WO2020252694A1 - 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用 - Google Patents

一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用 Download PDF

Info

Publication number
WO2020252694A1
WO2020252694A1 PCT/CN2019/091895 CN2019091895W WO2020252694A1 WO 2020252694 A1 WO2020252694 A1 WO 2020252694A1 CN 2019091895 W CN2019091895 W CN 2019091895W WO 2020252694 A1 WO2020252694 A1 WO 2020252694A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene
emulsion composition
solvent
preparing
nanofiber
Prior art date
Application number
PCT/CN2019/091895
Other languages
English (en)
French (fr)
Inventor
张涛
桂豪冠
高国洪
Original Assignee
江苏国望高科纤维有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏国望高科纤维有限公司 filed Critical 江苏国望高科纤维有限公司
Priority to US17/289,022 priority Critical patent/US20220098395A1/en
Priority to PCT/CN2019/091895 priority patent/WO2020252694A1/zh
Priority to JP2021575313A priority patent/JP7423663B2/ja
Publication of WO2020252694A1 publication Critical patent/WO2020252694A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/40Formation of filaments, threads, or the like by applying a shearing force to a dispersion or solution of filament formable polymers, e.g. by stirring
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/20Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • D01F6/22Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain from polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/42Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising cyclic compounds containing one carbon-to-carbon double bond in the side chain as major constituent

