set according to actual conditions.
  • the switch control unit 102 When the controller detects the charging signal, the switch control unit 102 receives the switch signal and turns off, and then the turn-on control unit 101 provides a turn-on voltage for the second transistor M2 when the switch control unit 102 is turned off. At this time, the control circuit 10 can also provide a turn-on voltage for the first transistor M1. When the first transistor M1 and the second transistor M2 are both turned on, the power supply device V2 can charge the energy storage device V1 through the charging circuit.
  • the switch control unit 102 When the controller detects that the charging signal is disconnected, the switch control unit 102 receives the switch signal and turns on, so that the control electrode of the second transistor M2 is grounded. At this time, the gate voltage of the second transistor M2 is 0V, the source voltage is also 0V, and the voltage difference between the gate and source of the second transistor M2 is 0V, which can avoid the gate-source of the second transistor M2. Electromigration occurred. In addition, when the controller detects that the charging signal is disconnected, the control electrode of the first transistor M1 is connected to the predetermined voltage terminal Vg1, which can also prevent electromigration between the gate and source of the first transistor M1.
  • the conduction control unit 101 includes a charging signal input subunit 1011, a clock signal input subunit 1012, and a signal processing subunit 1013; the input end of the charging signal input subunit 1011 is connected to power supply Device V2, the output terminal is connected to the input terminal of the signal processing sub-unit 1013; the input terminal of the clock signal input sub-unit 1012 is connected to the clock signal terminal CLK, and the output terminal is connected to the input terminal of the signal processing sub-unit 1013; the output terminal of the signal processing sub-unit 1013 Connect the control electrode of the second transistor M2; the charging signal input sub-unit 1011, used to input the charging signal of the power supply device V2 to the signal processing sub-unit 1013; the clock signal input sub-unit 1012, used to input the clock signal to the signal processing sub-unit Unit 1013; a signal processing sub-unit 1013, used to provide a turn-on voltage for the second transistor M2 according to the charging signal and the clock signal.
  • the conduction control unit 101 includes a charging signal input subunit 1011, a clock signal input subunit 1012, and a signal processing subunit 1013.
  • the input terminal of the charging signal input subunit 1011 is connected to the power supply device V2, and the output terminal is connected to the input terminal of the signal processing subunit 1013.
  • the controller detects that the power supply device V2 is charging the energy storage device, that is, when a charging signal is detected, the charging signal input subunit 1011 receives the charging signal of the power supply device V2, and then transmits the charging signal to the signal processing subunit 1013.
  • the power supply device V2 does not charge the energy storage device, that is, when it is detected that the charging signal is disconnected, the power supply device V2 does not input a charging signal, and the charging signal input subunit 1011 does not work.
  • the input terminal of the clock signal input subunit 1012 is connected to the clock signal terminal CLK, and the output terminal is connected to the input terminal of the signal processing subunit 1013.
  • the clock signal input sub-unit 1012 receives the clock signal and inputs the clock signal to the signal processing sub-unit 1013.
  • the clock signal input subunit 1012 does not work.
  • the input end of the signal processing subunit 1013 is connected to the output end of the charging signal input subunit 1011 and the output end of the clock signal input subunit 1012, and the output end of the signal processing subunit 1013 is connected to the control electrode of the second transistor M2.
  • the signal processing subunit 1013 receives the charging signal and the clock signal, processes the charging signal and the clock signal, and inputs the processed signal to the control electrode of the second transistor M2, which is the second The transistor M2 provides the turn-on voltage.
  • the signal processing subunit 1013 does not work.
  • the charging signal input subunit 1011 includes a first resistor R1, a first diode D1, and a first capacitor C1; one end of the first resistor R1 is connected to the power supply device V2, and the other end is connected to the first resistor R1.
  • the charging voltage of the power supply device V2 is input from one end of the first resistor R1, and is applied to the node J1 through the first diode D1, that is, the charging signal is input to the signal processing subunit 1013 .
  • the function of the first diode D1 is to prevent backflow, and the first resistor R1 and the first capacitor C1 form a filter circuit, which can filter out the noise signal input along with the charging voltage.
  • the clock signal input subunit 1012 includes a second capacitor C2; one end of the second capacitor C2 receives the clock signal, and the other end is connected to the input end of the signal processing subunit 1013.
  • the controller detects the charging signal
  • the clock signal is input from one end of the second capacitor C2, and the other end of the second capacitor C2 is added to the node J1, that is, the clock signal is input to the signal processing subunit 1013.
  • the function of the second capacitor C2 is to store energy and filter.
  • the signal processing subunit 1013 includes a second diode D2, a second resistor R2, a third capacitor C3, and a third resistor R3; the anode of the second diode D2 is connected to the charging signal input
  • the output terminal of the subunit 1011 and the output terminal of the clock signal input subunit 1012, the cathode is connected to one end of the second resistor R2 and one end of the third capacitor C3; the other end of the second resistor R2 is connected to the control electrode of the second transistor M2;
  • the other end of the three capacitor C3 is grounded; one end of the third resistor R3 is connected to the control electrode of the second transistor M2, and the other end is grounded.
  • the anode of the second diode D2 is connected to the node J1, and the cathode is connected to one end of the second resistor R2 and one end of the second capacitor C2.
  • the controller detects the charging signal
  • the charging signal and the clock signal on the node J1 are input from the anode of the second diode D2 and superimposed to obtain the processed signal.
  • the processed signal is applied to the node J2 through the second resistor R2, which provides a turn-on voltage for the second transistor M2, so that the second transistor M2 is turned on.
  • the switch control unit 102 includes a third transistor M3 and a third diode D3; the control electrode of the third transistor M3 is connected to the switch signal terminal SW, and the source of the third transistor M3 The anode of the third diode D3 is connected, the drain of the third transistor M3 is connected to the control electrode of the second transistor M2; the cathode of the third diode D3 is grounded.
  • the switch control unit 102 includes a third transistor M3 and a third diode D3.
  • the control electrode of the third transistor M3 is connected to the switch signal terminal SW.
  • the switch signal output by the switch signal terminal SW turns off the third transistor M3, and the turn-on control unit 101 provides the turn-on voltage for the second transistor M2.
  • the turn-on control unit 101 also provides a turn-on voltage for the first transistor M1. After the first transistor M1 and the second transistor M2 are both turned on, the power supply device V2 charges the energy storage device V1.
  • the switching signal output from the switching signal terminal SW turns on the third transistor M3. Since the source of the third transistor M3 is grounded through the third diode D3, and the drain of the third transistor M3 is connected to the control electrode of the second transistor M2, when the third transistor M3 is turned on, the drain of the third transistor M3 The voltage is 0V. Therefore, the gate voltage of the second transistor M2 is 0V, and the second transistor M2 is turned off. Since the power supply device V2 does not charge the energy storage device V1, the source voltage of the second transistor M2 is 0V, and the voltage difference between the gate and the source of the second transistor M2 is 0V, so the second transistor M2 can be avoided Electromigration occurs between the gate and source.
  • the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1, and the voltage difference between the gate and the source of the first transistor M1 is also small, which can avoid the Electromigration occurs between the gate and source of a transistor M1.
  • control circuit further includes a protection unit 103; the input end of the protection unit 103 is connected to the power supply device V2, and the output end is connected to the control electrode of the second transistor M2; the protection unit 103 is used for power supply
  • the device V2 protects the second transistor M2 when a negative voltage is input.
  • control circuit further includes a protection unit 103.
  • the protection unit 103 can prevent the negative voltage from being input to the second transistor M2 to cause damage to the second transistor M2.
  • the protection unit 103 includes a fourth transistor M4, a fifth transistor M5, and a fourth resistor R4; the control electrode of the fourth transistor M4 is connected to the control electrode of the fifth transistor M5 and the fourth resistor R4.
  • the source of the fourth transistor M4 is connected to the power supply device V2
  • the drain of the fourth transistor M4 is connected to the drain of the fifth transistor M5
  • the source of the fifth transistor M5 is connected to the control electrode of the second transistor M2
  • the fourth resistor R4 The other end is grounded.
  • the fourth transistor M4 and the fifth transistor M5 are turned on to prevent the negative voltage from being input to the control electrode of the second transistor M2.
  • the control circuit in the above charging circuit includes a conduction control unit and a switch control unit.
  • the turn-on control unit provides a turn-on voltage for the second transistor according to the charging signal and the clock signal of the power supply device.
  • the power supply device can be implemented to charge the energy storage device.
  • the switch control unit controls the second transistor to be turned off, so as to avoid electromigration in the second transistor, thereby avoiding the problem of serious heat generation in the charging circuit during charging.
