WO2020253454A1 - 一种基于wo3纳米薄膜的可燃气体传感器 - Google Patents

一种基于wo3纳米薄膜的可燃气体传感器 Download PDF

Info

Publication number
WO2020253454A1
WO2020253454A1 PCT/CN2020/091149 CN2020091149W WO2020253454A1 WO 2020253454 A1 WO2020253454 A1 WO 2020253454A1 CN 2020091149 W CN2020091149 W CN 2020091149W WO 2020253454 A1 WO2020253454 A1 WO 2020253454A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
nano
combustible gas
gas sensor
sensor based
Prior art date
Application number
PCT/CN2020/091149
Other languages
English (en)
French (fr)
Inventor
刘鹏
张真
谭永杰
谭崇刚
谭德辉
武郑浩
Original Assignee
南京云创大数据科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京云创大数据科技股份有限公司 filed Critical 南京云创大数据科技股份有限公司
Publication of WO2020253454A1 publication Critical patent/WO2020253454A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the utility model belongs to the technical field of nano materials and gas sensors, and specifically relates to a combustible gas sensor based on WO3 nano film.
  • Nanosensors stand on the atomic scale, which greatly enriches the theory of sensors, promotes the production level of sensors, and broadens the application fields of sensors.
  • the purpose of the utility model is to provide a miniaturized combustible gas sensor based on WO3 nano film, which can be directly installed in portable electronic equipment or gas detection instruments and has high sensitivity to combustible gas.
  • a combustible gas sensor based on WO3 nano-film has a flat-plate structure with a size of 1mmx1mmx500 ⁇ m. It includes monocrystalline silicon wafers, silicon dioxide nanofilms, silicon nitride nanofilms, platinum electrode films and WO3 nano film.
  • the thicknesses of the above-mentioned silicon dioxide nano film, silicon nitride nano film, platinum electrode film and WO3 nano film are all nanometers.
  • silicon nitride nano film, platinum electrode film and WO3 nano film are all prepared by magnetron sputtering method, and the sputtering equipment used is JCP-200.
  • the above-mentioned silica nano film is made by high temperature oxidation and used for heat insulation.
  • the magnetron sputtering parameters of the above-mentioned silicon nitride nano film are: sputtering power is 80 ⁇ 120W, sputtering time is 1 ⁇ 3h, deposition temperature is 100 ⁇ 150°C, argon flow is 30 ⁇ 40sccm, used for insulation .
  • the above platinum electrode film includes a heating electrode and a signal electrode.
  • the two electrodes are symmetrically distributed on the same plane.
  • the magnetron sputtering parameters are: the sputtering power is 30-60W, and the sputtering time is 15-30min. , The deposition temperature is room temperature, and the flow rate of argon is 30-40sccm.
  • the electrode pattern template of the platinum electrode film described above is a stainless steel electrode mask, and the stainless steel mask has a thickness of 0.1 mm.
  • the magnetron sputtering parameters of the WO3 nano film mentioned above are as follows: sputtering power is 70 ⁇ 120W, sputtering time is 15 ⁇ 30min, deposition temperature is 25 ⁇ 100°C, argon flow is 30 ⁇ 40sccm, and oxygen flow is 1 ⁇ 5sccm.
  • the utility model has a simple structure, and the film thickness is all nanometers. Compared with the MEMS sensors on the market, the utility model can be made into a smaller volume. At the same time, the small volume has lower power consumption and can be directly installed in portable electronic equipment or gas detection instruments;
  • the nano film of the utility model is prepared by magnetron sputtering method, the process is stable, and it can be directly converted into industrial production;
  • the gas-sensitive material used in the sensor of the utility model has high sensitivity to combustible gas such as hydrogen and carbon monoxide and other reducing gases, the response concentration to combustible gas can be as low as 5ppm, and the response recovery time is less than 30s, which is better than ordinary micro gas sensor.
  • Figure 1 is a three-dimensional schematic diagram of the utility model of a combustible gas sensor based on WO3 nano-film;
  • Figure 2 is a top view of the electrode mask of a combustible gas sensor based on WO3 nano-film of the present invention.
  • the present invention is a combustible gas sensor based on WO3 nano-film 1.
  • the sensor is a flat-plate structure with a size of 1mmx1mmx500 ⁇ m, which includes monocrystalline silicon wafers 5 and silicon dioxide nanometers in order from bottom to top.
