WO2020250849A1 - Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and method for manufacturing semiconductor growth substrate - Google Patents
Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and method for manufacturing semiconductor growth substrate Download PDFInfo
- Publication number
- WO2020250849A1 WO2020250849A1 PCT/JP2020/022521 JP2020022521W WO2020250849A1 WO 2020250849 A1 WO2020250849 A1 WO 2020250849A1 JP 2020022521 W JP2020022521 W JP 2020022521W WO 2020250849 A1 WO2020250849 A1 WO 2020250849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- growth substrate
- layer
- semiconductor
- buffer layer
- plane
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 159
- 239000000758 substrate Substances 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 150000004767 nitrides Chemical class 0.000 claims abstract description 63
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 30
- 239000010980 sapphire Substances 0.000 claims abstract description 30
- 239000010410 layer Substances 0.000 claims description 190
- 238000004544 sputter deposition Methods 0.000 claims description 9
- 239000002346 layers by function Substances 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 230000007547 defect Effects 0.000 description 21
- 239000010408 film Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Definitions
- the present disclosure relates to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element, and a method for manufacturing a semiconductor growth substrate.
- the present invention relates to a device, a semiconductor light emitting device, and a method for manufacturing a semiconductor growth substrate.
- an LED Light Emitting Diode
- an active layer is formed of a GaN-based material having a non-polar or semi-polar plane orientation as a main surface.
- the a-plane and the m-plane are non-polar planes
- the r-plane is a typical example of the semi-polar plane.
- the influence of the piezo electric field in the stacking direction can be reduced and the droop characteristics can be improved.
- Patent Document 1 a nano-sized convex shape is formed on the main surface of the r-plane sapphire substrate, and the a-plane GaN layer is grown via the buffer layer to dislocate in the laterally growing a-plane GaN layer.
- a semiconductor growth substrate capable of reducing the defect density and growing a nitride semiconductor layer having a high-quality a-plane as a main surface, a semiconductor element and a semiconductor light emitting device using the substrate, and semiconductor growth It is an object of the present invention to provide a method for manufacturing a substrate for use.
- the semiconductor growth substrate of the present disclosure is formed on an r-plane sapphire substrate having an r-plane as a main surface, a buffer layer formed on the main surface, and the buffer layer.
- a plurality of dielectric masks and a nitride semiconductor layer having the a-plane formed over the buffer layer and the dielectric mask as a main surface are provided.
- a dielectric mask is formed on the buffer layer, and the nitride semiconductor layer starts to grow only from the surface of the buffer layer exposed between the dielectric masks.
- the lateral growth of the nitride semiconductor layer having the a-plane as the main surface can be promoted, the defect density can be reduced, and the nitride semiconductor layer having the a-plane as the main surface can be grown. It will be possible.
- the dielectric mask has a maximum dimension of less than 1.2 ⁇ m in the in-plane direction of the main surface and a maximum dimension of less than 2 ⁇ m in the height direction.
- the dielectric mask is made of SiO 2 .
- the buffer layer is composed of AlN.
- the nitride semiconductor layer is made of GaN.
- the semiconductor element of the present disclosure uses the semiconductor growth substrate according to any one of the above, and includes a functional layer on the semiconductor growth substrate.
- the semiconductor light emitting device of the present disclosure uses the semiconductor growth substrate according to any one of the above, and includes an active layer on the semiconductor growth substrate.
- the method for manufacturing a semiconductor growth substrate of the present disclosure includes a buffer layer forming step of forming a buffer layer on the main surface of an r-plane sapphire substrate having an r-plane as a main surface, and the buffer.
- a mask forming step of forming a dielectric mask on the layer and a base layer growing step of growing a nitride semiconductor layer having a plane a as a main surface from the buffer layer exposed between the dielectric masks are provided.
- a dielectric mask is formed on the buffer layer, and the nitride semiconductor layer starts to grow only from the surface of the buffer layer exposed between the dielectric masks.
- the lateral growth of the nitride semiconductor layer having the a-plane as the main surface can be promoted, the defect density can be reduced, and the nitride semiconductor layer having the a-plane as the main surface can be grown. It will be possible.
- the buffer layer is formed with AlN by using a sputtering method.
- a semiconductor growth substrate capable of reducing the defect density and growing a nitride semiconductor layer having a high-quality a-plane as a main surface, a semiconductor element and a semiconductor light emitting element using the substrate, and a semiconductor light emitting element, and A method for manufacturing a semiconductor growth substrate can be provided.
- FIG. 1 is a schematic cross-sectional view showing a semiconductor growth substrate 10 according to the first embodiment of the present disclosure.
- the semiconductor growth substrate of this embodiment includes an r-plane sapphire substrate 11, a buffer layer 12, a dielectric mask 13, and a nitride semiconductor layer 14.
- the r-plane sapphire substrate 11 is a substrate composed of a single crystal of sapphire, and has the r-plane of hexagonal crystals as the main surface.
- the just substrate having an inclination angle of 0 degrees is shown as the r-plane sapphire substrate 11, but an off-board substrate in which the r-plane is inclined by several degrees in a predetermined plane direction may be used.
- the buffer layer 12 is a layer formed to alleviate the lattice mismatch between the r-plane sapphire substrate 11 and the nitride semiconductor layer 14.
- Examples of the material constituting the buffer layer 12 include AlN, GaN, InGaN, AlGaN, and the like, but it is preferable to use AlN.
- a sputtering method a metalorganic vapor phase growth method (MOCVD method: Metalorganic Chemical Vapor Deposition), or the like can be used, and it is preferable to use the sputtering method.
- MOCVD method Metalorganic Chemical Vapor Deposition
- the thickness of the buffer layer 12 is preferably in the range of 5 to 300 nm, more preferably in the range of 5 to 90 nm, and preferably in the range of 5 to 30 nm because the crystal quality of the nitride semiconductor layer 14 tends to deteriorate if it is made too thick. More preferred.
