WO2020253474A1 - 电子设备的充电电路与电子设备 - Google Patents

电子设备的充电电路与电子设备 Download PDF

Info

Publication number
WO2020253474A1
WO2020253474A1 PCT/CN2020/092140 CN2020092140W WO2020253474A1 WO 2020253474 A1 WO2020253474 A1 WO 2020253474A1 CN 2020092140 W CN2020092140 W CN 2020092140W WO 2020253474 A1 WO2020253474 A1 WO 2020253474A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch tube
charging
voltage
terminal
Prior art date
Application number
PCT/CN2020/092140
Other languages
English (en)
French (fr)
Inventor
刘绍斌
张俊
卜昌军
史岩松
李家达
李云林
樊勋
施建超
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20825478.9A priority Critical patent/EP3968490A4/en
Publication of WO2020253474A1 publication Critical patent/WO2020253474A1/zh
Priority to US17/533,103 priority patent/US20220085637A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage

Definitions

  • the present disclosure relates to the field of electronic equipment, and in particular to a charging circuit and electronic equipment of an electronic equipment.
  • the charging circuit in the electronic device can be respectively connected to the adapter and the battery through the MOS tube, and can control whether the adapter can charge the battery by controlling the on and off of the MOS tube.
  • controlling the MOS tube to turn off it is usually necessary to ground the gate of the MOS tube.
  • the source of the MOS tube connected to the cell will always have a certain voltage. There will be a voltage difference between the source and the gate of the MOS tube, which will cause electromigration between the gate and the source of the MOS tube, which will reduce the impedance between the gate and the source of the MOS tube.
  • the impedance between the drain and the source is too large when the MOS transistor is turned on, and the excessive impedance between the drain and the source causes the problems of serious heating and charging withdrawal during charging.
  • An object of the present disclosure is to improve the working stability and safety of the charging circuit.
  • the present disclosure provides a charging circuit for an electronic device, including a first switch tube and an electromigration suppression circuit; the first switch tube, the first end of which is configured to be connected to a power source, and the first switch The second end of the tube is configured to be connected to the battery cell to be charged; the electromigration suppression circuit is electrically connected to the controlled end of the first switch tube, when the power supply stops charging the battery cell to be charged Next, the electromigration suppression circuit adjusts the voltage difference between the second terminal and the controlled terminal of the first switch tube by adjusting the voltage on the controlled terminal of the first switch tube, so as to reduce the first switch tube. The amount of electromigration between the second end of a switch tube and the controlled end.
  • the electromigration suppression circuit includes a first resistor, a first end of the first resistor is connected to a controlled end of the first switch tube, and a second end of the first resistor is grounded In the case where the power supply stops charging the battery to be charged, the current output by the controlled end of the first switch tube is current-limited by the first resistor and then grounded.
  • the electromigration suppression circuit includes a boosting circuit; when the power supply stops charging the battery cell to be charged, the output level signal of the boosting circuit reaches the first The controlled terminal of the switch tube is used to reduce the voltage difference between the controlled terminal and the second terminal of the first switch tube.
  • the charging circuit further includes a control circuit, and a charging mode switching circuit and a trigger circuit that are both controlled by the control circuit; the control circuit controls the on or off of the charging mode switching circuit Off, the control circuit adjusts the voltage output by the output terminal of the trigger circuit; the charging mode switching circuit is connected in series between the controlled terminal and the ground terminal of the first switch tube, and the output terminal of the trigger circuit is connected to the The controlled terminal of the first switch tube is connected; when the charging mode switching circuit is disconnected, and the voltage output from the output terminal of the trigger circuit to the controlled terminal of the first switch tube is higher than that of the first switch In the case of the conduction voltage of the tube, the power supply charges the battery to be charged; when the charging mode switching circuit is turned off, the output terminal of the trigger circuit is output to the controlled control of the first switching tube When the voltage at the terminal is lower than the turn-on voltage of the first switching tube, the electromigration suppression circuit acts on the controlled terminal of the first switching tube;
  • the electromigration suppression circuit includes a first switch circuit; the first switch circuit is connected in series between the controlled terminal of the first switch tube and the output terminal of the trigger circuit; When the charging of the battery cell to be charged is stopped, the charging mode switching circuit is turned off and the first switch circuit is turned off to disconnect the flow path of the output current from the controlled end of the first switch tube.
  • the trigger circuit includes a second resistor, a third resistor, and a boost capacitor; the first end of the second resistor is connected to the controlled end of the first switch, and the second The second end of the resistor is interconnected with the first end of the third resistor and the first end of the boost capacitor, the second end of the third resistor is connected to the power source, and the second end of the boost capacitor Connect with the control circuit.
  • the control circuit when the power supply stops charging the battery cell to be charged, the control circuit outputs an AC signal to the boost capacitor, and the DC voltage output by the boost capacitor passes through all The second resistor is input to the controlled terminal of the first switch tube to reduce the voltage difference between the controlled terminal and the second terminal of the first switch tube.
  • the charging circuit of the electronic device further includes a second switch tube, the controlled end of the second switch tube is connected to the controlled end of the first switch tube, and the second switch tube The first end of the first switch tube is connected to the first end of the first switch tube, and the second end of the second switch tube is connected to the power source.
  • the first end of the second switch tube is connected to the power supply through a charging interface, and the charging circuit of the electronic device further includes a voltage detection circuit;
  • the voltage detection circuit detects the voltage at the charging interface, so that when the voltage at the first terminal of the second switch tube is greater than the preset voltage value , The charging mode switching circuit is turned on to turn off the first switch tube and the second switch tube.
  • control circuit is further configured to detect a time period during which the power supply stops charging the battery cell to be charged, and when the time period during which the power supply stops charging the battery cell to be charged exceeds a preset time period At this time, the control circuit controls the voltage detection circuit to detect the voltage at the charging interface.
  • the present disclosure provides an electronic device including a charging circuit and a battery cell, the charging circuit is the above-mentioned charging circuit, and the charging circuit is connected to the battery core.
  • the charging circuit in the embodiment of the present disclosure includes a first switch tube and an electromigration suppression circuit.
  • the first end of the first switch tube is configured to be connected to the power source, and the second end of the first switch tube is configured to be connected to the battery to be charged; the electromigration suppression circuit is connected to the receiver of the first switch tube.
  • the control terminal is electrically connected.
  • the electromigration suppression circuit adjusts the first switch by adjusting the voltage on the controlled terminal of the first switch tube
  • the voltage difference between the second end of the tube and the controlled end is used to reduce the amount of electromigration between the second end and the controlled end of the first switching tube, thereby reducing the leakage of the source and stabilizing the source and
  • the impedance between the gates ensures that the driving voltage required by the gate of the first switching tube will not be reduced due to electromigration.
  • this solution can stabilize the impedance between the source and drain of the first switching tube and reduce the power supply
  • the first switch tube generates severe heat due to the increase in the impedance between the source and the drain, which in turn causes the protection circuit to act to trigger the exit from the charging mode.
  • the embodiments of the present disclosure can improve the working stability and safety of the charging circuit.
  • Fig. 1 is a schematic structural diagram of an embodiment of an electronic device of the present disclosure
  • FIG. 2 is a structural block diagram of an embodiment of the electronic device of the present disclosure
  • Figure 3 is a structural block diagram of the charging process of the battery to be charged
  • FIG. 4 is a block diagram of an embodiment of the charging circuit of the present disclosure.
  • FIG. 5 is a block diagram of another embodiment of the charging circuit of the present disclosure.
  • Fig. 6 is a circuit diagram of an embodiment of the charging circuit of the present disclosure.
  • FIG. 7 is a circuit diagram of another embodiment of the charging circuit of the present disclosure.
  • FIG. 8 is a circuit diagram of another embodiment of the charging circuit of the present disclosure.
  • Fig. 9 is a circuit diagram of still another embodiment of the charging circuit of the present disclosure.
  • connection should be understood in a broad sense, for example, they may be fixedly connected, detachably connected, or integrated; it may be Electrical connection can also be mutual communication; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be fixedly connected, detachably connected, or integrated; it may be Electrical connection can also be mutual communication; it can be directly connected or indirectly connected through an intermediate medium.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • And/or describes the association relationship of the associated objects, indicating that there can be three types of relationships, such as A and/or B, which can indicate the existence of A alone, B alone, and both A and B.
  • the symbol “/” generally indicates that the associated objects are in an “or” relationship.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the embodiments of the present application provide an electronic device and an electronic device charging method.
  • the electronic device can be a smart phone, a tablet computer, etc.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the electronic device 10 may include a housing 11, a display 12, a circuit board 13, and a battery 14. It should be noted that the electronic device 10 is not limited to the above content.
  • the housing 11 may form the outer contour of the electronic device 10.
  • the housing 11 may be a metal housing, such as magnesium alloy, stainless steel and other metals. It should be noted that the material of the housing 11 in the embodiment of the present application is not limited to this, and other methods may also be used.
  • the housing 11 may be a plastic housing, a ceramic housing, a glass housing, and the like.
  • the display screen 12 is installed in the housing 11.
  • the display screen 12 is electrically connected to the circuit board 13 to form the display surface of the electronic device.
  • the display surface of the electronic device 10 may be provided with a non-display area.
  • the top or/and bottom of the electronic device 10 may form a non-display area, that is, the electronic device 10 is on the upper or/and lower part of the display screen 12.
  • a non-display area is formed, and the electronic device 10 can install a camera, a receiver, and other devices in the non-display area.
  • the display surface of the electronic device 10 may not be provided with a non-display area, that is, the display screen 12 may be a full screen.
  • the display screen can be laid on the entire display surface of the electronic device 10 so that the display screen can perform full-screen display on the display surface of the electronic device 10.
  • the display screen 12 may have a regular shape, such as a rectangular parallelepiped structure or a rounded rectangular structure, and the display screen 12 may also have an irregular shape.
  • the display screen 12 may be one or a combination of liquid crystal displays, organic light emitting diode displays, electronic ink displays, plasma displays, and displays using other display technologies.
  • the display screen 12 may include a touch sensor array (ie, the display screen 12 may be a touch display screen).
  • the touch sensor can be a capacitive touch sensor formed by an array of transparent touch sensor electrodes (such as indium tin oxide (ITO) electrodes), or can be a touch sensor formed using other touch technologies, such as sonic touch, pressure-sensitive touch, and resistance Touch, optical touch, etc., are not limited in the embodiment of the present application.
  • ITO indium tin oxide
  • a cover plate may be provided on the display screen 12, and the cover plate may cover the display screen 12 to protect the display screen 12.
  • the cover can be a transparent glass cover so that the display screen 12 can display through the cover.
  • the cover plate may be a glass cover plate made of materials such as sapphire.