  • the protection unit can also protect the second transistor when the power supply device inputs a negative voltage, thereby protecting the entire charging circuit.
  • this embodiment relates to an optional structure of the charging circuit.
  • the first electrode of the first transistor M1 has a drain
  • the second electrode of the first transistor M1 has a source
  • the second transistor M2 has a drain of the first electrode
  • the second pole of the second transistor M2 is the source.
  • the drain of the first transistor M1 can be connected to the energy storage device V1, the source of the first transistor M1 is connected to the source of the second transistor M2; the drain of the second transistor M2 is connected to the power supply device V2.
  • the control circuit 10 controls the second transistor M2 to turn off, and the gate and source of the second transistor M2 are both 0V.
  • the voltage difference between the gate and the source of the second transistor M2 is 0V, which can avoid electromigration between the gate and the source of the second transistor M2.
  • the preset threshold can be set to a negative value.
  • the preset threshold is set to -4, if the maximum voltage of the energy storage device V1 is 5V, the voltage of the preset voltage terminal Vg1 is 0V, and the difference between the voltage of the preset voltage terminal Vg1 and the maximum voltage of the energy storage device V1 It is -5V, which is less than the preset threshold. Since the voltage of the preset voltage terminal Vg1 is 0V, the first transistor M1 is turned off, and the gate and source of the first transistor M1 are both 0V.
  • the voltage difference between the gate and the source of the first transistor M1 is small, which can avoid electromigration between the gate and the source of the first transistor M1. Moreover, even if the drain of the first transistor M1 is connected to the energy storage device, since the drain of the first transistor M1 does not have silver ions, the first transistor M1 does not exhibit electromigration. The second transistor M2 is turned off, and the voltage between the gate and the drain of the second transistor is 0V, so the second transistor M2 does not exhibit electromigration.
  • the preset voltage terminal Vg1 provides a turn-on voltage for the first transistor M1
  • the control circuit 10 provides a turn-on voltage for the second transistor M2
  • the first transistor M1 and the second transistor M2 are both turned on.
  • the power supply device V2 charges the energy storage device V1 through the first transistor M1 and the second transistor M2.
  • the first transistor M1 and the second transistor M2 are both NMOS transistors.
  • the gate voltage Vg1 of the first transistor M1 is equal to the gate voltage provided by the control circuit to the second transistor M2, and the circuit can be equivalent to the circuit described in FIG. 11 ,
  • the gate of the first transistor M1 and the gate of the second transistor M2 are both connected to the voltage Vth, which is greater than or equal to the turn-on voltage of the first transistor M1 and the second transistor M2.
  • the voltage Vth may be a voltage provided by an external voltage port, or may be provided by the control circuit in FIG. 9, which is not limited in this application.
  • the controller detects the charging signal
  • the voltage Vth provides the turn-on voltage for the first transistor M1 and the second transistor M1, so that the first transistor M1 and the second transistor M1 are turned on to charge the device to be charged; the controller detects When the charging signal is disconnected, since the D pole of the MOS tube does not contain silver, electromigration will not occur.
  • the charging circuit further includes a fifth resistor R5; one end of the fifth resistor R5 is connected to the second electrode of the first transistor M1, and the other end is grounded. Specifically, one end of the fifth resistor R5 is connected to the source of the first transistor M1 and the source of the second transistor M2.
  • the controller detects that the charging signal is disconnected, the electrostatic charge on the first transistor M1 and the second transistor M2 It can be released through the fifth resistor R5 to avoid electrostatic loss.
  • the first electrode of the first transistor has a drain, and the second electrode of the first transistor has a source; the first electrode of the second transistor has a drain, and the second transistor has a source.
  • the controller detects the charging signal, the first transistor and the second transistor are both in a conducting state, and the power supply device charges the energy storage device through the charging circuit.
  • the controller detects that the charging signal is disconnected, the gate-source voltage difference of the first transistor and the second transistor are both small, which can avoid electromigration in the transistors, thereby avoiding the problem of serious heating of the charging circuit during charging.
  • a charging chip is provided, and the charging chip includes the charging circuit as in the foregoing embodiment.
  • the charging circuit includes a first transistor M1, a second transistor M2, and a control circuit 10; the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1, and the first electrode of the first transistor M1 is connected to the storage device of the device to be charged.
  • the second pole of the first transistor M1 is connected to the second pole of the second transistor M2; the control pole of the second transistor M2 is connected to the control circuit 10, and the first pole of the second transistor M2 is connected to the power supply device V2; the control circuit 10 Used to control the working state of the second transistor M2; wherein, when the first transistor M1 and/or the second transistor M2 are in the off state, the voltage of the preset voltage terminal Vg1 is between the maximum voltage when the energy storage device V1 is fully charged The difference of is less than the preset threshold.
  • the charging chip includes a charging circuit, and the charging circuit includes a first transistor and a second transistor.
  • the power supply device can charge the energy storage device through the charging chip.
  • the gate-source voltage difference between the first transistor and the second transistor in the charging circuit is relatively small, which can avoid electromigration in the transistor and prevent the charging chip from charging It is a serious problem with fever.
  • a mobile terminal in another embodiment, is provided, and the mobile terminal includes the charging circuit as in the foregoing embodiment.
  • the charging circuit includes a first transistor M1, a second transistor M2, and a control circuit 10; the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1, and the first electrode of the first transistor M1 is connected to the storage device of the device to be charged.
  • the second pole of the first transistor M1 is connected to the second pole of the second transistor M2; the control pole of the second transistor M2 is connected to the control circuit 10, and the first pole of the second transistor M2 is connected to the power supply device V2; the control circuit 10 Used to control the working state of the second transistor M2; wherein, when the first transistor M1 and/or the second transistor M2 are in the off state, the voltage of the preset voltage terminal Vg1 is between the maximum voltage when the energy storage device V1 is fully charged The difference between is less than the preset threshold.
  • the mobile terminal is provided with a controller, and the controller is provided with a clock signal terminal CLK and a switch signal terminal SW.
  • the controller detects that the power supply device V2 is charging the energy storage device V1, that is, when a charging signal is detected, the controller outputs a clock signal from the clock signal terminal CLK to the charging circuit, and outputs a switching signal from the switch signal terminal SW to the charging circuit.
  • the controller can also be connected to the switch circuit 20 of the charging circuit, thereby controlling the closing and opening of the switch in the switch circuit 20.
  • the control circuit 10 electrically connects the control electrode of the first transistor M1 with the preset voltage terminal Vg1; when the controller detects the charging signal, the control circuit 10 enables the control of the first transistor M1 The pole is electrically connected to the control circuit 10.
  • the mobile terminal is also provided with a charging interface and a battery, and the first pole of the second transistor M2 can be connected to the power supply device V2 through the charging interface, so that the power supply device V2 can charge the battery of the mobile terminal.
  • the above-mentioned mobile terminal includes a charging circuit, and when the first transistor and the second transistor are both in a conductive state, the power supply device can charge the energy storage device of the mobile terminal.
  • the first transistor and/or the second transistor are in the off state, the gate-source voltage difference between the first transistor and the second transistor in the charging circuit is relatively small, which can avoid electromigration in the transistor, thereby preventing the mobile terminal from charging It is a serious problem with fever.
  • a charging system in another embodiment, as shown in FIG. 13, a charging system is provided.
  • the charging system includes a power adapter and the mobile terminal in the above embodiment; the power adapter charges the mobile terminal through the USB port of the mobile terminal.
  • the mobile terminal includes a charging circuit, which includes a first transistor M1, a second transistor M2, and a control circuit 10; the control electrode of the first transistor M1 is connected to the preset voltage terminal Vg1, and the first electrode of the first transistor M1 Connect the energy storage device V1 of the device to be charged, the second pole of the first transistor M1 is connected to the second pole of the second transistor M2; the control pole of the second transistor M2 is connected to the control circuit 10, and the first pole of the second transistor M2 is connected to the power supply Device V2; the control circuit 10 is used to control the working state of the second transistor M2; wherein, when the first transistor M1 and/or the second transistor M2 are in the off state, the voltage of the preset voltage terminal Vg1 is equal to the maximum value of the energy storage device V1 The difference between the voltages is less than the preset threshold.
  • the charging interface of the mobile terminal is a USB port, and the first pole of the second transistor M2 of the charging circuit can be connected to a power adapter through the USB port, so that the power adapter can charge the mobile terminal.
  • the above charging system includes a mobile terminal and a power adapter, and the power adapter charges the mobile terminal through the USB port of the mobile terminal.