Definitions

  • the invention belongs to the technical field of nanofibers, and specifically relates to an emulsion composition for preparing polystyrene nanofibers, polystyrene nanofibers, polystyrene nanofiber products, and preparation methods and applications thereof.
  • the fiber has a pore structure and the manufactured polystyrene nanofiber product has a stable and controllable three-dimensional structure, multi-level and/or interconnected pore structure.
  • Nanofibers have the advantages of large specific surface area and controllable diameter, which make them have important applications in absorption, adsorption, oil-water separation, and construction of special wettable surfaces.
  • polystyrene nanofibers have been more and more widely used in practical applications.
  • the current preparation method of polystyrene nanofibers is mainly electrospinning, for example, Chinese invention patent CN107675360A, which discloses a preparation method of polystyrene nanofibers, includes the following steps: dissolving polystyrene in dimethyl formaldehyde In the mixed solvent formed by amide and p-xylene, a first solution is obtained; at least one of polyether, polyvinyl alcohol, and polyvinylpyrrolidone is dissolved in deionized water to obtain a second solution; the first solution and The second solution was sucked into a syringe with dual nozzles for electrostatic spinning, and the extrusion rate of the first solution was 0.3-0.6 mL/min, and the extrusion rate of the second solution was 1.5-2.5 mL/min.
  • the first solution and the second solution are spun to obtain a fiber membrane composed of micron-level fibers and nano-level polystyrene fibers; and the fiber membrane is placed in deionized water for rinsing treatment to remove the micron-level fibers. Fiber; freeze-dried the fiber membrane after the rinsing treatment.
  • this type of electrospinning method for preparing nanofibers has the following defects: 1) Low production efficiency of polystyrene nanofibers: Based on the characteristics of electrospinning methods, it often takes a long time to prepare a small amount of nanofibers; 2) External Morphology is difficult to control: The products formed by nanofibers obtained by electrospinning are often presented as two-dimensional fiber membranes, which are difficult to obtain three-dimensional structures.
  • the prepared nanofibers often only have a single cell structure between each other, which greatly restricts the exchange of material and energy and affects the efficacy of nanofibers.
  • the existence of the above-mentioned defects greatly limits the large-scale application of polystyrene nanofibers.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a new type of emulsion composition for preparing polystyrene nanofibers.
  • the polystyrene nanofibers prepared by using the emulsion composition have a pore structure and are prepared
  • the resulting polystyrene nanofiber product has a stable and controllable three-dimensional structure, a multi-layered and/or interconnected pore structure, and both have high preparation efficiency.
  • the invention also provides a preparation method of the above emulsion composition for preparing polystyrene nanofibers.
  • the invention also provides a polystyrene nanofiber or polystyrene nanofiber product.
  • the present invention also provides a method for preparing the above-mentioned polystyrene nanofiber product, which has high preparation efficiency and a three-dimensional shape product that can be prepared stably in inorganic solvents and/or organic solvents, and the three-dimensional shape is controllable , At the same time, it has a multi-level and/or interconnected hole structure.
  • the invention also provides an application of the above-mentioned polystyrene nanofiber product or polystyrene nanofiber in absorption, adsorption, oil-water separation, and construction of a wettable surface.
  • An emulsion composition for preparing polystyrene nanofibers comprising a dispersed phase and a continuous phase, the dispersed phase comprising a soluble salt and a first solvent, and the continuous phase comprising polystyrene, a second Solvent and sulfonated polystyrene, said polystyrene is syndiotactic polystyrene, isotactic polystyrene or a combination of the two.
  • the emulsion composition is formed by mixing the dispersed phase and the continuous phase, wherein the feeding volume of the dispersed phase is greater than or equal to the feeding volume of the continuous phase.
  • the emulsion composition is formed by mixing the dispersed phase and the continuous phase, wherein the volume of the dispersed phase is greater than or equal to 1.5 times the volume of the continuous phase.
  • the emulsion composition is prepared by dropping the dispersed phase into the continuous phase.
  • the emulsion composition consists of mixing the dispersed phase and the continuous phase, wherein the temperature at which the dispersed phase and the continuous phase are mixed is 100-140°C, preferably 105-130 °C.
  • the first solvent is insoluble, slightly soluble or poorly soluble in the second solvent.
  • the first solvent is a polar solvent
  • the second solvent is a non-polar solvent
  • the first solvent is a combination of one or more selected from water, glycerin, propylene glycol and ethylene glycol
  • the second solvent is 1,2,4- Trichlorobenzene
  • the feed mass ratio of the soluble salt to the first solvent is 0.004-0.080:1, preferably 0.006-0.070:1.
  • the soluble salt is selected from sodium chloride, potassium chloride, barium chloride, calcium chloride, sodium carbonate, sodium bicarbonate, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate and One or more combinations of calcium nitrate.
  • the degree of sulfonation of the sulfonated polystyrene is 0.5-3.5 mol%, and more preferably 1-2.5 mol%. Compared with other emulsifiers, the sulfonated polystyrene is used in the present invention.
  • the emulsion composition can be maintained in a stable emulsified state for a long time, and the above-mentioned specific sulfonation degree can better ensure that the components are mixed to maintain an excellent emulsified state.
  • the feed mass ratio of the sulfonated polystyrene, the polystyrene and the second solvent is 0.005-0.025:0.03-0.08:1.
  • soluble salt accounts for 0.1-6%
  • the first solvent accounts for 60-85%
  • polystyrene accounts for 0.5-10%
  • the second Solvent accounts for 14-30% and sulfonated polystyrene accounts for 0.05-3%.
  • the average molecular weight of the polystyrene is 10,000 to 2 million, preferably 50,000 to 500,000.
  • the emulsion composition includes a dispersed phase and a continuous phase
  • the dispersed phase includes a soluble salt and a first solvent
  • the continuous phase includes polystyrene, a second solvent, and a sulfonated polystyrene.
  • the polystyrene is syndiotactic polystyrene, isotactic polystyrene or a combination of the two
  • the dispersed phase is added dropwise at a temperature of 100-140°C and stirring
  • the feed volume of the dispersed phase is greater than or equal to 1.5 times the volume of the continuous phase
  • the first solvent is selected from water, glycerin, propylene glycol, and ethylene glycol.
  • a combination of one or more of the alcohols, the second solvent is 1,2,4-trichlorobenzene, the mass ratio of the soluble salt to the first solvent is 0.004-0.080:1, the The soluble salt is one or more selected from sodium chloride, potassium chloride, barium chloride, calcium chloride, sodium carbonate, sodium bicarbonate, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate and calcium nitrate
  • the sulfonation degree of the sulfonated polystyrene is 0.5-3.5 mol%
  • the mass ratio of the sulfonated polystyrene, the polystyrene and the second solvent is 0.005-0.025:0.03- 0.08:1, in terms of mass percentage, in the emulsion composition, soluble salt accounts for 0.1-6%, the first solvent accounts for 60-85%, polystyrene accounts for 0.5-10%, and the second solvent accounts for 14%. 30%, sul
  • a preparation method of the above-mentioned emulsion composition for preparing polystyrene nanofibers includes the following steps: under heating and stirring conditions, the The dispersed phase is added dropwise to the continuous phase to prepare the emulsion composition.
  • polystyrene nanofiber or polystyrene nanofiber product made of the aforementioned emulsion composition for preparing polystyrene nanofibers.
  • the product has a multi-layered and/or interconnected pore structure.
  • the multi-level hole structure includes a first hole, a second hole, and a third hole;
  • the pore diameter of the first hole is 0.1-5nm, preferably 0.2-4nm, more preferably 0.3-2nm;
  • the pore diameter of the second hole is 6-800nm, preferably 10-600nm, more preferably 15-300nm;
  • the pore diameter of the third hole is 0.1-200 ⁇ m, preferably 0.5-100 ⁇ m, more preferably 0.5-50 ⁇ m, further preferably 0.5-20 ⁇ m.
  • the hole diameter of the second hole is larger than the hole diameter of the first hole and smaller than the hole diameter of the third hole.
  • a preparation method of the above-mentioned polystyrene nanofiber product comprising the following steps: the above-mentioned emulsion composition for preparing polystyrene nanofiber Add to mold for crystallization.
