WO2020253271A1 - 一种有害气体去除介质及其制备方法 - Google Patents

一种有害气体去除介质及其制备方法 Download PDF

Info

Publication number
WO2020253271A1
WO2020253271A1 PCT/CN2020/078367 CN2020078367W WO2020253271A1 WO 2020253271 A1 WO2020253271 A1 WO 2020253271A1 CN 2020078367 W CN2020078367 W CN 2020078367W WO 2020253271 A1 WO2020253271 A1 WO 2020253271A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanganate
harmful gas
gas removal
removal medium
cement
Prior art date
Application number
PCT/CN2020/078367
Other languages
English (en)
French (fr)
Inventor
张世著
童宁军
石欣超
Original Assignee
南京云香纳米技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京云香纳米技术有限公司 filed Critical 南京云香纳米技术有限公司
Publication of WO2020253271A1 publication Critical patent/WO2020253271A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • B01D53/523Mixtures of hydrogen sulfide and sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Definitions

  • the invention belongs to the field of air purification, and specifically relates to a permanganate harmful gas (mainly including sulfides (mainly hydrogen sulfide, sulfur dioxide), ammonia, formaldehyde, urea, nitrogen oxides, mercaptans, amines, Common harmful gases such as ethylene) removal medium and its preparation method.
  • a permanganate harmful gas mainly including sulfides (mainly hydrogen sulfide, sulfur dioxide), ammonia, formaldehyde, urea, nitrogen oxides, mercaptans, amines, Common harmful gases such as ethylene) removal medium and its preparation method.
  • Physical adsorption and chemical adsorption are not isolated, they often occur together.
  • Physical adsorption is the phenomenon of adsorption between the adsorbent and the adsorbed substance through intermolecular force (Van der Waals force).
  • Van der Waals force intermolecular force
  • chemical adsorption is the result of a chemical reaction between the surface of the adsorbent and the adsorbate. This process is selective, irreversible, and requires a certain activation energy. It also depends on the physical and chemical properties of the medium and the removed gas. nature.
  • activated carbon is a common non-polar adsorbent that can adsorb most organic gases, such as benzene, aldehydes and ketones, alcohols, hydrocarbons, etc., as well as malodorous substances; At the same time, because activated carbon has a wide pore size range, it has excellent adsorption capacity even for some polar adsorbates and some extra-large molecular organic substances.
  • activated carbon can convert hydrogen sulfide into elemental sulfur under aerobic conditions, thereby increasing the adsorption capacity of activated carbon, and Ammonia or silicic acid is added to the reaction to play a catalytic role; in the US patent “US20150182945A1 Dry-scrubbing Media Compositions and Methods of Production and Use”, activated alumina, magnesium oxide and activated carbon are mixed in water and the mixture is extruded through a mold to Forming a substrate or honeycomb structure with long open channels improves the structural strength and greatly improves the adsorption efficiency.
  • activated carbon is a flammable product, and it is not suitable for use as a base material for an exothermic oxidation reaction type chemical adsorption process.
  • harmful gas removal media based on non-toxic and harmless porous materials such as activated alumina, etc.
  • US6004522Solid filtration media incorporating elevated levels of permanent and water oxidation is adopted.
  • Aluminum is the base material, and 7-12wt% potassium permanganate and 10-35wt% water are added.
  • the mixture of alumina and sodium bicarbonate is sprayed through the heated aqueous potassium permanganate solution, and the solid is produced by simultaneous granulation.
  • the filter medium increases the amount of potassium permanganate and water in the medium, thereby improving the gas treatment efficiency.
  • you continue to increase the content of potassium permanganate it will react with the pollutants in the gas to form by-products, causing the plugging of the pores of the harmful gas removal medium, and ultimately reducing the gas treatment efficiency, which limits the promotion and promotion of this technology. application.
  • Chinese patent "CN200380104041.5 high-capacity solid filter medium” uses 13-25wt% permanganate (including potassium permanganate, sodium permanganate, magnesium permanganate, barium permanganate, lithium permanganate (Or a combination thereof), the solid filter medium is manufactured by the process of spraying alumina with heated aqueous permanganate solution and simultaneous granulation. Because this method increases the concentration of the permanganate solution, the gas of the solid filter medium is further increased. Treatment efficiency, but because the particles in the solid filter medium are dispersed, the porosity and pore size are small, and the mechanical strength of the solid filter medium is low, which affects the performance and effect of long-term use.