  • Film 4 silicon nitride nano film 3, platinum electrode film 2 and WO3 nano film 1.
  • the thickness of the silicon dioxide nano film 4, silicon nitride nano film 3, platinum electrode film 2 and WO3 nano film 1 are all nanometers.
  • the silicon nitride nano film 3, the platinum electrode film 2 and the WO3 nano film 1 are all prepared by magnetron sputtering, and the sputtering equipment used is JCP-200.
  • the silica nano film 4 is made by high-temperature oxidation and used for heat insulation.
  • the magnetron sputtering parameters of the silicon nitride nano-film 3 are: the sputtering power is 80-120W, the sputtering time is 1-3h, the deposition temperature is 100-150°C, and the argon flow rate is 30- 40sccm, used for insulation.
  • the platinum electrode film 2 includes a heating electrode 6 and a signal electrode 7.
  • the heating electrode 6 and the signal electrode 7 are symmetrically distributed on the same plane.
  • the magnetron sputtering parameters are: the sputtering power is 30 ⁇ 60W, the sputtering time is 15-30min, the deposition temperature is room temperature, and the argon flow rate is 30-40sccm.
  • the electrode pattern template of the platinum electrode film 2 is a stainless steel electrode mask, and the thickness of the stainless steel mask is 0.1 mm.
  • the magnetron sputtering parameters of the WO3 nano film 1 are: sputtering power is 70-120W, sputtering time is 15-30min, deposition temperature is 25-100°C, and argon flow rate is 30-40sccm, The oxygen flow rate is 1 to 5 sccm.
  • the preparation method of the sensor of the present invention is as follows:
  • the single-sided polished single crystal silicon wafer 5 is cleaned.
  • the cleaning method refers to the RCA standard cleaning.
  • the cleaned silicon wafer is placed in a crucible with the polished side up, and then placed in a tube furnace and heated to 1000°C in an air atmosphere. After keeping it for 3 hours, it is naturally cooled and taken out to obtain a purple-blue silica nano-film 4, the film thickness is estimated to be about 150 nm by colorimetry, and the oxidized silicon wafer is placed in a petri dish and sealed for storage for later use.
  • the silicon nitride nano film 3 is made by magnetron sputtering coating, the sputtering equipment is JCP-200, and the target material is a silicon nitride target.
  • the oxidized silicon wafer obtained in the above steps on the substrate stage adjust the sputtering parameters, the sputtering power is 100W, the deposition temperature is 100°C, the argon flow is 32sccm, and the background vacuum is 8*10 -4 Pa, the growth pressure is 10 -1 Pa, and the silicon wafer is taken out after 2 hours of sputtering.
  • the resulting film is purple-red or yellow silicon nitride nano-film 3, and the thickness measured by the film thickness monitor is about 100 nm.
  • the platinum electrode film 2 is made by magnetron sputtering coating, the sputtering equipment is JCP-200, the target is a high-purity platinum film, and the silicon film coated with the silicon nitride nano film 3 obtained in the above steps is mounted on On the substrate stage, the stainless steel electrode mask is tightly attached to the silicon wafer, and the sputtering parameters are adjusted.
  • the sputtering power is 40W
  • the deposition temperature is room temperature
  • the argon flow rate is 30sccm
  • the background vacuum is 8*10 -4 Pa
  • growth pressure 10 -1 Pa sputtering for 20 minutes, take it out, put the prepared platinum film into a muffle furnace for annealing, heat up to 500°C at 10°C/min, hold for 40 minutes, and cool down to obtain platinum electrode film 2 .
  • the silicon wafer coated with the platinum electrode film 2 obtained in the above steps on a magnetron sputtering substrate stage, adjust the sputtering power to 80W, the sputtering time to 30min, the deposition temperature to 60°C, and the argon flow rate to 30sccm.
  • the oxygen flow rate is 2 sccm
  • the background vacuum is 8*10 -4 Pa
  • the growth pressure is 10 -1 Pa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Physical Vapour Deposition (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本实用新型公开了一种基于WO3纳米薄膜的可燃气体传感器,所述传感器为平板式结构,自下而上依次包括单晶硅片、二氧化硅纳米薄膜、氮化硅纳米薄膜、铂金电极薄膜和WO3纳米薄膜。本实用新型的传感器以WO3纳米薄膜为敏感材料,所述WO3纳米薄膜由磁控溅射镀膜制得,对可燃气体如氢气和一氧化碳具有较高的灵敏度。