  • the preparation method further includes: adding the dispersed phase dropwise to the continuous phase under heating and stirring conditions to prepare the emulsion composition for preparing polystyrene nanofibers;
  • the obtained emulsion composition is added to a mold within a set time, allowed to stand for crystallization, separated, washed, and freeze-dried to obtain the polystyrene nanofiber product.
  • the set time is greater than 0 and less than or equal to 10 minutes, preferably greater than 0 and less than or equal to 5 minutes.
  • the crystallization time is greater than 1 hour, preferably greater than 3 hours, and more preferably greater than 5 hours.
  • the temperature of the crystallization is 5-90°C, preferably 10-80°C, more preferably 15-45°C.
  • Another technical solution provided by the present invention an application of the above-mentioned polystyrene nanofiber product or polystyrene nanofiber in absorption, adsorption, oil-water separation, and construction of a wettable surface.
  • the present invention has the following advantages compared with the prior art:
  • the present invention innovatively proposes an emulsion composition.
  • the specific emulsion composition is used to prepare polystyrene nanofibers or polystyrene nanofiber products, which not only has high preparation efficiency (the required amount can be added as needed, and then according to the present invention).
  • the prepared polystyrene nanofibers have a pore structure
  • the specific emulsion composition of the present invention can be directly formed into a controllable and stable three-dimensional polystyrene nanofiber product that is not easy to disperse/decompose in the solvent during the crystallization process by adding a mold, and also make the prepared polystyrene Nanofiber products can have both the pore structure of polystyrene nanofibers, the pore structure formed between the fibers, and the large pore structure formed between the fiber clusters and the fiber clusters due to uneven stress during the crystallization process in the solvent.
  • a product with a multi-layered pore structure is obtained.
  • the pore structures can also communicate with each other, which significantly improves the exchange of material and energy, and the specific surface area is large enough to make the polystyrene provided by the present invention
  • Ethylene nanofiber and polystyrene nanofiber products have excellent application prospects in terms of absorption, adsorption, oil-water separation, and structure with special wettability surfaces.
  • Figure 1 shows four exemplary three-dimensional structures of the polystyrene nanofiber product prepared in Example 1 of the present invention
  • Example 2 is a scanning electron microscope view of the polystyrene nanofiber product prepared in Example 1 of the present invention, corresponding to different magnifications from left to right;
  • Figure 3 is a graph showing the nitrogen adsorption performance of polystyrene nanofiber products prepared in Examples 1-3 of the present invention.
  • Example 4 is a diagram of density detection and hydrophobicity detection of the polystyrene nanofiber product prepared in Example 1 of the present invention
  • Figure 5 is a graph showing the purification performance of polystyrene nanofiber products, 3A molecular sieves and activated carbon prepared in Example 1 of the present invention on polluted air containing 16 ppm dichloroethane;
  • Fig. 6 is a graph showing the absorption performance of polystyrene nanofiber products prepared in Examples 1-3 of the present invention for organic solvents.
  • sulfonated polystyrene has a sulfonation degree of 1.8 mol%; syndiotactic polystyrene and isotactic polystyrene were purchased from Idemitsu Kosan Co., Ltd., Japan, with a molecular weight of approximately 300,000.
  • Examples 1-3 provide a method for preparing polystyrene nanofiber products and polystyrene nanofiber products prepared therefrom, which specifically include the following steps:
  • the dispersed phase is added dropwise to the continuous phase to make a uniform emulsion composition; wherein the dispersed phase is dispersed in sodium chloride It is made by mixing in glycerin, and the continuous phase is made by adding sulfonated polystyrene and syndiotactic polystyrene to 1,2,4-trichlorobenzene and mixing;
  • step (b) The emulsion composition prepared in step (a) is directly added to the mold, allowed to stand for crystallization at room temperature for 10 hours, and the crystals are taken out, and the crystals are replaced with ethanol and water for solvent replacement three times, and then freeze-dried to make The polystyrene nanofiber products.
  • the polystyrene nanofiber products obtained in Examples 1-3 correspond to Sample 1, Sample 2 and Sample 3 respectively;
  • Figure 1 shows four exemplary three-dimensional morphological structures of the polystyrene nanofiber product prepared in Example 1; it illustrates that the polystyrene nanofiber product prepared by the method of the present invention can form the required stable and controllable macroscopic three-dimensional structure;
  • Figure 2 is a scanning electron microscope image of the polystyrene nanofiber product prepared in Example 1, corresponding to different magnifications from left to right; from the leftmost image with a lower magnification, the polystyrene nanofibers can be drawn There are many pores in the product due to the presence of the solvent. From the middle image, it can be seen that the pores between the fiber clusters formed due to uneven stress during the crystallization process in the solvent, and the right image shows that there are pores formed between the fibers. Gap structure
  • Figure 3 is a graph showing the nitrogen adsorption performance of the polystyrene nanofiber products prepared in Examples 1-3; it can be analyzed from the figure that the polystyrene nanofiber products prepared by the method of the present invention have a high specific surface area, which also proves that Styrene nanofibers have a microporous structure, and the pore size of the microporous structure is basically below 2nm;
  • Figure 4 is the density detection and hydrophobicity detection diagram of the polystyrene nanofiber product prepared in Example 1. It can be seen from the figure that its density is very small, the overall appearance is ultra-light quality, and the hydrophobic performance is super hydrophobic. Up to 156°.
  • the present Examples 4-6 provide a method for preparing polystyrene nanofiber products and polystyrene nanofiber products prepared therefrom, which specifically include the following steps:
  • the dispersed phase is added dropwise to the continuous phase to make a uniform emulsion composition; wherein the dispersed phase is dispersed by sodium sulfate in ethyl acetate
  • the continuous phase is made by adding sulfonated polystyrene and isotactic polystyrene into 1,2,4-trichlorobenzene and mixing;
  • step (b) Add the emulsion composition prepared in step (a) directly to the mold, let stand for crystallization at room temperature for 10 hours, take out the crystal, and then use ethanol and water for solvent replacement three times, and freeze-dry it to prepare the Polystyrene nanofiber products.
  • sample 1 prepared in Example 1 with the same quality of 3A molecular sieve and activated carbon on polluted air containing 16 ppm dichloroethane was compared, and the adsorption capacity of sample 1 was analyzed by thermogravimetric analysis. It is higher than molecular sieve and activated carbon, and can achieve basic desorption at a lower temperature, which is beneficial to save energy.
  • Figure 5 shows the multi-layered pore structure and large ratio of the polystyrene nanofiber product of the present invention. The surface area greatly improves the adsorption capacity and desorption rate.
  • the polystyrene nanofiber products prepared in Example 1-3 corresponding to samples 1-3 were immersed in different organic solvents and oils, and the oil absorption of the samples was obtained by weighing.
  • the oil absorption of some organic solvents can reach 50 times their own weight.
  • polystyrene nanofibers and polystyrene nanofiber products of the present invention have superhydrophobicity and lipophilicity, which can allow oily liquids to pass through well while blocking the passage of water, so that they can be used for oil-water separation.
  • the internal structure of the polystyrene nanofiber product of the present invention is multi-layered and connected, which can greatly accelerate the transmission of substances.
  • the spacing and holes between the fibers are only nano-level, which can well trap larger-sized solid particles, so it can be used for PM2.5 and PM10 filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Removal Of Floating Material (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用,乳液组合物包含分散相和连续相,分散相包含可溶性盐和第一溶剂,连续相包含聚苯乙烯、第二溶剂及磺化聚苯乙烯,聚苯乙烯为间规立构聚苯乙烯和/或全同立构聚苯乙烯;乳液组合物的制备:在加热及搅拌的条件下将分散相滴加至连续相中制成;聚苯乙烯纳米纤维或制品的制备:将上述乳液组合物进行结晶而制成;采用上述乳液组合物制备的聚苯乙烯纳米纤维具有孔结构且制成的制品具有稳定可控的三维结构、多层次和/或相互联通的孔结构,兼具制备效率高,因此上述聚苯乙烯纳米纤维或制品可在吸收、吸附、油水分离、构造具有润湿性表面等方面中具有极佳的应用前景。