- the dielectric mask 13 is a pattern formed of a dielectric material on the buffer layer 12, and is a layer that partially covers the buffer layer 12.
- the material constituting the dielectric mask 13 is not limited as long as the nitride semiconductor layer does not crystal grow from the surface, and for example, SiO 2 , SiN, SiON, TiO 2 and the like can be used, and SiO 2 is used. Is preferable.
- FIG. 1 shows the case where the dielectric mask 13 has a triangular or conical cross section, it may have a quadrangular pyramid shape or a triangular pyramid shape, and the cross section may have a rectangular shape or a curved surface shape.
- the arrangement of the dielectric mask 13 on the r-plane sapphire substrate 11 is not limited, and may be arranged in a triangular lattice shape or a square lattice shape, or may be arranged in a stripe shape or a grid shape.
- the dielectric mask 13 preferably has a maximum dimension of the r-plane sapphire substrate 11 in the in-plane direction of less than 1.2 ⁇ m, and the maximum dimension of the r-plane sapphire substrate 11 in the height direction is less than 2 ⁇ m. Is preferable. If the size of the dielectric mask 13 exceeds the above range, the film thickness of the nitride semiconductor layer 14 until the dielectric mask 13 is covered and flattened may become too large.
- the nitride semiconductor layer 14 is a base layer grown so that the main surface becomes the a-plane, and is a layer for epitaxially growing a layer made of another nitride semiconductor on the base layer.
- the material constituting the nitride semiconductor layer 14 include GaN, InGaN, AlGaN, etc., and it is preferable to use a-plane GaN.
- a method for forming the nitride semiconductor layer 14 known methods such as a MOCVD method and an HVPE method (hydride vapor phase growth method: Hydride Vapor Phase Epitaxy) can be used, but it is preferable to use the MOCVD method.
- the film thickness of the nitride semiconductor layer 14 is not particularly limited, but it is preferably formed at 1 ⁇ m or more.
- defects 15a and 15b are included in the nitride semiconductor layer 14.
- the defect 15a is a penetrating dislocation extending from substantially the center of the dielectric mask 13 to the surface of the nitride semiconductor layer 14, and is aggregated on the dielectric mask 15a by the lateral growth of the nitride semiconductor layer 14.
- the defect 15b is a through dislocation extending from the buffer layer 12 between the dielectric masks 13 to the surface of the nitride semiconductor layer 14, and the dislocation continues without being bent by the lateral growth.
- FIGS. 2 and 3 are process diagrams schematically showing a method for manufacturing the semiconductor growth substrate 10.
- a substrate having an r-plane as a main surface is formed from a sapphire single crystal, and the surface is washed to prepare an r-plane sapphire substrate 11.
- a buffer layer 12 having a film thickness of about 5 nm to 600 nm is formed over the entire main surface of the r-plane sapphire substrate 11.
- known methods such as a sputtering method, thin film deposition, and epitaxial growth can be used.
- GaN is used as the material of the nitride semiconductor layer 14, it is preferable to form the buffer layer 12 made of AlN by a sputtering method.
- Ar gas with AlN As a sputtering method for forming the buffer layer 12, it is more preferable to use Ar gas with AlN as a target material.
- the AlN to be the target material may be a single crystal substrate or a powder-fired body, and its state and form are not limited.
- the substrate temperature is preferably in the range of 200 ° C. or higher and lower than 500 ° C.
- the concentration of oxygen and carbon impurities contained in the buffer layer 12 increases after film formation, and it tends to be difficult to epitaxially grow the nitride semiconductor layer 14 on the buffer layer 12.
- the sputtering process is carried out at a temperature of 200 ° C. or higher and lower than 500 ° C., which is lower than about 1500 ° C. at which high-quality AlN crystals can be obtained, the buffer layer 12 immediately after film formation is amorphous-like. It seems to be crystalline.
- the buffer layer 12 is annealed to promote recrystallization of the buffer layer 12 so that the buffer layer 12 has uniaxial orientation in the stacking direction and the in-plane direction.
- a heat treatment apparatus based on a high frequency induction heating method can be used.
- the annealing condition it is preferable to keep the substrate temperature at 1300 ° C. or higher and lower than 1700 ° C. for 0.5 to 3.0 hours in an inert gas (for example, nitrogen or Ar) atmosphere.
- the substrate temperature is more preferably 1300 ° C. or higher and 1600 ° C. or lower. If the annealing temperature (board temperature) is 1700 ° C.
- the r-plane sapphire board 11 may be thermally decomposed and deteriorated, which is not preferable. Further, if the annealing temperature is less than 1300 ° C., the recrystallization of the buffer layer 12 may be insufficient, and the uniaxial orientation of the buffer layer 12 in the stacking direction and the in-plane direction may be insufficient.
- the dielectric material is laminated over the entire area on the buffer layer 12 to form the dielectric mask 13 having a film thickness of about 800 nm to 2000 nm.
- Known methods such as a sputtering method, a vapor deposition, a sol-gel method, a plasma CVD method, and a spin coating method can be used for laminating the dielectric material.
- a resist film 16 is applied onto the buffer layer 12 by spin coating or the like to form a mold of nanoimprint technology in which a pattern corresponding to the convex portion 16a and the concave portion 16b is formed.
- the resist film 16 is cured to form the convex portion 16a and the concave portion 16b.
- the material of the resist film 16 is not limited, and may be a thermosetting type or a UV curing type.
- the resist film 16 and the dielectric mask 13 are etched to pattern the dielectric mask 13 so that the surface of the buffer layer 12 is exposed between the dielectric masks 13.
- the height of the patterned dielectric mask 13 is preferably about 600 nm to 1200 nm.
- the surface is washed with acetone washing, ozone washing, or the like to remove the residue of the resist film 16.
