WO2020253001A1 - 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 - Google Patents
一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 Download PDFInfo
- Publication number
- WO2020253001A1 WO2020253001A1 PCT/CN2019/111619 CN2019111619W WO2020253001A1 WO 2020253001 A1 WO2020253001 A1 WO 2020253001A1 CN 2019111619 W CN2019111619 W CN 2019111619W WO 2020253001 A1 WO2020253001 A1 WO 2020253001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- support
- tunnel
- side wall
- layer
- initial
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims description 61
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 226
- 239000010959 steel Substances 0.000 claims abstract description 226
- 239000004567 concrete Substances 0.000 claims description 30
- 239000007921 spray Substances 0.000 claims description 15
- 238000009412 basement excavation Methods 0.000 claims description 13
- 230000002787 reinforcement Effects 0.000 claims description 11
- 239000011378 shotcrete Substances 0.000 claims description 10
- 238000005507 spraying Methods 0.000 claims description 7
- 239000004746 geotextile Substances 0.000 claims description 4
- 239000011435 rock Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 11
- 238000009434 installation Methods 0.000 description 10
- 238000005553 drilling Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/10—Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/14—Lining predominantly with metal
- E21D11/18—Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/38—Waterproofing; Heat insulating; Soundproofing; Electric insulating
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/38—Waterproofing; Heat insulating; Soundproofing; Electric insulating
- E21D11/383—Waterproofing; Heat insulating; Soundproofing; Electric insulating by applying waterproof flexible sheets; Means for fixing the sheets to the tunnel or cavity wall
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D20/00—Setting anchoring-bolts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/23—Dune restoration or creation; Cliff stabilisation
Definitions
- the invention relates to the technical field of tunnel construction, in particular to a two-step belt inverted fast closed tunnel supporting structure and a construction method thereof.
- Tunnel is a kind of engineering structure built underground, which is widely used in transportation, mining, water conservancy and national defense.
- the current tunnels are usually constructed by the New Austrian Tunneling Method.
- the supporting structure is a composite lining structure, including the vault, inverted arch, and side walls along the tunnel's circumferential direction, and includes the outer initial support and the inner two along the tunnel radial direction.
- the arch frame is twisted and deformed; the deformation of the steel arch frame will encroach on the space of the next secondary lining, making it impossible to continue the implementation of the secondary lining, and thus have to dismantle the built rigid primary support and re-establish a new rigid primary support. This not only greatly increases the project cost and construction risk, but also greatly extends the construction period.
- the first object of the present invention is to provide a two-step and inverted fast closed tunnel supporting structure.
- the second object of the present invention is to provide a construction method for a two-step and inverted tunnel supporting structure quickly closed.
- the present invention provides a two-step inverted arch fast-enclosed tunnel support structure, which includes the top vault, the bottom invert and the side walls along the tunnel radial direction.
- the first layer of primary support including the outer layer, the secondary lining of the inner layer, and the waterproof layer arranged between the first layer of primary support and the secondary lining, the waterproof layer includes geotextile and waterproof board;
- the initial support includes the first layer of the initial upper step support and the first layer of the initial lower step support;
- the first layer of the initial upper step support includes the first upper step steel arch, the first layer of the initial lower step support includes the first
- the lower-step steel arch frame, the first upper-step steel arch frame and the first lower-step steel arch frame are connected end to end to form a closed ring;
- the supporting structure also includes the second layer of the initial support and the waterproof layer.
- the initial support of the second layer is arranged along the radial direction of the tunnel; the initial support of the second layer includes the initial upper step support of the second layer and the initial lower step support of the second layer, and the initial upper step support of the second layer includes the first Two upper-step steel arches, the second-level initial lower-step support includes a second lower-step steel arch, and the second upper-step steel arch and the second lower-step steel arch are connected end to end to form a closed ring.
- the first upper step steel arch frame includes the first side wall steel arch frame, the first top steel arch frame, and the second side wall steel arch frame that are sequentially connected;
- the first lower step steel arch frame includes the sequentially connected The third side wall steel arch frame, the fourth side wall steel arch frame, the first bottom steel arch frame, the fifth side wall steel arch frame, the sixth side wall steel arch frame;
- the first end of the third side wall steel arch frame The end is connected with the steel arch of the first side wall, the second end of the steel arch of the third side wall extends downward, and the steel arch of the fourth side wall is connected to the side of the first end of the steel arch of the third side wall ;
- the first end of the sixth side wall steel arch frame is connected with the second side wall steel arch frame, the second end of the six side wall steel arch frame extends downward, and the fifth side wall steel arch frame is connected to the sixth side The side of the first end of the wall steel arch.
- the second upper step steel arch frame includes a first side wall steel support, a first top steel support, and a second side wall steel support that are connected in sequence;
- the second lower step steel arch frame includes a third side connected in sequence Wall steel support, first bottom steel support, and fourth side wall steel support; the first side wall steel support is connected with the third side wall support, and the second side wall steel support is connected with the fourth side wall steel support.
- a further scheme is that a reserved deformation space is provided between the first layer of initial support and the second initial support, and two reserved deformation spaces are provided between the second layer of initial support and the waterproof layer.
- the reserved deformation of the reserved deformation space is greater than the reserved deformation of the two reserved deformation spaces.
- the initial upper step support of the first layer also includes an arch anchor rod assembly, which includes a plurality of combined hollow anchor rods with exhaust devices, and the plurality of combined hollow anchor rods are along the circumferential direction of the tunnel And arranged longitudinally on the vault.
- the supporting structure also includes a reinforced anchor rod assembly, which includes multiple arch anchor rods, multiple upper step side wall anchor rods, multiple lower step side wall anchor rods, and multiple tunnels.
- Bottom long anchor rods; multiple arch and long anchor rods are arranged on the top of the vault along the tunnel's circular and longitudinal directions, and multiple upper step side wall long anchor rods are arranged along the tunnel's circular and longitudinal direction on both side walls of the tunnel upper step
- a plurality of long anchor rods for the side wall of the lower step are arranged on both side walls of the lower step of the tunnel along the circumferential and longitudinal directions of the tunnel
- a plurality of long anchor rods at the bottom of the tunnel are arranged on the bottom of the tunnel along the circumferential and longitudinal directions of the tunnel.
- the present invention provides a construction method for a two-step fast closed tunnel support structure with an inverted arch.
- the construction method includes the following steps: installing an upper step advance support and an upper step advance reinforcement anchor rod; Excavation of the upper steps of the tunnel; installation of the first layer of the initial upper step support and spray concrete; excavation of the lower step of the tunnel body; installation of the first layer of the initial lower step support and spray concrete; installation of the long anchor rod for the side wall of the lower step And long anchor rods at the bottom of the tunnel; install the initial step support and shotcrete of the second layer, and backfill the tunnel bottom; install the long anchor rods on the side walls of the upper step and the long anchor rod at the vault; install the second floor early support And spray concrete; carry out invert pouring and invert filling pouring; carry out secondary lining pouring.
- a further scheme is that the construction method also includes: judging whether the tunnel is open, if not, installing the upper step side wall anchor rod and the vault long anchor rod while successively installing the upper step forward along the longitudinal direction of the tunnel Supporting and stepping steps to advance the reinforcement of the anchor rod, the steps to excavate the upper step hole of the tunnel, the steps of installing the first layer of the first step support and spraying concrete, the step of excavating the lower step hole of the tunnel, the first installation The steps of supporting and spraying concrete by lowering the steps at the initial stage, installing the long anchor rods for the side walls of the lower steps and the long anchor rods at the bottom of the tunnel, installing the initial supporting and spraying concrete of the second layer and the steps of backfilling the tunnel bottom, form The short steps are quickly closed and looped to advance the construction.
- the advance support of the upper step includes a plurality of advanced grouting small ducts, and the plurality of advanced grouting small ducts are arranged along the circumferential and longitudinal directions of the tunnel.
- the upper step advance reinforcement anchor rod includes a plurality of longitudinal anchor rods, and the plurality of longitudinal anchor rods are arranged on the tunnel face of the upper step of the tunnel along the longitudinal direction of the tunnel.
- the cooperation of the first initial support and the second initial support can effectively improve the stress distribution in the inner circumference of the tunnel and reduce the development of the broken range of surrounding rock, which can effectively solve the high ground stress.
- Large deformation of soft rock and other adverse geological conditions have limitations on the mechanized construction method of the tunnel, which greatly reduces the safety risk during the tunnel construction process, which is safe, fast, and economical;
- two steps with inverted arch fast closed tunnel support structure By splitting the first upper step steel arch frame, the first lower step steel arch frame, the second upper step steel arch frame and the second lower step steel arch frame into multiple steel arch frames, it greatly facilitates mechanized construction, transportation and Storage; in the two-step inverted fast closed tunnel support structure, there is a reserved deformation space between the first layer of initial support and the second layer of initial support, and between the second layer of initial support and the waterproof layer
- the two branches have reserved deformation space to provide concession space for the deformation of the surrounding rock to ensure the realization of the maximum allowable deformation of the
- the construction method of the two-step inverted fast closed tunnel support structure adopts the method of double-layer support and long and short bolt group anchors.
- the two-step inverted rapid construction method is adopted to transform the large deformation tunnel Decomposition of the deformation into each construction link, using step-by-step control and fast closing methods to effectively control the total deformation of the surrounding rock, reduce the safety risk in the tunnel construction process, and achieve a safe, fast, economical and reasonable tunnel construction The purpose of construction.
- Fig. 1 is a schematic cross-sectional view of a supporting structure according to an embodiment of the present invention.
- Fig. 2 is a schematic cross-sectional view of the first layer of initial support and the second layer of initial support of an embodiment of the present invention.
- Fig. 3 is a flowchart of a construction method according to an embodiment of the present invention.
