WO2017214741A1 - 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺 - Google Patents

壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺 Download PDF

Info

Publication number
WO2017214741A1
WO2017214741A1 PCT/CN2016/000325 CN2016000325W WO2017214741A1 WO 2017214741 A1 WO2017214741 A1 WO 2017214741A1 CN 2016000325 W CN2016000325 W CN 2016000325W WO 2017214741 A1 WO2017214741 A1 WO 2017214741A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
polyvinyl alcohol
solution
spinning
voltage
Prior art date
Application number
PCT/CN2016/000325
Other languages
English (en)
French (fr)
Inventor
杨磊
Original Assignee
杨磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨磊 filed Critical 杨磊
Publication of WO2017214741A1 publication Critical patent/WO2017214741A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/24Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones

Definitions

  • the invention relates to the technical field of polyurethane preparation, in particular to a preparation process of chitosan/polyvinyl alcohol composite nano conductive fibers.
  • Chitosan has the advantages of good biocompatibility, biodegradability and anticoagulability. It is very difficult to prepare pure chitosan nanomaterials by electrospinning. Most of the research is to blend chitosan with other polymers. Preparation of composite nanofibers by electrospinning Combining the properties of inorganic nanomaterials with chitosan nanofibers, it is possible to develop chitosan nanofiber products with unique properties to meet special needs.
  • Common inorganic nanomaterials include graphite such as silver and titanium dioxide. It has excellent chemical stability and thermal conductivity. The influence on the electrical conductivity of the composite is consistent with the seepage phenomenon. The critical value of the conductivity of graphite in the composite is 10%.
  • the present invention provides a preparation process of chitosan/polyvinyl alcohol composite nano-conductive fiber, and adopts in-situ polymerization to prepare polyaniline fiber, which has the characteristics of simple and easy operation, and the skin layer has high purity.
  • Polyaniline has a high electrical conductivity and basically maintains the mechanical properties of the matrix fiber. It is currently the most promising solution to effectively solve the problems in the background art.
  • a preparation process of a chitosan/polyvinyl alcohol composite nano-conductive fiber comprising the following steps:
  • the receiving plate is covered with a layer of aluminum foil receiving plate and connected to the other pole of the high voltage power supply, and the spinning voltage, the receiving distance and the advancing speed are set, the power is turned on, the spinning is started, and chitosan/polyvinyl alcohol is obtained.
  • Composite nanofiber
  • chitosan/polyvinyl alcohol composite nanofibers are placed in the aniline monomer solution for 2h-2.5h, and then uniformly extruded after being taken out, and the liquid carrying rate is controlled in the range of 110%-120%;
  • the spinning voltage in the step (4) is 150 V
  • the receiving distance is 12 cm
  • the advancing speed is 0.2 mL/h.
  • the ammonium persulfate having a mass fraction of 25 g/L and the hydrochloric acid having a concentration of 0.5 mol/L are 1:2.
  • the metal needle of the syringe has a model number of 12 # and 15 cm.
  • the nanographite powder in the chitosan/polyvinyl alcohol spinning solution accounts for 2.8% of the total solid content.
  • the invention provides a preparation process of chitosan/polyvinyl alcohol composite nano-conductive fiber, which adopts in-situ polymerization method of conductive polymer material in-situ polymerization method to use fiber as a matrix, immersing it in aniline solution, and then placing it.
  • aniline In the oxidant and the doping acid solution, the aniline is polymerized and doped on the surface of the substrate to form a polyaniline conductive layer.
  • the polyaniline fiber is prepared by the method, and the skin layer is high in purity.