- the nitride semiconductor layer 14 which is a base layer, is grown on the buffer layer 12 exposed from between the dielectric masks 13.
- the nitride semiconductor layer 14 is grown on the buffer layer 12 exposed from between the dielectric masks 13.
- hydrogen and nitrogen are used as carrier gases
- ammonia NH 3
- TMG Trimethylgallium
- the growth sequence is composed of two steps, the growth temperature is kept constant after the temperature is raised, and the reactor pressure, the V / III ratio, and the growth time are changed.
- the V / III ratio is set to about 4000 to 5000, the pressure is set to 900 to 1000 hPa, and the pressure is maintained for about 10 to 20 minutes.
- the V / III ratio is set to about 100 to 200, the pressure is set to 100 to 150 hPa, and the pressure is maintained for 90 to 120 minutes.
- growth nuclei 17 of nitride semiconductors are formed on the surface of the buffer layer 12 exposed from between the dielectric masks 13 in the initial stage of growth, and the growth nuclei 17 are nitrided.
- Epitaxial growth of the material semiconductor layer 14 is performed. Therefore, the nitride semiconductor layer 14 does not grow from the surface or side surface of the dielectric mask 13, but grows only from the surface of the buffer layer 12 corresponding to the main surface of the r-plane sapphire substrate 11, so that the nitride semiconductor layer 14 grows.
- the main surface is the a surface.
- the nitride semiconductor layer 14 grows only from the surface of the buffer layer 12 exposed from between the dielectric masks 13, and is formed until it covers the dielectric mask 13 by lateral growth.
- Threading dislocations with the lateral growth of the nitride semiconductor layer 14 is also aggregated into bent in defects 15a in the lateral direction, the defect density is reduced to about 5 ⁇ 10 8 cm -3.
- each layer for continuously forming the semiconductor element may be epitaxially grown.
- FIG. 4 is a schematic cross-sectional view showing the semiconductor growth substrate 20 to be compared.
- the semiconductor growth substrate 20 includes an r-plane sapphire substrate 21, a plurality of convex shapes 21a, a buffer layer 22, and a nitride semiconductor layer 24.
- the convex shape 21a can be formed by patterning an etching mask on the r-plane sapphire substrate 21 using nanoimprint technology or photolithography technology, and then anisotropically etching the r-plane sapphire substrate 21 with chlorine-based gas. it can. Further, the buffer layer 22 is formed so as to cover the main surface of the r-plane sapphire substrate 21 and the entire convex shape 21a.
- defects 25a aggregated on the convex shape 21a due to lateral growth of the nitride semiconductor layer 24 and defects 25b extending from the buffer layer 22 between the convex shapes 21a to the surface of the nitride semiconductor layer 24. Includes a defect 25c arising from the side surface of the convex shape 21a.
- the growth nucleus is also formed on the side surface of the convex shape 21a at the initial stage of growth of the nitride semiconductor layer 24. Occurs. Since the nitride semiconductor layer 24 grown from the side surface of the convex shape 21a may grow crystals on a main surface different from the a surface, defects 25c are likely to occur from the side surface of the convex shape 21a. Therefore, in the semiconductor growth substrate 20, there is a limit to the reduction of the defect density due to the lateral growth, and the defect density is about 9 ⁇ 10 9 cm -3 .
- the buffer layer 12 is formed on the r-plane sapphire substrate 11 having the r-plane as the main surface, and a plurality of dielectric masks 13 are patterned on the buffer layer 12. Since the nitride semiconductor layer 14 having the a-plane as the main surface is formed over the buffer layer 12 and the dielectric mask 13, the defect density is reduced and the high-quality nitride semiconductor layer having the a-plane as the main surface is formed. It becomes possible to grow.
- FIG. 5 is a schematic cross-sectional view showing an LED which is a semiconductor device of this embodiment.
- the LED includes an r-plane sapphire substrate 11, a buffer layer 12, a dielectric mask 13, a nitride semiconductor layer 14, an active layer 18, a p-type semiconductor layer 19, an n-side electrode 31, and a p-side electrode 32.
- the LED includes an r-plane sapphire substrate 11, a buffer layer 12, a dielectric mask 13, a nitride semiconductor layer 14, an active layer 18, a p-type semiconductor layer 19, an n-side electrode 31, and a p-side electrode 32.
- the r-plane sapphire substrate 11 is prepared, the buffer layer 12 and the dielectric mask 13 are formed, and the nitride semiconductor layer 14 is epitaxially grown by the MOCVD method. Subsequently, the active layer 18 and the p-type semiconductor layer 19 are sequentially grown by the MOCVD method to obtain a semiconductor substrate.
- a part of the p-type semiconductor layer 19 and the active layer 18 is removed by photolithography and etching to expose a part of the nitride semiconductor layer 14.
- an electrode material is formed on the exposed surfaces of the nitride semiconductor layer 14 and the p-type semiconductor layer 19 by vapor deposition or the like, and the LED is obtained by dicing and forming individual chips.
- the active layer 18 is a semiconductor layer whose main surface is the a-plane epitaxially grown on the nitride semiconductor layer 14.
- the LED emits light when electrons and holes emit light and recombine in the layer of the active layer 18.
- the active layer 18 is made of a material having a bandgap smaller than that of the nitride semiconductor layer 14 and the p-type semiconductor layer 19. Examples of such a material include InGaN and AlInGaN.
- the active layer 18 may be intentionally non-doped containing impurities, or may be n-type containing n-type impurities or p-type containing p-type impurities.
- the active layer 18 is a semiconductor layer having the a-plane as the main surface, spatial separation of electrons and holes due to the piezo electric field is unlikely to occur even if the film is thickened, and even if the current density is increased, the electrons and holes are efficiently positive. Holes can luminescence recombine.