  • the purpose of the invention is to improve the adsorption performance of the permanganate medium through optimization of materials and processes, and the harmful gas removal medium prepared by the invention has excellent performance, low cost and good stability.
  • the present invention not only ensures the mechanical strength of the harmful gas removal medium, but also improves the porosity inside the harmful gas removal medium, and reduces the damage caused by the precipitation of permanganate. It can lead to the possibility of blockage of the gas passage, thereby reducing the amount of permanganate, simplifying the preparation process, prolonging the service life, reducing the maintenance cost, and being more suitable for large-scale production and manufacturing.
  • the invention discloses a harmful gas removal medium, which is calculated by weight percentage, comprising the following raw materials: 4-12wt% permanganate, 8-20wt% water, 50-65wt% porous substrate and 12-30wt% Binder. Further, it also includes 8-20 wt% of a foaming agent, and the foaming agent is one or a combination of several of bicarbonate or aluminum powder in any proportion, preferably 8-20 wt% of sodium bicarbonate.
  • the permanganate is one or two of sodium permanganate or potassium permanganate, preferably sodium permanganate.
  • porous substrate is activated alumina, silica gel, zeolite, or red mud in one or a combination of several in any ratio, preferably activated alumina.
  • the mesh number of activated alumina is 80-325.
  • the cement is combined with one or more of hydroxides or alkaline oxides in any ratio, wherein the cement is a combination of Portland cement, aluminate cement or phosphate cement One or several combinations in any ratio, preferably portland cement, the hydroxide is calcium hydroxide, and the alkaline oxide is calcium oxide.
  • the mixture of Portland cement and calcium hydroxide is 12-24 wt% Portland cement and 76-88 wt% calcium hydroxide.
  • the optimal ratio by weight percentage of the mixture of Portland cement and calcium hydroxide is 15 wt% Portland cement and 85 wt% calcium hydroxide.
  • the invention also discloses a preparation method of the harmful gas removal medium, which includes the following steps:
  • step 2) Simultaneously with step 1), spray an aqueous solution containing permanganate onto the above mixture, and the mass concentration of permanganate is 10-40wt%;
  • step 4) The particles obtained in step 3) are solidified until the water content of the solid particles is 15-17% to obtain a harmful gas removal medium.
  • the mixture in the step 1) further includes one or a combination of any ratio of bicarbonate and aluminum powder, preferably sodium bicarbonate.
  • the inclination angle of the granulation disc is 30°, and the rotation speed is 30-80 rpm.
  • composition of the present invention reduces the amount of permanganate used, which not only saves the production cost of the filter material, but also reduces the possibility of clogging the gas passage inside the particles due to the precipitation of the permanganate concentration is too high, and simplifies
  • the preparation process of the filter material is more suitable for large-scale production and manufacturing.
  • the bubbles formed can help increase the size of the pore structure of the harmful gas removal medium, increase the porosity, and further improve the efficiency of gas treatment.
  • sodium permanganate has higher solubility in water, so it is not easy to block the gas channel due to precipitation, which is convenient for long-term use.
  • the selected porous substrate has the characteristics of high strength, porosity, stable chemical properties, and non-flammability.
  • As the basic structure of the harmful gas removal medium it improves the stability of the harmful gas removal medium.
  • activated alumina has better mechanical strength and stability and a wider application range.
  • the activated alumina of the present invention has a low mesh number of 80-325, low raw material cost, large particle size, wide sources, and is non-toxic and harmless.
  • the low mesh count makes the activated alumina, which is the basic structure of the harmful gas removal medium, increase the particle spacing inside the harmful gas removal medium, and create larger holes in the harmful gas removal medium, resulting in different sizes Pore size distribution makes it easier for gas molecules to enter the harmful gas removal medium and react with sodium permanganate, thereby improving adsorption performance and gas treatment efficiency.
  • the binder of one or several combinations of cement and hydroxide or alkaline oxide in any ratio is coated on the surface of the porous substrate. After the cement is exposed to water, the hydraulic properties of the cement can be improved The mechanical strength of the harmful gas removal medium, thereby extending the service life of the harmful gas removal medium and reducing the frequency of replacement.
  • Portland cement as the most common type of cement, is preferred because of its wide sources and low cost.