  • a storage space is formed between the casing 11 and the display screen 12, and the storage space can contain components of the electronic device 10, such as the circuit board 13, the battery cell 14, and the like.
  • the circuit board 13 is installed in the housing 11, the circuit board 13 can be the main board of the electronic device 10, and the circuit board 13 can be integrated with a motor, a microphone, a speaker, a headphone interface, a universal serial bus interface, a camera, a distance sensor, One, two or more of functional devices such as ambient light sensors, receivers, and processors.
  • the circuit board 13 may be fixed in the housing 11. Specifically, the circuit board 13 may be screwed to the housing 11 by screws, or may be snap-fitted to the housing 11 in a snap-fit manner. It should be noted that the specific way of fixing the circuit board 13 to the housing 11 in the embodiment of the present application is not limited to this, and other ways, such as a way of joint fixing by a buckle and a screw, may also be used. In the description of this application, it should be noted that the terms “installation”, “connection”, and “connection” should be interpreted broadly unless otherwise clearly specified and limited. For example, it can be a fixed connection or a detachable connection.
  • the battery core 14 is installed in the housing 11, and the battery core 11 is electrically connected to the circuit board 13 to provide power to the electronic device 10.
  • the casing 11 can be used as a cell cover of the cell 14. The casing 11 covers the battery core 14 to protect the battery core 14 and reduce damage to the battery core 14 due to collisions, drops, and the like of the electronic device 10.
  • the electronic device 10 may include a storage and processing circuit 131, and the storage and processing circuit 131 may be integrated on the circuit board 13.
  • the storage and processing circuit 131 may include memory, such as hard disk drive memory, non-volatile memory (such as flash memory or other electronic programmable read-only memory used to form a solid-state drive, etc.), and volatile memory (such as static or dynamic random access memory). Access to memory, etc.), etc., are not limited in the embodiment of the application.
  • the processing circuit in the storage and processing circuit 131 may be configured to control the operation of the electronic device 10.
  • the processing circuit can be implemented based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, display driver integrated circuits, etc.
  • the storage and processing circuit 131 can be configured to run software in the electronic device 10, such as Internet browsing applications, Voice over Internet Protocol (VOIP) phone call applications, email applications, media playback applications, and operations System functions, etc.
  • VOIP Voice over Internet Protocol
  • the electronic device 10 may include an input-output circuit 132, and the input-output circuit 132 may be provided on the circuit board 13.
  • the input-output circuit 132 may be configured to enable the electronic device 10 to implement data input and output, that is, allow the electronic device 10 to receive data from an external device and also allow the electronic device 10 to output data from the electronic device 10 to the external device.
  • the input-output circuit 132 may further include a sensor 1321.
  • the sensor 1321 may include an ambient light sensor, a proximity sensor based on light and capacitance, and a touch sensor (for example, a light-based touch sensor and/or a capacitive touch sensor, where the touch sensor may be a part of the touch display screen, or as a The touch sensor structure is used independently), acceleration sensor, temperature sensor, and other sensors.
  • a touch sensor for example, a light-based touch sensor and/or a capacitive touch sensor, where the touch sensor may be a part of the touch display screen, or as a The touch sensor structure is used independently
  • acceleration sensor acceleration sensor
  • temperature sensor temperature sensor
  • the electronic device 10 may include a power management circuit and other input-output units 1322.
  • the input-output unit may include buttons, joysticks, click wheels, scroll wheels, touch pads, keypads, keyboards, cameras, light emitting diodes, and other status indicators.
  • the user can control the operation of the electronic device 10 by inputting commands through the input-output circuit 132, and can use the output data of the input-output circuit 132 to receive status information and other outputs from the electronic device 10.
  • the electronic device 10 includes a charging circuit 100.
  • the charging circuit 100 can charge the battery cell 14 of the electronic device 100.
  • the charging circuit 100 can charge the battery core 14 by wired charging, or can charge the battery core 14 by wireless charging.
  • the charging circuit of the present application is described in detail.
  • the electronic device is equipped with a charging interface 400.
  • the charging interface 400 may be a USB socket.
  • the charging interface 400 is connected to an adapter through a data cable.
  • the adapter obtains electric energy from the mains. After voltage conversion, it is transmitted through the data cable and the charging interface. 400 is transmitted to the charging circuit, so the electric energy can be charged into the battery cell 200 to be charged through the charging circuit.
  • the charging circuit in the embodiment of the present application includes a first switch tube V1 and an electromigration suppression circuit 110.
  • the first end of the first switch tube V1 is configured to be connected to the power supply 300, and the second end of the first switch tube V1 is configured to be connected to the battery cell 200 to be charged; the electromigration suppression circuit 110 is connected to the first switch tube V1.
  • the control terminal is electrically connected.
  • the electromigration suppression circuit 110 adjusts the second terminal of the first switch tube V1 by adjusting the voltage on the controlled terminal of the first switch tube V1 The voltage difference between the controlled terminal and the controlled terminal is used to reduce the amount of electromigration between the second terminal of the first switch tube V1 and the controlled terminal.
  • the power supply 300 in this embodiment is the external power supply 300 of the electronic device.
  • the first end of the first switch tube V1 can be connected to the power supply 300 through the charging interface 400 of the electronic device.
  • the power supply 300 may include an adapter, a data line connected between the adapter and the charging interface 400, and a mains power supply for the adapter; the power supply 300 may also include an electric energy storage device for supplying electric energy, and is connected to the electric energy storage device and charging Data line between interface 400.
  • the power supply 300 stops charging the battery cell 200 to be charged There are two specific situations when the power supply 300 stops charging the battery cell 200 to be charged: the first is that the charging interface 400 of the electronic device is not connected to the power supply 300, so there is no power supply 300 to charge the battery cell 200 to be charged; the second is electronic The charging interface 400 of the device is connected to the power supply 300, but the first switch tube V1 is turned off, so the electric energy transmitted by the adapter cannot be charged into the battery core 200.
  • the adapter when the adapter is connected to the charging interface 400 of the electronic device, there are at least two charging modes, namely, charging mode and charging stop mode.
  • charging mode the first switch tube V1 of the charging circuit is turned on, and the adapter output current charges the battery cell 200 through the first switch tube V1.
  • charging stop mode the first switch tube V1 is turned off, so the power supply 300 cannot charge the charging cell 200.
  • the adapter In the charging mode, in order to increase the charging speed, the adapter usually outputs a large current to charge the battery cell 200 to be charged with a large current through the charging circuit. It is understandable that the charging circuit can also have some anti-reverse circuits, protection circuits and other circuits. Therefore, when the charging current is large, in order to prevent the abnormality of some local components in the charging circuit, the problem of serious heating and burning is caused.
  • path impedance control can be performed, that is, the corresponding charging current is adjusted according to the path impedance value between the adapter and the battery.
  • the electronic device sends the voltage V1 of the electric energy input terminal of the battery cell 200 to the adapter through the data line in real time.
  • the adapter terminal compares the voltage V1 with the voltage Vo output by the adapter itself, and then divides it by the current I output by the adapter, namely
  • the method of channel impedance control is:
  • R10, R20, and R30 represent the preset resistance value.
  • the current I1 is used for fast charging;
  • the impedance increases to R10 ⁇ R ⁇ R20 the current of the path decreases to I2 for fast charging (I2 ⁇ I1);
  • the impedance continues to increase to R20 ⁇ R ⁇ R30 the current in the path decreases to I3 for fast charging (I3 ⁇ I2);
  • the charging circuit is controlled to stop The battery cell 200 to be charged is charged.
  • the charging circuit of the electronic device further includes a second switch tube V2, the controlled terminal of the second switch tube V2 is connected to the controlled terminal of the first switch tube V1, and the first terminal of the second switch tube V2 is connected to The power supply 300 is connected, and the second end of the second switch tube V2 is connected to the first end of the first switch tube V1. Since the controlled terminal of the second switch tube V2 is connected to the controlled terminal of the first switch tube V1, under normal circumstances, the first switch tube V1 and the second switch tube V2 are turned on and off synchronously.
  • the arrangement of the second switch tube V2 can improve the controlled reliability of the charging path between the power supply 300 and the battery cell, and prevent the first switch tube V1 from malfunctioning and out of control, resulting in an uncontrolled charging path.
  • the first switch tube V1 is a MOS tube
  • the anode of the body diode in the MOS tube is connected to the cell 200, and the voltage of the cathode is roughly the voltage of the power supply 300.
  • the first switching tube V1 and the second switching tube V2 may both be triodes or MOS tubes.
  • the first switching tube V1 and the second switching tube V2 are both NMOS transistors as an example for description.
  • the source of the second switching tube V2 is connected to the power supply 300, and the drain of the second switching tube V2 is connected to the The drain of a switch tube V1 is connected, and the source of the first switch tube V1 is connected with the battery cell 200 to be charged.
  • the charging circuit includes a control circuit 140 that is configured to coordinate and control the work of various functional circuits in the charging circuit.
  • the control circuit 140 may be the main control circuit of the entire electronic device. In an embodiment, the control circuit 140 may be an MCU.
  • the electromigration suppression circuit 110 is controlled by the control circuit 140, so that when the power supply 300 stops charging the battery cell 200 to be charged, the electromigration suppression circuit 110 starts to act on the controlled end of the first switch tube V1 to adjust The voltage on the controlled terminal of the first switch tube V1.
  • the power supply circuit may further include a charging mode switching circuit 120 and a trigger circuit 130 that are both controlled by the control circuit 140; the control circuit 140 controls the charging mode switching circuit 120 to be turned on or off, The control circuit 140 adjusts the voltage output by the output terminal of the trigger circuit 130; the charging mode switching circuit 120 is connected in series between the controlled terminal of the first switch tube V1 and the ground terminal, and the output terminal of the trigger circuit 130 is connected to the receiving terminal of the first switch tube V1.
  • the control terminal is connected; when the charging mode switching circuit 120 is disconnected, the output terminal of the trigger circuit 130 outputs the voltage to the controlled terminal of the first switch tube V1 to trigger the first switch tube V1 to turn on, so that the power supply 300 charges the battery cell 200
  • the charging mode switching circuit 120 is closed, the ground voltage transmitted by the switching circuit to the controlled end of the first switching tube V1 triggers the first switching tube V1 to turn off, so that the power supply 300 stops charging the battery cell 200.
  • the charging mode switching circuit 120 cooperates with the trigger circuit 130, and the charging mode switching circuit 120 disconnects the path between the controlled terminal of the first switch tube V1 and the ground, so that the first switch tube V1 can receive the trigger
  • the voltage output from the output terminal of the circuit 130 triggers the first switch tube V1 to be turned on to start the charging mode.
  • the charging mode switching circuit 120 turns on the path between the controlled terminal of the first switch tube V1 and the ground, and grounds the controlled terminal of the first switch tube V1 to cause the shutdown to start and stop the charging mode.
  • the control circuit 140 has a switching control terminal Fast_switch
  • the charging mode switching circuit 120 includes a switching MOS tube and a first diode D1.
  • the MOS tube may be an NMOS tube.
  • the gate of the switching MOS tube is connected to the switching control terminal Fast_switch of the control circuit 140, the source is connected to the anode of the first diode D1, the cathode of the first diode D1 is grounded, and the drain is connected to the gate of the first switching tube V1. ⁇ Pole connection.