  • the mobile terminal includes a charging circuit, and the charging circuit includes a first transistor and a second transistor.
  • the power adapter can charge the battery of the mobile terminal through the charging circuit.
  • the gate-source voltage difference between the first transistor and the second transistor in the charging circuit is small, which can avoid electromigration in the transistors, thereby preventing the power adapter from moving
  • the mobile terminal generates a serious problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及一种充电电路、充电芯片、移动终端及充电系统。所述充电电路包括第一晶体管、第二晶体管和控制电路;所述第一晶体管的控制极连接预设电压端,所述第一晶体管的第一极连接待充电设备的储能装置,所述第一晶体管的第二极连接所述第二晶体管的第二极;所述第二晶体管的控制极连接所述控制电路,所述第二晶体管的第一极连接供电设备;所述控制电路用于控制所述第二晶体管的工作状态;其中,当所述第一晶体管和/或所述第二晶体管处于截止状态时,所述预设电压端的电压与所述储能装置充满电时的最大电压之间的差值小于预设阈值。通过本发明实施例,可以避免不充电时两个晶体管中发生电迁移现象,进而避免充电电路在充电时发热严重的问题。

Description

充电电路、充电芯片、移动终端及充电系统
相关申请的交叉引用
本申请要求于2019年06月19日提交中国专利局,申请号为2019105325197,申请名称为“充电电路、充电芯片、移动终端及充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本申请涉及充电技术领域,特别是涉及一种充电电路、充电芯片、移动终端及充电系统。
背景技术
随着电子设备的发展,用户对电子设备的充电技术要求越来越高。例如,需要缩短充电时间、降低充电发热现象等。其中,快速充电成为充电技术的一种发展趋势。
目前,快速充电采用的充电电路中,常常出现电迁移现象,导致电子设备在充电时充电功率增大,进而使得电子设备发热严重。
发明内容
基于此,有必要针对上述技术问题,提供一种能够避免出现电迁移现象的充电电路、充电芯片、移动终端及充电系统。
一方面,本发明实施例提供了一种充电电路,该充电电路包括第一晶体管、第二晶体管和控制电路;
第一晶体管的第一极连接待充电设备的储能装置,第一晶体管的第二极连接第二晶体管的第二极;
第二晶体管的控制极连接控制电路,第二晶体管的第一极连接供电设备;控制电路用于控制第二晶体管的工作状态;
其中,当第一晶体管和/或第二晶体管处于截止状态时,第一晶体管的控制极连接预设电压端,预设电压端的电压与储能装置充满电时的最大电压之间的差值小于预设阈值。
在其中一个实施例中,预设电压端为第一晶体管提供导通电压;控制电路为第二晶体管提供导通电压;供电设备在第一晶体管和第二晶体管均处于导通状态时,通过第一晶体管和第二晶体管将电流传递给储能装置。
在其中一个实施例中,该充电电路还包括与待充电设备的控制器连接的开关电路;
开关电路分别与预设电压端、控制电路、第一晶体管的控制极和第二晶体管的控制极连接;
控制器,用于在检测到充电信号时控制开关电路导通控制电路与第一晶体管的控制极电连接;或,在检测到充电信号断开时控制开关电路导通预设电压端与第一晶体管的控制极电连接;
控制电路,用于在与第一晶体管的控制极电连接时,为第一晶体管和第二晶体管提供导通电压,使供电设备通过第一晶体管和第二晶体管为储能装置充电。
在其中一个实施例中,上述开关电路包括分别与待充电设备的控制器连接的第一开关和第二开关;
第一开关的一端连接第一晶体管的控制极,第一开关的另一端连接预设电压端;
第二开关的一端连接第一晶体管的控制极,第二开关的另一端连接控制电路;
控制器,用于在检测到充电信号时控制第一开关断开、控制第二开关闭合,导通控制电路与第一晶体管的控制极电连接;或,在检测到充电信号断开时控制器控制第一开关闭合、控制第二开关断开导通预设电压端与第一晶体管的控制极电连接。
在其中一个实施例中,上述控制电路包括导通控制单元和开关控制单元;
导通控制单元的输入端连接供电设备和时钟信号端,导通控制单元的输出端连接第二晶体管的控制极;
开关控制单元的输入端连接开关信号端,开关控制单元的输出端连接第二晶体管的控制极;
导通控制单元,用于在开关控制单元关断时,为第二晶体管提供导通电压。
在其中一个实施例中,上述导通控制单元包括充电信号输入子单元、时钟信号输入子单元和信号处理子单元;
充电信号输入子单元的输入端连接供电设备,输出端连接信号处理子单元的输入端;时钟信号输入子单元的输入端连接时钟信号端,输出端连接信号处理子单元的输入端;信号处理子单元的输出端连接第二晶体管的控制极;
充电信号输入子单元,用于将供电设备的充电信号输入至信号处理子单元;时钟信号输入子单元,用于将时钟信号输入至信号处理子单元;信号处理子单元,用于根据充电信号和时钟信号为第二晶体管提供导通电压。
在其中一个实施例中,上述充电信号输入子单元包括第一电阻、第一二极管和第一电容;
第一电阻的一端连接供电设备,另一端连接第一二极管的阳极和第一电容的一端;
第一二极管的阴极连接信号处理子单元的输入端;
第一电容的另一端接地。
在其中一个实施例中,上述时钟信号输入子单元包括第二电容;
第二电容的一端接收时钟信号,另一端连接信号处理子单元的输入端。
在其中一个实施例中,上述信号处理子单元包括第二二极管、第二电阻、第三电容和第三电阻;
第二二极管的阳极连接充电信号输入子单元的输出端和时钟信号输入子单元的输出端,阴极连接第二电阻的一端和第三电容的一端;
第二电阻的另一端连接第二晶体管的控制极;
第三电容的另一端接地;
第三电阻的一端连接第二晶体管的控制极,另一端接地。
在其中一个实施例中,上述开关控制单元包括第三晶体管和第三二极管;
第三晶体管的控制极连接开关信号端,第三晶体管的源极连接第三二极管的阳极,第三晶体管的漏极连接第二晶体管的控制极;
第三二极管的阴极接地。
在其中一个实施例中,上述控制电路还包括保护单元;
保护单元的输入端连接供电设备,输出端连接第二晶体管的控制极;保护单元,用于供电设备输入负压时保护第二晶体管。
在其中一个实施例中,上述保护单元包括第四晶体管、第五晶体管和第四电阻;
第四晶体管的控制极连接第五晶体管的控制极和第四电阻的一端,第四晶体管的源极连接供电设备,第四晶体管的漏极连接第五晶体管的漏极;
第五晶体管的源极连接第二晶体管的控制极;
第四电阻的另一端接地。
在其中一个实施例中,第一晶体管的第一极为源极,第一晶体管的第二极为漏极;
第二晶体管的第一极为源极,第二晶体管的第二极为漏极。
在其中一个实施例中,第一晶体管的第一极为漏极,第一晶体管的第二极为源极;
第二晶体管的第一极为漏极,第二晶体管的第二极为源极。
在其中一个实施例中,上述充电电路还包括第五电阻;
第五电阻的一端连接第一晶体管的第二极,第五电阻的另一端接地。
又一方面,本发明实施例提供了一种充电芯片,该充电芯片包括如上述的充电电路。
另一方面,本发明实施例提供了一种移动终端,该移动终端包括如上述的充电电路。
另一方面,本发明实施例提供了一种充电系统,该充电系统包括电源适配器和如上述的移动终端;电源适配器通过移动终端的USB端口为移动终端充电。
上述充电电路、充电芯片、移动终端及充电系统中,充电电路包括第一晶体管、第二晶体管和控制电路;第一晶体管的第一极连接待充电设备的储能装置,第一晶体管的第二极连接第二晶体管的第二极;第二晶体管的控制极连接控制电路,第二晶体管的第一极连接供电设备;控制电路用于控制第二晶体管的工作状态;其中,当第一晶体管和/或第二晶体管处于截止状态时,第一晶体管的控制极连接预设电压端,预设电压端的电压与储能装置充满电时的最大电压之间的差值小于预设阈值。通过本发明实施例,在不充电时,预设电压端的电压使第一晶体管的栅极和源极之间的电压差值较小,从而避免第一晶体管出现电迁移现象。同时,第二晶体管的栅极和源极之间没有电压差,也不会发生电迁移现象。 由于避免了不充电时两个晶体管中发生电迁移现象,因此不会降低两个晶体管的栅源阻抗,进而不会升高两个晶体管的导通阻抗,增大充电功率,最终避免了充电电路在充电时发热严重的问题。
附图说明
图1为一个实施例中一种充电电路的结构示意图之一;
图2为一个实施例中一种充电电路的结构示意图之二;
图3为一个实施例中一种充电电路的结构示意图之三;