- the p-type semiconductor layer 19 is a semiconductor layer whose main surface is the a-plane epitaxially grown on the active layer 18. Holes are injected into the p-type semiconductor layer 19 from the p-side electrode 32. Then, the p-type semiconductor layer 19 supplies the injected holes to the active layer 18.
- the nitride semiconductor layer 14 and the p-type semiconductor layer 19 have been described as a single layer, but each may include a plurality of layers having different materials and compositions.
- the nitride semiconductor layer 14 and the p-type semiconductor layer 19 may include a clad layer, a contact layer, a current diffusion layer, an electron block layer, a waveguide layer, and the like.
- the active layer 18 has been described as a single layer, it may be composed of a plurality of layers such as a multiple quantum well structure (MQW: Multi Quantum Well).
- the buffer layer 12 and the dielectric mask 13 are formed on the r-plane sapphire substrate 11, and the nitride semiconductor layer 14, the active layer 18, and the p-type semiconductor layer 19 are epitaxially grown.
- the nitride semiconductor layer 14 has good crystallinity and surface flatness, and the defect density is reduced. Therefore, the active layer 18 and the p-type semiconductor layer 19 grown on the nitride semiconductor layer 14 having the reduced defect density also have good crystallinity and surface flatness. As a result, the characteristics of the active layer 18 and the p-type semiconductor layer 19 are also improved, and it is expected that the external quantum efficiency of the LED will be improved.
- this embodiment is an example which provided the active layer 18 as a functional layer.
- the functional layer is a layer for exerting a predetermined electrical and chemical function in the semiconductor element.
- the LED which is the semiconductor device of the present disclosure, has less droop due to the piezo electric field, has less anisotropy in the a-plane, and has good crystal quality, so that high brightness can be realized.
- the semiconductor device is not limited to the LED, and may be a semiconductor laser, and is used for other purposes such as a high electron mobility transistor (HEMT) having a functional layer for generating two-dimensional electron gas. You may.
- HEMT high electron mobility transistor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
A semiconductor growth substrate (10) is provided with: an r-plane sapphire substrate (11) in which an r-plane serves as a principal plane; a buffer layer (12) that is formed on the principal plane; a plurality of dielectric masks (13) that are formed on the buffer layer (12); and a nitride semiconductor layer (14) in which an a-plane formed by covering the buffer layer (12) and the dielectric masks (13) serves as a principal plane.
Description
本開示は、半導体成長用基板、半導体素子、半導体発光素子、および半導体成長用基板製造方法に関し、特にa面を主面とする窒化物半導体層を成長させる半導体成長用基板、それを用いた半導体素子および半導体発光素子、並びに半導体成長用基板の製造方法に関する。
The present disclosure relates to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element, and a method for manufacturing a semiconductor growth substrate. In particular, a semiconductor growth substrate for growing a nitride semiconductor layer having the a-plane as a main surface, and a semiconductor using the same. The present invention relates to a device, a semiconductor light emitting device, and a method for manufacturing a semiconductor growth substrate.
近年になって、照明用途に用いられる紫色から青色を発光するLED(Light Emitting Diode)として、非極性や半極性の面方位を主面としたGaN系材料で活性層を形成するものが提案されている。GaN系半導体層では、a面やm面が非極性面であり、半極性面の代表例としてr面がある。非極性面や半極性面を用いたGaN系半導体層では、積層方向へのピエゾ電界の影響を低減してドループ特性を改善することができる。
In recent years, as an LED (Light Emitting Diode) that emits purple to blue light used for lighting applications, one in which an active layer is formed of a GaN-based material having a non-polar or semi-polar plane orientation as a main surface has been proposed. ing. In the GaN-based semiconductor layer, the a-plane and the m-plane are non-polar planes, and the r-plane is a typical example of the semi-polar plane. In the GaN-based semiconductor layer using the non-polar surface or the semi-polar surface, the influence of the piezo electric field in the stacking direction can be reduced and the droop characteristics can be improved.
特許文献1には、r面サファイア基板の主面にナノサイズの凸形状を形成し、バッファ層を介してa面GaN層を成長させることで、横方向に成長するa面GaN層中で転位を屈曲させ、半導体層の表面にまで継続する転位や欠陥を減少させる技術が提案されている。
In Patent Document 1, a nano-sized convex shape is formed on the main surface of the r-plane sapphire substrate, and the a-plane GaN layer is grown via the buffer layer to dislocate in the laterally growing a-plane GaN layer. Has been proposed to reduce dislocations and defects that continue to the surface of the semiconductor layer.
しかし、r面サファイア基板上に形成されるa面GaN層では、成長面内に±c軸方向やm軸方向が存在するため、面内異方性により異常成長が生じやすく、a面GaN層の欠陥密度の低減にも限界があった。
However, in the a-plane GaN layer formed on the r-plane sapphire substrate, since the ± c-axis direction and the m-axis direction exist in the growth plane, abnormal growth is likely to occur due to in-plane anisotropy, and the a-plane GaN layer There was also a limit to the reduction of defect density.
本開示は、上記従来の問題点に鑑みなされたものである。本開示は、欠陥密度を低減して高品質なa面を主面とする窒化物半導体層を成長させることが可能な半導体成長用基板、それを用いた半導体素子および半導体発光素子、並びに半導体成長用基板の製造方法を提供することを目的とする。
This disclosure has been made in view of the above-mentioned conventional problems. In the present disclosure, a semiconductor growth substrate capable of reducing the defect density and growing a nitride semiconductor layer having a high-quality a-plane as a main surface, a semiconductor element and a semiconductor light emitting device using the substrate, and semiconductor growth It is an object of the present invention to provide a method for manufacturing a substrate for use.