  • the switching MMOS tube can also be replaced by a triode.
  • the control circuit 140 has a trigger terminal CLK_OUT, and the trigger terminal CLK_OUT will be controlled to send out an AC signal.
  • the AC signal may be a sine wave or a square wave.
  • the trigger circuit 130 includes a second resistor R2, a third resistor R3, a boost capacitor C1, a second capacitor C2, a third capacitor C3, a second diode D2 and a third diode D3 for anti-reaction effects; a second resistor
  • the first end of R2 is connected to the gate of the first switch tube V1, and the second end of the second resistor R2 interacts with the first end of the third resistor R3 and the first end of the boost capacitor C1 through the second diode D2.
  • the second end of the third resistor R3 is connected to the power supply 300, and the second end of the boost capacitor C1 is connected to the trigger terminal CLK_OUT of the control circuit 140.
  • the cathode of the second diode D2 is connected to the second end of the second resistor R2, and the cathode of the third diode D3 is connected to the anode of the second diode D2 and the first end of the boost capacitor C1.
  • the first terminal of the third resistor is grounded through the third capacitor C3 to reduce the voltage ripple of the first terminal of the third resistor R3.
  • the cathode of the second diode D2 is grounded through the second capacitor C3 to reduce the voltage ripple at the cathode of the second diode D2.
  • both the first switch tube V1 and the second switch tube V2 are NMOS transistors.
  • the switching control terminal Fast_switch When the switching control terminal Fast_switch outputs a high level, the switching MOS tube is turned on so that the gate of the first switching tube V1 is grounded. At this time, the first switching tube V1 and the second switching tube V2 are both turned off to stop the charging of the cell 200 to be charged. Recharge.
  • the switching control terminal Fast_switch outputs a low level, the switching MOS transistor is turned off so that the gate voltage of the first switching transistor V1 is controlled by the output terminal of the trigger circuit 130.
  • the trigger terminal CLK_OUT of the control circuit 140 outputs an AC signal to the boost capacitor C1, so that the boost capacitor C1 has a voltage, which is superimposed with the voltage of the power supply 300 and is input to the first switch tube V1 and the first switch tube through the first resistor R1.
  • the gate of the second switching tube V2 because the source voltage of the second switching tube V2 is the power supply 300 voltage, so the gate voltage of the second switching tube V2 is greater than the source voltage, the second switching tube V2 is turned on;
  • the voltage of the core 200 is generally lower than the voltage of the power supply 300, so the first switch tube V1 will also be turned on.
  • the power supply 300 starts to charge the battery cell 200 to be charged.
  • the electromigration suppression circuit 110 will be described more fully in the following embodiments.
  • the charging mode switching circuit 120 When the charging mode switching circuit 120 is turned on, the gate of the first switching tube V1 is grounded through the switching MOS tube, and its source is connected to the battery cell 200 to be charged, thus causing a gap between the source and drain of the first switching tube V1 Voltage difference, so the metal ions on the source will move towards the drain under the action of the voltage difference, electromigration will occur, causing leakage of the source, and the impedance between the source and the gate will decrease, causing the first The driving voltage required by the gate of the switching tube V1 is reduced, which in turn causes the impedance between the source and the drain to increase when the first switching tube V1 is turned on. When the degree of electromigration is severe, the source and drain will be caused. The impedance between the poles is too large, which causes the first switch tube V1 to generate severe heat, which in turn causes the protection circuit to act to trigger the exit from the charging mode.
  • the voltage of the gate of the first switching tube V1 is adjusted to adjust the voltage difference between the source and the gate of the first switching tube V1, thereby reducing the electromigration between the source and the gate of the first switching tube V1. phenomenon.
  • the electromigration suppression circuit 110 includes a first resistor R1, a first end of the first resistor R1 is connected to the gate of the first switch tube V1, and a second end of the first resistor R1 is grounded.
  • the power supply 300 stops charging the battery cell 200 to be charged
  • the current output by the gate of the first switch tube V1 is current-limited by the first resistor R1 and then grounded.
  • the current generated by the electromigration will flow through the first resistor R1, and then generate a voltage drop across the first resistor R1, which is applied to the source of the first switch tube V1
  • the voltage between the electrode and the gate will decrease, thereby suppressing the occurrence of electromigration.
  • the first resistor R1 with a larger resistance value can be selected, so that the current flowing between the source and the gate of the first switch tube V1 will be limited to a relatively small amount.
  • the first switch tube The voltage between the source and gate of V1 is further reduced.
  • the control circuit 140 controls When the charging mode switching circuit 120 is turned off, and since no power source 300 is connected to the third resistor R3 of the trigger circuit 130, the trigger circuit 130 cannot provide the voltage that triggers the first switch tube V1 and the second switch tube V2 to turn on. The first switch tube V1 and the second switch will still remain in the off state, so that the electromigration suppression circuit 110 will act on the gate of the first switch tube V1 alone, that is, the first resistor R1 acts on the gate of the first switch tube V1.
  • the output electromigration current is suppressed.
  • the second is that the power supply 300 is ready to charge the battery cell 200 to be charged, but the charging mode switching circuit 120 is set to turn off, and the trigger circuit 130 cannot output the voltage that makes the first switch tube V1 and the second switch tube V2 turn on , And the trigger circuit 130 has a reverse diode to prevent the current from flowing into the trigger circuit 130 from the gate of the first switch tube V1, so that the first switch tube V1 and the second switch are kept in the off state, and the electromigration is suppressed
  • the circuit 110 alone acts on the gate of the first switching tube V1, that is, the first resistor R1 suppresses the electromigration current output by the gate of the first switching tube V1.
  • the electromigration suppression circuit 110 includes a first switch circuit 111; the first switch circuit 111 is connected in series between the gate of the first switch tube V1 and the output terminal of the trigger circuit 130; When the power supply 300 stops charging the battery cell 200 to be charged, the charging mode switching circuit 120 is turned off and the first switch circuit 111 is turned off to disconnect the gate of the first switch tube V1 to output the flow path of the electromigration current.
  • the first switch circuit 111 may use a triode or a MOS transistor.
  • the charging mode switching circuit 120 is controlled to be turned off, and since the first switching circuit 111 is provided on the gate of the first switching tube V1 Between the trigger circuit 130 and the output terminal of the trigger circuit 130, therefore the path between the trigger circuit 130 and the first switch tube V1 is cut off, so that the first switch tube V1 and the second switch tube V2 cannot be turned on, and the first switch tube V2 is cut off.
  • the grid of the switch tube V1 outputs the flow path of the electromigration current.
  • the electromigration suppression circuit 110 includes a boosting circuit 112; when the power supply 300 stops charging the battery cell 200 to be charged, the output level signal of the boosting circuit 112 reaches the first The gate of the switching tube V1 is used to reduce the voltage difference between the gate and the source of the first switching tube V1.
  • the booster circuit 112 can obtain a boosted voltage from the control circuit 140, and connect it to the gate of the first switch tube V1 through the second switch circuit.
  • the first switching tube V1 is turned on, so that the voltage for boosting is applied to the gate of the first switching tube V1 to reduce the gap between the source and the gate of the first switching tube V1. The voltage difference, thereby suppressing electromigration.
  • some components in the trigger circuit 130 are used to achieve the purpose of suppressing the electromigration phenomenon.
  • the control circuit 140 controls the charging mode switching circuit 120 to turn off, and since the no power source 300 is connected to the third resistor R3 of the trigger circuit 130, the trigger circuit 130 cannot provide a trigger The voltage at which a switch tube V1 and a second switch tube V2 are turned on, so the first switch tube V1 and the second switch tube V2 will still remain in the off state.
  • control circuit 140 outputs an alternating current signal to the boost capacitor C1, and the boost capacitor C1 outputs a DC level after energy storage, and is input to the gate of the first switch tube V1 through the second resistor R2, thereby realizing the first switch The purpose of supercharging the grid of tube V1, thereby achieving the purpose of inhibiting electromigration.
  • this embodiment also proposes a solution to reduce or avoid corrosion of the charging interface 400.
  • this solution can effectively reduce or avoid corrosion of the charging interface 400.
  • the embodiment of the electromigration suppression circuit 110 corresponding to FIG. 6 is taken as an example to illustrate the cause of the corrosion phenomenon of the charging interface.
  • the gate of the first switching tube V1 undergoes electromigration, and the gates of the first switching tube V1 and the second switching tube V2 are grounded through the first resistor R1, and the first The gate voltage of the switching tube V1 is the divided voltage between the resistance between the gate and the source of the first switching tube V1 and the first resistance R1.
  • the gate voltage of the first switching tube V1 will change Gradually increases, so when the gate voltage of the first switching tube V1 exceeds the turn-on voltage of the second switching tube V2, the second switching tube V2 will be turned on, so that the charging interface 400 connected to the source of the second switching tube V2 With a voltage (for example, 1V), the charging interface 400 will corrode over time.
  • a voltage for example, 1V
  • the first end of the third switch tube V3 is connected to the power supply 300 through the charging interface 400, and the charging circuit of the electronic device further includes a voltage detection circuit.
  • the voltage detection circuit detects the voltage on the charging interface 400.
  • the electromigration suppression circuit 110 can be kept to continue to act on the gate of the first switch tube V1. To continue to suppress the occurrence of electromigration.
  • the electromigration circuit can be controlled to stop acting on the A gate of the switch tube V1, and controls the charging mode switching circuit 120 to turn on, so that the electromigration suppression circuit 110 is short-circuited and stops acting on the gate of the first switch tube V1.
  • the first switch tube V1 and the second switch tube The gate of V2 is turned off by the charging mode switching circuit 120 being grounded, so that the charging interface 400 no longer has voltage, and avoiding corrosion caused by the charging interface 400 being charged for a long time.
  • the main control board of the electronic device or the detection circuit control circuit 140 of the charging circuit detects whether the charging interface 400 is connected to the power supply 300. If the power supply 300 is not connected, the charging mode switching circuit 120 is controlled to be turned off. When the voltage on the charging interface 400 is less than or equal to the preset voltage value, the charging mode switching circuit 120 is kept turned off, so that the electromigration suppression circuit 110 keeps acting on the gate of the first switch tube V1 to continuously suppress the occurrence of electromigration. When the voltage on the charging interface 400 is greater than the preset voltage value, the charging mode switching circuit 120 is controlled to be turned on, so that the gates of the first switching tube V1 and the second switching tube V2 are grounded through the charging mode switching circuit 120. Turn off, so that the charging interface 400 no longer has voltage, and avoiding corrosion caused by charging the charging interface 400 for a long time.
  • the charging circuit of this embodiment further includes an anti-negative voltage circuit 150, which is connected to the source of the second switch tube V2.
  • the anti-negative voltage circuit 150 includes a third switching tube V3 and a fourth switching tube V4; the third switching tube V3 and the fourth switching tube V4 may both be NMOS tubes.
  • the gate of the third switch tube V3 and the gate of the fourth switch tube V4 are grounded through the fourth resistor R4, the source of the third switch tube V3 is connected to the source of the second switch tube V2, and the source of the third switch tube V3
  • the drain is connected to the drain of the fourth switching tube V4, and the source of the fourth switching tube V4 is connected to the drain of the switching tube V5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提供了一种充电电路以及电子设备,充电电路包括第一开关管、电迁移抑制电路。第一开关管的第一端被配置为与电源连接,所述第一开关管的第二端被配置为与待充电电芯连接;所述电迁移抑制电路与所述第一开关管的受控端电连接,在所述电源停止向所述待充电电芯充电的情况下,所述电迁移抑制电路通过调整所述第一开关管的受控端上的电压来调整所述第一开关管的第二端与受控端之间的电压差,以减少所述第一开关管第二端与受控端之间的电迁移量,从而降低源极的漏电量,稳定了源极与栅极之间的阻抗,本公开实施例能够提高充电电路的工作稳定性以及安全性。