  • hydroxides or alkaline oxides can react with sodium bicarbonate to produce water, which not only accelerates the dissolution of sodium bicarbonate, but also accelerates the generation of carbon dioxide gas, and forms a pore size and porous substrate on the surface of the porous substrate.
  • the adhesive outside the porous substrate forms pores inside and communicates with the porous substrate, which further improves the efficiency of gas treatment.
  • the water produced by the reaction will further enhance the hydraulic properties of the cement to increase the mechanical strength of the harmful gas removal medium, thereby further extending the service life of the harmful gas removal medium and reducing the frequency of replacement.
  • the mixture of Portland cement and calcium hydroxide is 12-24wt% Portland cement and 76-88wt% calcium hydroxide. Among them, 15wt% Portland cement and 85wt% calcium hydroxide have good effects, thereby improving the efficiency of granulation and reducing the waste of raw materials.
  • the preparation method of the present invention reduces the amount of sodium permanganate, which not only saves the production cost of the filter material, but also reduces the possibility of blocking the gas passage inside the particles due to the precipitation of the sodium permanganate concentration is too high, and simplifies The preparation process of the filter material is more suitable for large-scale production and manufacturing.
  • Example Raw material weight (g) Granulation weight (g) Granulation ratio (%) Example 1 1183 817 69.1 Example 2 1183 992 83.8 Example 3 1183 854 72.2 Example 4 1183 673 56.9 Example 5 1183 469 39.6
  • step 2) The particles obtained in step 2) are allowed to stand at room temperature for 12 hours, and then cured at a high temperature of 110° C. for 1.8 hours until the water content of the solid particles is 17%, thereby obtaining a harmful gas removal medium containing 8 wt% of sodium permanganate.
  • the preparation method of the harmful gas removal medium containing 10wt% sodium permanganate is the same as in Example 5, only the content of sodium permanganate is changed, that is, 300ml (369g) of sodium permanganate aqueous solution with a concentration of 27.6wt% is sprayed onto the mixture.
  • the preparation method of the harmful gas removal medium containing 8wt% sodium permanganate is the same as that of Example 5, only the content of sodium permanganate is changed, that is, 300ml (355g) of 23.1wt% sodium permanganate aqueous solution is sprayed onto the mixture.
  • the preparation method of the harmful gas removal medium containing 6% by weight of sodium permanganate is the same as that in Example 5, only the content of sodium permanganate is changed, that is, 300 ml (342 g) of sodium permanganate aqueous solution with a concentration of 18.1% by weight is sprayed onto the mixture.
  • Odoroxidant SP filter material from Purafil of the United States is used, which is one of the best permanganate filter materials on the market, and the content of permanganate in the filter material measured by elemental analysis is 16%.
  • the test of the filter media usually takes a long time to obtain the results.
  • the following method provides an accelerated test of the media adsorption capacity, that is, the media is exposed to high-concentration pollutant gas
  • the test process is carried out in a flow system.
  • a medium of a known volume is placed in the adsorption tube and exposed to a pollutant gas with a known concentration of 1 vol.% in a conditioned, humid and clean air system.
  • the air flow is calibrated to provide a total flow rate of 1450 ⁇ 20 ml/min.
  • each filter bed should contain at least 300 ml of media.
  • the calculation method of removal capacity is the number of pollutants (grams) removed from each volume (cubic centimeter) of air flow under 50 parts per million (ppm) permeation.
  • the adsorption tube of the filling medium should be arranged so that the mixed gas of air and hydrogen sulfide enters from the bottom of the tube, flows through glass wool or beads, flows through the filter medium, and then is analyzed by a gas analyzer. Before starting to analyze the sample, check and eliminate leaks in the gas system. Once ready to be in place, start the flow of the mixed gas and record the time until a 50 ppm permeation is observed through the gas analyzer. Record the time again. It is preferable to use a gas analyzer with variable range readings, with specific or multiple gas capabilities. The data obtained from the above analysis will use the following formula to get the gas capacity of the measured medium:
  • the gas analyzer used in the present invention is a fixed five-in-one gas detection alarm MIC-600.
  • the harmful gas removal medium prepared by the technical scheme of the present invention has a better hydrogen sulfide adsorption capacity than Purafil's Odoroxidant SP filter material, and the content of permanganate of the present invention is lower than Purafil's Odoroxidant SP filter. material.