- step 4 is a schematic cross-sectional view of the supporting structure when performing step 1, step 2 and step 3 of the construction method according to the embodiment of the present invention.
- Fig. 5 is a schematic cross-sectional view of the supporting structure when steps 4, 5, and 6 of the construction method are executed in the embodiment of the present invention.
- Fig. 6 is a schematic cross-sectional view of the supporting structure when step 7 of the construction method is performed in the embodiment of the present invention.
- Fig. 7 is a schematic cross-sectional view of the supporting structure when performing step 8 of the construction method according to the embodiment of the present invention.
- Fig. 8 is a schematic cross-sectional view of the supporting structure when step 9 of the construction method is performed in the embodiment of the present invention.
- Fig. 9 is a schematic cross-sectional view of the supporting structure at the tenth time of the construction method according to the embodiment of the present invention.
- Fig. 10 is a schematic cross-sectional view of the supporting structure when step 11 of the construction method is performed in the embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of the supporting structure of an embodiment of the present invention
- FIG. 2 is a schematic cross-sectional view of the first layer of the initial support 1 and the second layer of the initial support of the embodiment of the present invention
- the supporting structure of this embodiment includes the top vault, the bottom invert and the side walls along the tunnel circumferential direction; along the tunnel radial direction, it includes the first layer of the outer layer of the primary support 1, the inner layer of the secondary lining 3
- the waterproof layer arranged between the first layer of primary support 1 and the secondary lining 3 the waterproof layer includes geotextile and waterproof board.
- the first layer of initial support 1 includes the first layer of initial upper step support and the first layer of initial lower step support.
- the first initial stage support and the first stage initial stage support are divided up and down by the tunnel boundary line.
- the first-level initial upper-step support includes a first upper-step steel arch set above the step boundary; the first-level initial lower-step support includes a first lower-step steel arch set below the step boundary.
- the first upper step steel arch frame and the first lower step steel arch frame are connected end to end to form a closed ring.
- the supporting structure also includes a second layer of initial support arranged between the first layer of initial support 1 and the waterproof layer, and the second layer of initial support is arranged along the radial direction of the tunnel.
- the second layer of initial support includes the second layer of initial upper step support and the second layer of initial lower step support.
- the second layer of initial upper step support includes a second upper step steel arch set above the step boundary line
- the initial lower step support of the second layer includes a second lower step steel arch frame arranged below the step boundary line, and the second upper step steel arch frame and the second lower step steel arch frame are connected end to end to form a closed ring.
- the first upper-step steel arch frame includes a first side wall steel arch frame 11, a first top steel arch frame 12, and a second side wall steel arch frame 13, which are sequentially connected by connecting steel frames.
- the second side wall steel arches 13 are symmetrically arranged on the left and right sides of the first top steel arches 12.
- the first lower step steel arch frame includes the third side wall steel arch frame 14, the fourth side wall steel arch frame 15, the first bottom steel arch frame 16, and the fifth side wall steel arch frame 17, which are sequentially connected by connecting steel frames.
- the fourth side wall steel arch frame 15 and the fifth side wall steel arch frame 17 are symmetrically arranged on the left and right sides of the first bottom steel arch frame 16.
- the first end of the third side wall steel arch frame 14 is connected to the first side wall steel arch frame 11, the second end of the third side wall steel arch frame 14 extends downward, and the third side wall steel arch frame 14
- the side of one end is connected to the end of the fourth side wall steel arch 15 away from the first bottom steel arch 16;
- the first end of the sixth side wall steel arch 18 is connected to the second side wall steel arch 13 ,
- the second end of the sixth side wall steel arch 18 extends downward, the side of the first end of the sixth side wall steel arch 18 and the end of the fifth side wall steel arch 17 away from the first bottom steel arch 16 connection.
- the second upper-step steel arch frame includes a first side wall steel support, a first top steel support, and a second side wall steel support that are sequentially connected by connecting steel frames.
- the first side wall steel support and the second side wall steel support are symmetrically arranged On the left and right sides of the first top steel support.
- the second lower step steel arch frame includes the third side wall steel support 24, the first bottom steel support 25, the fourth side wall steel support 26, the third side wall steel support 24 and the fourth side wall that are sequentially connected by connecting steel frames.
- the steel supports 26 are symmetrically arranged on the left and right sides of the first bottom steel support 25.
- the first side wall steel support is connected to the third side wall support through the connecting steel frame, and the second side wall steel support is connected to the fourth side wall steel support 26 through the connecting steel frame.
- a reserved deformation space 4 is provided between the first layer of initial support 1 and the second layer of initial support, and two reserved deformation spaces 5 are provided between the second layer of initial support and the waterproof layer.
- the reserved deformation amount of one reserved deformation space 4 is greater than the reserved deformation amount of two reserved deformation spaces 5.
- the reserved deformation amount of one reserved deformation space 4 is preferably 30 cm, and the reserved deformation amount of two reserved deformation spaces 5 is preferably 15 cm.
- the first layer of the initial upper step support also includes an arch anchor rod assembly, which includes a plurality of combined hollow anchor rods 6 with exhaust devices, and the plurality of combined hollow anchor rods 6 are arranged along the circumferential and longitudinal directions of the tunnel On the vault.
- the combined hollow anchor rod 6 is 3m long, a combined hollow anchor rod 6 is applied at an interval of 1.2m in the hoop direction, and a combined hollow anchor rod 6 is applied at an interval of 1.0m in the longitudinal direction.
- the supporting structure also includes a reinforced anchor rod assembly, which includes a plurality of long arch anchor rods 7, a plurality of side wall long anchor rods 8, and a plurality of tunnel bottom long anchor rods 9.
- a plurality of long arch anchor rods 7 are arranged on the dome along the circumferential and longitudinal directions of the tunnel.
- a plurality of side wall long anchor rods 8 are arranged on both side walls along the circumferential and longitudinal directions of the tunnel.
- the side walls include upper step side walls and lower step side walls which are separately provided on the upper and lower sides of the step boundary line, correspondingly ,
- the side wall long anchor rod 8 includes the upper step side wall long anchor rod 8 and the lower step side wall long anchor rod 8.
- the upper step side wall long anchor rod 8 is set on the upper step side wall length, and the lower step side wall long anchor rod 8 Set on the side wall of the lower step.
- a plurality of long tunnel bottom anchor rods 9 are arranged on the bottom of the tunnel along the circumferential and longitudinal directions of the tunnel.
- the long arch anchor 7 adopts a resin anchor with a diameter of 25mm and a length of 6m.
- a resin anchor is applied at an interval of 1.2m in the hoop direction and a resin anchor at an interval of 1.2m in the longitudinal direction.
- the side wall long anchor rod 8 and the tunnel bottom long anchor rod 9 both adopt self-advancing anchor rods with a diameter of 32mm and a length of 8m.
- a self-advancing anchor rod is applied at an interval of 1.2m in the circumferential direction, and in the longitudinal direction
- a self-advancing anchor rod shall be applied at the upper interval of 1.0m.
- the first layer of initial support 1 is composed of a sprayed concrete structure containing the steel arch of the upper step of the first layer, the steel arch of the lower step of the first layer, the steel mesh, the longitudinal connecting steel bar, the connecting steel bar, and the upper and lower step locking anchor pipe 10 .
- the initial support of the second layer is composed of a sprayed concrete structure containing a second-layer upper step steel arch frame, a second layer lower step steel arch frame, steel mesh, longitudinal connecting steel bars, and connecting steel bars.
- the construction method of the two-step inverted fast closed tunnel support structure of the present invention includes the following steps:
- step S1 the upper step advance support and the upper step advance reinforcement anchor rod are installed.
- a rock drill is used to drive a 42mm diameter and 4.5m long lead pipe 20 forward along the excavation contour line of the vault at a certain angle.
- the lead pipe 20 is constructed as a circular connection according to the longitudinal direction of 3m.
- the longitudinal overlap is 1.5m, and the circumferential arrangement spacing of the leading small duct 20 is 40cm.
- grouting and reinforcement are carried out in the leading small conduit 20 with a certain pressure, and the leading small conduit 20 needs to be filled with grouting.
- a rock drilling vehicle is used to install the advance reinforcement bolt 30 on the face of the upper step.
- the advance reinforcement bolt 30 is preferably a glass fiber anchor rod with a diameter of 22 mm and a length of 6 m.
- Multiple glass fiber anchors are divided into multiple horizontal rows and multiple vertical rows, each horizontal row is 1.5m apart, and each vertical row is 1.5m apart.
- the horizontal and vertical auxiliary lines can be drawn on the upper step face with a horizontal spacing of 1.5m and a vertical spacing of 1.5m.
- the horizontal and vertical auxiliary lines are staggered. Then select multiple intersections from all the intersections of the horizontal auxiliary line and the vertical auxiliary line to use glass fiber anchors, so that two adjacent glass fiber anchors are separated by 3.0m in the horizontal direction, and two adjacent glass fiber anchors
- the poles are vertically spaced 3.0m apart.
- the fiberglass anchors are constructed in a circular connection with a length of 6m.
- step S2 is performed to excavate the upper step hole of the tunnel.
- the rock drilling rig is used for drilling and then the upper step hole is excavated by weak blasting.
- the vault is excavated first, and then the side wall.
- Each circular footage does not exceed the spacing of 2 steel frames, that is, no more than 1.2m.
- a total of 6m is excavated.
- step S3 is executed to install the first-level initial upper-step support immediately following the upper-step face.
- first spray concrete with a thickness of 4cm on the rock face of the upper steps in time.
- a rock drilling rig or a bolter to install a hollow bolt 6 with a diameter of 22mm and a length of 3m with an exhaust device on the arch of the tunnel and grouting fully.