上記課題を解決するために、本開示の半導体成長用基板は、r面を主面とするr面サファイア基板と、前記主面上に形成されたバッファ層と、前記バッファ層上に形成された複数の誘電体マスクと、前記バッファ層および前記誘電体マスクを覆って形成されたa面を主面とする窒化物半導体層と、を備える。
In order to solve the above problems, the semiconductor growth substrate of the present disclosure is formed on an r-plane sapphire substrate having an r-plane as a main surface, a buffer layer formed on the main surface, and the buffer layer. A plurality of dielectric masks and a nitride semiconductor layer having the a-plane formed over the buffer layer and the dielectric mask as a main surface are provided.
このような本開示の半導体成長用基板では、バッファ層上に誘電体マスクが形成されており、誘電体マスクの間から露出したバッファ層表面からのみ窒化物半導体層の成長が始まる。これにより、a面を主面とする窒化物半導体層の横方向成長を促進することができ、欠陥密度を低減して高品質なa面を主面とする窒化物半導体層を成長させることが可能となる。
In such a semiconductor growth substrate of the present disclosure, a dielectric mask is formed on the buffer layer, and the nitride semiconductor layer starts to grow only from the surface of the buffer layer exposed between the dielectric masks. As a result, the lateral growth of the nitride semiconductor layer having the a-plane as the main surface can be promoted, the defect density can be reduced, and the nitride semiconductor layer having the a-plane as the main surface can be grown. It will be possible.
また本開示の一態様では、前記誘電体マスクは、前記主面の面内方向における最大寸法が1.2μm未満、高さ方向の最大寸法が2μm未満である。
Further, in one aspect of the present disclosure, the dielectric mask has a maximum dimension of less than 1.2 μm in the in-plane direction of the main surface and a maximum dimension of less than 2 μm in the height direction.
また本開示の一態様では、前記誘電体マスクは、SiO2で構成されている。
Further, in one aspect of the present disclosure, the dielectric mask is made of SiO 2 .
また本開示の一態様では、前記バッファ層は、AlNで構成されている。
Further, in one aspect of the present disclosure, the buffer layer is composed of AlN.
また本開示の一態様では、前記窒化物半導体層は、GaNで構成されている。
Further, in one aspect of the present disclosure, the nitride semiconductor layer is made of GaN.
また上記課題を解決するために本開示の半導体素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に機能層を備える。
Further, in order to solve the above problems, the semiconductor element of the present disclosure uses the semiconductor growth substrate according to any one of the above, and includes a functional layer on the semiconductor growth substrate.
また上記課題を解決するために本開示の半導体発光素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に活性層を備える。
Further, in order to solve the above problems, the semiconductor light emitting device of the present disclosure uses the semiconductor growth substrate according to any one of the above, and includes an active layer on the semiconductor growth substrate.
また上記課題を解決するために本開示の半導体成長用基板の製造方法は、r面を主面とするr面サファイア基板の前記主面上にバッファ層を形成するバッファ層形成工程と、前記バッファ層上に誘電体マスクを形成するマスク形成工程と、前記誘電体マスクの間から露出する前記バッファ層からa面を主面とする窒化物半導体層を成長させる下地層成長工程をと、備える。
Further, in order to solve the above problems, the method for manufacturing a semiconductor growth substrate of the present disclosure includes a buffer layer forming step of forming a buffer layer on the main surface of an r-plane sapphire substrate having an r-plane as a main surface, and the buffer. A mask forming step of forming a dielectric mask on the layer and a base layer growing step of growing a nitride semiconductor layer having a plane a as a main surface from the buffer layer exposed between the dielectric masks are provided.
このような本開示の半導体成長用基板の製造方法では、バッファ層上に誘電体マスクが形成されており、誘電体マスクの間から露出したバッファ層表面からのみ窒化物半導体層の成長が始まる。これにより、a面を主面とする窒化物半導体層の横方向成長を促進することができ、欠陥密度を低減して高品質なa面を主面とする窒化物半導体層を成長させることが可能となる。
In such a method for manufacturing a semiconductor growth substrate of the present disclosure, a dielectric mask is formed on the buffer layer, and the nitride semiconductor layer starts to grow only from the surface of the buffer layer exposed between the dielectric masks. As a result, the lateral growth of the nitride semiconductor layer having the a-plane as the main surface can be promoted, the defect density can be reduced, and the nitride semiconductor layer having the a-plane as the main surface can be grown. It will be possible.
また本開示の一態様では、前記バッファ層形成工程では、スパッタ法を用いてAlNで前記バッファ層を形成する。
Further, in one aspect of the present disclosure, in the buffer layer forming step, the buffer layer is formed with AlN by using a sputtering method.
本開示によれば、欠陥密度を低減して高品質なa面を主面とする窒化物半導体層を成長させることが可能な半導体成長用基板、それを用いた半導体素子および半導体発光素子、並びに半導体成長用基板の製造方法を提供することができる。
According to the present disclosure, a semiconductor growth substrate capable of reducing the defect density and growing a nitride semiconductor layer having a high-quality a-plane as a main surface, a semiconductor element and a semiconductor light emitting element using the substrate, and a semiconductor light emitting element, and A method for manufacturing a semiconductor growth substrate can be provided.
(第1実施形態)
以下、本開示の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本開示の第1実施形態における半導体成長用基板10を示す模式断面図である。図1に示すように、本実施形態の半導体成長用基板は、r面サファイア基板11と、バッファ層12と、誘電体マスク13と、窒化物半導体層14と、を備えている。 (First Embodiment)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. FIG. 1 is a schematic cross-sectional view showing asemiconductor growth substrate 10 according to the first embodiment of the present disclosure. As shown in FIG. 1, the semiconductor growth substrate of this embodiment includes an r-plane sapphire substrate 11, a buffer layer 12, a dielectric mask 13, and a nitride semiconductor layer 14.