图4为一个实施例中一种充电电路的结构示意图之四;
图5为一个实施例中一种充电电路的结构示意图之五;
图6为一个实施例中一种充电电路的结构示意图之六;
图7为一个实施例中一种充电电路的结构示意图之七;
图8为一个实施例中一种充电电路的结构示意图之八;
图9为一个实施例中一种充电电路的结构示意图之九;
图10为一个实施例中一种充电电路的结构示意图之十;
图11为一个实施例中一种充电电路的结构示意图之十一;
图12为一个实施例中一种充电电路的结构示意图之十二;
图13为一个实施例中一种充电系统的结构示意图。
具体实施例方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本发明实施例提供的一种充电电路。该充电电路包括第一晶体管M1、第二晶体管M2和控制电路10;第一晶体管M1的第一极连接待充电设备的储能装置V1,第一晶体管M1的第二极连接第二晶体管M2的第二极;第二晶体管M2的控制极连接控制电路10,第二晶体管M2的第一极连接供电设备V2;控制电路10用于控制第二晶体管M2的工作状态;其中,当第一晶体管M1和/或第二晶体管M2处于截止状态时,第一晶体管M1的控制极连接预设电压端Vg1,预设电压端Vg1的电压与储能装置V1充满电时的最大电压之间的差值小于预设阈值。
本实施例中,待充电设备可以包括各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴装置,储能装置V1可以包括可充电电池,供电设备V2可以包括电源适配器、充电宝等。本发明实施例对待充电设备、储能装置V1和供电设备V2均不作详细限定,可以根据实际情况进行设置。
充电电路包括第一晶体管M1、第二晶体管M2和控制电路10。其中,第一晶体管 M1的控制极连接预设电压端Vg1,第一晶体管M1的第一极连接待充电设备的储能装置V1,第一晶体管M1的第二极连接第二晶体管M2的第二极。第二晶体管M2的控制极连接控制电路10,第二晶体管M2的第一极连接供电设备V2。
如图1所示,以第一晶体管M1的第一极为源极,第一晶体管M1的第二极为漏极,以及第二晶体管M2的第一极为源极,第二晶体管M2的第二极为漏极为例进行说明。供电设备V2不为待充电设备的储能装置V1充电时,控制电路10控制第二晶体管M2处于截止状态,预设电压端Vg1的电压与储能装置V1充满电时的最大电压之间的差值小于预设阈值。例如,储能装置V1充满电时的最大电压为5V,预设阈值为0.5V,则预设电压端Vg1的电压可以在4.6V-5V之间。其中,预设电压端Vg1可以是待充电设备中的已有电路的电压输出端提供的电压端,也可以是在待充电设备中设置一个电路提供该预设电压端。本发明实施例对此不作详细限定,可以根据实际情况进行设置。这样,在储能装置V1充满电后,第一晶体管M1的栅极和源极之间的电压差很小,可以避免第一晶体管M1的栅极和源极之间发生电迁移现象。
同时,由于供电设备V2不为待充电设备的储能装置V1充电,第二晶体管M2的第一极的电压为0V,控制电路10控制第二晶体管M2处于截止状态,第二晶体管M2的栅极电压小于第二晶体管M2的导通电压。这样,在不充电时第二晶体管M2的栅极和源极之间的电压差也很小,可以避免第二晶体管M2的栅极和源极之间发生电迁移现象。由于避免了不充电时晶体管中发生电迁移现象,因此不会降低晶体管的栅源阻抗,进而不会升高晶体管的导通阻抗,增大充电功率,最终避免了充电电路在充电时发热严重的问题。
在其中一个实施例中,如图1所示,预设电压端Vg1为第一晶体管M1提供导通电压;控制电路10用于为第二晶体管M2提供导通电压;供电设备V2在第一晶体管和第二晶体管均处于导通状态时,通过第一晶体管M1和第二晶体管M2将电流传递给储能装置V1。
具体地,在供电设备V2为待充电设备的储能装置V1充电时,第一晶体管M1的控制极连接在预设电压端Vg1上,此时预设电压端Vg1为第一晶体管M1提供导通电压,第一晶体管M1导通。同时,控制电路10为第二晶体管M2提供导通电压,第二晶体管M2导通。由于第一晶体管M1和第二晶体管M2均处于导通状态,因此供电设备V2可以实现通过第一晶体管M1和第二晶体管M2为储能装置V1充电。
上述充电电路中,充电电路包括第一晶体管、第二晶体管和控制电路;第一晶体管的控制极连接预设电压端,第一晶体管的第一极连接待充电设备的储能装置,第一晶体管的第二极连接第二晶体管的第二极;第二晶体管的控制极连接控制电路,第二晶体管的第一极连接供电设备;控制电路用于控制第二晶体管的工作状态;其中,当第一晶体管和/或第二晶体管处于截止状态时,预设电压端的电压与储能装置充满电时的最大电压之间的差值小于预设阈值。通过本发明实施例,在不充电时,预设电压端的电压使第一晶体管的栅极和源极之间的电压差值较小,可以避免第一晶体管出现电迁移现象。同时,第二晶体管的栅极和源极之间没有电压差,也不会发生电迁移现象。由于在不充电时避免了两个晶体 管中发生电迁移现象,因此不会降低两个晶体管的栅源阻抗,进而不会升高两个晶体管的导通阻抗,增大充电功率,最终避免了充电电路在充电时发热严重的问题。
在一些场景中,预设电压端仅适用于供电设备不为待充电设备的储能装置充电时,而在供电设备为待充电设备的储能装置充电时,可以由控制电路统一为第一晶体管和第二晶体管提供导通电压,本实施例涉及的是这样一种充电电路的一种可选结构。在上述图1所示实施例的基础上,如图2所示,上述充电电路还包括与待充电设备的控制器连接的开关电路20;开关电路20分别与预设电压端Vg1、控制电路10、第一晶体管M1的控制极和第二晶体管M2的控制极连接;控制器,用于在检测到充电信号时控制开关电路20导通控制电路10与第一晶体管M1的控制极电连接;或,在检测到充电信号断开时控制开关电路20导通预设电压端Vg1与第一晶体管M1的控制极电连接;控制电路10,用于在与第一晶体管M1的控制极电连接时,为第一晶体管M1和第二晶体管M2提供导通电压,使供电设备V2通过第一晶体管M1和第二晶体管M2为储能装置V1充电。
本实施例中,充电电路还可以包括与待充电设备的控制器连接的开关电路20,开关电路20分别与预设电压端Vg1、控制电路10、第一晶体管M1的控制极和第二晶体管M2的控制极连接。在控制器检测到充电信号时,控制开关电路20使控制电路10与第一晶体管M1的控制极电连接,此时,控制电路10同时为第一晶体管M1和第二晶体管M2提供导通电压,第一晶体管M1和第二晶体管M2均处于导通状态,供电设备V2可以通过充电电路为储能装置V1充电。
在控制器检测到充电信号断开时,控制开关电路20使预设电压端Vg1与第一晶体管M1的控制极电连接,这样,预设电压端Vg1使第一晶体管M1的栅极电压接近储能装置V1充满电时的最大电压,然后第一晶体管M1的栅极和源极之间的电压差较小,可以避免晶体管栅极和源极之间发生电迁移现象。同时,由于供电设备V2不为储能装置V1充电,第二晶体管M2的第一极的电压为0V,并且,控制电路10控制第二晶体管M2关断,即第二晶体管M2的栅极电压小于第二晶体管M2的导通电压。这样,第二晶体管M2的栅极和源极之间的电压差也很小,也可以避免第二晶体管M2栅极和源极之间发生电迁移现象。
上述开关电路20中,可以设置一个开关,开关的一端连接第一晶体管M1的控制极,另一端在控制器检测到充电信号时与控制电路10电连接,在控制器检测到充电信号断开时与预设电压端Vg1电连接。本发明实施例对开关电路20不作详细限定,可以根据实际情况进行设置。
在一些场景中,还可以通过设置多个开关来实现上述开关电路20的功能,如图3所示,开关电路20包括分别与待充电设备的控制器连接的第一开关K1和第二开关K2;第一开关K1的一端连接第一晶体管M1的控制极,第一开关K1的另一端连接预设电压端Vg1;第二开关K2的一端连接第一晶体管M1的控制极,第二开关K1的另一端连接控制 电路10。控制器,用于在检测到充电信号时控制第一开关K1断开、控制第二开关K2闭合,导通控制电路10与第一晶体管M1的控制极电连接;控制器,用于在检测到充电信号断开时控制第一开关K1闭合、控制第二开关K2断开,导通预设电压端Vg1与第一晶体管M1的控制极电连接。
本实施例中,待充电设备还包括控制器,开关电路20包括第一开关K1和第二开关K2,控制器分别与第一开关K1和第二开关K2连接。第一开关K1的一端连接第一晶体管M1的控制极,第一开关K1的另一端连接预设电压端Vg1;第二开关K2的一端连接第一晶体管M1的控制极,第二开关K2的另一端连接控制电路10。
控制器检测到充电信号时,控制第一开关K1断开,控制第二开关K2闭合,使控制电路10与第一晶体管M1的控制极连接。控制电路10可以为第一晶体管M1和第二晶体管M2提供导通电压,使第一晶体管M1和第二晶体管M2均处于导通状态。这样,就可以实现供电设备V2通过充电电路为储能装置V1充电。