Description

电子设备的充电电路与电子设备
相关申请的交叉引用
本申请要求于2019年06月20日提交的申请号为201910537737.X、名称为“电子设备的充电电路与电子设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及电子设备领域,特别涉及一种电子设备的充电电路与电子设备。
背景技术
电子设备中的充电电路可通过MOS管分别连接适配器和电芯,通过控制MOS管的通断来控制适配器能否对电芯充电。在控制MOS管关断时,通常需要将MOS管的栅极进行接地。然而由于MOS管是一直保持与电芯连接的,因此MOS管上与电芯连接的源极上会始终具有一定的电压。MOS管的源极与栅极之间会具有一电压差,这样造成MOS管栅极和源极之间会发生电迁移,从而造成MOS管栅极和源极之间阻抗减少。导致在MOS管导通时漏极和源极之间的阻抗过大,过大的漏极和源极之间的阻抗造成充电时发热严重和充电被退出的问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的一个目的在于提高充电电路的工作稳定性以及安全性。
为解决上述技术问题,本公开采用如下技术方案:
根据本公开的一个方面,本公开提供一种电子设备的充电电路,包括第一开关管、电迁移抑制电路;第一开关管,其第一端被配置为与电源连接,所述第一开关管的第二端被配置为与待充电电芯连接;所述电迁移抑制电路与所述第一开关管的受控端电连接,在所述电源停止向所述待充电电芯充电的情况下,所述电迁移抑制电路通过调整所述第一开关管的受控端上的电压来调整所述第一开关管的第二端与受控端之间的电压差,以减少所述第一开 关管第二端与受控端之间的电迁移量。
根据本公开一实施例,所述电迁移抑制电路包括第一电阻,所述第一电阻的第一端与所述第一开关管的受控端连接,所述第一电阻的第二端接地;在所述电源停止向所述待充电电芯充电的情况下,所述第一开关管的受控端输出的电流通过所述第一电阻限流后接地。
根据本公开一实施例,所述电迁移抑制电路包括增压电路;在所述电源停止向所述待充电电芯充电的情况下,所述增压电路的输出电平信号至所述第一开关管的受控端,以降低所述第一开关管的受控端与第二端之间的电压差。
根据本公开一实施例,所述充电电路还包括控制电路、以及均受控于所述控制电路的充电模式切换电路和触发电路;所述控制电路控制所述充电模式切换电路的导通或关断,所述控制电路调整所述触发电路的输出端输出的电压;所述充电模式切换电路串联于所述第一开关管的受控端与接地端之间,所述触发电路的输出端与所述第一开关管的受控端连接;当所述充电模式切换电路断开时,且在所述触发电路的输出端输出至第一开关管的受控端的电压高于所述第一开关管的导通电压的情况下,所述电源对所述待充电电芯充电;当所述充电模式切换电路断开时,且在所述触发电路的输出端输出至第一开关管的受控端的电压低于第一开关管的导通电压的情况下,所述电迁移抑制电路作用于所述第一开关管的受控端;
根据本公开一实施例,所述电迁移抑制电路包括第一开关电路;所述第一开关电路串联于所述第一开关管的受控端与触发电路的输出端之间;在所述电源停止向所述待充电电芯充电的情况下,所述充电模式切换电路断开且所述第一开关电路断开,以断开所述第一开关管的受控端输出电流的流通路径。
根据本公开一实施例,所述触发电路包括第二电阻,第三电阻、升压电容;所述第二电阻的第一端与所述第一开关管的受控端连接,所述第二电阻的第二端与所述第三电阻的第一端、升压电容的第一端互连,所述第三电阻的第二端供所述电源连接,所述升压电容的第二端与所述控制电路连接。
根据本公开一实施例,在所述电源停止向所述待充电电芯充电的情况下,所述控制电路输出交流电信号至所述升压电容,所述升压电容输出的直流电 压通过所述第二电阻输入至所述第一开关管的受控端,以降低所述第一开关管的受控端与第二端之间的电压差。
根据本公开一实施例,所述电子设备的充电电路还包括第二开关管,所述第二开关管的受控端与所述第一开关管的受控端连接,所述第二开关管的第一端供所述第一开关管的第一端连接,所述第二开关管的第二端供所述电源连接。
根据本公开一实施例,所述第二开关管的第一端通过充电接口与所述电源连接,所述电子设备的充电电路还包括电压检测电路;
在所述电源停止向所述待充电电芯充电的情况下,所述电压检测电路检测所述充电接口处的电压,以在所述第二开关管的第一端电压大于预设电压值时,所述充电模式切换电路导通,以关断所述第一开关管和第二开关管。
根据本公开一实施例,所述控制电路还被配置为检测所述电源停止向所述待充电电芯充电的时长,当所述电源停止向所述待充电电芯充电的时长超过预设时长时,所述控制电路控制所述电压检测电路检测所述充电接口处的电压。
根据本公开的另一个方面,本公开提供一种电子设备,包括充电电路和电芯,所述充电电路上述充电电路,所述充电电路与所述电芯连接。
本公开实施例中的充电电路包括第一开关管、电迁移抑制电路。第一开关管的第一端被配置为与电源连接,所述第一开关管的第二端被配置为与待充电电芯连接;所述电迁移抑制电路与所述第一开关管的受控端电连接,在所述电源停止向所述待充电电芯充电的情况下,所述电迁移抑制电路通过调整所述第一开关管的受控端上的电压来调整所述第一开关管的第二端与受控端之间的电压差,以减少所述第一开关管第二端与受控端之间的电迁移量,从而降低源极的漏电量,稳定了源极与栅极之间的阻抗,使得第一开关管栅极所需要的驱动电压不会因电迁移现象而降低,因此本方案能够稳定第一开关管源极和漏极之间的阻抗,减少在电源对电芯充电时,第一开关管因源极和漏极之间的阻抗增大而发热严重,进而导致保护电路动作,以触发退出充电模式的情况。本公开实施例能够提高充电电路的工作稳定性以及安全性。
附图说明
图1是本公开电子设备一实施例的结构示意图;
图2是本公开电子设备一实施例的结构框图;
图3是对待充电电芯充电过程的结构框图;
图4是本公开充电电路一实施例的框图;
图5是本公开充电电路另一实施例的框图;
图6是本公开充电电路一实施例的电路图;
图7是本公开充电电路另一实施例的电路图;
图8是本公开充电电路又一实施例的电路图;
图9是本公开充电电路再一实施例的电路图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现、材料或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。
在本公开中,除非另有明确的规定和限定,术语“相连”、“连接”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是是电连接,也可以是互相通讯;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示单独存在A、单独存在B及 同时存在A和B三种情况。符号“/”一般表示前后关联对象是一种“或”的关系。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例提供一种电子设备及电子设备充电方法。以下将分别进行详细说明。其中电子设备可以是智能手机、平板电脑等设备。
请参阅图1,图1为本申请实施例提供的电子设备的结构示意图。电子设备10可以包括壳体11、显示屏12、电路板13、电芯14。需要说明的是,电子设备10并不限于以上内容。其中,壳体11可以形成电子设备10的外部轮廓。在一些实施例中,壳体11可以为金属壳体,比如镁合金、不锈钢等金属。需要说明的是,本申请实施例壳体11的材料并不限于此,还可以采用其它方式,比如:壳体11可以为塑胶壳体、陶瓷壳体、玻璃壳体等。
其中,显示屏12安装在壳体11中。显示屏12电连接至电路板13上,以形成电子设备的显示面。在一些实施例中,电子设备10的显示面可以设置非显示区域,比如:电子设备10的顶端或/和底端可以形成非显示区域,即电子设备10在显示屏12的上部或/和下部形成非显示区域,电子设备10可以在非显示区域安装摄像头、受话器等器件。需要说明的是,电子设备10的显示面也可以不设置非显示区域,即显示屏12可以为全面屏。可以将显示屏铺设在电子设备10的整个显示面,以使得显示屏可以在电子设备10的显示面进行全屏显示。
需要理解的是,术语“上”、“下”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。其中,显示屏12可以为规则的形状,比如长方体结构、圆角矩形结构,显示屏12也可以为不规则的形状。
其中,显示屏12可以为液晶显示器,有机发光二极管显示器,电子墨水显示器,等离子显示器,使用其它显示技术的显示器中一种或者几种的组合。显示屏12可以包括触摸传感器阵列(即,显示屏12可以是触控显示屏)。触摸传感器可以是由透明的触摸传感器电极(例如氧化铟锡(ITO)电极)阵列形成的电容式触摸传感器,或者可以是使用其它触摸技术形成的触摸传感器,例 如音波触控,压敏触摸,电阻触摸,光学触摸等,本申请实施例不作限制。
需要说明的是,在一些实施例中,可以在显示屏12上盖设一盖板,盖板可以覆盖在显示屏12上,对显示屏12进行保护。盖板可以为透明玻璃盖板,以便显示屏12透过盖板进行显示。在一些实施例中,盖板可以是用诸如蓝宝石等材料制成的玻璃盖板。在一些实施例中,显示屏12安装在壳体11上后,壳体11和显示屏12之间形成收纳空间,收纳空间可以收纳电子设备10的器件,比如电路板13、电芯14等。其中,电路板13安装在壳体11中,电路板13可以为电子设备10的主板,电路板13上可以集成有马达、麦克风、扬声器、耳机接口、通用串行总线接口、摄像头、距离传感器、环境光传感器、受话器以及处理器等功能器件中的一个、两个或多个。