以下、本開示の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本開示の第1実施形態における半導体成長用基板10を示す模式断面図である。図1に示すように、本実施形態の半導体成長用基板は、r面サファイア基板11と、バッファ層12と、誘電体マスク13と、窒化物半導体層14と、を備えている。 (First Embodiment)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. FIG. 1 is a schematic cross-sectional view showing a
r面サファイア基板11は、サファイアの単結晶で構成された基板であり、六方晶のr面を主面としている。ここではr面サファイア基板11として傾斜角度が0度のジャスト基板を示したが、r面を所定の面方位に数度傾斜させたオフ基板としてもよい。
The r-plane sapphire substrate 11 is a substrate composed of a single crystal of sapphire, and has the r-plane of hexagonal crystals as the main surface. Here, the just substrate having an inclination angle of 0 degrees is shown as the r-plane sapphire substrate 11, but an off-board substrate in which the r-plane is inclined by several degrees in a predetermined plane direction may be used.
バッファ層12は、r面サファイア基板11と窒化物半導体層14との間での格子不整合を緩和するために形成された層である。バッファ層12を構成する材料としては、AlN,GaN,InGaN,AlGaN等が挙げられるが、AlNを用いることが好ましい。また、バッファ層12を形成する方法としては、スパッタ法や有機金属気相成長法(MOCVD法:MetalOrganic Chemical Vapor Deposition)等を用いることができ、スパッタ法を用いることが好ましい。バッファ層12の厚みとしては、厚くしすぎると窒化物半導体層14の結晶品質が低下する傾向にあるため5~300nmの範囲が好ましく、5~90nmの範囲がより好ましく、5~30nmの範囲がさらに好ましい。
The buffer layer 12 is a layer formed to alleviate the lattice mismatch between the r-plane sapphire substrate 11 and the nitride semiconductor layer 14. Examples of the material constituting the buffer layer 12 include AlN, GaN, InGaN, AlGaN, and the like, but it is preferable to use AlN. Further, as a method for forming the buffer layer 12, a sputtering method, a metalorganic vapor phase growth method (MOCVD method: Metalorganic Chemical Vapor Deposition), or the like can be used, and it is preferable to use the sputtering method. The thickness of the buffer layer 12 is preferably in the range of 5 to 300 nm, more preferably in the range of 5 to 90 nm, and preferably in the range of 5 to 30 nm because the crystal quality of the nitride semiconductor layer 14 tends to deteriorate if it is made too thick. More preferred.
誘電体マスク13は、バッファ層12上に誘電体材料で形成されたパターンであり、バッファ層12を部分的に覆う層である。誘電体マスク13を構成する材料は、表面から窒化物半導体層が結晶成長しないものであれば限定されず、例えばSiO2やSiN、SiON、TiO2等を用いることができ、SiO2を用いることが好ましい。図1では、誘電体マスク13として断面が三角形状や円錐形状の場合を示したが、四角錐形状や三角錐形状であってもよく、断面が矩形状や曲面形状であってもよい。また、r面サファイア基板11上での誘電体マスク13の配置は限定されず、例えば三角格子状や正方格子状に配置してもよく、ストライプ状や井桁状などに配置してもよい。
The dielectric mask 13 is a pattern formed of a dielectric material on the buffer layer 12, and is a layer that partially covers the buffer layer 12. The material constituting the dielectric mask 13 is not limited as long as the nitride semiconductor layer does not crystal grow from the surface, and for example, SiO 2 , SiN, SiON, TiO 2 and the like can be used, and SiO 2 is used. Is preferable. Although FIG. 1 shows the case where the dielectric mask 13 has a triangular or conical cross section, it may have a quadrangular pyramid shape or a triangular pyramid shape, and the cross section may have a rectangular shape or a curved surface shape. Further, the arrangement of the dielectric mask 13 on the r-plane sapphire substrate 11 is not limited, and may be arranged in a triangular lattice shape or a square lattice shape, or may be arranged in a stripe shape or a grid shape.
また誘電体マスク13は、r面サファイア基板11の面内方向における最大寸法が1.2μm未満の範囲であることが好ましく、r面サファイア基板11の高さ方向の最大寸法が2μm未満であることが好ましい。誘電体マスク13のサイズが上記範囲を超える場合には、誘電体マスク13を覆って平坦化するまでの窒化物半導体層14の膜厚が大きくなりすぎる恐れがある。
Further, the dielectric mask 13 preferably has a maximum dimension of the r-plane sapphire substrate 11 in the in-plane direction of less than 1.2 μm, and the maximum dimension of the r-plane sapphire substrate 11 in the height direction is less than 2 μm. Is preferable. If the size of the dielectric mask 13 exceeds the above range, the film thickness of the nitride semiconductor layer 14 until the dielectric mask 13 is covered and flattened may become too large.
窒化物半導体層14は、主面がa面となるように成長した下地層であり、その上に他の窒化物半導体からなる層をエピタキシャル成長させるための層である。窒化物半導体層14を構成する材料としては、GaN、InGaN,AlGaN等が挙げられるが、a面GaNで構成することが好ましい。窒化物半導体層14の形成方法としては、MOCVD法やHVPE法(ハイドライド気相成長法:Hydride Vapor Phase Epitaxy)などの公知の方法を用いることができるが、MOCVD法を用いることが好ましい。窒化物半導体層14の膜厚は特に限定されないが、1μm以上形成することが好ましい。
The nitride semiconductor layer 14 is a base layer grown so that the main surface becomes the a-plane, and is a layer for epitaxially growing a layer made of another nitride semiconductor on the base layer. Examples of the material constituting the nitride semiconductor layer 14 include GaN, InGaN, AlGaN, etc., and it is preferable to use a-plane GaN. As a method for forming the nitride semiconductor layer 14, known methods such as a MOCVD method and an HVPE method (hydride vapor phase growth method: Hydride Vapor Phase Epitaxy) can be used, but it is preferable to use the MOCVD method. The film thickness of the nitride semiconductor layer 14 is not particularly limited, but it is preferably formed at 1 μm or more.