控制器检测到充电信号断开时,控制器控制第一开关K1闭合,控制第二开关K2断开,使预设电压端Vg1与第一晶体管M1的控制极连接。由于预设电压端Vg1的电压与储能装置V1充满电时的最大电压之间的电压差小于预设阈值,因此,第一晶体管M1的栅极和源极之间的电压差较小,可以避免第一晶体管M1的栅源之间发生电迁移现象。而控制电路10控制第二晶体管M2关断,第二晶体管M2的栅极和源极之间的电压差也很小,可以避免第二晶体管M2的栅源之间发生电迁移现象。
上述充电电路中,充电电路还包括与待充电设备的控制器连接的开关电路;控制器在检测到充电信号时控制开关电路导通控制电路与第一晶体管的控制极电连接;在检测到充电信号断开时控制开关电路导通预设电压端与所述第一晶体管的控制极电连接。通过本发明实施例,在第一晶体管和第二晶体管均处于导通状态时供电设备可以为储能装置充电,在第一晶体管和/或第二晶体管处于截止状态时,可以避免第一晶体管和第二晶体管中发生电迁移。由于避免了不充电时两个晶体管中发生电迁移现象,因此不会升高两个晶体管的导通阻抗,增大充电功率,最终避免了充电电路在充电时发热严重的问题。进一步地,开关电路控制灵活,可以适用于多种场景,还可以降低充电电路的成本。
在另一个实施例中,本实施例涉及的是控制电路的一种可选结构。在上述图1所示实施例的基础上,如图4所示,控制电路10包括导通控制单元101和开关控制单元102;导通控制单元101的输入端连接供电设备V2和时钟信号端CLK,导通控制单元101的输出端连接第二晶体管M2的控制极;开关控制单元102的输入端连接开关信号端SW,开关控制单元102的输出端连接第二晶体管M2的控制极;导通控制单元101,用于在开关控制单元102关断时,为第二晶体管M2提供导通电压。
本实施例中,控制电路10包括导通控制单元101和开关控制单元102。其中,导通控制单元101的输入端连接供电设备V2和时钟信号端CLK,导通控制单元101的输出端 连接第二晶体管M2的控制极。开关控制单元102的输入端连接开关信号端SW,开关控制单元102的输出端连接第二晶体管M2的控制极。时钟信号端CLK和开关信号端SW均可以设置在待充电设备的控制器上,控制器在检测到供电设备V2为储能装置V1充电时,即控制器检测到充电信号时,从时钟信号端CLK输出时钟信号,从开关信号端SW输出开关信号。时钟信号端CLK和开关信号端SW也可以设置在其他位置,本发明实施例对此不作详细限定,可以根据实际情况进行设置。
在控制器检测到充电信号时,开关控制单元102接收到开关信号并关断,然后导通控制单元101在开关控制单元102关断时为第二晶体管M2提供导通电压。此时,控制电路10也可以为第一晶体管M1提供导通电压。在第一晶体管M1和第二晶体管M2均导通时,供电设备V2可以通过充电电路为储能装置V1充电。
在控制器检测到充电信号断开时,开关控制单元102接收到开关信号并导通,使第二晶体管M2的控制极接地。此时,第二晶体管M2的栅极电压为0V,源极电压也为0V,第二晶体管M2的栅极和源极之间的电压差为0V,可以避免第二晶体管M2的栅源之间发生电迁移。并且,在控制器检测到充电信号断开时,第一晶体管M1的控制极连接预设电压端Vg1,也可以避免第一晶体管M1的栅源之间发生电迁移。
在其中一个实施例中,如图5所示,导通控制单元101包括充电信号输入子单元1011、时钟信号输入子单元1012和信号处理子单元1013;充电信号输入子单元1011的输入端连接供电设备V2,输出端连接信号处理子单元1013的输入端;时钟信号输入子单元1012的输入端连接时钟信号端CLK,输出端连接信号处理子单元1013的输入端;信号处理子单元1013的输出端连接第二晶体管M2的控制极;充电信号输入子单元1011,用于将供电设备V2的充电信号输入至信号处理子单元1013;时钟信号输入子单元1012,用于将时钟信号输入至信号处理子单元1013;信号处理子单元1013,用于根据充电信号和时钟信号为第二晶体管M2提供导通电压。
具体地,导通控制单元101包括充电信号输入子单元1011、时钟信号输入子单元1012和信号处理子单元1013。其中,充电信号输入子单元1011的输入端连接供电设备V2,输出端连接信号处理子单元1013的输入端。在控制器检测到供电设备V2为储能装置充电,即检测到充电信号时,充电信号输入子单元1011接收供电设备V2的充电信号,然后将充电信号传输至信号处理子单元1013。在供电设备V2不为储能装置充电,即检测到充电信号断开时,供电设备V2未输入充电信号,充电信号输入子单元1011不工作。
时钟信号输入子单元1012的输入端连接时钟信号端CLK,输出端连接信号处理子单元1013的输入端。在控制器检测到充电信号时,时钟信号输入子单元1012接收时钟信号,并将时钟信号输入到信号处理子单元1013。在控制器检测到充电信号断开时,时钟信号输入子单元1012不工作。
信号处理子单元1013的输入端连接充电信号输入子单元1011的输出端和时钟信号输入子单元1012的输出端,信号处理子单元1013的输出端连接第二晶体管M2的控制极。 在控制器检测到充电信号时,信号处理子单元1013接收充电信号和时钟信号,对充电信号和时钟信号进行处理,并将处理后的信号输入到第二晶体管M2的控制极,从而为第二晶体管M2提供导通电压。在控制器检测到充电信号断开时,信号处理子单元1013未接收到充电信号和时钟信号,则信号处理子单元1013不工作。
可选地,如图6所示,充电信号输入子单元1011包括第一电阻R1、第一二极管D1和第一电容C1;第一电阻R1的一端连接供电设备V2,另一端连接第一二极管D1的阳极和第一电容C1的一端;第一二极管D1的阴极连接信号处理子单元1013的输入端;第一电容C1的另一端接地。
具体地,在控制器检测到充电信号时,供电设备V2的充电电压从第一电阻R1的一端输入,经过第一二极管D1加在节点J1上,即将充电信号输入到信号处理子单元1013。其中,第一二极管D1的作用是防止倒灌,第一电阻R1和第一电容C1组成滤波电路,可以滤除随充电电压一起输入的噪声信号。
可选地,如图6所示,时钟信号输入子单元1012包括第二电容C2;第二电容C2的一端接收时钟信号,另一端连接信号处理子单元1013的输入端。
具体地,在控制器检测到充电信号时,时钟信号从第二电容C2的一端输入,在第二电容C2的另一端加在节点J1上,即将时钟信号输入到信号处理子单元1013。其中,第二电容C2的作用是储能滤波。
可选地,如图6所示,信号处理子单元1013包括第二二极管D2、第二电阻R2、第三电容C3和第三电阻R3;第二二极管D2的阳极连接充电信号输入子单元1011的输出端和时钟信号输入子单元1012的输出端,阴极连接第二电阻R2的一端和第三电容C3的一端;第二电阻R2的另一端连接第二晶体管M2的控制极;第三电容C3的另一端接地;第三电阻R3的一端连接第二晶体管M2的控制极,另一端接地。
具体地,第二二极管D2的阳极连接节点J1,阴极连接第二电阻R2的一端和第二电容C2的一端。在控制器检测到充电信号时,节点J1上的充电信号和时钟信号从第二二极管D2的阳极输入并进行叠加处理,得到处理后的信号。然后,处理后的信号经过第二电阻R2加在节点J2上,即为第二晶体管M2提供导通电压,从而使第二晶体管M2导通。
在其中一个实施例中,如图6所示,开关控制单元102包括第三晶体管M3和第三二极管D3;第三晶体管M3的控制极连接开关信号端SW,第三晶体管M3的源极连接第三二极管D3的阳极,第三晶体管M3的漏极连接第二晶体管M2的控制极;第三二极管D3的阴极接地。
本实施例中,开关控制单元102包括第三晶体管M3和第三二极管D3。其中,第三晶体管M3的控制极连接开关信号端SW。在控制器检测到充电信号时,开关信号端SW输出的开关信号使第三晶体管M3关断,由导通控制单元101为第二晶体管M2提供导通电压。同时,如果第一晶体管M1的控制极连接控制电路10,也由导通控制单元101为第一晶体管M1提供导通电压。在第一晶体管M1和第二晶体管M2均导通后,供电设备V2 为储能装置V1充电。
在控制器检测到充电信号断开时,开关信号端SW输出的开关信号使第三晶体管M3导通。由于第三晶体管M3的源极通过第三二极管D3接地,第三晶体管M3的漏极连接第二晶体管M2的控制极,因此在第三晶体管M3导通时,第三晶体管M3的漏极电压为0V。因此,第二晶体管M2的控制极电压为0V,第二晶体管M2关断。由于供电设备V2不为储能装置V1充电,因此第二晶体管M2的源极电压为0V,第二晶体管M2的栅极和源极之间的电压差值为0V,所以可以避免第二晶体管M2的栅极和源极之间发生电迁移现象。同时,在控制器检测到充电信号断开时,第一晶体管M1的控制极连接预设电压端Vg1,第一晶体管M1的栅极和源极之间的电压差值也较小,可以避免第一晶体管M1的栅极和源极之间发生电迁移现象。
在其中一个实施例中,如图7所示,控制电路还包括保护单元103;保护单元103的输入端连接供电设备V2,输出端连接第二晶体管M2的控制极;保护单元103,用于供电设备V2输入负压时保护第二晶体管M2。
本实施例中,控制电路还包括保护单元103,在供电设备V2输入负压时,保护单元103可以防止负压输入到第二晶体管M2从而对第二晶体管M2造成损伤。