  • Polyaniline has a high electrical conductivity and basically maintains the mechanical properties of the matrix fibers.
  • a preparation process of chitosan/polyvinyl alcohol composite nano-conductive fiber comprises the following steps:
  • the receiving plate is covered with a layer of aluminum foil receiving plate and connected to the other pole of the high voltage power supply, and the spinning voltage, the receiving distance and the advancing speed are set, the power is turned on, the spinning is started, and chitosan/polyvinyl alcohol is obtained.
  • Composite nanofiber
  • chitosan/polyvinyl alcohol composite nanofibers are placed in the aniline monomer solution for 2h-2.5h, and then uniformly extruded after being taken out, and the liquid carrying rate is controlled in the range of 110%-120%;
  • the spinning voltage in the step (4) is 150 V
  • the receiving distance is 12 cm
  • the advancing speed is 0.2 mL/h.
  • the ammonium persulfate having a mass fraction of 25 g/L and the hydrochloric acid having a concentration of 0.5 mol/L are 1:2.
  • the metal needle of the syringe has a model number of 12 # and 15 cm.
  • the nanographite powder in the chitosan/polyvinyl alcohol spinning solution accounts for 2.8% of the total solid content.
  • a preparation process of chitosan/polyvinyl alcohol composite nano-conductive fiber comprises the following steps:
  • the receiving plate is covered with a layer of aluminum foil receiving plate and connected to the other pole of the high voltage power supply, and the spinning voltage, the receiving distance and the advancing speed are set, the power is turned on, the spinning is started, and chitosan/polyvinyl alcohol is obtained.
  • Composite nanofiber
  • the spinning voltage in the step (4) is 150 V
  • the receiving distance is 12 cm
  • the advancing speed is 0.2 mL/h.
  • the ammonium persulfate having a mass fraction of 25 g/L and the hydrochloric acid having a concentration of 0.5 mol/L are 1:2.
  • the metal needle of the syringe has a model number of 12 # and 15 cm.
  • the nanographite powder in the chitosan/polyvinyl alcohol spinning solution accounts for 2.8% of the total solid content.
  • a preparation process of chitosan/polyvinyl alcohol composite nano-conductive fiber comprises the following steps:
  • step (1) (2) ultrasonically dispersing the mixed solution in step (1) for 1.5 h to 2.5 h, and then adding 1 g. Chitosan particles were stirred with a power agitator for 3 h to obtain a chitosan/polyvinyl alcohol spinning solution;
  • the receiving plate is covered with a layer of aluminum foil receiving plate and connected to the other pole of the high voltage power supply, and the spinning voltage, the receiving distance and the advancing speed are set, the power is turned on, the spinning is started, and chitosan/polyvinyl alcohol is obtained.
  • Composite nanofiber
  • the spinning voltage in the step (4) is 200 V
  • the receiving distance is 15 cm
  • the advancing speed is 0.3 mL/h.
  • the ammonium persulfate having a mass fraction of 25 g/L and the hydrochloric acid having a concentration of 0.5 mol/L are 1:2.
  • the metal needle of the syringe has a model number of 12 # and 16 cm.
  • the nanographite powder in the chitosan/polyvinyl alcohol spinning solution accounts for 2.8% of the total solid content.
  • an advantage of the present invention is that the present invention provides a process for preparing a chitosan/polyvinyl alcohol composite nano-conductive fiber by using an in-situ polymerization method of a conductive polymer material in situ polymerization method using a fiber as a matrix. It is immersed in an aniline solution, and then placed in an oxidizing agent and a doped acid solution to polymerize and dope the aniline on the surface of the substrate to form a conductive layer of polyaniline.
  • the polyaniline fiber is prepared by the method, and has the characteristics of being simple and easy to carry out.
  • the cortex is a highly pure polyaniline, which has a high electrical conductivity and substantially maintains the mechanical properties of the matrix fiber.