Description

一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用 技术领域
本发明属于纳米纤维技术领域,具体涉及一种用于制备聚苯乙烯纳米纤维的乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用,其制备的聚苯乙烯纳米纤维具有孔结构且制成的聚苯乙烯纳米纤维制品具有稳定可控的三维结构、多层次和/或相互联通的孔结构。
背景技术
纳米纤维具有比表面积大、直径可控等优点,使其在吸收、吸附、油水分离、构造具有特殊润湿性表面等方面具有重要的用途。尤其是其中的聚苯乙烯纳米纤维在实际应用中得到了越来越广泛的应用。目前聚苯乙烯纳米纤维的制备方法主要为电纺方法,例如中国发明专利CN107675360A,其公开了一种聚苯乙烯纳米纤维的制备方法,包括以下步骤:将聚苯乙烯溶解于由二甲基甲酰胺和对二甲苯形成的混合溶剂中,得到第一溶液;将聚醚、聚乙烯醇、聚乙烯吡咯烷酮中的至少一种溶解于去离子水中,得到第二溶液;将所述第一溶液和第二溶液分别吸入具有双喷头的静电纺丝用注射器中,按照所述第一溶液挤出速度为0.3~0.6mL/min、所述第二溶液挤出速度为1.5~2.5mL/min,将所述第一溶液、第二溶液进行纺丝,获得微米级纤维和纳米级聚苯乙烯纤维交错组成的纤维膜;将所述纤维膜置于去离子水中进行漂洗处理,以去除所述微米级纤维;将经过所述漂洗处理后的纤维膜进行冷冻干燥。
然而此类电纺制备纳米纤维的方法存在如下一些缺陷:1)聚苯乙烯纳米纤维制备效率低:基于电纺方法的特性,其往往需要很长的时间才能制备少量的纳米纤维;2)外部形态难以控制:通过电纺获得的纳米纤维形成的制品往往以二维形态的纤维膜呈现,难以获得三维结构,同时在无机溶剂和/或有机溶剂中很容易分解或分散,更加难以形成稳定且可控的三维结构;3)所制备的纳米纤维相互之间往往仅具有单一的泡孔结构,这大大制约了物质与能量的交换,影响纳米纤维的功效。上述缺陷的存在极大地限制了聚苯乙烯纳米纤维的大规模应用。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种新型的用于制备聚苯乙烯纳米纤维的乳液组合物,采用此乳液组合物制备的聚苯乙烯纳米纤维具有孔结构且制成的聚苯乙烯纳米纤维制品具有稳定可控的三维结构、多层次和/或相互联通的孔结构,且兼具制备效率高。
本发明同时还提供了一种上述用于制备聚苯乙烯纳米纤维的乳液组合物的制备方法。
本发明同时还提供了一种聚苯乙烯纳米纤维或聚苯乙烯纳米纤维制品。
本发明同时还提供了一种上述聚苯乙烯纳米纤维制品的制备方法,其制备效率高且兼具制备的三维形态的制品能够在无机溶剂和/或有机溶剂中稳定存在、且三维形态可控,同时兼具具有多层次和/或相互联通的孔结构。
本发明同时还提供了一种上述聚苯乙烯纳米纤维制品或聚苯乙烯纳米纤维在吸收、吸附、油水分离、构造具有润湿性表面中的应用。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种用于制备聚苯乙烯纳米纤维的乳液组合物,所述乳液组合物包含分散相和连续相,所述分散相包含可溶性盐和第一溶剂,所述连续相包含聚苯乙烯、第二溶剂以及磺化聚苯乙烯,所述的聚苯乙烯为间规立构聚苯乙烯、全同立构聚苯乙烯或二者的组合。
根据本发明的一些优选且具体的方面,所述乳液组合物由所述分散相和所述连续相混合构成,其中所述分散相的投料体积大于等于所述连续相的投料体积。
根据本发明的一些进一步优选方面,所述乳液组合物由所述分散相和所述连续相混合构成,其中所述分散相的投料体积大于等于1.5倍的所述连续相的体积。
根据本发明的一些优选方面,所述乳液组合物为将所述分散相滴加至所述连续相中制成。
根据本发明的一些优选方面,所述乳液组合物由所述分散相和所述连续相混合构成,其中所述分散相与所述连续相混合的温度为100-140℃,优选为105-130℃。
根据本发明,所述第一溶剂在所述第二溶剂中不溶、微溶或难溶。
根据本发明的一些优选方面,所述第一溶剂为极性溶剂,所述第二溶剂为非极性溶剂。
根据本发明的一些优选且具体的方面,所述第一溶剂为选自水、甘油、丙二醇和乙二醇中的一种或多种的组合,所述第二溶剂为1,2,4-三氯苯。
根据本发明的一些具体且优选的方面,所述可溶性盐与所述第一溶剂的投料质量比为0.004-0.080∶1,优选为0.006-0.070∶1。
根据本发明的一些具体方面,所述可溶性盐为选自氯化钠、氯化钾、氯化钡、氯化钙、碳酸钠、碳酸氢钠、硫酸钠、硫酸钾、硝酸钠、硝酸钾和硝酸钙中的一种或多种的组合。
根据本发明的一些优选方面,所述磺化聚苯乙烯的磺化度为0.5-3.5mol%,更优选为1-2.5mol%,相比于其它乳化剂,磺化聚苯乙烯在本发明的体系中可以实现乳液组合物保持长时间的乳化稳定状态,同时上述特定磺化度更能确保各组分混合后保持优异的乳化状态。