Abstract

一种有害气体去除介质,主要涉及高锰酸盐类的有害气体去除介质。通过加入适当种类和数量的粘结剂和发泡剂,既确保了有害气体去除介质的机械强度,又提高了有害气体去除介质内部的孔隙率,并降低了因高锰酸盐析出而导致气体通路堵塞的可能性,从而减少了高锰酸盐的用量、简化了制备工艺、延长了使用寿命、降低了维护成本,更适于大规模的生产和制造。

Description

一种有害气体去除介质及其制备方法 技术领域
本发明属于空气净化领域,具体涉及一种高锰酸盐类有害气体(主要包括硫化物(主要是硫化氢、二氧化硫)、氨气、甲醛、尿素、氮氧化物、硫醇类、胺类、乙烯等常见的有害气体)去除介质及其制备方法。
背景技术
近年来,随着社会经济的不断发展,大量化石燃料被使用,空气污染问题十分严峻。根据中华人民共和国生态环境部公布的《2017中国生态环境状况公报》,中国主要的大气中污染气体依次为臭氧、二氧化氮(NO 2)和二氧化硫(SO 2),其中工业源废气是大气中污染气体的主要来源。
这些有毒有害恶臭气体的去除主要是通过物理吸附和化学吸附这两种技术来实现。物理吸附和化学吸附并不是孤立的,往往相伴发生。物理吸附是吸附剂与被吸附物之间通过分子间力(范德华力)相互吸引发生吸附现象,一般没有选择性,其作用力小,过程可逆,即被吸附的气体分子比较容易脱附(解吸)。与之相反,化学吸附是吸附剂表面与被吸附物之间发生化学反应的结果,这个过程具有选择性、是不可逆的,并且需要一定的活化能,同时取决于介质和去除气体的物理和化学性质。
目前,最常用的有害气体去除介质为活性炭,活性炭是一种常见的非极性吸附剂,能吸附绝大部分有机气体,如苯类,醛酮类、醇类、烃类等以及恶臭物质;同时由于活性炭具有较宽的孔径范围,即使对一些极性吸附质和一些特大分子的有机物质,仍具有优良的吸附能力。美国专利“US2967587 Process and Apparatus for Dry-Process Adsorption of Hydrogen Sulfide from Coke-oven Gases”中,利用活性炭在有氧条件下能将硫化氢氧化成单质硫,从而增大了活性炭的吸附容量,并且在反应中加入氨或硅酸以起到催化作用;美国专利“US20150182945A1 Dry-scrubbing Media Compositions and Methods of Production and Use”中,将活性氧化铝,氧化镁和活性炭在水中混合并通过模具挤出混合物以形成具有长开口通道的基材或蜂窝结构体,在提高了结构强度的同时,大幅度得提高了吸附效率。
但由于活性炭的吸附机理为物理吸附,无法彻底去除有毒有害恶臭气体,并且活性炭是易燃品,不适于用作会放热的氧化反应型的化学吸附过程的基材。为此,以无毒无害的多孔材料(如活性氧化铝等)为基材的有害气体去除介质成为了研发的重点,美国专利“US6004522Solid filtration media incorporating elevated levels of permanganate and water”中, 采用氧化铝为基材,并添加7~12wt%的高锰酸钾、10~35wt%的水,通过加热的含水高锰酸钾溶液喷射氧化铝和碳酸氢钠的混合物并同步制粒的工艺制造固体过滤介质,提高了介质中高锰酸钾和水的用量,从而提高了气体处理效率。但由于如果继续增大高锰酸钾的含量,会因为与气体中的污染物反应形成副产物,造成有害气体去除介质孔隙的堵塞,最终会降低气体处理效率,从而限制了该技术的推广和应用。中国专利“CN200380104041.5高容量固体过滤介质”中,采用13~25wt%的高锰酸盐(包括高锰酸钾、高锰酸钠、高锰酸镁、高锰酸钡、高锰酸锂或其组合),通过加热的含水高锰酸盐溶液喷射氧化铝并同步制粒的工艺制造固体过滤介质,由于该方法提高了高锰酸盐溶液的浓度,从而进一步提高了固体过滤介质的气体处理效率,但由于固体过滤介质中的颗粒都是分散存在的,孔隙率和孔径尺寸均偏小,并且固体过滤介质的机械强度偏低,影响了长期使用的性能和效果。
发明内容
本发明的目的是通过物料的和工艺的优化来提升高锰酸盐类介质的吸附性能,并且本发明制备的有害气体去除介质的性能优异,成本低、稳定性好。本发明通过加入适当种类和数量的粘结剂和发泡剂,既确保了有害气体去除介质的机械强度,又提高了有害气体去除介质内部的孔隙率,并降低了因高锰酸盐析出而导致气体通路堵塞的可能性,从而减少了高锰酸盐的用量、简化了制备工艺、延长了使用寿命、降低了维护成本,更适于大规模的生产和制造。
本发明公开了一种有害气体去除介质,按重量百分比计,包括如下原料:4~12wt%的高锰酸盐、8~20wt%的水、50~65wt%的多孔基材和12~30wt%粘结剂。进一步的,还包括8~20wt%的发泡剂,所述的发泡剂为碳酸氢盐或铝粉中的一种或几种任意比例的组合,优选8~20wt%碳酸氢钠。