在一些实施例中,电路板13可以固定在壳体11内。具体的,电路板13可以通过螺钉螺接到壳体11上,也可以采用卡扣的方式卡配到壳体11上。需要说明的是,本申请实施例电路板13具体固定到壳体11上的方式并不限于此,还可以其它方式,比如通过卡扣和螺钉共同固定的方式。在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。其中,电芯14安装在壳体11中,电芯11与电路板13进行电连接,以向电子设备10提供电源。壳体11可以作为电芯14的电芯盖。壳体11覆盖电芯14以保护电芯14,减少电芯14由于电子设备10的碰撞、跌落等而受到的损坏。
请参阅图2,图2为本申请实施例提供的电子设备的结构框图。电子设备10可以包括存储和处理电路131,存储和处理电路131可以集成在电路板13上。存储和处理电路131可以包括存储器,例如硬盘驱动存储器,非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程只读存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。存储和处理电路131中的处理电路可以被配置为控制电子设备10的运转。处理电路可以基于一个或多个微处理器,微控制器,数字信号处理器,基带 处理器,功率管理单元,音频编解码器芯片,专用集成电路,显示驱动器集成电路等来实现。
存储和处理电路131可被配置为运行电子设备10中的软件,例如互联网浏览应用程序,互联网协议语音(Voice over Internet Protocol,VOIP)电话呼叫应用程序,电子邮件应用程序,媒体播放应用程序,操作系统功能等。
电子设备10可以包括输入-输出电路132,输入-输出电路132可以设置在电路板13上。输入-输出电路132可被配置为使电子设备10实现数据的输入和输出,即允许电子设备10从外部设备接收数据和也允许电子设备10将数据从电子设备10输出至外部设备。输入-输出电路132可以进一步包括传感器1321。传感器1321可以包括环境光传感器,基于光和电容的接近传感器,触摸传感器(例如,基于光触摸传感器和/或电容式触摸传感器,其中,触摸传感器可以是触控显示屏的一部分,也可以作为一个触摸传感器结构独立使用),加速度传感器,温度传感器,和其它传感器等。
电子设备10可以包括电力管理电路和其它输入-输出单元1322。输入-输出单元可以包括按钮,操纵杆,点击轮,滚动轮,触摸板,小键盘,键盘,照相机,发光二极管和其它状态指示器等。
用户可以通过输入-输出电路132输入命令来控制电子设备10的操作,并且可以使用输入-输出电路132的输出数据以实现接收来自电子设备10的状态信息和其它输出。
请参阅图3,在本实施例中,电子设备10包括充电电路100。充电电路100可以为电子设备100的电芯14充电。充电电路100可以通过有线充电的方式为电芯14充电,也可以通过无线充电的方式为电芯14充电。在以下实施例中,对本申请的充电电路做出详细说明。
具体的,电子设备配置有充电接口400,该充电接口400可以是USB座,该充电接口400通过数据线与适配器连接,适配器从市电获取电能,经过电压变换后,通过数据线传、充电接口400传输至充电电路,因此电能通过充电电路得以充入待充电电芯200中。
请参阅图4,本申请实施例中的充电电路包括第一开关管V1、电迁移抑制电路110。第一开关管V1的第一端被配置为与电源300连接,第一开关管V1的第二端被配置为与待充电电芯200连接;电迁移抑制电路110与第一开 关管V1的受控端电连接,在电源300停止向待充电电芯200充电的情况下,电迁移抑制电路110通过调整第一开关管V1的受控端上的电压来调整第一开关管V1的第二端与受控端之间的电压差,以减少第一开关管V1第二端与受控端之间的电迁移量。
本实施例中的电源300为电子设备的外接电源300,显然,第一开关管V1的第一端可以通过电子设备的充电接口400与该电源300连接。该电源300可以包括适配器、连接在适配器和充电接口400之间的数据线、以及为适配器提供电能的市电;电源300还可以是包括供给电能的电能储存装置,以及连接在电能储存装置与充电接口400之间的数据线。第一开关管V1的第一端和第二端之间具有供充电电流流通的通路,第一开关管V1的受控端可以控制该通路的导通或关断。
电源300停止向待充电电芯200充电的情况具体有两种:第一种是电子设备的充电接口400没有与电源300连接,因此无电源300为待充电电芯200充电;第二种是电子设备的充电接口400与电源300连接,但是第一开关管V1截止,因此适配器传输的电能无法充入电芯200中。
进一步的,当适配器与电子设备的充电接口400连接时,充电模式至少有两种,即充电模式和停止充电模式。在充电模式下,充电电路的第一开关管V1导通,适配器输出电流通过第一开关管V1对电芯200进行充电。在停止充电模式,第一开关管V1关断,因此电源300无法对待充电电芯200充电。
在充电模式下,为了提高充电速度,因此适配器通常输出大电流,以通过充电电路对待充电电芯200进行大电流充电。可以理解的是,充电电路中还可以具有些防反电路、保护电路等电路,因此当充电电流较大时,为了防止由于充电电路中的某些局部器件异常,而造成发热严重以致烧毁的问题,本实施例中可以做通路阻抗管控,即根据适配器与电芯之间的通路阻抗值大小,调整相应的充电电流大小。具体的,电子设备实时将电芯200的电能输入端的电压V1通过数据线发给适配器,适配器端通过将该电压V1与适配器自身输出的电压Vo进行比较,再除以适配器输出的电流I,即可得到通路阻抗值R,R=(Vo-V1)/I。通路阻抗管控的方法为:
通路阻抗 R≤R10 R10<R≤R20 R20<R≤R30 R>R30
充电电流 I1 I2 I3 退出充电
其中R10、R20、R30均代表预设的阻值,当通路阻抗小于R10时,使用电流I1进行快充;当阻抗增大至R10<R≤R20,通路的电流降低至I2进行快充(I2<I1);若阻抗继续增大至R20<R≤R30,通路的电流降低至I3进行快充(I3<I2);若阻抗继续增大至R>R30,则通过充电电路的控制,以停止对待充电电芯200充电。
请参阅图6,图中VBUS为电源300输出电压,VBAT为电芯电压。在本实施例中,电子设备的充电电路还包括第二开关管V2,第二开关管V2的受控端与第一开关管V1的受控端连接,第二开关管V2的第一端与电源300连接,第二开关管V2的第二端与第一开关管V1的第一端连接。由于第二开关管V2的受控端与第一开关管V1的受控端连接的,因此在正常情况下,第一开关管V1和第二开关管V2的导通和关断是同步的。第二开关管V2的设置可以提高电源300与电芯之间的充电通路的受控可靠性,防止第一开关管V1出现故障而失控,造成充电通路不受控的情况。另一方面,当第一开关管V1为MOS管时,MOS管中自带的体二极管的阳极与电芯200连接,阴极的电压大致为电源300电压,因此当电芯200电压大于电芯电压时,会出现逆流现象,而在增加第二开关管V2后,由于第二开关管V2与第一开关管V1是反向连接的,因此第二开关管V2中的体二极管与第一开关管V1中的体二极管导通方向相反,从而起到了防逆流的作用。
第一开关管V1和第二开关管V2可以均为三极管或均为MOS管。在以下实施例中,以第一开关管V1和第二开关管V2均为NMOS管为例进行说明,第二开关管V2的源极与电源300连接,第二开关管V2的漏极与第一开关管V1的漏极连接,第一开关管V1的源极与待充电电芯200连接。
请参阅图4,本方案中当电源300对待充电电芯200充电时,第一开关管V1处于导通状态,且电迁移抑制电路110不对第一开关管V1的受控端作用,因此电迁移抑制电路110不会影响电子设备充电的正常过程。具体的,充电电路包括控制电路140,该控制电路140被配置为协调控制充电电路中各个功能电路的工作,该控制电路140可以是整个电子设备的主控电路。在一实施例中,控制电路140可以为MCU。电迁移抑制电路110受控于控制电路140,因而能够实现在电源300停止向待充电电芯200充电的情况下,电迁移抑制电路110开始作用于第一开关管V1的受控端,进而调节第一开关 管V1受控端上的电压。
请参阅图5,在本实施例中,供电电路还可以包括均受控于控制电路140的充电模式切换电路120和触发电路130;控制电路140控制充电模式切换电路120的导通或关断,控制电路140调整触发电路130的输出端输出的电压;充电模式切换电路120串联于第一开关管V1的受控端与接地端之间,触发电路130的输出端与第一开关管V1的受控端连接;当充电模式切换电路120断开时,触发电路130的输出端输出至第一开关管V1的受控端的电压触发第一开关管V1导通,以使电源300对电芯200充电;当充电模式切换电路120闭合时,开关电路传输至第一开关管V1的受控端的接地电压触发第一开关管V1关断,以使电源300停止对电芯200充电。
在该实施例中,充电模式切换电路120与触发电路130配合,充电模式切换电路120断开第一开关管V1受控端与地之间的通路,以使第一开关管V1能够接收到触发电路130输出端所输出的电压,进而触发第一开关管V1导通,开启充电模式。同样,充电模式切换电路120导通第一开关管V1受控端与地之间的通路,使第一开关管V1受控端接地而造成关断,以开启停止充电模式。
请参阅图6,具体的,控制电路140具有切换控制端Fast_switch,充电模式切换电路120包括切换MOS管、第一二极管D1,该MOS管可以采用NMOS管。切换MOS管的栅极与控制电路140的切换控制端Fast_switch连接,源极与第一二极管D1的阳极连接,第一二极管D1的阴极接地,漏极与第一开关管V1的栅极连接。可以理解的是,切换MMOS管也可以采用三极管替代。