根据本发明的一些具体且优选的方面,所述磺化聚苯乙烯、所述聚苯乙烯和所述第二溶剂的投料质量比为0.005-0.025∶0.03-0.08∶1。
根据本发明的一些优选方面,以质量百分含量计,所述乳液组合物中,可溶性盐占0.1-6%、第一溶剂占60-85%、聚苯乙烯占0.5-10%、第二溶剂占14-30%和磺化聚苯乙烯占0.05-3%。
根据本发明,所述聚苯乙烯的平均分子量为1万-200万,优选为5万-50万。
在本发明的一些优选实施方式中,所述乳液组合物包含分散相和连续相,所述分散相包含可溶性盐和第一溶剂,所述连续相包含聚苯乙烯、第二溶剂以及磺化聚苯乙烯,所述的聚苯乙烯为间规立构聚苯乙烯、全同立构聚苯乙烯或二者的组合,在温度为100-140℃以及搅拌的条件下将所述分散相滴加至所述连续相中制成所述乳液组合物,其中所述分散相的投料体积大于等于1.5倍的所述连续相的体积,所述第一溶剂为选自水、甘油、丙二醇和乙二醇中的一种或多种的组合,所述第二溶剂为1,2,4-三氯苯,所述可溶性盐与所述第一溶剂的投料质量比为0.004-0.080∶1,所述可溶性盐为选自氯化钠、氯化钾、氯化钡、氯化钙、碳酸钠、碳酸氢钠、硫酸钠、硫酸钾、硝酸钠、硝酸钾和硝酸钙中的一种或多种的组合,所述磺化聚苯乙烯的磺化度为0.5-3.5mol%,所述磺化聚苯乙烯、所述聚苯乙烯和所述第二溶剂的投料质量比为0.005-0.025∶0.03-0.08∶1,以质 量百分含量计,所述乳液组合物中,可溶性盐占0.1-6%、第一溶剂占60-85%、聚苯乙烯占0.5-10%、第二溶剂占14-30%、磺化聚苯乙烯占0.05-3%,所述聚苯乙烯的平均分子量为1万-200万。
本发明提供的又一技术方案:一种上述所述的用于制备聚苯乙烯纳米纤维的乳液组合物的制备方法,所述制备方法包括如下步骤:在加热及搅拌的条件下,将所述分散相滴加至所述连续相中,制成所述乳液组合物。
本发明提供的又一技术方案:一种上述所述的用于制备聚苯乙烯纳米纤维的乳液组合物制成的聚苯乙烯纳米纤维或聚苯乙烯纳米纤维制品。
根据本发明,所述制品具有多层次和/或相互联通的孔结构。
根据本发明的一些优选且具体的方面,所述多层次的孔结构包括第一孔、第二孔和第三孔;
其中,所述第一孔的孔径为0.1-5nm,优选为0.2-4nm,更优选为0.3-2nm;
所述第二孔的孔径为6-800nm,优选为10-600nm,更优选为15-300nm;
所述第三孔的孔径为0.1-200μm,优选为0.5-100μm,更优选为0.5-50μm,进一步优选为0.5-20μm。
根据本发明的一些具体方面,所述第二孔的孔径大于所述第一孔的孔径且小于所述第三孔的孔径。
本发明提供的又一技术方案:一种上述所述的聚苯乙烯纳米纤维制品的制备方法,所述制备方法包括如下步骤:将上述所述的用于制备聚苯乙烯纳米纤维的乳液组合物加入模具中进行结晶。
进一步地,所述制备方法还包括:在加热及搅拌的条件下,将所述分散相滴加至所述连续相中,制成所述用于制备聚苯乙烯纳米纤维的乳液组合物;
然后将所得的所述乳液组合物在设定时间内加至模具中,静置结晶,分离,洗涤,冷冻干燥,得到所述聚苯乙烯纳米纤维制品。
根据本发明的一些优选且具体的方面,所述设定时间为大于0小于等于10min,优选为大于0小于等于5min。
根据本发明的一些优选且具体的方面,所述结晶的时间大于1h,优选大于3h,更优选大于5h。
根据本发明的一些优选且具体的方面,所述结晶的温度为5-90℃,优选为10-80℃,更优选为15-45℃。
本发明提供的又一技术方案:一种上述所述的聚苯乙烯纳米纤维制品或聚苯乙烯纳米纤维在吸收、吸附、油水分离、构造具有润湿性表面中的应用。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明创新地提出一种乳液组合物,采用此特定的乳液组合物制备聚苯乙烯纳米纤维或聚苯乙烯纳米纤维制品,不仅制备效率高(可根据需要任意添加所需量,然后按照本发明制备,相比于电纺方法,其受限于电纺原理以及根据电纺原理设计的电纺设备,一定时间内仅能制作少量纳米纤维),而且制备的聚苯乙烯纳米纤维中具有孔结构,同时可通过外加模具使得本发明的特定乳液组合物在结晶的过程中直接在溶剂中形成可控且稳定不易分散/分解的三维结构的聚苯乙烯纳米纤维制品,还使得制备的聚苯乙烯纳米纤维制品能够同时兼具聚苯乙烯纳米纤维自身具有的孔结构、纤维之间形成的孔结构以及在溶剂中的结晶过程中由于应力不均在纤维簇与纤维簇之间形成的大孔洞结构,进而获得了一种具有多层次的孔结构的制品,所述孔结构之间还能够相互联通,显著地提升了物质与能量的交换,且比表面积够大,从而使得本发明提供的聚苯乙烯纳米纤维及聚苯乙烯纳米纤维制品在吸收、吸附、油水分离、构造具有特殊润湿性表面等方面中具有极佳的应用前景。
附图说明
图1为本发明实施例1制备的聚苯乙烯纳米纤维制品的四种示例性的三维结构;