进一步的,高锰酸盐是高锰酸钠或高锰酸钾中的一种或两种,优选高锰酸钠。
进一步的,多孔基材是活性氧化铝、硅胶、沸石或赤泥中的一种或几种任意比例的组合,优选活性氧化铝。
进一步的,活性氧化铝的目数为80~325。
进一步的,所述水泥与氢氧化物或碱性氧化物的一种或几种任意比例的组合,其中,所述水泥为硅酸盐类水泥、铝酸盐类水泥或磷酸盐类水泥中的一种或几种任意比例的组合,优选硅酸盐类水泥,所述的氢氧化物为氢氧化钙,所述的碱性氧化物为氧化钙。
进一步的,硅酸盐类水泥与氢氧化钙的混合物按重量百分比为:12~24wt%硅酸盐类水泥、76~88wt%氢氧化钙。
更进一步地,所述的硅酸盐类水泥与氢氧化钙的混合物按重量百分比的最优比为:15wt% 硅酸盐类水泥、85wt%氢氧化钙。
本发明还公开了有害气体去除介质的制备方法,包括如下步骤:
1)将多孔基材和粘结剂按比例混合均匀并分批次加入到不断旋转的造粒圆盘中;
2)与步骤1)同时进行,将含有高锰酸盐的水溶液喷射到上述混合物上,高锰酸盐的质量浓度为10~40wt%;
3)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
4)将步骤3)得到的颗粒固化,至固体颗粒的含水量为15~17%,即得到有害气体去除介质。
进一步的,所述步骤1)中的混合物还包括碳酸氢盐、铝粉中的一种或几种任意比例的组合,优选碳酸氢钠。
进一步的,所述造粒圆盘的倾角30°,转速30~80rpm。
1.本发明组成中减少了高锰酸盐的用量,既节约了滤料的生产成本,又降低了因高锰酸盐浓度过高而析出造成堵塞颗粒内部气体通路的可能性,并且简化了滤料的制备工艺,更适于大规模的生产和制造。
2.介质中包含碳酸氢钠或铝粉等物质在分解和反应过程中,形成的气泡有助于增大有害气体去除介质的孔结构尺寸,并提高孔隙率,进一步提高了气体处理的效率。
3.与高锰酸钾相比,高锰酸钠在水中的溶解度更高,从而不容易因析出而造成气体通道堵塞,便于长期的使用。
4.所选择的的多孔基材具有强度高、多孔隙、化学性质稳定、不易燃的特性,作为有害气体去除介质的基本结构,提高了有害气体去除介质的稳定性。其中,活性氧化铝的机械强度和稳定性更好、适用范围更广。
5.本发明活性氧化铝的目数为80~325偏低,原料成本低,颗粒的粒度偏大,并且来源广泛、无毒无害。偏低的目数使得作为有害气体去除介质的基本结构的活性氧化铝在有害气体去除介质的内部的颗粒间距加大,并在有害气体去除介质内部产生了较大的孔洞,造成大小不一的孔径分布,从而使得气体分子更容易进入有害气体去除介质内部并与高锰酸钠反应,从而提高了吸附性能和气体处理效率。
6.水泥与氢氧化物或碱性氧化物的一种或几种任意比例的组合的粘结剂涂覆在多孔基材的表面,水泥可以在遇水后,通过水泥的水硬性特性以提高有害气体去除介质的机械强度,从而延长有害气体去除介质的使用寿命,并减少更换的频率。硅酸盐类水泥,作为最常见的水泥种类,因为来源广泛、成本低廉而优选。使用氢氧化物或碱性氧化物可以与碳酸氢钠反应,产生水,从而既加速了碳酸氢钠的溶解,也加速了二氧化碳气体的产生,并在多孔基材 的表面形成孔径、多孔基材之间形成连通的孔洞、多孔基材外部的粘结剂内部形成孔洞并与多孔基材相连通,进一步提高了气体处理的效率。而且反应产生的水会进一步地通过增强水泥的水硬性特性以提高有害气体去除介质的机械强度,从而进一步地延长有害气体去除介质的使用寿命,并减少更换的频率。
7.硅酸盐类水泥与氢氧化钙的混合物按重量百分比为12~24wt%硅酸盐类水泥、76~88wt%氢氧化钙。其中15wt%硅酸盐类水泥、85wt%氢氧化钙,效果好从而提高了造粒的效率,减少了原材料的浪费。
8.本发明制备方法减少了高锰酸钠的用量,既节约了滤料的生产成本,又降低了因高锰酸钠浓度过高而析出造成堵塞颗粒内部气体通路的可能性,并且简化了滤料的制备工艺,更适于大规模的生产和制造。
具体实施方式
为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
实施例1
1)将活性氧化铝510g、NaHCO 3 130g、12wt%硅酸盐类水泥和88wt%氢氧化钙组成的粘结剂160g,混合均匀并分三批依次加入到不断旋转的造粒圆盘中;造粒圆盘的倾角30°,转速40rpm,同时将32.1wt%浓度的高锰酸钠水溶液300ml(383g)喷射到上述混合物上;高锰酸钠溶液的喷射采用计量泵喷射,喷射速度为20ml/min;
2)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
3)对造粒后的颗粒进行称重,并计算造粒比例。
实施例2