控制电路140具有触发端CLK_OUT,触发端CLK_OUT会受控发出一交流信号,该交流信号可以是正弦波,也可以是方波。触发电路130包括第二电阻R2,第三电阻R3、升压电容C1、第二电容C2、第三电容C3、起防反作用的第二二极管D2和第三二极管D3;第二电阻R2的第一端与第一开关管V1的栅极连接,第二电阻R2的第二端通过第二二极管D2与第三电阻R3的第一端、升压电容C1的第一端互连,第三电阻R3的第二端与电源300连接,升压电容C1的第二端与控制电路140的触发端CLK_OUT连接。其中第二二极管D2的阴极与第二电阻R2的第二端连接,第三二极管D3的阴 极与第二二极管D2的阳极、升压电容C1的第一端互连。第三电阻的第一端通过第三电容C3接地,以减少第三电阻R3第一端电压的纹波。第二二极管D2的阴极通过第二电容C3接地,以减少第二二极管D2的阴极处电压的纹波。
基于以上电路架构,以第一开关管V1和第二开关管V2均为NMOS管为例。当切换控制端Fast_switch输出高电平时,切换MOS管导通以致第一开关管V1的栅极接地,此时第一开关管V1、第二开关管V2均关断以停止对待充电电芯200的充电。当切换控制端Fast_switch输出低电平时,切换MOS管关断以致第一开关管V1的栅极电压受触发电路130输出端的控制。此时控制电路140的触发端CLK_OUT输出交流信号至升压电容C1,以使升压电容C1上具有一电压,该电压与电源300电压叠加通过第一电阻R1输入至第一开关管V1、第二开关管V2的栅极,由于第二开关管V2的源极电压为电源300电压,因此第二开关管V2的栅极电压大于源极电压,第二开关管V2导通;而待充电电芯200的电压一般低于电源300电压,因此第一开关管V1也会导通。此时电源300开始为待充电电芯200充电。
基于上述实施例,在以下实施例中更全面的对电迁移抑制电路110进行说明。
当充电模式切换电路120导通时,第一开关管V1的栅极通过切换MOS管接地,而其源极连接待充电电芯200,因此造成第一开关管V1源极和漏极之间具有电压差,因此在源极上的金属离子会在电压差的作用下朝漏极运动,发生电迁移现象,造成源极发生漏电现象,源极与栅极之间的阻抗减小,造成第一开关管V1栅极所需要的驱动电压降低,进而导致在第一开关管V1导通时,源极和漏极之间的阻抗增大,当电迁移程度较严重时,会造成源极和漏极之间的阻抗过大,而导致第一开关管V1发热严重,进而导致保护电路动作,以触发退出充电模式。
本实施例通过调控第一开关管V1栅极的电压,以调控第一开关管V1源极与栅极之间的电压差,进而减轻第一开关管V1源极与栅极之间的电迁移现象。
请参阅图6,在一实施例中,电迁移抑制电路110包括第一电阻R1,第一电阻R1的第一端与第一开关管V1的栅极连接,第一电阻R1的第二端接 地;在电源300停止向待充电电芯200充电的情况下,第一开关管V1的栅极输出的电流通过第一电阻R1限流后接地。
当第一开关管V1源极与栅极发生电迁移现象时,电迁移产生的电流会流过第一电阻R1,进而在第一电阻R1上产生压降,这样加在第一开关管V1源极和栅极之间的电压就会降低,从而抑制电迁移的发生。可以选用阻值较大的第一电阻R1,这样流过第一开关管V1源极和栅极之间的电流就会限制得比较小,加之第一电阻R1上的压降,第一开关管V1源极和栅极之间电压被进一步降低。
当电迁移抑制电路110的应用环境中具有上述充电模式切换电路120和触发电路130时有两种情况,第一种是,无电源300对待充电电芯200充电;此时在控制电路140的控制下,充电模式切换电路120关断,而由于无电源300接入触发电路130的第三电阻R3,因此触发电路130无法提供触发第一开关管V1、第二开关管V2导通的电压,因此第一开关管V1和第二开关仍旧会保持关断状态,而使得电迁移抑制电路110会单独对第一开关管V1的栅极作用,即第一电阻R1对第一开关管V1的栅极输出的电迁移电流进行抑制。第二种是,有电源300准备对待充电电芯200充电,但是通过设置充电模式切换电路120关断,并使触发电路130无法输出令第一开关管V1、第二开关管V2导通的电压,且触发电路130内具有反向二极管,以抑制电流自第一开关管V1栅极流入触发电路130,因此实现了第一开关管V1和第二开关保持在关断状态,而使得电迁移抑制电路110会单独对第一开关管V1的栅极作用,即第一电阻R1对第一开关管V1的栅极输出的电迁移电流进行抑制。
请参阅图7,在另一实施例中,电迁移抑制电路110包括第一开关电路111;第一开关电路111串联于第一开关管V1的栅极与触发电路130的输出端之间;在电源300停止向待充电电芯200充电的情况下,充电模式切换电路120断开且第一开关电路111断开,以断开第一开关管V1的栅极输出电迁移电流的流通路径。具体的,第一开关电路111可以采用三极管、MOS管。
当电迁移抑制电路110的应用环境中具有上述充电模式切换电路120和触发电路130时,通过控制充电模式切换电路120关断,而由于第一开关电 路111是设置在第一开关管V1的栅极与触发电路130的输出端之间,因此触发电路130与第一开关管V1之间的通路被切断,而使得第一开关管V1与第二开关管V2无法导通,并且切断了第一开关管V1栅极输出电迁移电流的流通路径。
请参阅图8,在又一实施例中,电迁移抑制电路110包括增压电路112;在电源300停止向待充电电芯200充电的情况下,增压电路112的输出电平信号至第一开关管V1的栅极,以降低第一开关管V1的栅极与源极之间的电压差。
在一具体的实施例中,增压电路112可以从控制电路140获得一用于增压的电压,并通过第二开关电路与第一开关管V1的栅极连接,当在电源300停止向待充电电芯200充电的情况下,第一开关管V1导通,使得用于增压的电压施加于第一开关管V1的栅极上,以降低第一开关管V1源极与栅极之间的电压差,从而抑制电迁移现象。
请参阅图9,在另一具体的实施例中,利用触发电路130中的部分元器件以实现抑制电迁移现象的目的。当无电源300对待充电电芯200充电的情况下,控制电路140控制充电模式切换电路120关断,并且由于无电源300接入触发电路130的第三电阻R3,因此触发电路130无法提供触发第一开关管V1、第二开关管V2导通的电压,因此第一开关管V1和第二开关管V2仍旧会保持关断状态。此时控制电路140输出交流电信号至升压电容C1,升压电容C1经过储能后输出直流电平,并经过第二电阻R2输入至第一开关管V1的栅极,从而实现对第一开关管V1栅极增压的目的,从而实现了抑制电迁移的目的。
基于上述图6、8、9所对应的实施例,本实施例还提出一种减轻或避免充电接口400发生腐蚀的方案。当第一开关管V1的栅极发生电迁移现象时,利用本方案能够有效地减轻或避免充电接口400发生腐蚀的现象。
在此以图6所对应的电迁移抑制电路110的实施例为例说明充电接口发生腐蚀现象的原因。在电源300停止向待充电电芯200充电时,第一开关管V1的栅极发生电迁移现象,第一开关管V1和第二开关管V2的栅极会通过第一电阻R1接地,第一开关管V1栅极电压为第一开关管V1栅极-源极之间的电阻与第一电阻R1之间的分压,因此随着电迁移现象的进行,第一开关 管V1栅极电压会逐渐增大,因此当第一开关管V1栅极电压超过第二开关管V2的导通电压时,会导致第二开关管V2导通,使得与第二开关管V2源极连接的充电接口400具有电压(例如1V),随着时间的过去,充电接口400会发生腐蚀现象。
本实施例中,为了有效的判断第一开关管V1发生的电迁移情况,设置第三开关管V3的第一端通过充电接口400与电源300连接,电子设备的充电电路还包括电压检测电路。在电源300停止向待充电电芯200充电的情况下,电压检测电路检测充电接口400上的电压。
当充电接口400上未检测到电压时,说明此时第一开关管V1栅极的电迁移现象还不算严重,因此可以保持电迁移抑制电路110继续作用于第一开关管V1的栅极,以持续抑制电迁移现象的发生。当充电接口400上检测到电压时,说明此时第一开关管V1栅极的电迁移现象较为严重,电迁移抑制电路110已无法进行有效的抑制,此时可以控制电迁移电路停止作用于第一开关管V1的栅极,并控制充电模式切换电路120导通,使得电迁移抑制电路110被短路而停止作用于第一开关管V1栅极,此时第一开关管V1和第二开关管V2的栅极通过充电模式切换电路120接地而得到关断,从而使充电接口400处不再具有电压,避免充电接口400长时间带电而出现腐蚀现象。
在具体的应用的一实施例中,通过电子设备的主控板或充电电路的检测电路控制电路140检测充电接口400有无连接电源300,若没有连接电源300,则控制充电模式切换电路120断开,并延时一时间段后开始获取充电接口400上的电压,当充电接口400上的电压小于或等于预设的电压值时,则保持充电模式切换电路120断开,使得电迁移抑制电路110保持作用于第一开关管V1的栅极,以持续抑制电迁移现象的发生。当充电接口400上的电压大于预设的电压值时,则控制充电模式切换电路120导通,以使第一开关管V1和第二开关管V2的栅极通过充电模式切换电路120接地而得到关断,从而使充电接口400处不再具有电压,避免充电接口400长时间带电而出现腐蚀现象。
基于上述实施例,本实施例的充电电路还包括防负压电路150,防负压电路150与第二开关管V2的源极连接。防负压电路150包括第三开关管V3、第四开关管V4;第三开关管V3、第四开关管V4可以均为NMOS管。其中 第三开关管V3的栅极、第四开关管V4的栅极通过第四电阻R4接地,第三开关管V3的源极与第二开关管V2的源极连接,第三开关管V3的漏极与第四开关管V4的漏极连接,第四开关管V4的源极与切换开关管V5的漏极连接。当电源300出现负电压时,会触发第三开关管V3和第四开关管V4导通,从而将负电压导入地,以保证电子设备的安全。
虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (11)