图2为本发明实施例1制备的聚苯乙烯纳米纤维制品的扫描电子显微镜图,从左至右分别对应不同的放大倍数;
图3为本发明实施例1-3制备的聚苯乙烯纳米纤维制品对氮气吸附性能图;
图4为本发明实施例1制备的聚苯乙烯纳米纤维制品的密度检测以及疏水性检测图;
图5为本发明实施例1制备的聚苯乙烯纳米纤维制品、3A分子筛和活性炭对含16ppm二氯乙烷的污染空气的净化性能图;
图6为本发明实施例1-3制备的聚苯乙烯纳米纤维制品对有机溶剂的吸收性能图。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。下述中,如无特殊说明,所有的原料基本来自于商购或者通过本领域的常规方法制备而得。
下述中,磺化聚苯乙烯,其磺化度为1.8mol%;间规立构聚苯乙烯、全同立构聚苯乙烯分别购自日本出光兴产株式会社,分子量约为30万。
实施例1-3
本些实施例1-3提供一种聚苯乙烯纳米纤维制品的制备方法及用其制备的聚苯乙烯纳米纤维制品,具体包括如下步骤:
(a)在120±5℃、搅拌(转速:400rmp)的条件下,将分散相滴加至连续相中,制成均匀的乳液组合物;其中,所述分散相通过将氯化钠分散在甘油中混合制成,所述连续相通过将磺化聚苯乙烯、间规立构聚苯乙烯加入1,2,4-三氯苯中混合制成;
(b)将步骤(a)制备的乳液组合物直接加入模具中,在室温下进行静置结晶10h,取出结晶物,将结晶物先后采用乙醇和水进行溶剂置换三次,冷冻干燥,制成所述聚苯乙烯纳米纤维制品。
上述实施例采用的原料及其用量参见下表1。
表1
Figure PCTCN2019091895-appb-000001
Figure PCTCN2019091895-appb-000002
由实施例1-3获得的聚苯乙烯纳米纤维制品分别对应样品1、样品2和样品3;
其中图1为实施例1制备的聚苯乙烯纳米纤维制品的四种示例性的三维形态结构;说明了本发明方法制备的聚苯乙烯纳米纤维制品可以形成所需的稳定且可控的宏观三维结构;
图2为实施例1制备的聚苯乙烯纳米纤维制品的扫描电子显微镜图,从左至右分别对应不同的放大倍数;从放大倍数较低的最左边图中,可以得出聚苯乙烯纳米纤维制品中由于溶剂的存在具有很多的孔,从中间图可以看出在溶剂中的结晶过程中由于应力不均形成的纤维簇之间的孔,右边图可以看出纤维与纤维之间形成了孔间隙结构;
图3为实施例1-3制备的聚苯乙烯纳米纤维制品对氮气吸附性能图;从图中可以分析出本发明方法制备的聚苯乙烯纳米纤维制品具有很高的比表面积,也证明了聚苯乙烯纳米纤维中具有微孔结构,微孔结构的孔径基本在2nm以下;
图4为实施例1制备的聚苯乙烯纳米纤维制品的密度检测以及疏水性检测图;从图中可看出其密度很小,整体呈现超轻的质量感,疏水性能为超疏水级别,可达156°。
实施例4-6
本些实施例4-6提供一种聚苯乙烯纳米纤维制品的制备方法及用其制备的聚苯乙烯纳米纤维制品,具体包括如下步骤:
(a)在120±5℃、搅拌(转速:400rmp)的条件下,将分散相滴加至连续相中,制成均匀的乳液组合物;其中,所述分散相通过将硫酸钠分散在乙二醇中混合制成,所述连续相通过将磺化聚苯乙烯、全同立构聚苯乙烯加入1,2,4-三氯苯中混合制成;
(b)将步骤(a)制备的乳液组合物直接加入模具中,在室温下静置结晶10h,取出结晶物,将结晶物先后采用乙醇和水进行溶剂置换三次,冷冻干燥,制成所述聚苯乙烯纳米纤维制品。
上述实施例采用的原料及其用量参见下表2。
表2
Figure PCTCN2019091895-appb-000003
应用实施例1
有毒可挥发性气体的吸附:
将同质量的实施例1制备的样品1与3A分子筛和活性炭对含16ppm二氯乙烷的污染空气的净化能力分别进行了对比,并用热重分析来分析吸附量,发现样品1的吸附量分别高于分子筛和活性炭,且在较低温度下即可实现基本解吸,有利于节约能源,具体可参见图5,表明了本发明的聚苯乙烯纳米纤维制品的多层次的孔结构和大的比表面积大大提高了吸附能力和解吸附速率。
应用实施例2
有机液体吸收:
将实施例1-3制备的对应样品1-3获得的聚苯乙烯纳米纤维制品分别浸入不同的有机溶剂及油料里,通过称重法获得样品的吸油量,发现聚苯乙烯纳米纤维制品对某些有机溶剂的吸油量可以达到50倍自身重量,具体可参见图6,表明了本发明的聚苯乙烯纳米纤维制品对多种有机溶剂具有较高的吸收能力。
应用实施例3
油水分离:
由前述可知,本发明的聚苯乙烯纳米纤维及聚苯乙烯纳米纤维制品具备超疏水性及亲油性,可使油性液体很好的通过,同时阻绝水的通过,从而可用于油水分离方面。
应用实施例4
气体过滤:
由前述可知,本发明的聚苯乙烯纳米纤维制品的内部结构是多层次的、连通的,能够大大加快物质的传输。同时各纤维间的间距和孔洞只是纳米层次的,能够很好截留较大尺寸的固体颗粒,因此其能够用于PM2.5和PM10的过滤。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (25)