Abstract

一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,包括如下步骤:在三口瓶中加入50mL冰乙酸水溶液和0.1g纳米石墨粉溶解后得到混合溶液并进行超声分散1.5h-2.5h,再加入1g壳聚糖颗粒,并用电动搅拌器搅拌3h,得到壳聚糖/聚乙烯醇纺丝液;将得到的壳聚糖/聚乙烯醇纺丝液分次装入的20ml的注射器中,固定于高压静电纺丝装置上,注射器的金属针头与高压电源的一极相连;在接收板上覆上一层铝箔接收板与高压电源的另一极相连,并设置纺丝电压、接收距离和推进速度开始纺丝,将得到的复合纳米纤维置于苯胺单体溶液中2h-2.5h,取出后均匀挤压,控制其带液率在110%-120%范围内;将得到吸附有苯胺单体的复合纳米纤维放入反应液中1.5h-2h;将纤维取出后用去离子水洗涤,再自然风干得到最终成品。

Description

[根据细则37.2由ISA制定的发明名称] 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺 技术领域
本发明涉及聚氨酯制备技术领域,具体涉及一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺。
背景技术
壳聚糖具有生物相容性好,可生物降解和抗血凝性等优点,利用静电纺丝制备纯壳聚糖纳米材料非常困难,多数研究是将壳聚糖与其他聚合物共混,再由静电纺丝制备复合纳米纤维将无机纳米材料的特性和壳聚糖纳米纤维相结合,可开发具有独特性质适应特殊需求的壳聚糖纳米纤维产品,常用的无机纳米材料有银、二氧化钛等石墨具备优良化学稳定性导热导电性能,对复合材料导电性能的影响符合渗流作用现象,石墨在复合材料中导电的渗流临界值为10%,加入较大比例的石墨会对复合材料的力学性能影响较大对于静电纺丝技术而言,较大比例无机粒子的加入会影响纺丝成型过程,导致纳米纤维成型较差,目前,功能性纳米纤维中无机粒子共混比例通常较低,制备石墨导电纳米纤维时无法达到其渗流临界值以实现导电功能。聚乙烯醇,是重要的化工原料,无毒无味、无污染,也是制作手套的主要原料之一,但是单纯的聚乙烯醇没有导电性能,制作成手套后不仅具备防静电能力,在一些电子、仪表制造车间或者石化行业中使用这种手套很容易产生静电,影响产品质量甚至造成火灾危险。
发明内容
针对以上问题,本发明提供了一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,采用原位聚合法制备聚苯胺纤维,具有简单易行的特点,且其皮层为纯度较高的聚苯胺,具有较高的电导率,基本保持了基质纤维的力学性能,是目前最有应用前景可以有效解决背景技术中的问题。
为了实现上述目的,本发明采用的技术方案如下:一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,包括如下步骤:
(1)在三口瓶中加入45mL-55mL冰乙酸水溶液,然后加入0.1g-0.2g纳米石墨粉溶解后得到混合溶液;
(2)将步骤(1)中的混合溶液进行超声分散1.5h-2.5h,再加入1g壳聚糖颗粒,并用电动搅拌器搅拌3h,得到壳聚糖/聚乙烯醇纺丝液;
(3)将得到的壳聚糖/聚乙烯醇纺丝液分次装入的20ml的注射器中,固定于高压静电纺丝装置上,注射器的金属针头与高压电源的一极相连;
(4)在接收板上覆上一层铝箔接收板与高压电源的另一极相连,并设置纺丝电压、接收距离和推进速度,打开电源,开始纺丝,得到壳聚糖/聚乙烯醇复合纳米纤维;
(5)将壳聚糖/聚乙烯醇复合纳米纤维置于苯胺单体溶液中2h-2.5h,取出后均匀挤压,控制其带液率在110%-120%范围内;
(6)将步骤(5)中得到吸附有苯胺单体的壳聚糖/聚乙烯醇复合纳米纤维放入反应液中1.5h-2h,纤维与反应液的浴比为1∶25;
(7)将步骤(6)中的纤维取出后用去离子水洗涤,再自然风干,得到最终成品;
根据上述技术方案,所述步骤(4)中的纺丝电压为150V,接收距离为12cm,推进速度为0.2mL/h。
根据上述技术方案,所述反应液质量分数为25g/L的过硫酸铵与浓度为0.5mol/L的盐酸1∶2配置而成。
根据上述技术方案,所述注射器的金属针头的型号为12#、15cm。
根据上述技术方案,所述壳聚糖/聚乙烯醇纺丝液中的纳米石墨粉占所有固体含量的2.8%。