可选地,如图8所示,保护单元103包括第四晶体管M4、第五晶体管M5和第四电阻R4;第四晶体管M4的控制极连接第五晶体管M5的控制极和第四电阻R4的一端,第四晶体管M4的源极连接供电设备V2,第四晶体管M4的漏极连接第五晶体管M5的漏极;第五晶体管M5的源极连接第二晶体管M2的控制极;第四电阻R4的另一端接地。
具体地,在供电设备V2输入负压时,第四晶体管M4和第五晶体管M5导通,防止负压输入到第二晶体管M2的控制极。
上述充电电路中的控制电路包括导通控制单元和开关控制单元。在控制器检测到充电信号时,导通控制单元根据供电设备的充电信号和时钟信号为第二晶体管提供导通电压。在第一晶体管和第二晶体管均导通时,可以实现供电设备为储能装置充电。在控制器检测到充电信号断开时,开关控制单元控制第二晶体管关断,从而避免第二晶体管中发生电迁移现象,进而避免充电电路在充电时发热严重的问题。进一步地,保护单元还可以在供电设备输入负压时保护第二晶体管,进而保护整个充电电路。
在另一个实施例中,本实施例涉及的是充电电路的一种可选结构。在上述图1所示实施例的基础上,如图9所示,第一晶体管M1的第一极为漏极,第一晶体管M1的第二极为源极;第二晶体管M2的第一极为漏极,第二晶体管M2的第二极为源极。
本实施例中,可以将第一晶体管M1的漏极连接储能装置V1,第一晶体管M1的源极连接第二晶体管M2的源极;第二晶体管M2的漏极连接供电设备V2。在控制器检测到充电信号断开时,控制电路10控制第二晶体管M2关断,第二晶体管M2的栅极和源极均为0V。第二晶体管M2的栅极和源极之间的电压差值为0V,可以避免第二晶体管M2 的栅极和源极之间发生电迁移现象。同时,由于第一晶体管M1的控制极连接预设电压端Vg1,第一晶体管M1的源极连接第二晶体管M2的源极,因此可以将预设阈值设为负值。例如,预设阈值设为-4,如果储能装置V1的最大电压为5V,则预设电压端Vg1的电压为0V,预设电压端Vg1的电压与储能装置V1的最大电压的差值为-5V,小于预设阈值。由于预设电压端Vg1的电压为0V,第一晶体管M1关断,第一晶体管M1的栅极和源极均为0V。因此,第一晶体管M1的栅极和源极之间的电压差较小,可以避免第一晶体管M1的栅极和源极之间发生电迁移现象。并且,即使第一晶体管M1的漏极连接储能装置,但是由于第一晶体管M1的漏极没有银离子,因此第一晶体管M1不会出现电迁移现象。而第二晶体管M2关断,第二晶体管的栅极和漏极之间的电压为0V,因此第二晶体管M2也不会出现电迁移现象。
在控制器检测到充电信号时,预设电压端Vg1为第一晶体管M1提供导通电压,控制电路10为第二晶体管M2提供导通电压,第一晶体管M1和第二晶体管M2均导通,供电设备V2通过第一晶体管M1和第二晶体管M2为储能装置V1充电。可选地,如图10所示,第一晶体管M1和第二晶体管M2均为NMOS管。
可选地,在图9实施例的基础上,第一晶体管M1的栅极电压Vg1等于控制电路提供给第二晶体管M2的栅极电压,则该电路可以等效为如图11所述的电路,第一晶体管M1的栅极和第二晶体管M2的栅极均接电压Vth,该电压Vth大于或者等于第一晶体管M1和第二晶体管M2的导通电压。并且,该电压Vth可以是一个外接的电压端口提供的电压,也可以是由图9中的控制电路提供,本申请中不加以限制。在控制器检测到充电信号时,电压Vth为第一晶体管M1和第二晶体管M1提供导通电压,使得第一晶体管M1和第二晶体管M1导通,为待充电设备充电;在控制器检测到充电信号断开下,由于MOS管的D极不含有银,不会发生电迁移情况。
在其中一个实施例中,如图12所示,充电电路还包括第五电阻R5;第五电阻R5的一端连接第一晶体管M1的第二极,另一端接地。具体地,第五电阻R5的一端连接第一晶体管M1的源极和第二晶体管M2的源极,在控制器检测到充电信号断开时,第一晶体管M1和第二晶体管M2上的静电电荷可以通过第五电阻R5进行释放,避免出现静电损失问题。
上述充电电路中,第一晶体管的第一极为漏极,第一晶体管的第二极为源极;第二晶体管的第一极为漏极,第二晶体管的第二极为源极。在控制器检测到充电信号时,第一晶体管和第二晶体管均处于导通状态,供电设备通过充电电路为储能装置充电。在控制器检测到充电信号断开时,第一晶体管和第二晶体管的栅源电压差均较小,可以避免晶体管中发生电迁移现象,从而避免充电电路在充电时发热严重的问题。
在另一个实施例中,提供了一种充电芯片,充电芯片包括如上述实施例中的充电电路。
本实施例中,充电电路包括第一晶体管M1、第二晶体管M2和控制电路10;第一晶 体管M1的控制极连接预设电压端Vg1,第一晶体管M1的第一极连接待充电设备的储能装置V1,第一晶体管M1的第二极连接第二晶体管M2的第二极;第二晶体管M2的控制极连接控制电路10,第二晶体管M2的第一极连接供电设备V2;控制电路10用于控制第二晶体管M2的工作状态;其中,当第一晶体管M1和/或第二晶体管M2处于截止状态时,预设电压端Vg1的电压与储能装置V1充满电时的最大电压之间的差值小于预设阈值。
上述充电芯片中包括充电电路,充电电路包括第一晶体管和第二晶体管,在第一晶体管和第二晶体管均处于导通状态时,供电设备可以通过充电芯片为储能装置充电。在第一晶体管和/或第二晶体管处于截止状态时,充电电路中的第一晶体管和第二晶体管的栅源电压差均较小,可以避免晶体管中发生电迁移现象,从而避免充电芯片在充电时发热严重的问题。
在另一个实施例中,提供了一种移动终端,移动终端包括如上述实施例中的充电电路。
本实施例中,充电电路包括第一晶体管M1、第二晶体管M2和控制电路10;第一晶体管M1的控制极连接预设电压端Vg1,第一晶体管M1的第一极连接待充电设备的储能装置V1,第一晶体管M1的第二极连接第二晶体管M2的第二极;第二晶体管M2的控制极连接控制电路10,第二晶体管M2的第一极连接供电设备V2;控制电路10用于控制第二晶体管M2的工作状态;其中,当第一晶体管M1和/或第二晶体管M2处于截止状态时,预设电压端Vg1的电压与储能装置V1充满电时的最大电压之间的差值小于预设阈值。
移动终端设置有控制器,控制器上设置有时钟信号端CLK和开关信号端SW。在控制器检测到供电设备V2为储能装置V1充电,即检测到充电信号时,控制器从时钟信号端CLK向充电电路输出时钟信号,从开关信号端SW向充电电路输出开关信号。
控制器还可以连接充电电路的开关电路20,从而控制开关电路20中开关的闭合和断开。在控制器检测到充电信号断开时,控制电路10使第一晶体管M1的控制极与预设电压端Vg1电连接;在控制器检测到充电信号时,控制电路10使第一晶体管M1的控制极与控制电路10电连接。
移动终端还设置有充电接口和电池,第二晶体管M2的第一极可以通过充电接口连接供电设备V2,从而使供电设备V2为移动终端的电池充电。
上述移动终端中包括充电电路,在第一晶体管和第二晶体管均处于导通状态时,供电设备可以通过为移动终端的储能装置充电。在第一晶体管和/或第二晶体管处于截止状态时,充电电路中的第一晶体管和第二晶体管的栅源电压差均较小,可以避免晶体管中发生电迁移现象,从而避免移动终端在充电时发热严重的问题。
在另一个实施例中,如图13所示,提供了一种充电系统,充电系统包括电源适配器和上述实施例中的移动终端;电源适配器通过移动终端的USB端口为移动终端充电。
本实施例中,移动终端包括充电电路,充电电路包括第一晶体管M1、第二晶体管 M2和控制电路10;第一晶体管M1的控制极连接预设电压端Vg1,第一晶体管M1的第一极连接待充电设备的储能装置V1,第一晶体管M1的第二极连接第二晶体管M2的第二极;第二晶体管M2的控制极连接控制电路10,第二晶体管M2的第一极连接供电设备V2;控制电路10用于控制第二晶体管M2的工作状态;其中,当第一晶体管M1和/或第二晶体管M2处于截止状态时,预设电压端Vg1的电压与储能装置V1的最大电压之间的差值小于预设阈值。
移动终端的充电接口为USB端口,充电电路的第二晶体管M2的第一极可以通过USB端口连接电源适配器,从而使电源适配器为移动终端充电。
上述充电系统中包括移动终端和电源适配器,电源适配器通过移动终端的USB端口为移动终端充电。移动终端中包括充电电路,充电电路包括第一晶体管和第二晶体管。在第一晶体管和第二晶体管均处于导通状态时,电源适配器可以通过充电电路为移动终端的电池充电。在第一晶体管和/或第二晶体管处于截止状态时,充电电路中的第一晶体管和第二晶体管的栅源电压差均较小,可以避免晶体管中发生电迁移现象,从而避免电源适配器为移动终端充电时,移动终端发热严重的问题。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种充电电路,其特征在于,所述充电电路包括第一晶体管、第二晶体管和控制电路;
    所述第一晶体管的第一极连接待充电设备的储能装置,所述第一晶体管的第二极连接所述第二晶体管的第二极;
    所述第二晶体管的控制极连接所述控制电路,所述第二晶体管的第一极连接供电设备;所述控制电路用于控制所述第二晶体管的工作状态;