  1. 一种用于制备聚苯乙烯纳米纤维的乳液组合物,所述乳液组合物包含分散相和连续相,其特征在于,所述分散相包含可溶性盐和第一溶剂,所述连续相包含聚苯乙烯、第二溶剂以及磺化聚苯乙烯,所述的聚苯乙烯为间规立构聚苯乙烯、全同立构聚苯乙烯或二者的组合。
  2. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述乳液组合物由所述分散相和所述连续相混合构成,其中所述分散相的投料体积大于等于所述连续相的投料体积。
  3. 根据权利要求2所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述乳液组合物由所述分散相和所述连续相混合构成,其中所述分散相的投料体积大于等于1.5倍的所述连续相的体积。
  4. 根据权利要求2或3所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述乳液组合物为将所述分散相滴加至所述连续相中制成。
  5. 根据权利要求2或3所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述分散相与所述连续相混合的温度为100-140℃,优选为105-130℃。
  6. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述第一溶剂为极性溶剂,所述第二溶剂为非极性溶剂。
  7. 根据权利要求6所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述第一溶剂为选自水、甘油、丙二醇和乙二醇中的一种或多种的组合,所述第二溶剂为1,2,4-三氯苯。
  8. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述可溶性盐与所述第一溶剂的投料质量比为0.004-0.080∶1,优选为0.006-0.070∶1。
  9. 根据权利要求1或8所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述可溶性盐为选自氯化钠、氯化钾、氯化钡、氯化钙、碳酸钠、碳酸氢钠、硫酸钠、硫酸钾、硝酸钠、硝酸钾和硝酸钙中的一种或多种的组合。
  10. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述磺化聚苯乙烯的磺化度为0.5-3.5mol%。
  11. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述磺化聚苯乙烯、所述聚苯乙烯和所述第二溶剂的投料质量比为0.005-0.025∶0.03-0.08∶1。
  12. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,以质量百分含量计,所述乳液组合物中,可溶性盐占0.1-6%、第一溶剂占60-85%、聚苯乙烯占0.5-10%、第二溶剂占14-30%、磺化聚苯乙烯占0.05-3%。
  13. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述聚苯乙烯的平均分子量为1万-200万,优选为5万-50万。
  14. 根据权利要求1所述的用于制备聚苯乙烯纳米纤维的乳液组合物,其特征在于,所述分散相包含可溶性盐和第一溶剂,所述连续相包含聚苯乙烯、第二溶剂以及磺化聚苯乙烯,所述的聚苯乙烯为间规立构聚苯乙烯、全同立构聚苯乙烯或二者的组合,在温度为100-140℃以及搅拌的条件下将所述分散相滴加至所述连续相中制成所述乳液组合物,其中所述分散相的投料体积大于等于1.5倍的所述连续相的体积,所述第一溶剂为选自水、甘油、丙二醇和乙二醇中的一种或多种的组合,所述第二溶剂为1,2,4-三氯苯,所述可溶性盐与所述第一溶剂的投料质量比为0.004-0.080∶1,所述可溶性盐为选自氯化钠、氯化钾、氯化钡、氯化钙、碳酸钠、碳酸氢钠、硫酸钠、硫酸钾、硝酸钠、硝酸钾和硝酸钙中的一种或多种的组合,所述磺化聚苯乙烯的磺化度为0.5-3.5mol%,所述磺化聚苯乙烯、所述聚苯乙烯和所述第二溶剂的投料质量比为0.005-0.025∶0.03-0.08∶1,以质量百分含量计,所述乳液组合物中,可溶性盐占0.1-6%、第一溶剂占60-85%、聚苯乙烯占0.5-10%、第二溶剂占14-30%、磺化聚苯乙烯占0.05-3%,所述聚苯乙烯的平均分子量为1万-200万。
  15. 一种权利要求1-14中任一项权利要求所述的用于制备聚苯乙烯纳米纤维的乳液组合物的制备方法,其特征在于,所述制备方法包括如下步骤:在加热及搅拌的条件下,将所述分散相滴加至所述连续相中,制成所述乳液组合物。
  16. 一种由权利要求1-14中任一项权利要求所述的用于制备聚苯乙烯纳米纤维的乳液组合物制成的聚苯乙烯纳米纤维或聚苯乙烯纳米纤维制品。
  17. 根据权利要求16所述的聚苯乙烯纳米纤维制品,其特征在于,所述制品具有多层次和/或相互联通的孔结构。
  18. 根据权利要求17所述的聚苯乙烯纳米纤维制品,其特征在于,所述多层次的孔结构包括第一孔、第二孔和第三孔;
    其中,所述第一孔的孔径为0.1-5nm,优选为0.2-4nm,更优选为0.3-2nm;
    所述第二孔的孔径为6-800nm,优选为10-600nm,更优选为15-300nm;
    所述第三孔的孔径为0.1-200μm,优选为0.5-100μm,更优选为0.5-50μm,进一步优选为0.5-20μm。
  19. 根据权利要求18所述的聚苯乙烯纳米纤维制品,其特征在于,所述第二孔的孔径大于所述第一孔的孔径且小于所述第三孔的孔径。
  20. 一种权利要求16-19中任一项权利要求所述的聚苯乙烯纳米纤维制品的制备方法,其特征在于,所述制备方法包括如下步骤:将权利要求1-14中任一项权利要求所述的用于制备聚苯乙烯纳米纤维的乳液组合物加入模具中进行结晶。
  21. 根据权利要求20所述的聚苯乙烯纳米纤维制品的制备方法,其特征在于,所述制备方法还包括:
    在加热及搅拌的条件下,将所述分散相滴加至所述连续相中,制成所述用于制备聚苯乙烯纳米纤维的乳液组合物;
    然后将所得的所述乳液组合物在设定时间内加至模具中,静置结晶,分离,洗涤,冷冻干燥,得到所述聚苯乙烯纳米纤维制品。
  22. 根据权利要求21所述的聚苯乙烯纳米纤维制品的制备方法,其特征在于,所述设定时间为大于0小于等于10min,优选为大于0小于等于5min。
  23. 根据权利要求20或21所述的聚苯乙烯纳米纤维制品的制备方法,其特征在于,所述结晶的时间大于1h,优选大于3h。
  24. 根据权利要求20或21所述的聚苯乙烯纳米纤维制品的制备方法,其特征在于,所述结晶的温度为5-90℃,优选为10-80℃,更优选为15-45℃。
  25. 一种权利要求16-19中任一项权利要求所述的聚苯乙烯纳米纤维制品或聚苯乙烯纳米纤维在吸收、吸附、油水分离、构造具有润湿性表面中的应用。
PCT/CN2019/091895 2019-06-19 2019-06-19 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用 WO2020252694A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/289,022 US20220098395A1 (en) 2019-06-19 2019-06-19 Emulsion composition, polystyrene nano-fiber, polystyrene nano-fiber product, preparation method, and use thereof
PCT/CN2019/091895 WO2020252694A1 (zh) 2019-06-19 2019-06-19 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用
JP2021575313A JP7423663B2 (ja) 2019-06-19 2019-06-19 エマルジョン組成物、ポリスチレンナノファイバー、ポリスチレンナノファイバー製品及び製造方法並びに応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091895 WO2020252694A1 (zh) 2019-06-19 2019-06-19 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020252694A1 true WO2020252694A1 (zh) 2020-12-24