本发明的有益效果:
本发明提供了一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,采用原位聚合法导电高分子材料原位聚合法以纤维作为基体,将其浸渍于苯胺溶液中,再置于氧化剂和掺杂酸溶液中,使苯胺在基质表面发生聚合并掺杂,形成一层聚苯胺导电层,用此法制备聚苯胺纤维,具有简单易行的特点,且其皮层为纯度较高的聚苯胺,具有较高的电导率,基本保持了基质纤维的力学性能。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,包括如下步骤:
(1)在三口瓶中加入50mL冰乙酸水溶液,然后加入0.15g纳米石墨粉溶解后得到混合溶液;
(2)将步骤(1)中的混合溶液进行超声分散2h,再加入1g壳聚糖颗粒,并用电动搅拌器搅拌3h,得到壳聚糖/聚乙烯醇纺丝液;
(3)将得到的壳聚糖/聚乙烯醇纺丝液分次装入的20ml的注射器中,固定于高压静电纺丝装置上,注射器的金属针头与高压电源的一极相连;
(4)在接收板上覆上一层铝箔接收板与高压电源的另一极相连,并设置纺丝电压、接收距离和推进速度,打开电源,开始纺丝,得到壳聚糖/聚乙烯醇复合纳米纤维;
(5)将壳聚糖/聚乙烯醇复合纳米纤维置于苯胺单体溶液中2h-2.5h,取出后均匀挤压,控制其带液率在110%-120%范围内;
(6)将步骤(5)中得到吸附有苯胺单体的壳聚糖/聚乙烯醇复合纳米纤维放入反应液中1.5h-2h,纤维与反应液的浴比为1∶25;
(7)将步骤(6)中的纤维取出后用去离子水洗涤,再自然风干,得到最终成品;
根据上述技术方案,所述步骤(4)中的纺丝电压为150V,接收距离为12cm,推进速度为0.2mL/h。
根据上述技术方案,所述反应液质量分数为25g/L的过硫酸铵与浓度为0.5mol/L的盐酸1∶2配置而成。
根据上述技术方案,所述注射器的金属针头的型号为12#、15cm。
根据上述技术方案,所述壳聚糖/聚乙烯醇纺丝液中的纳米石墨粉占所有固体含量的2.8%。
实施例2:
一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,包括如下步骤:
(1)在三口瓶中加入45mL-55mL冰乙酸水溶液,然后加入0.1g-0.2g纳米石墨粉溶解后得到混合溶液;
(2)将步骤(1)中的混合溶液进行超声分散1.5h-2.5h,再加入1g壳聚糖颗粒,并用电动搅拌器搅拌3h,得到壳聚糖/聚乙烯醇纺丝液;
(3)将得到的壳聚糖/聚乙烯醇纺丝液分次装入的20ml的注射器中,固定于高压静电纺丝装置上,注射器的金属针头与高压电源的一极相连;
(4)在接收板上覆上一层铝箔接收板与高压电源的另一极相连,并设置纺丝电压、接收距离和推进速度,打开电源,开始纺丝,得到壳聚糖/聚乙烯醇复合纳米纤维;
(5)将壳聚糖/聚乙烯醇复合纳米纤维置于苯胺单体溶液中2h-2.5h,取出后均匀挤压,控制其带液率在115%;
(6)将步骤(5)中得到吸附有苯胺单体的壳聚糖/聚乙烯醇复合纳米纤维放入反应液中2h,纤维与反应液的浴比为1∶25;
(7)将步骤(6)中的纤维取出后用去离子水洗涤,再自然风干,得到最终成品;
根据上述技术方案,所述步骤(4)中的纺丝电压为150V,接收距离为12cm,推进速度为0.2mL/h。
根据上述技术方案,所述反应液质量分数为25g/L的过硫酸铵与浓度为0.5mol/L的盐酸1∶2配置而成。
根据上述技术方案,所述注射器的金属针头的型号为12#、15cm。
根据上述技术方案,所述壳聚糖/聚乙烯醇纺丝液中的纳米石墨粉占所有固体含量的2.8%。
实施例3:
一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,包括如下步骤:
(1)在三口瓶中加入45mL-55mL冰乙酸水溶液,然后加入0.1g-0.2g纳米石墨粉溶解后得到混合溶液;
(2)将步骤(1)中的混合溶液进行超声分散1.5h-2.5h,再加入1g 壳聚糖颗粒,并用电动搅拌器搅拌3h,得到壳聚糖/聚乙烯醇纺丝液;
(3)将得到的壳聚糖/聚乙烯醇纺丝液分次装入的20ml的注射器中,固定于高压静电纺丝装置上,注射器的金属针头与高压电源的一极相连;
(4)在接收板上覆上一层铝箔接收板与高压电源的另一极相连,并设置纺丝电压、接收距离和推进速度,打开电源,开始纺丝,得到壳聚糖/聚乙烯醇复合纳米纤维;