1)将活性氧化铝510g、NaHCO 3 130g、15wt%硅酸盐类水泥和85wt%氢氧化钙组成的粘结剂160g,混合均匀并分三批依次加入到不断旋转的造粒圆盘中;造粒圆盘的倾角30°,转速40rpm,同时将32.1wt%浓度的高锰酸钠水溶液300ml(383g)喷射到上述混合物上;高锰酸钠溶液的喷射采用计量泵喷射,喷射速度为20ml/min;
2)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
3)对造粒后的颗粒进行称重,并计算造粒比例。
实施例3
1)将活性氧化铝510g、NaHCO 3 130g、18wt%硅酸盐类水泥和82wt%氢氧化钙组成的粘结剂160g,混合均匀并分三批依次加入到不断旋转的造粒圆盘中;造粒圆盘的倾角30°,转速40rpm,同时将32.1wt%浓度的高锰酸钠水溶液300ml(383g)喷射到上述混合物上;高 锰酸钠溶液的喷射采用计量泵喷射,喷射速度为20ml/min;
2)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
3)对造粒后的颗粒进行称重,并计算造粒比例。
实施例4
1)将活性氧化铝510g、NaHCO 3 130g、21wt%硅酸盐类水泥和79wt%氢氧化钙组成的粘结剂160g,混合均匀并分三批依次加入到不断旋转的造粒圆盘中;造粒圆盘的倾角30°,转速40rpm,同时将32.1wt%浓度的高锰酸钠水溶液300ml(383g)喷射到上述混合物上;高锰酸钠溶液的喷射采用计量泵喷射,喷射速度为20ml/min;
2)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
3)对造粒后的颗粒进行称重,并计算造粒比例。
实施例5
1)将活性氧化铝510g、NaHCO 3 130g、24wt%硅酸盐类水泥和76wt%氢氧化钙组成的粘结剂160g,混合均匀并分三批依次加入到不断旋转的造粒圆盘中;造粒圆盘的倾角30°,转速40rpm,同时将32.1wt%浓度的高锰酸钠水溶液300ml(383g)喷射到上述混合物上;高锰酸钠溶液的喷射采用计量泵喷射,喷射速度为20ml/min;
2)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
3)对造粒后的颗粒进行称重,并计算造粒比例。
上述实施例的实验结果如表-1所示。由表-1可知,最优的粘结剂配比为15wt%硅酸盐类水泥和85wt%氢氧化钙。
表-1粘结剂造粒的实施例
实施例 原料重量(g) 造粒重量(g) 造粒比例(%)
实施例1 1183 817 69.1
实施例2 1183 992 83.8
实施例3 1183 854 72.2
实施例4 1183 673 56.9
实施例5 1183 469 39.6
实施例6
1)将活性氧化铝510g、NaHCO 3 130g、15wt%硅酸盐类水泥和85wt%氢氧化钙组成的粘结剂160g,混合均匀并分三批依次加入到不断旋转的造粒圆盘中;造粒圆盘的倾角30°,转速40rpm,同时将32.1wt%浓度的高锰酸钠水溶液300ml(383g)喷射到上述混合物上;高 锰酸钠溶液的喷射采用计量泵喷射,喷射速度为20ml/min;
2)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
3)将步骤2)得到的颗粒室温静置12h,再高温110℃固化1.8h,至固体颗粒的含水量为17%,即得到含8wt%高锰酸钠有害气体去除介质。
实施例7
制备含10wt%高锰酸钠的有害气体去除介质制备方法同实施例5,只改变高锰酸钠的含量,即将27.6wt%浓度的高锰酸钠水溶液300ml(369g)喷射到混合物上。
实施例8
制备含8wt%高锰酸钠的有害气体去除介质制备方法同实施例5,只改变高锰酸钠的含量,即将23.1wt%浓度的高锰酸钠水溶液300ml(355g)喷射到混合物上。
实施例9
制备含6wt%高锰酸钠的有害气体去除介质制备方法同实施例5,只改变高锰酸钠的含量,即将18.1wt%浓度的高锰酸钠水溶液300ml(342g)喷射到混合物上。
对比例
采用美国Purafil公司的Odoroxidant SP滤料,为市场上净化效果最好的高锰酸盐类滤料之一,采用元素分析测得该滤料中高锰酸盐的含量为16%。
对上述5个实施例的产品进行性能测定
采用中国专利“CN200380104041.5高容量固体过滤介质”中,所提及的有害气体去除介质的容量测定的标准加速测试方法:
由于低浓度污染的空气供给,过滤介质的测试通常需要花费较长时间以获得结果,下面方法提供了介质吸附容量的加速实验,即将介质暴露于高浓度的污染气体下
进行测试。