    其中,当所述第一晶体管和/或所述第二晶体管处于截止状态时,所述第一晶体管的控制极连接预设电压端,所述预设电压端的电压与所述储能装置充满电时的最大电压之间的差值小于预设阈值。
  2. 根据权利要求1所述的充电电路,其特征在于,所述预设电压端为所述第一晶体管提供导通电压;所述控制电路为所述第二晶体管提供导通电压;
    所述供电设备在所述第一晶体管和所述第二晶体管均处于导通状态时,通过所述第一晶体管和所述第二晶体管将电流传递给所述储能装置。
  3. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括与所述待充电设备的控制器连接的开关电路;
    所述开关电路分别与所述预设电压端、所述控制电路、所述第一晶体管的控制极和所述第二晶体管的控制极连接;
    所述控制器,用于在检测到充电信号时控制所述开关电路导通所述控制电路与所述第一晶体管的控制极电连接;或,在检测到所述充电信号断开时控制所述开关电路导通所述预设电压端与所述第一晶体管的控制极电连接;
    所述控制电路,用于在与所述第一晶体管的控制极电连接时,为所述第一晶体管和第二晶体管提供导通电压,使所述供电设备通过所述第一晶体管和第二晶体管为所述储能装置充电。
  4. 根据权利要求3所述的充电电路,其特征在于,所述开关电路包括分别与所述待充电设备的控制器连接的第一开关和第二开关;
    所述第一开关的一端连接所述第一晶体管的控制极,所述第一开关的另一端连接所述预设电压端;
    所述第二开关的一端连接所述第一晶体管的控制极,所述第二开关的另一端连接所述控制电路;
    所述控制器,用于在检测到所述充电信号时控制所述第一开关断开、控制所述第二开关闭合,导通所述控制电路与所述第一晶体管的控制极电连接;或,在检测到所述充电信号断开时控制所述第一开关闭合、控制所述第二开关断开,导通所述预设电压端与所述第一晶体管的控制极电连接。
  5. 根据权利要求1-4任一项所述的充电电路,其特征在于,所述控制电路包括导通 控制单元和开关控制单元;
    所述导通控制单元的输入端连接所述供电设备和时钟信号端,所述导通控制单元的输出端连接所述第二晶体管的控制极;
    所述开关控制单元的输入端连接开关信号端,所述开关控制单元的输出端连接所述第二晶体管的控制极;
    所述导通控制单元,用于在所述开关控制单元关断时,为所述第二晶体管提供导通电压。
  6. 根据权利要求5所述的充电电路,其特征在于,所述导通控制单元包括充电信号输入子单元、时钟信号输入子单元和信号处理子单元;
    所述充电信号输入子单元的输入端连接所述供电设备,输出端连接所述信号处理子单元的输入端;所述时钟信号输入子单元的输入端连接所述时钟信号端,输出端连接所述信号处理子单元的输入端;所述信号处理子单元的输出端连接所述第二晶体管的控制极;
    所述充电信号输入子单元,用于将所述供电设备的充电信号输入至所述信号处理子单元;所述时钟信号输入子单元,用于将时钟信号输入至所述信号处理子单元;所述信号处理子单元,用于根据所述充电信号和所述时钟信号为所述第二晶体管提供导通电压。
  7. 根据权利要求6所述的充电电路,其特征在于,所述充电信号输入子单元包括第一电阻、第一二极管和第一电容;
    所述第一电阻的一端连接所述供电设备,另一端连接所述第一二极管的阳极和所述第一电容的一端;
    所述第一二极管的阴极连接所述信号处理子单元的输入端;
    所述第一电容的另一端接地。
  8. 根据权利要求6所述的充电电路,其特征在于,所述时钟信号输入子单元包括第二电容;
    所述第二电容的一端接收所述时钟信号,另一端连接所述信号处理子单元的输入端。
  9. 根据权利要求6所述的充电电路,其特征在于,所述信号处理子单元包括第二二极管、第二电阻、第三电容和第三电阻;
    所述第二二极管的阳极连接所述充电信号输入子单元的输出端和所述时钟信号输入子单元的输出端,阴极连接所述第二电阻的一端和所述第三电容的一端;
    所述第二电阻的另一端连接所述第二晶体管的控制极;
    所述第三电容的另一端接地;
    所述第三电阻的一端连接所述第二晶体管的控制极,另一端接地。
  10. 根据权利要求5所述的充电电路,其特征在于,所述开关控制单元包括第三晶体管和第三二极管;
    所述第三晶体管的控制极连接所述开关信号端,所述第三晶体管的源极连接所述第三二极管的阳极,所述第三晶体管的漏极连接所述第二晶体管的控制极;
    所述第三二极管的阴极接地。
  11. 根据权利要求5所述的充电电路,其特征在于,所述控制电路还包括保护单元;
    所述保护单元的输入端连接所述供电设备,输出端连接所述第二晶体管的控制极;所述保护单元,用于所述供电设备输入负压时保护所述第二晶体管。
  12. 根据权利要求11所述的充电电路,其特征在于,所述保护单元包括第四晶体管、第五晶体管和第四电阻;
    所述第四晶体管的控制极连接所述第五晶体管的控制极和所述第四电阻的一端,所述第四晶体管的源极连接所述供电设备,所述第四晶体管的漏极连接所述第五晶体管的漏极;
    所述第五晶体管的源极连接所述第二晶体管的控制极;
    所述第四电阻的另一端接地。
  13. 根据权利要求1-4任一项所述的充电电路,其特征在于,所述第一晶体管的第一极为源极,所述第一晶体管的第二极为漏极;
    所述第二晶体管的第一极为源极,所述第二晶体管的第二极为漏极。
  14. 根据权利要求1-4任一项所述的充电电路,其特征在于,所述第一晶体管的第一极为漏极,所述第一晶体管的第二极为源极;
    所述第二晶体管的第一极为漏极,所述第二晶体管的第二极为源极。
  15. 根据权利要求14所述的充电电路,其特征在于,所述充电电路还包括第五电阻;
    所述第五电阻的一端连接所述第一晶体管的第二极,所述第五电阻的另一端接地。
  16. 一种充电芯片,其特征在于,所述充电芯片包括如权利要求1-15任一项所述的充电电路。
  17. 一种移动终端,其特征在于,所述移动终端包括如权利要求1-15任一项所述的充电电路。
  18. 一种充电系统,其特征在于,所述充电系统包括电源适配器和如权利要求17所述的移动终端;
    所述电源适配器通过所述移动终端的USB端口为所述移动终端充电。
PCT/CN2020/092753 2019-06-19 2020-05-28 充电电路、充电芯片、移动终端及充电系统 WO2020253491A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20826619.7A EP3968491A4 (en) 2019-06-19 2020-05-28 Charging circuit, charging chip, mobile terminal, and charging system
US17/551,699 US20220109318A1 (en) 2019-06-19 2021-12-15 Charging circuit, charging chip, mobile terminal, and charging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910532519.7A CN112117785B (zh) 2019-06-19 2019-06-19 充电电路、充电芯片、移动终端及充电系统
CN201910532519.7 2019-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/551,699 Continuation US20220109318A1 (en) 2019-06-19 2021-12-15 Charging circuit, charging chip, mobile terminal, and charging system

Publications (1)

Publication Number Publication Date
WO2020253491A1 true WO2020253491A1 (zh) 2020-12-24

Family

ID=73795636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092753 WO2020253491A1 (zh) 2019-06-19 2020-05-28 充电电路、充电芯片、移动终端及充电系统

Country Status (4)

Country Link
US (1) US20220109318A1 (zh)
EP (1) EP3968491A4 (zh)
CN (1) CN112117785B (zh)
WO (1) WO2020253491A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117786B (zh) * 2019-06-20 2022-05-31 Oppo广东移动通信有限公司 电子设备的充电电路与电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204628A (ja) * 1987-02-19 1988-08-24 Nec Corp 半導体集積回路