(5)将壳聚糖/聚乙烯醇复合纳米纤维置于苯胺单体溶液中2h,取出后均匀挤压,控制其带液率在110%-120%范围内;
(6)将步骤(5)中得到吸附有苯胺单体的壳聚糖/聚乙烯醇复合纳米纤维放入反应液中1.5h-2h,纤维与反应液的浴比为1∶25;
(7)将步骤(6)中的纤维取出后用去离子水洗涤,再自然风干,得到最终成品;
根据上述技术方案,所述步骤(4)中的纺丝电压为200V,接收距离为15cm,推进速度为0.3mL/h。
根据上述技术方案,所述反应液质量分数为25g/L的过硫酸铵与浓度为0.5mol/L的盐酸1∶2配置而成。
根据上述技术方案,所述注射器的金属针头的型号为12#、16cm。
根据上述技术方案,所述壳聚糖/聚乙烯醇纺丝液中的纳米石墨粉占所有固体含量的2.8%。
基于上述,本发明的优点在于,本发明提供了一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,采用原位聚合法导电高分子材料原位聚合法以纤维作为基体,将其浸渍于苯胺溶液中,再置于氧化剂和掺杂酸溶液中,使苯胺在基质表面发生聚合并掺杂,形成一层聚苯胺导电层,用此法制备聚苯胺纤维,具有简单易行的特点,且其皮层为纯度较高的聚苯胺,具有较高的电导率,基本保持了基质纤维的力学性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,其特征在于,包括如下步骤:
    (1)在三口瓶中加入45mL-55mL冰乙酸水溶液,然后加入0.1g-0.2g纳米石墨粉溶解后得到混合溶液;
    (2)将步骤(1)中的混合溶液进行超声分散1.5h-2.5h,再加入1g壳聚糖颗粒,并用电动搅拌器搅拌3h,得到壳聚糖/聚乙烯醇纺丝液;
    (3)将得到的壳聚糖/聚乙烯醇纺丝液分次装入的20ml的注射器中,固定于高压静电纺丝装置上,注射器的金属针头与高压电源的一极相连;
    (4)在接收板上覆上一层铝箔接收板与高压电源的另一极相连,并设置纺丝电压、接收距离和推进速度,打开电源,开始纺丝,得到壳聚糖/聚乙烯醇复合纳米纤维;
    (5)将壳聚糖/聚乙烯醇复合纳米纤维置于苯胺单体溶液中2h-2.5h,取出后均匀挤压,控制其带液率在110%-120%范围内;
    (6)将步骤(5)中得到吸附有苯胺单体的壳聚糖/聚乙烯醇复合纳米纤维放入反应液中1.5h-2h,纤维与反应液的浴比为1∶25;
    (7)将步骤(6)中的纤维取出后用去离子水洗涤,再自然风干,得到最终成品。
  2. 根据权利要求1所述的一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,其特征在于,所述步骤(4)中的纺丝电压为150-200V,接收距离为12-15cm,推进速度为0.2mL/h-0.3mL/h。
  3. 根据权利要求1所述的一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,其特征在于,所述反应液质量分数为25g/L的过硫酸铵与浓度为0.5mol/L的盐酸1∶2配置而成。
  4. 根据权利要求1所述的一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,其特征在于,所述注射器的金属针头的型号为12#、15cm。
  5. 根据权利要求2所述的一种壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺,其特征在于,所述壳聚糖/聚乙烯醇纺丝液中的纳米石墨粉占所有固体含量的2.8%。
PCT/CN2016/000325 2016-06-14 2016-06-22 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺 WO2017214741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610413382 2016-06-14
CN201610413382.X 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017214741A1 true WO2017214741A1 (zh) 2017-12-21