- Two adjacent composite hollow anchor rods 6 are separated by 1.2 m in the circumferential direction and 1.0 m in the longitudinal direction. Then install the steel arch frame of the initial stage on the first floor.
- the first side wall steel arch frame 11, the first top steel arch frame 12, and the second side wall steel arch frame 13 are connected in sequence.
- the first side wall steel arch frame 11 and the first top steel arch frame 12 are connected by a connecting steel frame
- the first top steel arch frame 12 and the second side wall steel arch frame 13 are connected by a connecting steel frame.
- the total thickness of the shotcrete and the double shotcrete is 27cm, and it is ensured that the whole is uniform and dense and there is no cavity behind.
- step S4 is performed to excavate the lower step hole of the tunnel.
- Each cycle does not exceed 5 steel frame spacing, that is, no more than 3m.
- After two excavations, a total of 6m is excavated.
- two lock-foot anchor pipes 10 with a diameter of 42 mm and a length of 4.5 m are respectively driven into the rock wall on both sides of the invert, and grouting is injected into the lock-foot anchor pipe 10.
- step S5 is executed to install the initial lower step support of the first layer immediately following the lower step face.
- the initial injection of concrete with a thickness of 4cm is carried out on the rock face of the lower steps in time.
- a rock drilling rig or a bolt rig to install the long tunnel bottom anchor 9 at the bottom of the tunnel and inject the M20 cement paste.
- the long tunnel bolt 9 preferably adopts a self-propelled bolt with a diameter of 32mm and a length of 8m.
- a self-propelled bolt is installed at an interval of 1.2m in the circumferential direction, and a self-propelled bolt is installed at an interval of 1.0m in the longitudinal direction.
- Type anchor is
- a rock drilling rig or a bolt drill is used to drill a pilot hole on the bottom of the tunnel, and grouting is performed through an orifice tube 40 inserted into the pilot hole.
- the depth of the pilot holes is 3m, one pilot hole is drilled at a distance of 1.5m in the hoop direction, and a pilot hole is drilled at a distance of 2.5m in the longitudinal direction.
- a steel arch installation machine is used to install the initial lower step support of the first layer, so that the initial lower step support of the first layer and the initial upper step support of the first layer form a closed ring.
- the total thickness of the sprayed concrete is 27cm, and it is ensured that the whole is uniform and dense, and there is no cavity behind.
- step S6 the side wall long anchor rod 8 of the lower step and the long anchor rod 9 at the bottom of the tunnel are installed.
- a plurality of side wall long anchor rods 8 are installed on both side walls of the lower step along the circumferential and longitudinal directions of the tunnel, and a plurality of long tunnel bottom anchor rods 9 are installed on the bottom of the tunnel along the circumferential and longitudinal directions of the tunnel.
- Both the side wall long anchor rods 8 and the tunnel bottom long anchor rods 9 of the lower step adopt self-advancing anchor rods with a diameter of 32mm and a length of 8m.
- a self-advancing anchor rod is installed at an interval of 1.2m in the circumferential direction. Install a self-propelled anchor rod at an interval of 1.0m in the longitudinal direction.
- step S7 is executed to install the initial lower step support and spray concrete of the second layer, and backfill the tunnel bottom.
- the third side wall steel support 24, the first bottom steel support 25, and the fourth side wall steel support 26 are sequentially connected by connecting steel frames.
- the steel arch installation machine is used to install the second layer of the initial lower step support.
- the joints Before the sprayed concrete construction, after the installation of the lower step steel arch frame of the second layer of the initial support, the joints should be reserved at the leakage section on both sides and the protective measures should be taken after spraying concrete, that is, the steel arch frame of the third side wall 14 A joint is reserved at the 18th place of the steel arch frame of the sixth side wall and protective measures are taken to spray the concrete.
- the bottom of the tunnel is backfilled and compacted with cave slag.
- step S8 is executed to determine whether the tunnel is opened. If yes, only perform steps S9 to S12; if not, perform steps S9 to S12 for the previous construction section, and perform steps S1 to S7 for the next construction section, so as to form a short cycle in a loop of 6m in the longitudinal direction. The steps are quickly closed into a ring to advance the construction.
- the previous construction section and the next construction section are two adjacent construction sections. For the convenience of description, the previous construction section is named the first construction section, and the latter construction section is named the second construction Section.
- step S9 the side wall long anchor rod 8 and the dome long anchor rod 7 of the upper step are installed.
- a plurality of long side wall anchors 8 are installed on both side walls of the upper step along the circumferential and longitudinal directions of the tunnel, and a plurality of long vault anchors 7 are installed on the vault along the circumferential and longitudinal directions of the tunnel.
- the side wall of the upper step adopts a self-advancing anchor rod with a diameter of 32mm and a length of 8m.
- a self-advancing anchor rod is installed at an interval of 1.2m in the circumferential direction and an anchor rod is installed at an interval of 1.0m in the longitudinal direction.
- Self-propelled anchor The long anchor rod of the vault adopts a resin anchor rod with a direct length of 25mm and a length of 6m.
- a resin anchor rod is installed at an interval of 1.2m in the hoop direction, and a resin anchor rod is installed at an interval of 1.2m in the longitudinal direction.
- the whole tunnel uses a rock drilling rig or a bolt drill to drill guide holes in the arch and side wall surrounding rock, and grouting is performed through the orifice tube 40 inserted into the guide hole.
- the depth of the hole is 3m, so that the grouting is reinforced to the 3m range of the excavation contour line.
- the guide holes are spaced 1.5m in the hoop direction and 2.5m in the longitudinal direction.
- step S10 is executed to install the second layer of initial step support and spray concrete on the first construction section.
- the initial step support of the second layer After the upper step of the second construction section has been driven 15 to 20m into the face, and the initial support deformation of the first layer has converged to 1/2 of the reserved deformation or the deformation has not reached 1/2 of the reserved deformation but has been When it is stable, install the initial step support of the second layer.
- a reserved deformation space is reserved between the initial upper step support of the second layer and the initial upper step support of the first layer, and the reserved deformation of the reserved deformation space is preferably 30 cm.
- the initial support of the second layer is arranged along the radial direction of the tunnel, and the initial support of the second layer includes the second upper step steel arch.
- the second upper step steel arch frame includes a first side wall steel support 21, a first top steel support 22, and a second side wall steel support 23 that are connected in sequence.
- the second upper-step steel arch and the second lower-step steel arch form a closed ring.
- install the steel mesh and weld the steel mesh to the steel arch of the upper step of the second floor firmly, and then spray concrete so that the total thickness of the sprayed concrete between the upper steps of the second layer is 25cm, and ensure that the whole is uniform and dense. There is no void, that is, the concrete should completely fill the gap between the initial step support of the second layer and the upper step support of the first layer.
- Step S11 is then executed to perform invert pouring and invert filling pouring.
- the invert filling and pouring construction is carried out.
- install the invert template put in double-layer steel bars, and use C35 concrete for invert pouring.
- the invert pouring is basically solidified, the invert arch filling formwork is installed, and C20 concrete is used for filling and pouring.
- step S12 is performed to perform secondary lining pouring.
- the waterproof layer includes geotextile and waterproof board.
- Two pieces of reserved deformation space should be reserved between the waterproof layer and the second layer of initial support, or two pieces of reserved deformation space should be reserved between the second lining and the second layer of initial support.
- the waterproof layer is included in the two pieces of preliminary support. Leave the deformation space.
- the reserved deformation amount of the two reserved deformation spaces is less than the reserved deformation amount of the reserved deformation space of one branch, and the reserved deformation amount of the second branch in this embodiment is 15 cm.
- the gutter cable trough templates on both sides can be installed and the gutter cable trough can be poured.
- the present invention is used in the application of high ground stress soft rock tunnel construction.
- the present invention provides a second layer of initial support between the first layer of initial support and the waterproof layer.
- the first layer of initial support and the second layer of initial support can resist opening to the maximum.
- the formation pressure after excavation and unloading prevents deformation of the inner circumference of the tunnel.
- One reserved deformation space and two reserved deformation spaces can effectively release the deformation of surrounding rock and reduce the effect on the initial support of the first layer and the initial support of the second layer.
- the support force prevents the failure of the supporting structure of the first layer of the initial support and the second layer of the initial support, and can effectively solve the limitations of the mechanized construction method of the tunnel due to the high ground stress, large deformation of soft rock and other adverse geological conditions.
- the safety risks in the tunnel construction process are safe, fast, and economical.
- the invention relates to the field of tunnel construction, and provides a two-step belt inverted fast closed tunnel support structure.
- the support structure includes a first layer of initial support, a second layer of initial support, a waterproof layer, and a secondary Lining, the first layer of initial support includes the first layer of initial upper step support and the first layer of initial lower step support; the first layer of initial upper step support includes the first upper step steel arch, the first layer of initial lower step The support includes the first lower-step steel arch, the first upper-step steel arch and the first lower-step steel arch are connected end to end to form a closed ring; the second layer of initial support includes the second layer of the initial upper step support and the second The initial lower step support of the second layer includes the second upper step steel arch.