  1. 一种电子设备的充电电路,包括:
    第一开关管,其第一端被配置为与电源连接,所述第一开关管的第二端被配置为与待充电电芯连接;
    电迁移抑制电路,所述电迁移抑制电路与所述第一开关管的受控端电连接,在所述电源停止向所述待充电电芯充电的情况下,所述电迁移抑制电路通过调整所述第一开关管的受控端上的电压来调整所述第一开关管的第二端与受控端之间的电压差,以减少所述第一开关管第二端与受控端之间的电迁移量。
  2. 根据权利要求1所述的电子设备的充电电路,其中,所述电迁移抑制电路包括第一电阻,所述第一电阻的第一端与所述第一开关管的受控端连接,所述第一电阻的第二端接地;
    在所述电源停止向所述待充电电芯充电的情况下,所述第一开关管的受控端输出的电流通过所述第一电阻限流后接地。
  3. 根据权利要求1所述的电子设备的充电电路,其中,所述电迁移抑制电路包括增压电路;
    在所述电源停止向所述待充电电芯充电的情况下,所述增压电路输出电平信号至所述第一开关管的受控端,以降低所述第一开关管的受控端与第二端之间的电压差。
  4. 根据权利要求1至3任意一项所述的电子设备的充电电路,其中,所述充电电路还包括控制电路、以及均受控于所述控制电路的充电模式切换电路和触发电路;所述控制电路控制所述充电模式切换电路的导通或关断,所述控制电路调整所述触发电路的输出端输出的电压;
    所述充电模式切换电路串联于所述第一开关管的受控端与接地端之间,所述触发电路的输出端与所述第一开关管的受控端连接;
    当所述充电模式切换电路断开时,且在所述触发电路的输出端输出至第一开关管的受控端的电压高于所述第一开关管的导通电压的情况下,所述电源对所述待充电电芯充电;
    当所述充电模式切换电路断开时,且在所述触发电路的输出端输出至第一开关管的受控端的电压低于第一开关管的导通电压的情况下,所述电迁移 抑制电路作用于所述第一开关管的受控端;
    当所述充电模式切换电路闭合时,所述第一开关管的受控端因接地而关断,以使所述电源停止对所述待充电电芯充电。
  5. 根据权利要求4所述的电子设备的充电电路,其中,所述电迁移抑制电路包括第一开关电路;
    所述第一开关电路串联于所述第一开关管的受控端与触发电路的输出端之间;
    在所述电源停止向所述待充电电芯充电的情况下,所述充电模式切换电路断开且所述第一开关电路断开,以断开所述第一开关管的受控端输出电流的流通路径。
  6. 根据权利要求4所述的电子设备的充电电路,其中,所述触发电路包括第二电阻、第三电阻、升压电容;
    所述第二电阻的第一端与所述第一开关管的受控端连接,所述第二电阻的第二端与所述第三电阻的第一端、升压电容的第一端互连,所述第三电阻的第二端供所述电源连接,所述升压电容的第二端与所述控制电路连接。
  7. 根据权利要求6所述的电子设备的充电电路,其中,在所述电源停止向所述待充电电芯充电的情况下,所述控制电路输出交流电信号至所述升压电容,所述升压电容输出的直流电压通过所述第二电阻输入至所述第一开关管的受控端,以降低所述第一开关管的受控端与第二端之间的电压差。
  8. 根据权利要求4所述的电子设备的充电电路,其中,所述电子设备的充电电路还包括第二开关管,所述第二开关管的受控端与所述第一开关管的受控端连接,所述第二开关管的第一端供所述第一开关管的第一端连接,所述第二开关管的第二端供所述电源连接。
  9. 根据权利要求8所述的电子设备的充电电路,其中,所述第二开关管的第一端通过充电接口与所述电源连接,所述电子设备的充电电路还包括电压检测电路;
    在所述电源停止向所述待充电电芯充电的情况下,所述电压检测电路检测所述充电接口处的电压,以在所述第二开关管的第一端电压大于预设电压值时,所述充电模式切换电路导通,以关断所述第一开关管和第二开关管。
  10. 根据权利要求9所述的电子设备的充电电路,其中,所述控制电路 还被配置为检测所述电源停止向所述待充电电芯充电的时长,当所述电源停止向所述待充电电芯充电的时长超过预设时长时,所述控制电路控制所述电压检测电路检测所述充电接口处的电压。
  11. 一种电子设备,包括充电电路和电芯,所述充电电路为权利要求1至10任一项所述的充电电路,所述充电电路与所述电芯连接。
PCT/CN2020/092140 2019-06-20 2020-05-25 电子设备的充电电路与电子设备 WO2020253474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20825478.9A EP3968490A4 (en) 2019-06-20 2020-05-25 ELECTRONIC DEVICE CHARGING CIRCUIT AND ELECTRONIC DEVICE
US17/533,103 US20220085637A1 (en) 2019-06-20 2021-11-22 Charging circuit of electronic device, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910537737.X 2019-06-20
CN201910537737.XA CN112117786B (zh) 2019-06-20 2019-06-20 电子设备的充电电路与电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/533,103 Continuation US20220085637A1 (en) 2019-06-20 2021-11-22 Charging circuit of electronic device, and electronic device