Family

ID=58856798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000325 WO2017214741A1 (zh) 2016-06-14 2016-06-22 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺

Country Status (2)

Country Link
CN (1) CN106637453A (zh)
WO (1) WO2017214741A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592772A (zh) * 2019-10-11 2019-12-20 湖南科力嘉纺织股份有限公司 一种抗菌纺纱面料及其纺织方法
CN111617382A (zh) * 2020-05-20 2020-09-04 四川大学华西医院 一种预防压力性损伤的电刺激装置
CN112064144A (zh) * 2020-09-22 2020-12-11 邵阳县合和工业材料有限公司 一种纳米复合纤维及其制造方法
WO2020252694A1 (zh) * 2019-06-19 2020-12-24 江苏国望高科纤维有限公司 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用
CN112421132A (zh) * 2020-10-27 2021-02-26 盐城工学院 一种铅酸电池修复液及其制备方法与应用
CN114045576A (zh) * 2021-12-09 2022-02-15 邵阳雅丽工艺制品有限公司 一种合成纤维假发的处理方法
CN114606652A (zh) * 2022-02-17 2022-06-10 苏州美森无纺科技有限公司 一种光热调控型可高效油吸附擦拭布及其制备方法
CN116427052A (zh) * 2023-03-10 2023-07-14 武汉纺织大学 一种防静电聚乳酸面料及其制备方法
CN116427052B (zh) * 2023-03-10 2024-05-03 武汉纺织大学 一种防静电聚乳酸面料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107334749A (zh) * 2017-07-03 2017-11-10 苏州大学 一种载卡托普利的聚乙烯醇‑壳聚糖纳米纤维的制备方法
CN109355723B (zh) * 2018-08-23 2021-06-01 浙江理工大学 一种温敏性可变电阻导电纤维的制备方法
CN111088528B (zh) * 2018-10-24 2021-12-14 中国石油化工股份有限公司 一种导电纺丝原液、制备方法及其制备导电腈纶的用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908039A (zh) * 2006-08-15 2007-02-07 浙江大学 具有稳定形态的壳聚糖纳米纤维膜的制备方法
CN103243563A (zh) * 2013-05-23 2013-08-14 中原工学院 一种聚乳酸/聚苯胺复合导电纤维的制备方法
CN103382625A (zh) * 2013-08-06 2013-11-06 苏州大学 纳米薄膜的制备方法
CN103757917A (zh) * 2014-01-26 2014-04-30 江汉大学 一种具有电活性的壳聚糖基复合材料的制备方法
CN104250859A (zh) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 一种制备壳层为聚苯胺的电纺丝的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720066A (zh) * 2012-07-05 2012-10-10 苏州大学 超高分子量聚乙烯/聚苯胺复合导电纤维的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908039A (zh) * 2006-08-15 2007-02-07 浙江大学 具有稳定形态的壳聚糖纳米纤维膜的制备方法
CN103243563A (zh) * 2013-05-23 2013-08-14 中原工学院 一种聚乳酸/聚苯胺复合导电纤维的制备方法
CN104250859A (zh) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 一种制备壳层为聚苯胺的电纺丝的方法
CN103382625A (zh) * 2013-08-06 2013-11-06 苏州大学 纳米薄膜的制备方法
CN103757917A (zh) * 2014-01-26 2014-04-30 江汉大学 一种具有电活性的壳聚糖基复合材料的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020252694A1 (zh) * 2019-06-19 2020-12-24 江苏国望高科纤维有限公司 一种乳液组合物、聚苯乙烯纳米纤维、聚苯乙烯纳米纤维制品及制备方法和应用
CN110592772A (zh) * 2019-10-11 2019-12-20 湖南科力嘉纺织股份有限公司 一种抗菌纺纱面料及其纺织方法
CN111617382A (zh) * 2020-05-20 2020-09-04 四川大学华西医院 一种预防压力性损伤的电刺激装置
CN111617382B (zh) * 2020-05-20 2023-08-25 四川大学华西医院 一种预防压力性损伤的电刺激装置
CN112064144A (zh) * 2020-09-22 2020-12-11 邵阳县合和工业材料有限公司 一种纳米复合纤维及其制造方法
CN112421132A (zh) * 2020-10-27 2021-02-26 盐城工学院 一种铅酸电池修复液及其制备方法与应用
CN112421132B (zh) * 2020-10-27 2023-07-28 盐城工学院 一种铅酸电池修复液及其制备方法与应用
CN114045576A (zh) * 2021-12-09 2022-02-15 邵阳雅丽工艺制品有限公司 一种合成纤维假发的处理方法
CN114606652A (zh) * 2022-02-17 2022-06-10 苏州美森无纺科技有限公司 一种光热调控型可高效油吸附擦拭布及其制备方法
CN114606652B (zh) * 2022-02-17 2023-07-21 苏州美森无纺科技有限公司 一种光热调控型可高效油吸附擦拭布及其制备方法
CN116427052A (zh) * 2023-03-10 2023-07-14 武汉纺织大学 一种防静电聚乳酸面料及其制备方法
CN116427052B (zh) * 2023-03-10 2024-05-03 武汉纺织大学 一种防静电聚乳酸面料及其制备方法