Description

一种基于WO3纳米薄膜的可燃气体传感器 技术领域
本实用新型属于纳米材料和气体传感器技术领域,具体涉及一种基于WO3纳米薄膜的可燃气体传感器。
背景技术
当今科技的发展要求材料的超微化、智能化、元件的高集成、高密度存储和超快传输等特性,为纳米科技和纳米材料的应用提供了广阔的空间。
利用纳米技术制作的传感器,尺寸减小、精度提高、性能大大改善,纳米传感器是站在原子尺度上,从而极大地丰富了传感器的理论,推动了传感器的制作水平,拓宽了传感器的应用领域。
实用新型内容
本实用新型的目的在于提供一种基于WO3纳米薄膜的可微型化可燃气体传感器,可直接安装在便携式电子设备或气体检测仪器,并且对可燃气体具有较高的灵敏度。
为实现上述技术目的,本实用新型采取的技术方案为:
一种基于WO3纳米薄膜的可燃气体传感器,所述传感器为平板式结构,尺寸为1mmⅹ1mmⅹ500μm,自下而上依次包括单晶硅片、二氧化硅纳米薄膜、氮化硅纳米薄膜、铂金电极薄膜和WO3纳米薄膜。
为优化上述技术方案,采取的具体措施还包括:
上述的二氧化硅纳米薄膜、氮化硅纳米薄膜、铂金电极薄膜和WO3纳米薄膜的厚度均为纳米级别。
上述的氮化硅纳米薄膜、铂金电极薄膜和WO3纳米薄膜均由磁控溅射法制备得到,所用溅射设备为JCP-200。
上述的二氧化硅纳米薄膜由高温氧化制得,用于隔热。
上述的氮化硅纳米薄膜的磁控溅射参数为:溅射功率为80~120W,溅射时间为1~3h,沉积温度为100~150℃,氩气流量为30~40sccm,用于绝缘。
上述的铂金电极薄膜包括一块加热电极和一块信号电极,两种电极左右对称分布且在同一个平面上,其磁控溅射参数为:溅射功率为30~60W,溅射时间为15~30min,沉积温度为室温,氩气流量为30~40sccm。
上述的铂金电极薄膜的电极图形模板为不锈钢电极掩模板,所述不锈钢掩模板厚度为0.1mm。
上述的WO3纳米薄膜的磁控溅射参数为:溅射功率为70~120W,溅射时间为15~30min,沉积温度为25~100℃,氩气流量为30~40sccm,氧气流量为1~5sccm。
本实用新型具有以下有益效果:
本实用新型结构简单,薄膜厚度均为纳米级别,相比市面上的MEMS传感器可制成更小的体积,同时小体积具有较低的功耗,可直接安装在便携式电子设备或气体检测仪器;
本实用新型的纳米薄膜采用的是磁控溅射法制备,工艺稳定,可直接转化成工业生产;
本实用新型传感器所采用的气敏材料对可燃气体如氢气和一氧化碳等还原性气体有较高的灵敏度,对可燃气体的响应浓度可低至5ppm,响应恢复时间小于30s,优于一般的微型气体传感器。
附图说明
图1为本实用新型一种基于WO3纳米薄膜的可燃气体传感器的三维示意图;
图2为本实用新型一种基于WO3纳米薄膜的可燃气体传感器的电极掩模板俯视图。
附图标记说明:1—WO3纳米薄膜、2—铂金电极薄膜、3—氮化硅纳米薄膜、4—二氧化硅纳米薄膜、5—单晶硅片、6—加热电极和7—信号电极。
具体实施方式
以下结合附图对本实用新型的实施例作进一步详细描述。
如图1所示,本实用新型的一种基于WO3纳米薄膜1的可燃气体传感器,所述传感器为平板式结构,尺寸为1mmⅹ1mmⅹ500μm,自下而上依次包括单晶硅片5、二氧化硅纳米薄膜4、氮化硅纳米薄膜3、铂金电极薄膜2和WO3纳米薄膜1。
实施例中,所述二氧化硅纳米薄膜4、氮化硅纳米薄膜3、铂金电极薄膜2和WO3纳米薄膜1的厚度均为纳米级别。