以硫化氢吸附实验为例,测试过程是在流动系统中进行。将已知体积的介质放置在吸附管中并在调节的、湿润清洁的空气体系中暴露于已知浓度为1vol.%的污染物气体。校准气流以提供1450±20ml/min的总流速。对于每升每分钟的空气流,每个过滤床应包含至少300ml的介质。去除能力的计算方法是50份每百万(ppm)的透过下,从每体积(立方厘米)的空气流中除去的污染物的数量(克)。
填充介质的吸附管应布置成空气和硫化氢的混合气体从管的底部进入,流过玻璃棉或珠粒,流过过滤介质,然后通过气体分析器进行分析。在开始分析样品前,应检查和排除气体系统中的泄漏。一旦准备就位,就开始混合气体的流动,记录时间,直到通过气体分析仪观察到50ppm的透过,再次记录时间。优选使用具有可变量程读数的气体分析仪,具有特定 或多种气体能力。从上述分析得到的数据将使用以下公式得到所测介质的气体容量:
气体容量(GM/CC)=K×10 -5×C×F×T/V
其中对于H 2S,常数K=1.52;C为空气流中供给气体的浓度,vol.%;F为总流量,cc/min;T为达到50ppm的时间,min;V为吸附管介质塔的体积,cc(cm 3)。
本发明所用的气体分析仪是固定式五合一气体检测报警仪MIC-600。
测试结果如表-2所示。
表-2有害气体去除介质实施例的测试结果
  高锰酸钠含量(wt%) 吸附容量(10 -3g/cm 3)
实施例6 12 12.2
实施例7 10 14.0
实施例8 8 11.7
实施例9 6 9.9
对比例 16 9.5
由上表可见使用本发明的技术方案制备的有害气体去除介质,产品的硫化氢吸附容量优于Purafil公司的Odoroxidant SP滤料,而且本发明高锰酸盐的含量低于Purafil公司的Odoroxidant SP滤料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种有害气体去除介质,其特征在于,按重量百分比计,包括如下原料:4~12wt%的高锰酸盐、8~20wt%的水、50~65wt%的多孔基材和12~30wt%粘结剂。
  2. 根据权利要求1所述的有害气体去除介质,其特征在于,还包括8~20wt%的发泡剂,所述的发泡剂为碳酸氢盐或铝粉中的一种或几种任意比例的组合。
  3. 根据权利要求2所述的有害气体去除介质,其特征在于,发泡剂为8~20wt%碳酸氢钠。
  4. 根据权利要求1所述的有害气体去除介质,其特征在于,所述高锰酸盐是高锰酸钠或高锰酸钾中的一种或两种;所述多孔基材是活性氧化铝、硅胶、沸石或赤泥中的一种或几种任意比例的组合;所述粘结剂是水泥与氢氧化物或碱性氧化物的一种或几种任意比例的组合。
  5. 根据权利要求4所述的有害气体去除介质,其特征在于,所述高锰酸盐是高锰酸钠;所述多孔基材是活性氧化铝;所述水泥为硅酸盐类水泥、铝酸盐类水泥或磷酸盐类水泥中的一种或几种任意比例的组合,优选硅酸盐类水泥,所述的氢氧化物为氢氧化钙,所述的碱性氧化物为氧化钙。
  6. 根据权利要求5所述的有害气体去除介质,其特征在于,所述的活性氧化铝的目数为80~325;所述的硅酸盐类水泥与氢氧化钙的混合物按重量百分比为:12~24wt%硅酸盐类水泥、76~88wt%氢氧化钙。
  7. 根据权利要求5所述的有害气体去除介质,其特征在于,所述的硅酸盐类水泥与氢氧化钙的混合物按重量百分比的为:15wt%硅酸盐类水泥、85wt%氢氧化钙。
  8. 一种有害气体去除介质的制备方法,其特征在于,包括如下步骤:
    1)将多孔基材和粘结剂按比例混合均匀并分批次加入到不断旋转的造粒圆盘中;
    2)与步骤1)同时进行,将含有高锰酸盐的水溶液喷射到上述混合物上,高锰酸盐的质量浓度为10~40wt%;
    3)待上述混合物成为颗粒直径为4~6mm时,停止圆盘造粒与喷射工作,将颗粒取出;
    4)将步骤3)得到的颗粒固化,至固体颗粒的含水量为11~17%,即得到有害气体去除介质。
  9. 根据权利要求8所述的制备方法,其特征在于,所述步骤1)中还包括发泡剂,所述的发泡剂比例为8~20wt%,所述的发泡剂为碳酸氢盐、铝粉中的一种或几种任意比例的组合。
  10. 根据权利要求9所述的制备方法,其特征在于,所述造粒圆盘的倾角30°,转速30~80rpm,所述的发泡剂为碳酸氢钠。
PCT/CN2020/078367 2019-06-21 2020-03-09 一种有害气体去除介质及其制备方法 WO2020253271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547521.1 2019-06-21
CN201910547521.1A CN112107992A (zh) 2019-06-21 2019-06-21 一种有害气体去除介质及其制备方法