図1に示したように、本実施形態の半導体成長用基板10では、窒化物半導体層14中に欠陥15a,15bが含まれている。欠陥15aは、誘電体マスク13の略中央から窒化物半導体層14の表面まで伸びる貫通転位であり、窒化物半導体層14の横方向成長によって誘電体マスク15a上に集約されている。欠陥15bは、誘電体マスク13間のバッファ層12から窒化物半導体層14の表面まで伸びる貫通転位であり、横方向成長によって転移が曲げられずに継続している。
As shown in FIG. 1, in the semiconductor growth substrate 10 of the present embodiment, defects 15a and 15b are included in the nitride semiconductor layer 14. The defect 15a is a penetrating dislocation extending from substantially the center of the dielectric mask 13 to the surface of the nitride semiconductor layer 14, and is aggregated on the dielectric mask 15a by the lateral growth of the nitride semiconductor layer 14. The defect 15b is a through dislocation extending from the buffer layer 12 between the dielectric masks 13 to the surface of the nitride semiconductor layer 14, and the dislocation continues without being bent by the lateral growth.
次に、本実施形態における半導体成長用基板10の製造方法について図2,図3を用いて説明する。図2および図3は、半導体成長用基板10の製造方法を模式的に示す工程図である。
Next, the manufacturing method of the semiconductor growth substrate 10 in the present embodiment will be described with reference to FIGS. 2 and 3. 2 and 3 are process diagrams schematically showing a method for manufacturing the semiconductor growth substrate 10.
(基板準備工程)
まず、図2の(a)に示すように、サファイア単結晶からr面を主面とする基板を形成し、表面を洗浄してr面サファイア基板11を用意する。 (Board preparation process)
First, as shown in FIG. 2A, a substrate having an r-plane as a main surface is formed from a sapphire single crystal, and the surface is washed to prepare an r-plane sapphire substrate 11.
まず、図2の(a)に示すように、サファイア単結晶からr面を主面とする基板を形成し、表面を洗浄してr面サファイア基板11を用意する。 (Board preparation process)
First, as shown in FIG. 2A, a substrate having an r-plane as a main surface is formed from a sapphire single crystal, and the surface is washed to prepare an r-
(バッファ層形成工程)
次に、図2の(b)に示すように、r面サファイア基板11の主面上に全域にわたって、膜厚が5nm~600nm程度のバッファ層12を形成する。バッファ層12の形成方法としては、スパッタ法、蒸着、エピタキシャル成長等の公知の方法を用いることができる。窒化物半導体層14の材料としてGaNを用いる場合には、スパッタ法を用いてAlNからなるバッファ層12を形成することが好ましい。バッファ層12を形成するスパッタ法としては、AlNをターゲット材としてArガスを用いることがより好ましい。ターゲット材となるAlNとしては、単結晶基板であっても粉末焼体であってもよく、その状態や形態は限定されない。 (Buffer layer forming process)
Next, as shown in FIG. 2B, abuffer layer 12 having a film thickness of about 5 nm to 600 nm is formed over the entire main surface of the r-plane sapphire substrate 11. As a method for forming the buffer layer 12, known methods such as a sputtering method, thin film deposition, and epitaxial growth can be used. When GaN is used as the material of the nitride semiconductor layer 14, it is preferable to form the buffer layer 12 made of AlN by a sputtering method. As a sputtering method for forming the buffer layer 12, it is more preferable to use Ar gas with AlN as a target material. The AlN to be the target material may be a single crystal substrate or a powder-fired body, and its state and form are not limited.
次に、図2の(b)に示すように、r面サファイア基板11の主面上に全域にわたって、膜厚が5nm~600nm程度のバッファ層12を形成する。バッファ層12の形成方法としては、スパッタ法、蒸着、エピタキシャル成長等の公知の方法を用いることができる。窒化物半導体層14の材料としてGaNを用いる場合には、スパッタ法を用いてAlNからなるバッファ層12を形成することが好ましい。バッファ層12を形成するスパッタ法としては、AlNをターゲット材としてArガスを用いることがより好ましい。ターゲット材となるAlNとしては、単結晶基板であっても粉末焼体であってもよく、その状態や形態は限定されない。 (Buffer layer forming process)
Next, as shown in FIG. 2B, a
バッファ層12を形成する反応性スパッタの条件としては、基板温度は200℃以上500℃未満の範囲が好ましい。基板温度を500℃以上にすると、成膜後にバッファ層12に含まれる酸素や炭素の不純物濃度が高くなり、バッファ層12上に窒化物半導体層14をエピタキシャル成長させることが困難になる傾向にある。本実施形態の半導体素子成長方法では、高品質なAlN結晶が得られる1500℃程度よりも低温の200℃以上500℃未満でスパッタ工程を実施するため、成膜直後のバッファ層12はアモルファスライクな結晶性であると思われる。
As the condition of the reactive sputtering for forming the buffer layer 12, the substrate temperature is preferably in the range of 200 ° C. or higher and lower than 500 ° C. When the substrate temperature is 500 ° C. or higher, the concentration of oxygen and carbon impurities contained in the buffer layer 12 increases after film formation, and it tends to be difficult to epitaxially grow the nitride semiconductor layer 14 on the buffer layer 12. In the semiconductor device growth method of the present embodiment, since the sputtering process is carried out at a temperature of 200 ° C. or higher and lower than 500 ° C., which is lower than about 1500 ° C. at which high-quality AlN crystals can be obtained, the buffer layer 12 immediately after film formation is amorphous-like. It seems to be crystalline.