Family

ID=74037602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091895 WO2020252694A1 (zh) 2019-06-19 2019-06-19 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用

Country Status (3)

Country Link
US (1) US20220098395A1 (zh)
JP (1) JP7423663B2 (zh)
WO (1) WO2020252694A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286867B (zh) * 2022-08-18 2023-08-22 上海锦湖日丽塑料有限公司 一种纳米增容聚丙烯聚苯乙烯组合物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310741A (zh) * 1998-05-22 2001-08-29 金伯利-克拉克环球有限公司 纤维吸收材料及其制法
KR20100105157A (ko) * 2009-03-20 2010-09-29 주식회사 휴비스 나노사이즈의 메타아라미드피브릴의 제조방법
CN101885813A (zh) * 2009-05-14 2010-11-17 中国科学院化学研究所 复合Janus胶体颗粒及改性Janus胶体颗粒与它们的制备方法
CN104593895A (zh) * 2013-11-01 2015-05-06 林晓 一种功能纤维基材及制备方法
CN106132368A (zh) * 2014-04-10 2016-11-16 3M创新有限公司 纤维和包含纤维的制品
CN106367845A (zh) * 2016-09-13 2017-02-01 同济大学 一种具有离子交换能力的聚合物纳米纤维的制备方法
WO2017214741A1 (zh) * 2016-06-14 2017-12-21 杨磊 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺
WO2018197485A1 (fr) * 2017-04-26 2018-11-01 Decathlon Filament ou fibre absorbant les gaz acides et/ou basiques, procédé de fabrication d'un tel filament ou d'une telle fibre, article textile comprenant un tel filament ou une telle fibre

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1335030C (en) * 1988-07-22 1995-04-04 Henry Nelson Beck High strength fibers of stereoregular polystyrene
EP1190767A4 (en) * 1999-05-06 2005-03-09 Idemitsu Kosan Co ADSORBENTS FROM STYRENE POLYMERS
JP4811021B2 (ja) * 2003-12-22 2011-11-09 Jsr株式会社 エマルジョン組成物
EP2548840B1 (en) * 2010-03-18 2019-05-29 National Institute for Materials Science Network-form polymeric nanofibers, process for producing same, gas absorbent, and gas separation material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310741A (zh) * 1998-05-22 2001-08-29 金伯利-克拉克环球有限公司 纤维吸收材料及其制法
KR20100105157A (ko) * 2009-03-20 2010-09-29 주식회사 휴비스 나노사이즈의 메타아라미드피브릴의 제조방법
CN101885813A (zh) * 2009-05-14 2010-11-17 中国科学院化学研究所 复合Janus胶体颗粒及改性Janus胶体颗粒与它们的制备方法
CN104593895A (zh) * 2013-11-01 2015-05-06 林晓 一种功能纤维基材及制备方法
CN106132368A (zh) * 2014-04-10 2016-11-16 3M创新有限公司 纤维和包含纤维的制品
WO2017214741A1 (zh) * 2016-06-14 2017-12-21 杨磊 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺
CN106367845A (zh) * 2016-09-13 2017-02-01 同济大学 一种具有离子交换能力的聚合物纳米纤维的制备方法
WO2018197485A1 (fr) * 2017-04-26 2018-11-01 Decathlon Filament ou fibre absorbant les gaz acides et/ou basiques, procédé de fabrication d'un tel filament ou d'une telle fibre, article textile comprenant un tel filament ou une telle fibre

Also Published As

Publication number Publication date
US20220098395A1 (en) 2022-03-31
JP2022536956A (ja) 2022-08-22
JP7423663B2 (ja) 2024-01-29

Similar Documents

Publication Publication Date Title
Chen et al. Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles
CN104548949B (zh) 一种用于去除水体污染物的聚合物多孔膜的制备方法
Wang et al. Porous bead-on-string poly (lactic acid) fibrous membranes for air filtration
Pang et al. Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination
JP7270993B2 (ja) 構造制御可能なイオン交換式ナノファイバー骨格三次元分離材及びその製造方法
CN108295675B (zh) 一种基于聚丙烯腈/氧化石墨烯/茶多酚复合物的抗菌空气滤膜及其制备方法
WO2021083162A1 (zh) 基于聚合物的膜及其制备方法和用途
Song et al. Continuous production and properties of mutil-level nanofiber air filters by blow spinning
CN112774457B (zh) 一种聚合物微滤膜及其制备方法和用途
Fu et al. Building bimodal structures by a wettability difference-driven strategy for high-performance protein air-filters
CN107020019B (zh) 一种高通量超细聚偏氟乙烯中空纤维干态膜及其制备方法
Ma et al. Preparation of cellulosic air filters with controllable pore structures via organic solvent-based freeze casting: the key role of fiber dispersion and pore size
WO2020252694A1 (zh) 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用
CN114100385B (zh) 疏水性复合纳米纤维空气过滤膜制备方法
Huang et al. High-efficiency air filter media with a three-dimensional network composed of core–shell zeolitic imidazolate Framework-8@ Tunicate nanocellulose for PM0. 3 removal
Harruddin et al. Effect of VIPS fabrication parameters on the removal of acetic acid by supported liquid membrane using a PES–graphene membrane support
CN114904404A (zh) 一种基于MOF-808(Zr)的混合基质正渗透膜及其制备方法
CN102626595A (zh) 工业用高强度抗污染超滤平板膜片的配方及其制备方法
Cheng et al. Multi-hierarchical nanofibre membranes composited with ordered structure/nano-spiderwebs for air filtration
JP2013194329A (ja) ナノコンポジット・ナノファイバーの製造方法
CN107051208A (zh) 三维结构纳米复合物共混掺杂聚偏氟乙烯混合基质超滤膜及其制备
CN116832786A (zh) 一种mof/聚合物复合多孔纳米纤维膜及其制备方法与应用
CN115253704B (zh) 一种疏水聚合物微滤膜及其制备方法和应用
CN111804162A (zh) 一种高通量聚四氟乙烯复合纳滤膜的制备方法
CN108031304B (zh) 基于金属有机骨架MIL-101(Cr)的平板式混合基质正渗透膜及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933888

Country of ref document: EP

Kind code of ref document: A1