- the second layer initial lower step support includes the second lower step steel arch, the second upper step steel arch and the second The two lower-step steel arches are connected end to end to form a closed ring.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Civil Engineering (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
一种两台阶带仰拱快速封闭隧道支护结构,该支护结构由外至内包括第一层初期支护(1)、第二层初期支护(2)、防水层、二次衬砌(3),第一层初期支护包括第一层初期上台阶支护和第一层初期下台阶支护;第一层初期上台阶支护包括第一上台阶钢拱架,第一层初期下台阶支护包括第一下台阶钢拱架,第一上台阶钢拱架和第一下台阶钢拱架首尾连接形成封闭环形;第二层初期支护包括第二层初期上台阶支护和第二层初期下台阶支护,第二层初期上台阶支护包括第二上台阶钢拱架,第二层初期下台阶支护包括第二下台阶钢拱架,第二上台阶钢拱架和第二下台阶钢拱架首尾连接形成封闭环形。
Description
本发明涉及隧道施工技术领域,尤其是涉及一种两台阶带仰拱快速封闭隧道支护结构及其施工方法。
隧道是一种修建在地下的工程结构物,被广泛地应用于交通、矿山、水利及国防等领域。目前的隧道,通常采用新奥法施工,支护结构为复合式衬砌结构,沿隧道环向包括拱顶、仰拱及两侧边墙,沿隧道径向包括外侧的初期支护、内侧的二次衬砌以及位于初期支护和二次衬砌之间的防水层。
随着我国西南地区隧道与地下工程的飞速发展,山岭铁路隧道和特长隧道逐步增多,穿越高地应力、软弱围岩等隧道施工区段也相应增长。由于高地应力、软岩大变形隧道在施工过程中极其不易控制,在施工过程中,稍有不慎,极易发现变形和塌方灾害,而且在隧道结构设计和后期维护方面也同样会产生一些难以解决的问题。在深埋挤压性软岩中修建隧道一般有两种做法:“以刚克刚”和“以柔克刚”。“以刚克刚”是开挖后立即设置强大的刚性支护,以此抵抗强大的地层挤压力;“以柔克刚”是开挖后先设置柔性支护,允许地层有一定程度变形,以此释放地应力后再设置刚性支护。对于这两支护理念,其对应的技术手段主要有:强大围岩预加固、初期支护重型钢架并尽早施作二次衬砌等对应的“刚性支护”,采用可缩钢架、让压锚杆、超前导洞应力释放等对应的“柔性支护”。显然,后者符合新奥法原理。但这里所说的“刚”和“柔”是两个相对的概念,“刚”意在最大限度的抵抗开挖卸荷后的地层压力,“柔”意在合理的释放围岩变形,减少作用在支护结构上的力,但“柔”的前提是保证支护结构不失效,一旦失效就会发生变形和塌方灾害。现有技术中的支护结构采用直接密贴隧道通道表面建立刚性初期支护的方式,使得在隧道通道外围的岩层中的高应力作用下,经常造成初期支护中混凝土开裂、剥落,及钢拱架扭曲变形;钢拱架的变形会侵占下一步二次衬砌的空间,造成无法继续实施二次衬砌,从而不得不拆掉已建的刚性初期支护、重新建立新的刚性初期支护。这样不仅使工程成本和施工风险大幅增加,还会大大延长施工周期。
本发明的第一目的是提供一种两台阶带仰拱快速封闭隧道支护结构。
本发明的第二目的是提供一种两台阶带仰拱快速封闭隧道支护结构的施工方法。
为了实现上述的第一目的,本发明提供的一种两台阶带仰拱快速封闭隧道支护结构,沿隧道环向包括顶部的拱顶、底部的仰拱和两侧边墙,沿隧道径向包括外层的第一层初期支护、内层的二次衬砌以及设置在第一层初期支护和二次衬砌之间的防水层,所述防水层包括土工布和防水板;第一层初期支护包括第一层初期上台阶支护和第一层初期下台阶支护;第一层初期上台阶支护包括第一上台阶钢拱架,第一层初期下台阶支护包括第一下台阶钢拱架,第一上台阶钢拱架和第一下台阶钢拱架首尾连接形成封闭环形; 支护结构还包括设置在第一层初期支护和防水层之间的第二层初期支护,第二层初期支护沿隧道径向设置;第二层初期支护包括第二层初期上台阶支护和第二层初期下台阶支护,第二层初期上台阶支护包括第二上台阶钢拱架,第二层初期下台阶支护包括第二下台阶钢拱架,第二上台阶钢拱架和第二下台阶钢拱架首尾连接形成封闭环形。
进一步的方案是,第一上台阶钢拱架包括依次连接的第一边墙钢拱架、第一顶部钢拱架、第二边墙钢拱架;第一下台阶钢拱架包括依次连接的第三边墙钢拱架、第四边墙钢拱架、第一底部钢拱架、第五边墙钢拱架、第六边墙钢拱架;第三边墙钢拱架的第一端端部与第一边墙钢拱架连接,第三边墙钢拱架的第二端向下延伸,第四边墙钢拱架连接在第三边墙钢拱架的第一端的侧边;第六边墙钢拱架的第一端端部与第二边墙钢拱架连接,六边墙钢拱架的第二端向下延伸,第五边墙钢拱架连接在第六边墙钢拱架的第一端的侧边。
进一步的方案是,第二上台阶钢拱架包括依次连接的第一边墙钢支撑、第一顶部钢支撑、第二边墙钢支撑;第二下台阶钢拱架包括依次连接的第三边墙钢支撑、第一底部钢支撑、第四边墙钢支撑;第一边墙钢支撑与第三边墙支撑连接,第二边墙钢支撑与第四边墙钢支撑连接。
进一步的方案是,第一层初期支护与第二初期支护之间设有一支预留变形空间,第二层初期支护与防水层之间设有二支预留变形空间,一支预留变形空间的预留变形量大于二支预留变形空间的预留变形量。
进一步的方案是,第一层初期上台阶支护还包括拱部锚杆组件,拱部锚杆组件包括多个带排气装置的组合中空锚杆,多个组合中空锚杆沿隧道的环向和纵向布置在拱顶上。
进一步的方案是,支护结构还包括加强锚杆组件,加强锚杆组件包括多个拱部长锚杆、多个上台阶边墙长锚杆、多个下台阶边墙长锚杆、多个隧底长锚杆;多个拱部长锚杆沿隧道的环向和纵向布置在拱顶上,多个上台阶边墙长锚杆沿隧道的环向和纵向布置在隧道上台阶的两侧边墙上,多个下台阶边墙长锚杆沿隧道的环向和纵向布置在隧道下台阶的两侧边墙上,多个隧底长锚杆沿隧道的环向和纵向布置在隧道底部上。
为了实现上述的第二目的,本发明提供的一种两台阶带仰拱快速封闭隧道支护结构的施工方法,该施工方法包括以下步骤:安装上台阶超前支护和上台阶超前加固锚杆;开挖隧道上台阶洞身;安装第一层初期上台阶支护并喷射混凝土;开挖隧道下台阶洞身;安装第一层初期下台阶支护并喷射混凝土;安装下台阶边墙长锚杆及隧底长锚杆;安装第二层初期下台阶支护及喷射混凝土,并进行隧底回填;安装上台阶边墙长锚杆及拱顶长锚杆;安装第二层初期上台阶支护并喷射混凝土;进行仰拱浇筑及仰拱填充浇筑;进行二次衬砌浇筑。
进一步的方案是,该施工方法还包括:判断隧道是否打通,若否,则在安装上台阶边墙长锚杆及拱顶长锚杆的同时,沿隧道的纵向向前相继进行安装上台阶超前支护和上台阶超前加固锚杆的步骤、开挖隧道上台阶洞身的步骤、安装第一层初期上台阶支护并喷射混凝土的步骤、开挖隧道下台阶洞身的步骤、安装第一层初期下台阶支护并喷射混凝土的步骤、安装下台阶边墙长锚杆及隧底长锚杆的步骤、安装第二层初期下台阶支护及喷射混凝土并进行隧底回填的步骤,形成短台阶快速封闭成环循环推进施工。
进一步的方案是,上台阶超前支护包括多个超前注浆小导管,多个超期注浆小导管沿隧道的环向及纵向布置。
进一步的方案是,上台阶超前加固锚杆包括多个纵向锚杆,多个纵向锚杆沿隧道的纵向布置在隧道上台阶的掌子面上。
两台阶带仰拱快速封闭隧道支护结构中通过第一初期支护和第二层初期支护的配合,可有效改善隧道内周应力分布和减少围岩破碎范围的发展,能有效解决高地应力、软岩大变形等不良地质条件对隧道机械化施工方法的局限性,大大降低隧道施工过程中的安全风险,既安全、又快速、又经济合理;两台阶带仰拱快速封闭隧道支护结构中通过将第一上台阶钢拱架、第一下台阶钢拱架、第二上台阶钢拱架以及第二下台阶钢拱架均可拆分为多个钢拱架,大大方便机械化施工运输及存放;两台阶带仰拱快速封闭隧道支护结构中的第一层初期支护和第二初期支护之间设有一支预留变形空间,第二层初期支护与防水层之间设有二支预留变形空间,为围岩变形提供退让空间,从空间上保证围岩允许最大变形量的实现;两台阶带仰拱快速封闭隧道支护结构中,在隧道环向上设置多个不同规格的锚杆,能限制并约束隧道环向上的围岩变形,增大锚固区围岩的强度,防止隧道塌方。
两台阶带仰拱快速封闭隧道支护结构的施工方法采用双层支护和长短锚杆群锚的方法,同时结合隧道机械化施工设备优势,采取两台阶带仰拱快速施工方法,将大变形隧道的变形量分解到各个施工环节,采用分步控制、快速封闭的方法,有效控制围岩的总变形量,降低隧道施工过程中的安全风险,达到既安全、又快速、又经济合理的隧道施工建设的目的。
图1是本发明实施例的支护结构的横截面示意图。
图2是本发明实施例的第一层初期支护和第二层初期支护的横截面示意图。
图3是本发明实施例的施工方法流程图。
图4是本发明实施例执行施工方法步骤一、步骤二和步骤三时的支护结构横截面示意图。
图5是本发明实施例执行施工方法步骤四、步骤五和步骤六时的支护结构横截面示意图。
图6是本发明实施例执行施工方法步骤七时的支护结构横截面示意图。
图7是本发明实施例执行施工方法步骤八时的支护结构横截面示意图。
图8是本发明实施例执行施工方法步骤九时的支护结构横截面示意图。
图9是本发明实施例执行施工方法步骤十时的支护结构横截面示意图。
图10是本发明实施例执行施工方法步骤十一时的支护结构横截面示意图。
以下结合附图及实施例对本发明作进一步说明。
两台阶带仰拱快速封闭隧道支护结构实施例