Publications (1)

Publication Number Publication Date
WO2020253271A1 true WO2020253271A1 (zh) 2020-12-24

Family

ID=73795403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078367 WO2020253271A1 (zh) 2019-06-21 2020-03-09 一种有害气体去除介质及其制备方法

Country Status (2)

Country Link
CN (1) CN112107992A (zh)
WO (1) WO2020253271A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079437B (zh) * 2021-03-16 2022-08-26 苏州夸克新材料科技有限公司 一种气体吸收材料块及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149078A (ja) * 2008-12-26 2010-07-08 Nagoya Institute Of Technology リン吸着剤及び製造方法
CN102824898A (zh) * 2012-09-18 2012-12-19 西安科技大学 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
CN104470632A (zh) * 2012-01-20 2015-03-25 干燥剂转轮国际有限公司 基于干燥剂的蜂窝状化学过滤器及其制造方法
CN108144574A (zh) * 2017-12-26 2018-06-12 大连全净科技有限公司 一种去除污染性气体的吸附-氧化型的载体颗粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149078A (ja) * 2008-12-26 2010-07-08 Nagoya Institute Of Technology リン吸着剤及び製造方法
CN104470632A (zh) * 2012-01-20 2015-03-25 干燥剂转轮国际有限公司 基于干燥剂的蜂窝状化学过滤器及其制造方法
CN102824898A (zh) * 2012-09-18 2012-12-19 西安科技大学 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
CN108144574A (zh) * 2017-12-26 2018-06-12 大连全净科技有限公司 一种去除污染性气体的吸附-氧化型的载体颗粒的制备方法

Also Published As

Publication number Publication date
CN112107992A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
US10668447B2 (en) High capacity regenerable graphene-based sorbent
JP4431700B2 (ja) 一酸化炭素除去用触媒及び該触媒を用いた一酸化炭素除去方法
Wang et al. A porous gradient geopolymer-based tube membrane with high PM removal rate for air pollution
CN102439123A (zh) 具有rho结构的沸石性质微孔晶体材料在天然气加工过程中的应用
CN107362788A (zh) 一种氧化石墨烯/二氧化钛‑活性炭三维复合材料及其制备方法
CN102698558A (zh) 一种高效吸附回收处理有机废气的装置和方法
CN106732378B (zh) 一种基于碳纳米材料的吸附剂及其制备与使用方法
KR100879312B1 (ko) 이산화탄소 흡착제의 제조방법
WO2020253271A1 (zh) 一种有害气体去除介质及其制备方法
CN104028237A (zh) 一种具有释香功能的壳聚糖固载β-环糊精甲醛吸附剂
CN112121790A (zh) 核壳结构型锰系催化剂及其制备方法
WO2018045867A1 (zh) 一种用于净化空气的复合材料及其制备方法和应用
Li et al. Toluene and water vapor adsorption characteristics and selectivity on hydrophobic resin-based activated carbon
CN113842898A (zh) 一种空气净化用吸附碱性废气和VOCs的复合材料及其制备方法及应用
CN107670641B (zh) 一种石墨烯空气净化材料及其制备方法
CN106824073B (zh) 一种高性能碳纳米材料吸附剂及其制备与应用
CN102039115A (zh) 吸附酸性气体的活性炭吸附剂的制备方法
JP3781871B2 (ja) 塩化物吸収剤
CN100496702C (zh) 一种净化含硫恶臭废气的吸附剂及其制备方法
CN109926033B (zh) 改性小孔分子筛吸附剂及其制备方法和用途
CN112867548A (zh) 用于空气净化的催化剂-吸附剂过滤器
TW201036689A (en) An apparatus for purifying suspended particles and inorganic gases in gas
CN213943156U (zh) 一种去除有害气体的过滤网
CN110559993B (zh) 去除空气中较高浓度甲醛的活性炭纤维滤网的改性方法及其产品和应用
JP2005013952A (ja) 炭酸ガス吸収材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826020

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20826020

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20826020

Country of ref document: EP

Kind code of ref document: A1