实施例中,所述氮化硅纳米薄膜3、铂金电极薄膜2和WO3纳米薄膜1均由磁控溅射法制备得到,所用溅射设备为JCP-200。
实施例中,所述二氧化硅纳米薄膜4由高温氧化制得,用于隔热。
实施例中,所述氮化硅纳米薄膜3的磁控溅射参数为:溅射功率为80~120W,溅射时间为1~3h,沉积温度为100~150℃,氩气流量为30~40sccm,用于绝缘。
实施例中,所述铂金电极薄膜2包括一个加热电极6和一个信号电极7,加热电极6和 信号电极7左右对称分布于同一平面上,其磁控溅射参数为:溅射功率为30~60W,溅射时间为15~30min,沉积温度为室温,氩气流量为30~40sccm。
如图2所示,实施例中,所述铂金电极薄膜2的电极图形模板为不锈钢电极掩模板,所述不锈钢掩模板厚度为0.1mm。
实施例中,所述WO3纳米薄膜1的磁控溅射参数为:溅射功率为70~120W,溅射时间为15~30min,沉积温度为25~100℃,氩气流量为30~40sccm,氧气流量为1~5sccm。
本实用新型的传感器制备方法如下:
二氧化硅纳米薄膜4的制备:
将单面抛光的单晶硅片5清洗,清洗方法参照RCA标准清洗,将清洗后的硅片抛光面朝上放置在坩埚中,然后放入管式炉在空气氛围中高温加热至1000℃,保温3h后自然冷却取出,得到紫蓝色的二氧化硅纳米薄膜4,薄膜厚度由比色法估算在150nm左右,将氧化后的硅片放入培养皿密封保存备用。
氮化硅纳米薄膜3的制备:
所述氮化硅纳米薄膜3由磁控溅射镀膜制得,其溅射设备为JCP-200,靶材为氮化硅靶。
将上述步骤得到的氧化后的硅片安装在基片台上,调整溅射参数,溅射功率为100W,沉积温度为100℃,氩气流量为32sccm,本底真空度为8*10 -4Pa,生长气压10 -1Pa,溅射2h后取出硅片,制得的薄膜为紫红色或黄色氮化硅纳米薄膜3,由膜厚监测仪测得的厚度大约在100nm。
铂金电极薄膜2的制备:
所述铂金电极薄膜2由磁控溅射镀膜制得,其溅射设备为JCP-200,靶材为高纯铂金片,将上述步骤得到的镀有氮化硅纳米薄膜3的硅片安装上基片台上,然后把不锈钢电极掩模板紧贴在硅片上,调整溅射参数,溅射功率为40W,沉积温度为室温,氩气流量为30sccm,本底真空度为8*10 -4Pa,生长气压10 -1Pa,溅射20min后取出,将制得铂金薄膜放入马弗炉进行退火处理,以10℃/min升温至500℃,保温40min,自然冷却后得到铂金电极薄膜2。
WO3纳米薄膜1的制备:
将上述步骤得到的镀有铂金电极薄膜2的硅片安装在磁控溅射基片台上,调整溅射功率为80W,溅射时间为30min,沉积温度为60℃,氩气流量为30sccm,氧气流量为2sccm,本底真空度为8*10 -4Pa,生长气压10 -1Pa。镀膜结束后放入马弗炉退火处理,以2℃/min升温至400℃,保温4h,自然冷却后得到浅黄色透明WO3纳米薄膜1,该薄膜对可燃气体具有较高的灵敏度和选择性,至此得到基于WO3纳米薄膜1的可燃气体传感器。
以上仅是本实用新型的优选实施方式,本实用新型的保护范围并不仅局限于上述实施例,凡属于本实用新型思路下的技术方案均属于本实用新型的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理前提下的若干改进和润饰,应视为本实用新型的保护范围。