Publications (1)

Publication Number Publication Date
WO2020253474A1 true WO2020253474A1 (zh) 2020-12-24

Family

ID=73795932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092140 WO2020253474A1 (zh) 2019-06-20 2020-05-25 电子设备的充电电路与电子设备

Country Status (4)

Country Link
US (1) US20220085637A1 (zh)
EP (1) EP3968490A4 (zh)
CN (1) CN112117786B (zh)
WO (1) WO2020253474A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150035839A1 (en) * 2013-08-01 2015-02-05 Qualcomm Mems Technologies, Inc. System and method for providing positive and negative voltages with a single inductor
CN108899952A (zh) * 2018-07-25 2018-11-27 维沃移动通信有限公司 一种多电池充放电装置及移动终端
CN109193878A (zh) * 2018-11-13 2019-01-11 Oppo(重庆)智能科技有限公司 充电电路、充电处理方法、电子设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989653B2 (en) * 2003-05-09 2006-01-24 Mitsubishi Denki Kabushiki Kaisha Battery power circuit and automobile battery power circuit
CN101557119B (zh) * 2008-04-09 2012-11-21 鹏智科技(深圳)有限公司 二次电池的充电控制电路
CN106787024B (zh) * 2014-01-28 2019-05-10 Oppo广东移动通信有限公司 充电模式切换电路和方法
CN104810873B (zh) * 2014-01-28 2018-03-16 广东欧珀移动通信有限公司 电子设备充电控制装置及方法
CN105098945B (zh) * 2015-08-05 2018-01-09 青岛海信移动通信技术股份有限公司 一种可直充电源适配器
CN108039761A (zh) * 2018-01-11 2018-05-15 上海展扬通信技术有限公司 无线充电开关控制电路及无线充电设备
CN111478378B (zh) * 2019-01-23 2022-03-15 Oppo广东移动通信有限公司 保护电路、充电控制装置和方法、电子设备
CN110277814B (zh) * 2019-06-18 2023-06-13 Oppo广东移动通信有限公司 待充电设备及充电方法
CN112117785B (zh) * 2019-06-19 2022-09-09 Oppo广东移动通信有限公司 充电电路、充电芯片、移动终端及充电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150035839A1 (en) * 2013-08-01 2015-02-05 Qualcomm Mems Technologies, Inc. System and method for providing positive and negative voltages with a single inductor
CN108899952A (zh) * 2018-07-25 2018-11-27 维沃移动通信有限公司 一种多电池充放电装置及移动终端
CN109193878A (zh) * 2018-11-13 2019-01-11 Oppo(重庆)智能科技有限公司 充电电路、充电处理方法、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968490A4 *

Also Published As

Publication number Publication date
CN112117786B (zh) 2022-05-31
CN112117786A (zh) 2020-12-22
EP3968490A1 (en) 2022-03-16
EP3968490A4 (en) 2023-03-22
US20220085637A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
CN104331141B (zh) 过电流保护电路以及其服务器
CN101562443B (zh) 过压保护电路和液晶显示装置驱动电路
JP6355410B2 (ja) 充電回路、パワーマネージメント回路、およびそれを用いた電子機器
JP2019508003A (ja) 充電管理機能を有する移動電源
US20140085756A1 (en) Protection circuit and electronic device using the same
CN107610666A (zh) 消除关机残影的电路及方法
WO2020172869A1 (zh) 电子设备的充电电路及方法、设备、存储介质
CN109286219B (zh) 充电电路、充电处理方法、电子设备及存储介质
CN206313470U (zh) 一种手机充电过压保护电路
WO2020088388A1 (zh) 充电控制电路、充电电路及充电控制方法
WO2020253474A1 (zh) 电子设备的充电电路与电子设备
CN104753034A (zh) 电子装置及其充电保护电路
CN112688383A (zh) 供电控制电路、供电控制方法、装置及电子设备
CN101458901A (zh) 液晶显示器的供电电路
JP5456328B2 (ja) 電子機器及び充電制御方法
CN107425599B (zh) 用于电源补偿器的浪涌保护电路
US20220109318A1 (en) Charging circuit, charging chip, mobile terminal, and charging system
CN105988543A (zh) 控制电路及应用该控制电路的电子装置
CN212784771U (zh) 一种电源保护电路及电子设备
TWI712924B (zh) 具有雙電源來源之觸控筆裝置
CN106097998A (zh) 一种用于液晶显示屏幕监视器的不当断电保护装置
CN206559074U (zh) 一种供电电路及移动终端
CN215009602U (zh) 线控器和电气设备
JP2015207155A (ja) 電子装置
CN210864631U (zh) 一种实用平板电脑键盘插入侦测开关电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020825478

Country of ref document: EP

Effective date: 20211210