参见图1至2,图1是本发明实施例的支护结构的横截面示意图,图2是本发明实施例的第一层初期支护1和第二层初期支护的横截面示意图。本实施例的支护结构沿隧道环向包括顶部的拱顶、底部的仰拱和两侧边墙;沿隧道径向包括外层的第一层初期支护1、内层的二次衬砌3以及设置在第一层初期支护1和二次衬砌3之间的防水层,防水层包括土工布和防水板。第一层初期支护1包括第一层初期上台阶支护和第一层初期下台阶支护。第一初期上台阶支护和第一层初期下台阶支护以隧道的台阶分界线上下划分。第一层初期上台阶支护包括设置在台阶分界线以上的第一上台阶钢拱架;第一层初期下台阶支护包括设置在台阶分界线以下的第一下台阶钢拱架。第一上台阶钢拱架和第一下台阶钢拱架首尾连接形成封闭环形。
支护结构还包括设置在第一层初期支护1和防水层之间的第二层初期支护,第二层初期支护沿隧道径向设置。第二层初期支护包括第二层初期上台阶支护和第二层初期下台阶支护,第二层初期上台阶支护包括设置在台阶分界线上以上的第二上台阶钢拱架,第二层初期下台阶支护包括设置在台阶分界线以下的第二下台阶钢拱架,第二上台阶钢拱架和第二下台阶钢拱架首尾连接形成封闭环形。
第一上台阶钢拱架包括通过连接钢架依次连接的第一边墙钢拱架11、第一顶部钢拱架12、第二边墙钢拱架13,第一边墙钢拱架11与第二边墙钢拱架13对称设置在第一顶部钢拱架12的左右两侧上。第一下台阶钢拱架包括通过连接钢架依次连接的第三边墙钢拱架14、第四边墙钢拱架15、第一底部钢拱架16、第五边墙钢拱架17、第六边墙钢拱架18。第四边墙钢拱架15与第五边墙钢拱架17对称设置在第一底部钢拱架16的左右两侧。第三边墙钢拱架14的第一端端部与第一边墙钢拱架11连接,第三边墙钢拱架14的第二端向下延伸,第三边墙钢拱架14第一端的侧边与第四边墙钢拱架15远离第一底部钢拱架16的一端连接;第六边墙钢拱架18的第一端端部与第二边墙钢拱架13连接,第六边墙钢拱架18的第二端向下延伸,第六边墙钢拱架18第一端的侧边与第五边墙钢拱架17远离第一底部钢拱架16的一端连接。
第二上台阶钢拱架包括通过连接钢架依次连接的第一边墙钢支撑、第一顶部钢支撑、第二边墙钢支撑,第一边墙钢支撑与第二边墙钢支撑对称设置在第一顶部钢支撑的左右两侧上。第二下台阶钢拱架包括通过连接钢架依次连接的第三边墙钢支撑24、第一底部钢支撑25、第四边墙钢支撑26,第三边墙钢支撑24与第四边墙钢支撑26对称设置在第一底部钢支撑25的左右两侧上。第一边墙钢支撑通过连接钢架与第三边墙支撑连接,第二边墙钢支撑通过连接钢架与第四边墙钢支撑26连接。
第一层初期支护1与第二初期支护之间设有一支预留变形空间4,第二层初期支护与防水层之间设有二支预留变形空间5。一支预留变形空间4的预留变形量大于二支预留变形空间5的预留变形量。在本实施例中,一支预留变形空间4的预留变形量优选为30cm,二支预留变形空间5的预留变形量优选为15cm。
第一层初期上台阶支护还包括拱部锚杆组件,拱部锚杆组件包括多个带排气装置的组合中空锚杆6,多个组合中空锚杆6沿隧道的环向和纵向布置在拱顶上。组合中空锚杆6长3m,在环向方向上间隔1.2m施作一根组合中空锚杆6,在纵向方向上间隔1.0m施作一根组合中空锚杆6。
该支护结构还包括加强锚杆组件,加强锚杆组件包括多个拱部长锚杆7、多个边墙长锚杆8、多个隧底长锚杆9。多个拱部长锚杆7沿隧道的环向和纵向布置在拱顶上。多个边墙长锚杆8沿隧道的环向和纵向布置在两侧边墙上,两侧边墙包括分设在台阶分界线上下两侧上的上台阶边墙和下台阶边墙,对应地,边墙长锚杆8包括上台阶边墙长锚杆8和下台阶边墙长锚杆8,上台阶边墙长锚杆8设置在上台阶边墙长上,下台阶边墙长锚杆8设置在下台阶边墙上。多个隧底长锚杆9沿隧道的环向和纵向布置在隧道底部上。拱部长锚杆7采用直径为25mm,长为6m的树脂锚杆,在环向方向上间隔1.2m施作一根树脂锚杆,在纵向方向上间隔1.2m施作一根树脂锚杆。边墙长锚杆8和隧底长锚杆9均采用直径为32mm,长为8m的自进式锚杆,在环向方向上间隔1.2m施作一根自进式锚杆,在纵向方向上间隔1.0m施作一根自进式锚杆。
第一层初期支护1采用含有第一层上台阶钢拱架、第一层下台阶钢拱架、钢筋网片、纵向连接钢筋、连接钢筋、上下台阶锁脚锚管10的喷射混凝土结构构成。第二层初期支护采用含有第二层上台阶钢拱架、第二层下台阶钢拱架、钢筋网片、纵向连接钢筋、连接钢筋的喷射混凝土结构构成。
两台阶带仰拱快速封闭隧道支护结构的施工方法实施例
参加图3至10,本发明的两台阶带仰拱快速封闭隧道支护结构的施工方法,包括以下步骤:
在步骤S1中,安装上台阶超前支护和上台阶超前加固锚杆。首先,采用凿岩车沿拱顶的开挖外轮廓线向前以一定角度打入直径为42mm、长4.5m的超前小导管20,超前小导管20按照纵向3m作为一个循环连接施工,两循环纵向搭接1.5m,超前小导管20环向布置间距为40cm。然后以一定压力对超前小导管20内进行注浆加固,超前小导管20注浆需饱满。接着,采用凿岩车在上台阶掌子面上安装超前加固锚杆30,该超前加固锚杆30优选为玻璃纤维锚杆,玻璃纤维锚杆直径为22mm、长6m。多个玻璃纤维锚杆分设为多个横排和多个竖排,每一横排相隔1.5m,每一竖排相隔1.5m。为了方便操作,可先在上台阶掌子面上按照横向间距1.5m,竖向间距1.5m的规格画出横向辅助线和纵向辅助线,横向辅助线与纵向辅助线交错设置。然后在横向辅助线和竖向辅助线的所有交叉点中选取多个交叉点施作玻璃纤维锚杆,使得相邻两根玻璃纤维锚杆在横向上间距3.0m,相邻两根玻璃纤维锚杆在竖向上间距3.0m。玻璃纤维锚杆按照纵向6m一个循环连接施工。
接着执行步骤S2,开挖隧道上台阶洞身。具体为,先采用凿岩台车进行钻孔施工,然后采用弱爆破的方式开挖上台阶洞身。开挖过程中先开挖拱顶,后开挖边墙,每循环进尺不超过2榀钢架间距,即不超过1.2m,通过五次开挖,共开挖至6m。在开挖边墙之前,在拱顶的两侧分别向岩壁打入2根直径为42mm、长4.5m的锁脚锚管10,并向该锁脚锚管10内注浆,防止拱顶收缩或掉拱。
然后执行步骤S3,紧跟上台阶掌子面安装第一层初期上台阶支护。在开挖隧道上台阶洞身后,及时在上台阶的岩面进行初喷厚度为4cm的混凝土。然后再采用凿岩台车或锚杆钻机在隧道的拱部安装直径为22mm,长3m的带排气装置的组合中空锚杆6并注浆饱满。相邻两根组合中空锚杆6在环向方向上间隔1.2m,在纵向方向上间隔1.0m。接着安装第一层初期上台阶钢拱架。在安装第一层初期上台阶钢拱架前,先依次连接第一边墙钢拱架11、第一顶部钢拱架12、第二边墙钢拱架13。第一边墙钢拱架11和第一顶部钢拱架12之间通过连接钢架连接,第一顶部钢拱架12和第二边墙钢拱架13之间通过连接钢架连接。然后通过钢拱架安装机安装第一层初期上台阶钢拱架。然后安装钢架网片,并将钢架网片、锁脚锚管10等分别与第一层初期上台阶钢拱架焊接固定,接着复喷射混凝土,使得第一层初期上台阶支护的初喷混凝土和复喷混凝土的总厚度为27cm,并确保整体均匀密实、背后无空洞。
接着执行步骤S4,开挖隧道下台阶洞身。先采用凿岩台车进行钻孔施工,然后采用弱爆破的方式开挖下台阶,每循环进行不超过5榀钢架间距,即不超过3m,通过两次开挖,共开挖至6m,与上台阶形成一次短台阶快速施工。在开挖下台阶洞身时,在仰拱的两侧分别向岩壁打入2根直径为42mm、长4.5m的锁脚锚管10,并向该锁脚锚管10内注浆。
然后执行步骤S5,紧跟下台阶掌子面安装第一层初期下台阶支护。在开挖隧道下台阶洞身后,及时在下台阶的岩面进行初喷厚度为4cm的混凝土。然后采用凿岩台车或锚杆钻机在隧底安装隧底长锚杆9并注M20水泥净浆。隧道长锚杆9优选采用直径为32mm,长为8m的自进式锚杆,在环向方向上间隔1.2m安装一根自进式锚杆,在纵向方向上间隔1.0m安装一根自进式锚杆。接着采用凿岩台车或锚杆钻机在隧底上钻引导孔并通过插入引导孔内的孔口管40进行注浆。引导孔的孔深3m,在环向方向上间距1.5m钻一个引导孔,在纵向方向上间距2.5m钻一个引导孔。随后采用钢拱架安装机安装第一层初期下台阶支护,使得第一层初期下台阶支护与第一层初期上台阶支护形成封闭环。在安装第一层初期下台阶支护前,先依次通过连接钢架连接的第三边墙钢拱架14、第四边墙钢拱架15、第一底部钢拱架16、第五边墙钢拱架17、第六边墙钢拱架18。然后安装钢架网片,并将钢架网片、锁脚锚管10等分别与第一层初期上台阶钢拱架焊接固定,接着复喷射混凝土,使得第一层初期下台阶的初喷混凝土和复喷混凝土的总厚度为27cm,并确保整体均匀密实、背后无空洞。
在步骤S6中, 安装下台阶的边墙长锚杆8和隧底长锚杆9。沿隧道的环向和纵向在下台阶的两侧边墙上安装多个边墙长锚杆8,沿隧道的环向和纵向在隧道底部安装多个隧底长锚杆9。下台阶的边墙长锚杆8和隧底长锚杆9均采用直径为32mm,长为8m的自进式锚杆,在环向方向上间隔1.2m安装一根自进式锚杆,在纵向方向上间隔1.0m安装一根自进式锚杆。
接着执行步骤S7,安装第二层初期下台阶支护及喷射混凝土,并进行隧底回填。在安装第二层初期下台阶支护前,通过连接钢架依次连接第三边墙钢支撑24、第一底部钢支撑25、第四边墙钢支撑26。在第一层初期支护初步稳定后通过钢拱架安装机安装第二层初期下台阶支护。接着安装钢筋网片,并将钢架网片与第二层初期下台阶钢拱架焊接固定,并喷射混凝土,使得第二层初期下台阶支护喷射混凝土后的厚度为25cm,并确保整体均匀密实、背后无空洞,即混凝土应完全填充第二层初期下台阶支护和第一层下台阶支护之间的空隙。在喷射混凝土施工前,应在第二层初期支护下台阶钢拱架安装完毕后,在两侧外漏段预留接头并采取保护措施后喷射混凝土,即在第三边墙钢拱架14和第六边墙钢拱架18处预留接头并对该预留接头采取保护措施后喷射混凝土。第二层初期支护安装完成后,采用洞渣进行隧底回填并压实。
然后执行步骤S8,判断隧道是否打通。若是,则只执行步骤S9至S12;若否,则在对上一施工区段执行步骤S9至S12的同时,对下一施工区段执行步骤S1至S7,以此按照纵向6m一个循环形成短台阶快速封闭成环推进施工。上一施工区段和后一施工区段为相邻的两个施工区段,为了方便说明,将上一施工区段命名为第一施工区段,将后一施工区段命名为第二施工区段。