Claims (8)

  1. 一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述传感器为平板式结构,自下而上依次包括单晶硅片(5)、二氧化硅纳米薄膜(4)、氮化硅纳米薄膜(3)、铂金电极薄膜(2)和WO3纳米薄膜(1)。
  2. 根据权利要求1所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述二氧化硅纳米薄膜(4)、氮化硅纳米薄膜(3)、铂金电极薄膜(2)和WO3纳米薄膜(1)的厚度均为纳米级别。
  3. 根据权利要求1或2所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述氮化硅纳米薄膜(3)、铂金电极薄膜(2)和WO3纳米薄膜(1)均由磁控溅射法制备得到,所用溅射设备为JCP-200。
  4. 根据权利要求3所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述二氧化硅纳米薄膜由高温氧化制得,用于隔热。
  5. 根据权利要求3所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述氮化硅纳米薄膜(3)的磁控溅射参数为:溅射功率为80~120W,溅射时间为1~3h,沉积温度为100~150℃,氩气流量为30~40sccm,用于绝缘。
  6. 根据权利要求3所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述铂金电极薄膜(2)包括一块加热电极(6)和一块信号电极(7),所述加热电极(6)和信号电极(7)对称分布于同一个平面上,所述铂金电极薄膜(2)磁控溅射参数为:溅射功率为30~60W,溅射时间为15~30min,沉积温度为室温,氩气流量为30~40sccm。
  7. 根据权利要求6所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述铂金电极薄膜(2)的电极图形模板为不锈钢电极掩模板,所述不锈钢掩模板厚度为0.1mm。
  8. 根据权利要求3所述的一种基于WO3纳米薄膜的可燃气体传感器,其特征在于,所述WO3纳米薄膜(1)的磁控溅射参数为:溅射功率为70~120W,溅射时间为15~30min,沉积温度为25~100℃,氩气流量为30~40sccm,氧气流量为1~5sccm。
PCT/CN2020/091149 2019-06-20 2020-05-20 一种基于wo3纳米薄膜的可燃气体传感器 WO2020253454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920931083.4 2019-06-20
CN201920931083.4U CN210775316U (zh) 2019-06-20 2019-06-20 一种基于wo3纳米薄膜的可燃气体传感器

Publications (1)

Publication Number Publication Date
WO2020253454A1 true WO2020253454A1 (zh) 2020-12-24

Family

ID=71048803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091149 WO2020253454A1 (zh) 2019-06-20 2020-05-20 一种基于wo3纳米薄膜的可燃气体传感器

Country Status (2)