JPH01235380A (ja) * 1988-03-16 1989-09-20 Fujitsu Ltd 半導体集積回路装置
CN103326459A (zh) * 2013-07-17 2013-09-25 深圳市翌日科技有限公司 低电压直流电源切换电路及其直流电源
CN105093086A (zh) * 2014-04-24 2015-11-25 中芯国际集成电路制造(上海)有限公司 一种电迁移的检测结构及检测方法
CN106685003A (zh) * 2017-01-19 2017-05-17 宇龙计算机通信科技(深圳)有限公司 一种基于低压直充的充电设备、充电系统及充电控制方法
CN109245188A (zh) * 2017-07-10 2019-01-18 深圳市爱克斯达电子有限公司 一种充电装置及边充边放电源路径管理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076953B1 (ko) * 2003-10-27 2011-10-26 소니 주식회사 전지팩
US7408399B2 (en) * 2005-06-27 2008-08-05 International Rectifier Corporation Active driving of normally on, normally off cascoded configuration devices through asymmetrical CMOS
US8508078B2 (en) * 2009-06-30 2013-08-13 Decicon, Inc. Power switch with reverse current blocking capability
KR101848506B1 (ko) * 2011-11-18 2018-04-12 엘지디스플레이 주식회사 유기발광 표시장치
JP5829966B2 (ja) * 2012-03-30 2015-12-09 ルネサスエレクトロニクス株式会社 電池制御用半導体装置及び電池パック
US20130265010A1 (en) * 2012-04-06 2013-10-10 Semiconductor Energy Laboratory Co., Ltd. Protective circuit module and battery pack
JP5985282B2 (ja) * 2012-07-12 2016-09-06 ルネサスエレクトロニクス株式会社 半導体装置
CN104503632B (zh) * 2015-01-26 2018-01-26 京东方科技集团股份有限公司 缓冲单元、触控驱动电路、显示装置及其驱动方法
KR102259185B1 (ko) * 2016-08-02 2021-06-01 누보톤 테크놀로지 재팬 가부시키가이샤 반도체 장치, 반도체 모듈, 및 반도체 패키지 장치
CN106487068A (zh) * 2016-11-28 2017-03-08 东莞新能德科技有限公司 过压保护系统及方法
CN111478378B (zh) * 2019-01-23 2022-03-15 Oppo广东移动通信有限公司 保护电路、充电控制装置和方法、电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204628A (ja) * 1987-02-19 1988-08-24 Nec Corp 半導体集積回路
JPH01235380A (ja) * 1988-03-16 1989-09-20 Fujitsu Ltd 半導体集積回路装置
CN103326459A (zh) * 2013-07-17 2013-09-25 深圳市翌日科技有限公司 低电压直流电源切换电路及其直流电源
CN105093086A (zh) * 2014-04-24 2015-11-25 中芯国际集成电路制造(上海)有限公司 一种电迁移的检测结构及检测方法
CN106685003A (zh) * 2017-01-19 2017-05-17 宇龙计算机通信科技(深圳)有限公司 一种基于低压直充的充电设备、充电系统及充电控制方法
CN109245188A (zh) * 2017-07-10 2019-01-18 深圳市爱克斯达电子有限公司 一种充电装置及边充边放电源路径管理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968491A4 *
SUNG KYU LIM: "Design for High Performance, Low Power, and Reliable 3D Integrated Circuits", 31 December 2017, NATIONAL DEFENSE INDUSTRY PRESS, CN, ISBN: 978-7-118-11346-4, article LIN, SHENGGUI: "Passage, Design for High Performance, Low Power, and Reliable 3D Integrated Circuits", pages: 181 - 184, XP009525112 *

Also Published As

Publication number Publication date
CN112117785B (zh) 2022-09-09
US20220109318A1 (en) 2022-04-07
EP3968491A4 (en) 2022-06-29
EP3968491A1 (en) 2022-03-16
CN112117785A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
US10727677B2 (en) Fast charging circuit
CN107852012B (zh) 反向电流保护电路
JP5322186B2 (ja) Usb装置における適応フィードバックおよび電力制御
US8627121B2 (en) USB-on-the-go bi-directional protection circuit
KR20200143458A (ko) Vbus 대 cc 단락 보호가 통합된 usb 타입-c/pd 컨트롤러
US9977475B2 (en) Over voltage protection for a communication line of a bus
CN107240940B (zh) Usb连接器放电方法及电路
US9257854B2 (en) Electronic device and protection circuit thereof
US8704550B2 (en) Architecture for VBUS pulsing in UDSM processes
WO2012167673A1 (zh) 一种电源电路
WO2020253491A1 (zh) 充电电路、充电芯片、移动终端及充电系统
JP2006262610A (ja) 電源回路
WO2021147907A1 (zh) 充电端口防护装置及终端
CN107894933B (zh) 支持冷备份应用的cmos输出缓冲电路
KR20150105809A (ko) 로드 스위치를 포함하는 제어 회로, 로드 스위치를 포함하는 전자 장치 및 그 스위치 제어 방법
WO2020177709A1 (zh) 马达驱动电路及终端设备
TWI437790B (zh) 湧入電流保護電路
CN209948734U (zh) 自动负载检测电路
WO2021022957A1 (zh) 电源切换电路及电子设备
CN106992492A (zh) 一种过流保护电路、电源接口及移动终端
US20200366105A1 (en) Methods and apparatus for a battery
CN108233909B (zh) 转换速率可控的半导体电源保护装置
CN112003458B (zh) 通路管控制电路、电源管理芯片以及电源装置
US20170155275A1 (en) Backup circuitry for providing power
CN113872265A (zh) 一种电源管理电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020826619

Country of ref document: EP

Effective date: 20211210

NENP Non-entry into the national phase

Ref country code: DE