在步骤S9中,安装上台阶的边墙长锚杆8及拱顶长锚杆7。沿隧道的环向和纵向在上台阶的两侧边墙上安装多个边墙长锚杆8,沿隧道的环向和纵向在拱顶上安装多个拱顶长锚杆7。上台阶的边墙长锚杆采用直径为32mm,长为8m的自进式锚杆,在环向方向上间隔1.2m安装一根自进式锚杆,在纵向方向上间隔1.0m安装一根自进式锚杆。拱顶长锚杆采用直接为25mm,长为6m的树脂锚杆,在环向方向上间隔1.2m安装一根树脂锚杆,在纵向方向上间隔1.2m安装一根树脂锚杆。
为进一步提高破碎围岩的整体性,全隧道采用凿岩台车或锚杆钻机在拱部和边墙围岩上钻引导孔并通过插入引导孔内的孔口管40进行注浆,引导孔的孔深3m,使得注浆加固至开挖轮廓线3m范围。引导孔在环向方向上间距1.5m,在纵向方向上间距2.5m。
然后执行步骤S10,在第一施工区段上安装第二层初期上台阶支护并喷射混凝土。在第二施工区段的上台阶掘进掌子面15至20m后,且在第一层初期支护变形收敛达1/2预留变形量后或变形未达1/2预留变形量但已稳定时安装第二层初期上台阶支护。第二层初期上台阶支护和第一层初期上台阶支护之间预留一支预留变形空间,该一支预留变形空间的预留变形量优选为30cm。第二层初期支护沿隧道径向设置,第二层初期支护包括第二上台阶钢拱架。第二上台阶钢拱架包括依次连接的第一边墙钢支撑21、第一顶部钢支撑22、第二边墙钢支撑23。在安装第二层初期支护前,先依次连接第一边墙钢支撑21、第一顶部钢支撑22、第二边墙钢支撑23,然后通过钢拱架安装机安装第二上台阶钢拱架,使得第二上台阶钢拱架与第二下台阶钢拱架形成封闭环形。接着安装钢筋网片并将钢筋网片与第二层上台阶钢拱架焊接牢固,然后喷射混凝土,使得第二层上台阶之间喷射混凝土后的总厚度为25cm,并确保整体均匀密实、背后无空洞,即混凝土应完全填充第二层初期上台阶支护和第一层上台阶支护之间的空隙。
接着执行步骤S11,进行仰拱浇筑及仰拱填充浇筑。待第一施工区段的第二层初期支护支护一段距离后,且第二层初期支护在闭合成环的区段的收敛变形数据评定稳定后,进行仰拱填充浇筑施工。首先,安装仰拱模板,放入双层钢筋,采用C35混凝土进行仰拱浇筑。在仰拱浇筑基本凝固后,安装仰拱填充模板,采用C20混凝土进行填充浇筑。
然后执行步骤S12,进行二次衬砌浇筑。在进行二衬衬砌浇筑前,先在第二层初期上台支护上铺设防水层,该防水层包括土工布和防水板。防水层与第二层初期支护之间要预留二支预留变形空间,或者二衬砌与第二层初期支护之间预留二支预留变形空间,防水层包含在该二支预留变形空间内。该二支预留变形空间的预留变形量小于一支预留变形空间的预留变形量,本实施例二支预留变形量为15cm。然后安装二衬模板并放入双层钢筋,接着采用C35混凝土进行二衬砼浇筑,使得二衬衬砌的总厚度达到60cm。二次衬砌浇筑一段距离后,待二次衬砌变形稳定后,即可安装两侧水沟电缆槽模板并进行水沟电缆槽的浇筑施工。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业应用性
本发明用于高地应力软岩隧道施工应用场合,本发明通过在第一层初期支护和防水层之间设置第二层初期支护,在第一层初期支护和第二层初期支护之间设有一支预留变形空间,在第二层初期支护和防水层之间设有二支预留变形空间,第一层初期支护和第二层初期支护能最大限度地抵抗开挖卸荷后的地层压力,防止隧道内周发生变形,一支预留变形空间和二支预留变形空间能有效释放围岩变形,减少作用在第一层初期支护和第二层初期支护上的力,防止第一层初期支护和第二层初期支护的支护结构失效,能有效解决高地应力、软岩大变形等不良地质条件对隧道机械化施工方法的局限性,大大降低隧道施工过程中的安全风险,既安全、又快速、又经济合理。
本发明涉及隧道施工领域,提供一种两台阶带仰拱快速封闭隧道支护结构,该支护结构由外至内包括第一层初期支护、第二层初期支护、防水层、二次衬砌,第一层初期支护包括第一层初期上台阶支护和第一层初期下台阶支护;第一层初期上台阶支护包括第一上台阶钢拱架,第一层初期下台阶支护包括第一下台阶钢拱架,第一上台阶钢拱架和第一下台阶钢拱架首尾连接形成封闭环形;第二层初期支护包括第二层初期上台阶支护和第二层初期下台阶支护,第二层初期上台阶支护包括第二上台阶钢拱架,第二层初期下台阶支护包括第二下台阶钢拱架,第二上台阶钢拱架和第二下台阶钢拱架首尾连接形成封闭环形。
Claims (10)
- 一种两台阶带仰拱快速封闭隧道支护结构,沿隧道环向包括顶部的拱顶、底部的仰拱和两侧边墙,沿隧道径向包括外层的第一层初期支护、内层的二次衬砌以及设置在所述第一层初期支护和所述二次衬砌之间的防水层,所述防水层包括土工布和防水板,其特征在于:所述第一层初期支护包括第一层初期上台阶支护和第一层初期下台阶支护;所述第一层初期上台阶支护包括第一上台阶钢拱架,所述第一层初期下台阶支护包括第一下台阶钢拱架,所述第一上台阶钢拱架和所述第一下台阶钢拱架首尾连接形成封闭环形;所述支护结构还包括设置在所述第一层初期支护和所述防水层之间的第二层初期支护,所述第二层初期支护沿隧道径向设置;所述第二层初期支护包括第二层初期上台阶支护和第二层初期下台阶支护,所述第二层初期上台阶支护包括第二上台阶钢拱架,所述第二层初期下台阶支护包括第二下台阶钢拱架,所述第二上台阶钢拱架和所述第二下台阶钢拱架首尾连接形成封闭环形。
- 根据权利要求1所述的支护结构,其特征在于:所述第一上台阶钢拱架包括依次连接的第一边墙钢拱架、第一顶部钢拱架、第二边墙钢拱架;所述第一下台阶钢拱架包括依次连接的第三边墙钢拱架、第四边墙钢拱架、第一底部钢拱架、第五边墙钢拱架、第六边墙钢拱架;所述第三边墙钢拱架的第一端端部与第一边墙钢拱架连接,所述第三边墙钢拱架的第二端向下延伸,所述第四边墙钢拱架连接在所述第三边墙钢拱架的第一端的侧边;第六边墙钢拱架的第一端端部与第二边墙钢拱架连接,所述六边墙钢拱架的第二端向下延伸,所述第五边墙钢拱架连接在所述第六边墙钢拱架的第一端的侧边。
- 根据权利要求1所述的支护结构,其特征在于:所述第二上台阶钢拱架包括依次连接的第一边墙钢支撑、第一顶部钢支撑、第二边墙钢支撑;所述第二下台阶钢拱架包括依次连接的第三边墙钢支撑、第一底部钢支撑、第四边墙钢支撑;第一边墙钢支撑与第三边墙支撑连接,第二边墙钢支撑与第四边墙钢支撑连接。
- 根据权利要求1至3任一项所述的支护结构,其特征在于:所述第一层初期支护与所述第二初期支护之间设有一支预留变形空间,所述第二层初期支护与所述防水层之间设有二支预留变形空间,所述一支预留变形空间的预留变形量大于所述二支预留变形空间的预留变形量。
- 根据权利要求1至4任一项所述的支护结构,其特征在于:所述第一层初期上台阶支护还包括拱部锚杆组件,所述拱部锚杆组件包括多个带排气装置的组合中空锚杆,多个组合中空锚杆沿隧道的环向和纵向布置在所述拱顶上。
- 根据权利要求1至5任一项所述的支护结构,其特征在于:所述支护结构还包括加强锚杆组件,所述加强锚杆组件包括多个拱部长锚杆、多个上台阶边墙长锚杆、多个下台阶边墙长锚杆、多个隧底长锚杆;多个所述拱部长锚杆沿隧道的环向和纵向布置在所述拱顶上,多个所述上台阶边墙长锚杆沿隧道的环向和纵向布置在隧道上台阶的两侧边墙上,多个所述下台阶边墙长锚杆沿隧道的环向和纵向布置在隧道下台阶的两侧边墙上,多个所述隧底长锚杆沿隧道的环向和纵向布置在隧道底部上。
- 一种两台阶带仰拱快速封闭隧道支护结构的施工方法,其特征在于:包括以下步骤:安装上台阶超前支护和上台阶超前加固锚杆;开挖隧道上台阶洞身;安装第一层初期上台阶支护并喷射混凝土;开挖隧道下台阶洞身;安装第一层初期下台阶支护并喷射混凝土;安装下台阶边墙长锚杆及隧底长锚杆;安装第二层初期下台阶支护及喷射混凝土,并进行隧底回填;安装上台阶边墙长锚杆及拱顶长锚杆;安装第二层初期上台阶支护并喷射混凝土;进行仰拱浇筑及仰拱填充浇筑;进行二次衬砌浇筑。
- 根据权利要求7所述的施工方法,其特征在于:所述施工方法还包括:判断隧道是否打通,若否,则在安装所述上台阶边墙长锚杆及拱顶长锚杆的同时,沿隧道的纵向向前相继进行所述安装上台阶超前支护和上台阶超前加固锚杆的步骤、所述开挖隧道上台阶洞身的步骤、所述安装第一层初期上台阶支护并喷射混凝土的步骤、所述开挖隧道下台阶洞身的步骤、所述安装第一层初期下台阶支护并喷射混凝土的步骤、所述安装下台阶边墙长锚杆及隧底长锚杆的步骤、所述安装第二层初期下台阶支护及喷射混凝土并进行隧底回填的步骤,形成短台阶快速封闭成环循环推进施工。
- 根据权利要求7或8所述的施工方法,其特征在于:所述上台阶超前支护包括多个超前注浆小导管,多个超期注浆小导管沿隧道的环向及纵向布置。
- 根据权利要求7至9任一项项所述的施工方法,其特征在于:所述上台阶超前加固锚杆包括多个纵向锚杆,多个纵向锚杆沿隧道的纵向布置在隧道上台阶的掌子面上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021514999A JP7125550B2 (ja) | 2019-06-19 | 2019-10-17 | 逆アーチを備えた2段階高速閉鎖トンネルの支持構造及びその施工方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910532043.7 | 2019-06-19 | ||
CN201910532043.7A CN110130948A (zh) | 2019-06-19 | 2019-06-19 | 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020253001A1 true WO2020253001A1 (zh) | 2020-12-24 |