Country Link
CN (1) CN210775316U (zh)
WO (1) WO2020253454A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683961A (zh) * 2020-12-02 2021-04-20 赛莱克斯微系统科技(北京)有限公司 气体传感器及其气敏膜的制造方法
CN114527173A (zh) * 2021-12-21 2022-05-24 西南大学 一种阵列式气体传感器及智能气体检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329291A (zh) * 2007-06-20 2008-12-24 中国科学院微电子研究所 一种气敏传感器
CN102070118A (zh) * 2010-10-26 2011-05-25 南京工业大学 金属氧化物半导体纳米薄膜气体传感器用微加热板
CN102778479A (zh) * 2011-05-09 2012-11-14 中国科学院微电子研究所 可集成的非晶态金属氧化物半导体气体传感器
CN104181203A (zh) * 2014-08-13 2014-12-03 苏州能斯达电子科技有限公司 一种mems气体传感器及其制作方法
KR20160070237A (ko) * 2014-12-09 2016-06-20 인하대학교 산학협력단 산화아연/산화중석 나노선을 포함한 가스센서의 제조방법 및 이를 이용한 가스 검출 방법
CN107782767A (zh) * 2016-08-26 2018-03-09 深迪半导体(上海)有限公司 一种气体传感器加热盘及加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329291A (zh) * 2007-06-20 2008-12-24 中国科学院微电子研究所 一种气敏传感器
CN102070118A (zh) * 2010-10-26 2011-05-25 南京工业大学 金属氧化物半导体纳米薄膜气体传感器用微加热板
CN102778479A (zh) * 2011-05-09 2012-11-14 中国科学院微电子研究所 可集成的非晶态金属氧化物半导体气体传感器
CN104181203A (zh) * 2014-08-13 2014-12-03 苏州能斯达电子科技有限公司 一种mems气体传感器及其制作方法
KR20160070237A (ko) * 2014-12-09 2016-06-20 인하대학교 산학협력단 산화아연/산화중석 나노선을 포함한 가스센서의 제조방법 및 이를 이용한 가스 검출 방법
CN107782767A (zh) * 2016-08-26 2018-03-09 深迪半导体(上海)有限公司 一种气体传感器加热盘及加工方法

Also Published As

Publication number Publication date
CN210775316U (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020253454A1 (zh) 一种基于wo3纳米薄膜的可燃气体传感器
Cheng et al. ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property
Hsueh et al. Laterally grown ZnO nanowire ethanol gas sensors
CN101799443A (zh) 制备多孔硅基底氧化钨纳米薄膜气敏传感器的方法
CN104445047B (zh) 一种氧化钨/氧化钒异质结纳米线阵列及其制备方法
CN103630572A (zh) 用于气敏材料的多孔硅/氧化钨纳米线复合结构的制备方法
CN108910941B (zh) 一种蝴蝶形状的SnO2二维纳米材料及其制备方法与应用
CN101973510A (zh) 基于碳纳米管微阵列/氧化钨纳米复合结构的气敏传感器元件的制备方法
WO2021232503A1 (zh) 氧化镓纳米结构器件及其制备方法和应用
CN108896621A (zh) 一种负载铂颗粒的氨气传感器及其制备方法
CN107188161A (zh) 石墨烯及其制备方法
CN107640763A (zh) 一种单层单晶石墨烯的制备方法
CN103643217A (zh) 一种自支撑类石墨多孔非晶碳薄膜的制备方法
CN104211054A (zh) 一种可控制备石墨烯的方法
CN106770476A (zh) 氧化铜/氧化钨一维有序异质包覆结构基气敏元件及其在探测二氧化氮中的应用
CN107402240A (zh) 一维有序氧化钨/氧化钛核壳纳米线在检测二氧化氮中的应用
CN113652670A (zh) 一种氧化镓纳米线及其制备方法和应用
CN115650182B (zh) 一种正交型/单斜型PdSe2同质结及其制备方法与应用
CN103424436A (zh) 多孔硅基二氧化碲纳米棒复合结构气敏传感器元件的制备方法
CN108996490A (zh) 一种碳纳米管阵列的制备方法
CN113652640B (zh) 溅射制备纳米复合相氧化钒柔性薄膜的方法及薄膜
Ma et al. A bottom-up strategy toward a flexible vanadium dioxide/silicon nitride composite film with infrared sensing performance
CN114107940B (zh) 基于铝镍金属层的不连续碳膜制备及呼吸传感器应用
CN209387570U (zh) 一种基于新型ZnO纳米柱/SnO2薄膜探测器
CN113249685A (zh) 一种硫化银薄膜气敏传感器的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825704

Country of ref document: EP

Kind code of ref document: A1