Also Published As

Publication number Publication date
CN106637453A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017214741A1 (zh) 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺
CN104790067B (zh) 纳米导电高分子/石墨烯复合纤维及其制备方法和应用
CN103255634B (zh) 一种聚丙烯腈/聚苯胺复合微纳米导电纤维的制备方法
CN104451925A (zh) 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN104916448B (zh) 一种层次结构微纳多孔纤维电极材料及其制备方法
Chen et al. Electrospinning and solution properties of Nafion and poly (acrylic acid)
Zhang et al. A nanocellulose polypyrrole composite based on tunicate cellulose
US20160318767A1 (en) Graphene fiber and method for manufacturing same
WO2021114321A1 (zh) 一种柔性导电纤维膜材料及其制备方法
CN104036971B (zh) 一种石墨烯/碳纳米管复合纤维基超级电容器的制备方法
Zubair et al. Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques
CN107988645A (zh) 超弹性导电纤维和超弹性纤维状超级电容器的制备方法
JP5970915B2 (ja) 導電性複合体
Wang et al. Facile production of natural silk nanofibers for electronic device applications
CN109763210A (zh) 离子液体制备纤维素基碳纤维或碳膜的方法
CN105133293A (zh) 一种导电纳米复合材料的制备方法
Wang et al. Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning
CN110228789A (zh) 一种柔性压阻式应力传感器及其制备方法
CN106238726B (zh) 一种柔性复合纳米银线及其制备方法
CN108520830A (zh) 一种皮芯型多孔石墨烯纤维与超级电容器的制备方法
CN103757917B (zh) 一种具有电活性的壳聚糖基复合材料的制备方法
CN108538630A (zh) 一种生物质炭/石墨烯柔性复合膜的制备方法
CN110364665A (zh) 锂电池用隔膜及其制备方法
CN103243563B (zh) 一种聚乳酸/聚苯胺复合导电纤维的制备方法
Ye et al. Highly conductive, hydrophobic, and acid/alkali-resistant MXene@ PVDF hollow core-shell fibers for efficient electromagnetic interference shielding and Joule heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904860

Country of ref document: EP

Kind code of ref document: A1