Family
ID=67578133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111619 WO2020253001A1 (zh) | 2019-06-19 | 2019-10-17 | 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7125550B2 (zh) |
CN (1) | CN110130948A (zh) |
WO (1) | WO2020253001A1 (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112727473A (zh) * | 2021-02-04 | 2021-04-30 | 中铁二院工程集团有限责任公司 | 一种高地应力大变形隧道预锚固快速掘进施工方法 |
CN112854113A (zh) * | 2020-12-31 | 2021-05-28 | 中铁七局集团武汉工程有限公司 | 应用于三管一联混凝土结构倒虹吸管道的仰拱模板 |
CN113153308A (zh) * | 2021-03-09 | 2021-07-23 | 中铁八局集团有限公司 | 双联拱隧道塌方段施工方法 |
CN113482671A (zh) * | 2021-08-24 | 2021-10-08 | 甘肃省交通规划勘察设计院股份有限公司 | 基于台阶法开挖的抑制隧道初期支护下沉量的施工方法 |
CN113586079A (zh) * | 2021-08-24 | 2021-11-02 | 中国电建集团中南勘测设计研究院有限公司 | 一种隧道十字交叉口结构及其施工方法 |
CN113669082A (zh) * | 2021-09-09 | 2021-11-19 | 中铁隧道集团二处有限公司 | 一种含中心水沟的隧道仰拱填充施工方法 |
CN113982639A (zh) * | 2021-10-16 | 2022-01-28 | 北京城建道桥建设集团有限公司 | 一种不良地质区内隧道衬砌全环拆换施工方法 |
CN114483054A (zh) * | 2022-03-07 | 2022-05-13 | 中铁隧道局集团有限公司 | 上软下硬地层导洞非爆开挖施工方法 |
CN115288193A (zh) * | 2022-08-08 | 2022-11-04 | 中铁二局集团有限公司 | 一种基于多层作业平台的空间大跨穹顶结构施工方法 |
CN115306424A (zh) * | 2022-08-29 | 2022-11-08 | 中国建筑第二工程局有限公司 | 一种大断面横通道马头门破除作业平台及施工方法 |
CN115387379A (zh) * | 2022-07-28 | 2022-11-25 | 中铁隧道局集团有限公司 | 预制弧形构件用支撑结构及其应用 |
CN116517595A (zh) * | 2023-06-27 | 2023-08-01 | 矿冶科技集团有限公司 | 一种软破岩体硐室加固结构和方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110130948A (zh) * | 2019-06-19 | 2019-08-16 | 中铁十九局集团第六工程有限公司 | 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 |
CN111140251A (zh) * | 2020-01-19 | 2020-05-12 | 四川省交通勘察设计研究院有限公司 | 一种限制陡倾千枚岩隧道水平位移的支护结构及方法 |
JP7264099B2 (ja) | 2020-03-27 | 2023-04-25 | いすゞ自動車株式会社 | タンク |
CN111594182A (zh) * | 2020-05-14 | 2020-08-28 | 北京交通大学 | 一种大埋深软岩隧道大变形控制方法 |
CN111734455A (zh) * | 2020-06-24 | 2020-10-02 | 高军 | 一种软岩大变形隧道两台阶带仰拱同步开挖快速施工方法 |
CN112196581B (zh) * | 2020-10-15 | 2022-10-28 | 中铁二局第二工程有限公司 | 一种软岩隧道施工支护时机确定方法 |
CN112196582B (zh) * | 2020-10-15 | 2023-02-24 | 中铁二局第二工程有限公司 | 一种强震深埋软岩地层隧道严重大变形控制方法 |
CN113187514B (zh) * | 2021-05-25 | 2024-02-23 | 中铁九局集团第七工程有限公司 | 一种市域铁路矿山法隧道燕尾段施工方法 |
CN115478869B (zh) * | 2022-08-26 | 2024-05-17 | 中铁第一勘察设计院集团有限公司 | 隧道交叉口结构及施工方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010116739A (ja) * | 2008-11-13 | 2010-05-27 | Shimizu Corp | トンネル支保方法及びトンネル支保構造 |
CN101906975A (zh) * | 2010-08-09 | 2010-12-08 | 中铁第一勘察设计院集团有限公司 | 一种特大断面黄土隧道下穿铁路的支护结构及其施工方法 |
CN102996148A (zh) * | 2012-11-22 | 2013-03-27 | 中交第二公路勘察设计研究院有限公司 | 一种高地应力软岩公路隧道支护方法 |
CN103527219A (zh) * | 2013-10-18 | 2014-01-22 | 四川省交通运输厅公路规划勘察设计研究院 | 用于大变形地层的隧道支护结构及其施工工法 |
CN104533446A (zh) * | 2015-01-16 | 2015-04-22 | 中交一公局第一工程有限公司 | 一种大断面软弱围岩隧道双层初期支护预防地质灾害发生的施工方法及其结构 |
CN205503151U (zh) * | 2016-04-07 | 2016-08-24 | 广州市水电建设工程有限公司 | 一种应用于深层隧道排水工程的基坑支护结构 |
CN106761810A (zh) * | 2016-11-23 | 2017-05-31 | 长安大学 | 一种软岩大变形隧道支护结构体系及其施工方法 |
CN108180025A (zh) * | 2018-01-31 | 2018-06-19 | 中铁二十局集团轨道交通工程有限公司 | 一种圆形断面隧道三次衬砌施工方法 |
CN110130948A (zh) * | 2019-06-19 | 2019-08-16 | 中铁十九局集团第六工程有限公司 | 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 |
CN110295925A (zh) * | 2018-03-21 | 2019-10-01 | 中铁二院(成都)建设发展有限责任公司 | 红层砂泥岩隧道大变形段落施工方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58207497A (ja) * | 1982-05-26 | 1983-12-02 | 財団法人鉄道総合技術研究所 | トンネル内壁形成工法 |
JPH08165899A (ja) * | 1994-12-13 | 1996-06-25 | Shigeki Nagatomo | 補強筋兼用の支保工を用いたトンネルの覆工方法 |
JPH09217594A (ja) * | 1996-02-13 | 1997-08-19 | Fujita Corp | トンネルの支保方法 |
JP2000303797A (ja) | 1999-04-19 | 2000-10-31 | Kfc Ltd | 支保工継手およびそれを用いた支保工構造 |
JP4375733B2 (ja) | 2004-06-02 | 2009-12-02 | 独立行政法人鉄道建設・運輸施設整備支援機構 | 鋼管打設工法 |
JP4281010B2 (ja) | 2005-02-25 | 2009-06-17 | 独立行政法人産業技術総合研究所 | トンネル構造 |
CN104847374B (zh) * | 2015-04-24 | 2017-05-31 | 长安大学 | 软岩大变形隧道支护体系及其施工方法 |
JP6905698B2 (ja) | 2016-09-09 | 2021-07-21 | 株式会社ビーエスアイ | トンネルの防水断熱用複合シート及び防水シート、並びに複合シートの設置方法 |
JP6190026B2 (ja) | 2016-10-12 | 2017-08-30 | フジモリ産業株式会社 | トンネルの掘削方法 |
JP2018131865A (ja) | 2017-02-17 | 2018-08-23 | 大成建設株式会社 | トンネル支保工 |
CN108952783A (zh) * | 2018-08-01 | 2018-12-07 | 中铁十九局集团第六工程有限公司 | 一种隧道双重支护预埋施工方法 |
CN109826632B (zh) * | 2019-03-26 | 2020-06-16 | 西南交通大学 | 一种软弱破碎炭质页岩单线隧道的大变形控制方法 |
CN210178380U (zh) * | 2019-06-19 | 2020-03-24 | 中铁十九局集团第六工程有限公司 | 一种两台阶带仰拱快速封闭隧道支护结构 |
-
2019
- 2019-06-19 CN CN201910532043.7A patent/CN110130948A/zh active Pending
- 2019-10-17 JP JP2021514999A patent/JP7125550B2/ja active Active
- 2019-10-17 WO PCT/CN2019/111619 patent/WO2020253001A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010116739A (ja) * | 2008-11-13 | 2010-05-27 | Shimizu Corp | トンネル支保方法及びトンネル支保構造 |
CN101906975A (zh) * | 2010-08-09 | 2010-12-08 | 中铁第一勘察设计院集团有限公司 | 一种特大断面黄土隧道下穿铁路的支护结构及其施工方法 |
CN102996148A (zh) * | 2012-11-22 | 2013-03-27 | 中交第二公路勘察设计研究院有限公司 | 一种高地应力软岩公路隧道支护方法 |
CN103527219A (zh) * | 2013-10-18 | 2014-01-22 | 四川省交通运输厅公路规划勘察设计研究院 | 用于大变形地层的隧道支护结构及其施工工法 |
CN104533446A (zh) * | 2015-01-16 | 2015-04-22 | 中交一公局第一工程有限公司 | 一种大断面软弱围岩隧道双层初期支护预防地质灾害发生的施工方法及其结构 |
CN205503151U (zh) * | 2016-04-07 | 2016-08-24 | 广州市水电建设工程有限公司 | 一种应用于深层隧道排水工程的基坑支护结构 |
CN106761810A (zh) * | 2016-11-23 | 2017-05-31 | 长安大学 | 一种软岩大变形隧道支护结构体系及其施工方法 |
CN108180025A (zh) * | 2018-01-31 | 2018-06-19 | 中铁二十局集团轨道交通工程有限公司 | 一种圆形断面隧道三次衬砌施工方法 |
CN110295925A (zh) * | 2018-03-21 | 2019-10-01 | 中铁二院(成都)建设发展有限责任公司 | 红层砂泥岩隧道大变形段落施工方法 |
CN110130948A (zh) * | 2019-06-19 | 2019-08-16 | 中铁十九局集团第六工程有限公司 | 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112854113A (zh) * | 2020-12-31 | 2021-05-28 | 中铁七局集团武汉工程有限公司 | 应用于三管一联混凝土结构倒虹吸管道的仰拱模板 |
CN112727473A (zh) * | 2021-02-04 | 2021-04-30 | 中铁二院工程集团有限责任公司 | 一种高地应力大变形隧道预锚固快速掘进施工方法 |
CN113153308B (zh) * | 2021-03-09 | 2023-12-08 | 中铁八局集团有限公司 | 双联拱隧道塌方段施工方法 |
CN113153308A (zh) * | 2021-03-09 | 2021-07-23 | 中铁八局集团有限公司 | 双联拱隧道塌方段施工方法 |
CN113482671A (zh) * | 2021-08-24 | 2021-10-08 | 甘肃省交通规划勘察设计院股份有限公司 | 基于台阶法开挖的抑制隧道初期支护下沉量的施工方法 |
CN113586079A (zh) * | 2021-08-24 | 2021-11-02 | 中国电建集团中南勘测设计研究院有限公司 | 一种隧道十字交叉口结构及其施工方法 |
CN113482671B (zh) * | 2021-08-24 | 2024-03-15 | 兰州交通大学 | 基于台阶法开挖的抑制隧道初期支护下沉量的施工方法 |
CN113586079B (zh) * | 2021-08-24 | 2024-02-13 | 中国电建集团中南勘测设计研究院有限公司 | 一种隧道十字交叉口结构及其施工方法 |
CN113669082A (zh) * | 2021-09-09 | 2021-11-19 | 中铁隧道集团二处有限公司 | 一种含中心水沟的隧道仰拱填充施工方法 |
CN113982639A (zh) * | 2021-10-16 | 2022-01-28 | 北京城建道桥建设集团有限公司 | 一种不良地质区内隧道衬砌全环拆换施工方法 |
CN114483054A (zh) * | 2022-03-07 | 2022-05-13 | 中铁隧道局集团有限公司 | 上软下硬地层导洞非爆开挖施工方法 |
CN115387379A (zh) * | 2022-07-28 | 2022-11-25 | 中铁隧道局集团有限公司 | 预制弧形构件用支撑结构及其应用 |
CN115288193A (zh) * | 2022-08-08 | 2022-11-04 | 中铁二局集团有限公司 | 一种基于多层作业平台的空间大跨穹顶结构施工方法 |
CN115306424A (zh) * | 2022-08-29 | 2022-11-08 | 中国建筑第二工程局有限公司 | 一种大断面横通道马头门破除作业平台及施工方法 |
CN116517595B (zh) * | 2023-06-27 | 2023-09-05 | 矿冶科技集团有限公司 | 一种软破岩体硐室加固结构和方法 |
CN116517595A (zh) * | 2023-06-27 | 2023-08-01 | 矿冶科技集团有限公司 | 一种软破岩体硐室加固结构和方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7125550B2 (ja) | 2022-08-24 |
JP2022500579A (ja) | 2022-01-04 |
CN110130948A (zh) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020253001A1 (zh) | 一种两台阶带仰拱快速封闭隧道支护结构及其施工方法 | |
CN111119935B (zh) | 一种巷道松软破碎构造围岩多层次注浆加固方法 | |
CN112431599B (zh) | 上软下硬地层的隧道开挖方法 | |
CN108798702B (zh) | 一种大断面软岩大变形隧道的支护方法 | |
CN107060774B (zh) | 一种防隧道洞口围岩坍塌装置及施工方法 | |
CN105781574A (zh) | 一种隧道装配式支护体系及其施工方法 | |
CN103527219A (zh) | 用于大变形地层的隧道支护结构及其施工工法 | |
CN107255035A (zh) | 一种挤压型软弱围岩超大断面隧道支护体系及其施工方法 | |
CN110878696B (zh) | 上软下硬地层盾构法与矿山法交界处隧道段围岩加固方法 | |
CN203515604U (zh) | 用于大变形地层的隧道支护结构 | |
CN101864960A (zh) | 岩溶地区双连拱公路隧道施工方法 | |
CN107965341A (zh) | 一种大断面硐室管棚管网混凝土支护方法 | |
CN108166989A (zh) | 富水地层“oc”形非对称联拱隧道中隔壁施工方法 | |
WO2020259059A1 (zh) | 一种tbm平导洞身施工方法 | |
CN108678771A (zh) | 穿越断层破碎带隧道初期支护及中隔壁加强支护体系 | |
CN110159298A (zh) | 一种地铁暗挖车站初支扣拱施工方法 | |
CN112922635B (zh) | 一种水工隧洞开挖支护结构及施工方法 | |
CN112963156A (zh) | 一种土岩复合地层浅埋隧道的复合加固方法及复合加固结构 | |
CN111472790A (zh) | 用于控制浅埋暗挖大断面隧道沉降的施工结构及施工方法 | |
CN110230497A (zh) | 一种线隧道正洞身双侧壁导坑施工方法 | |
CN114412475A (zh) | 一种浅埋破碎围岩的隧道反向出洞施工方法 | |
CN108915702B (zh) | 一种圆形小断面隧道内盾构接收方法 | |
CN210178380U (zh) | 一种两台阶带仰拱快速封闭隧道支护结构 | |
CN114215546B (zh) | 软岩隧道的初期支护方法 | |
CN110985002A (zh) | 一种用于横向半软半硬断面地层中的隧道施工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19933790 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021514999 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19933790 Country of ref document: EP Kind code of ref document: A1 |