(アニール工程)
次に、バッファ層12にアニール処理を実施し、バッファ層12の再結晶化を促進して積層方向および面内方向に一軸配向性を持たせる。アニール処理としては、例えば高周波誘導加熱方式による熱処理装置を用いることができる。アニール条件としては、不活性ガス(例えば窒素やAr)雰囲気中において基板温度を1300℃以上1700℃未満に保った状態を0.5~3.0時間継続することが好ましい。基板温度は、より好ましくは1300℃以上1600℃以下である。アニール温度(基板温度)が1700℃以上であると、r面サファイア基板11が熱分解して劣化する恐れがあるため好ましくない。また、アニール温度が1300℃未満であると、バッファ層12の再結晶化が不十分であり、バッファ層12の積層方向および面内方向における一軸配向性が不十分となる恐れがある。 (Annealing process)
Next, thebuffer layer 12 is annealed to promote recrystallization of the buffer layer 12 so that the buffer layer 12 has uniaxial orientation in the stacking direction and the in-plane direction. As the annealing treatment, for example, a heat treatment apparatus based on a high frequency induction heating method can be used. As the annealing condition, it is preferable to keep the substrate temperature at 1300 ° C. or higher and lower than 1700 ° C. for 0.5 to 3.0 hours in an inert gas (for example, nitrogen or Ar) atmosphere. The substrate temperature is more preferably 1300 ° C. or higher and 1600 ° C. or lower. If the annealing temperature (board temperature) is 1700 ° C. or higher, the r-plane sapphire board 11 may be thermally decomposed and deteriorated, which is not preferable. Further, if the annealing temperature is less than 1300 ° C., the recrystallization of the buffer layer 12 may be insufficient, and the uniaxial orientation of the buffer layer 12 in the stacking direction and the in-plane direction may be insufficient.
次に、バッファ層12にアニール処理を実施し、バッファ層12の再結晶化を促進して積層方向および面内方向に一軸配向性を持たせる。アニール処理としては、例えば高周波誘導加熱方式による熱処理装置を用いることができる。アニール条件としては、不活性ガス(例えば窒素やAr)雰囲気中において基板温度を1300℃以上1700℃未満に保った状態を0.5~3.0時間継続することが好ましい。基板温度は、より好ましくは1300℃以上1600℃以下である。アニール温度(基板温度)が1700℃以上であると、r面サファイア基板11が熱分解して劣化する恐れがあるため好ましくない。また、アニール温度が1300℃未満であると、バッファ層12の再結晶化が不十分であり、バッファ層12の積層方向および面内方向における一軸配向性が不十分となる恐れがある。 (Annealing process)
Next, the
(マスク形成工程)
次に、図2の(c)に示すように、バッファ層12上の全域にわたって誘電体材料を積層して、膜厚が800nm~2000nm程度の誘電体マスク13を形成する。誘電体材料の積層には、スパッタ法や蒸着、ゾル・ゲル法、プラズマCVD法、スピンコート法等の公知の方法を用いることができる。 (Mask forming process)
Next, as shown in FIG. 2C, the dielectric material is laminated over the entire area on thebuffer layer 12 to form the dielectric mask 13 having a film thickness of about 800 nm to 2000 nm. Known methods such as a sputtering method, a vapor deposition, a sol-gel method, a plasma CVD method, and a spin coating method can be used for laminating the dielectric material.
次に、図2の(c)に示すように、バッファ層12上の全域にわたって誘電体材料を積層して、膜厚が800nm~2000nm程度の誘電体マスク13を形成する。誘電体材料の積層には、スパッタ法や蒸着、ゾル・ゲル法、プラズマCVD法、スピンコート法等の公知の方法を用いることができる。 (Mask forming process)
Next, as shown in FIG. 2C, the dielectric material is laminated over the entire area on the
次に、図2の(d)に示すように、バッファ層12上にレジスト膜16をスピンコート等で塗布して、凸部16aと凹部16bに対応したパターンが形成されたナノインプリント技術のモールドを用い、レジスト膜16を硬化して凸部16aと凹部16bを形成する。レジスト膜16の材料は限定されず、熱硬化型であってもUV硬化型であってもよい。
Next, as shown in FIG. 2D, a resist film 16 is applied onto the buffer layer 12 by spin coating or the like to form a mold of nanoimprint technology in which a pattern corresponding to the convex portion 16a and the concave portion 16b is formed. The resist film 16 is cured to form the convex portion 16a and the concave portion 16b. The material of the resist film 16 is not limited, and may be a thermosetting type or a UV curing type.
次に、図3の(a)に示すように、レジスト膜16および誘電体マスク13をエッチングして誘電体マスク13をパターニングし、誘電体マスク13の間からバッファ層12の表面を露出させる。このとき、パターニングされた誘電体マスク13の高さは600nm~1200nm程度とすることが好ましい。誘電体マスク13をパターニングした後には、アセトン洗浄やオゾン洗浄等を用いて表面を洗浄し、レジスト膜16の残渣を除去する。
Next, as shown in FIG. 3A, the resist film 16 and the dielectric mask 13 are etched to pattern the dielectric mask 13 so that the surface of the buffer layer 12 is exposed between the dielectric masks 13. At this time, the height of the patterned dielectric mask 13 is preferably about 600 nm to 1200 nm. After patterning the dielectric mask 13, the surface is washed with acetone washing, ozone washing, or the like to remove the residue of the resist film 16.
(下地層成長工程)
次に、誘電体マスク13の間から露出するバッファ層12上に、下地層である窒化物半導体層14を成長させる。窒化物半導体層14としてMOCVD法を用いてGaNを成長する場合には、キャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH3)を用い、III族原料としてTMG(TrimethylGallium)を用いる。このとき、成長シーケンスは2段階で構成し、昇温した後に成長温度を一定とし、リアクタ圧力とV/III比および成長時間を変更している。例えば、昇温直後の第1ステップではV/III比を4000~5000程度とし、圧力を900~1000hPaとして10~20分程度維持する。第2ステップでは例えばV/III比を100~200程度とし、圧力を100~150hPaとして90~120分維持する。 (Underground layer growth process)
Next, thenitride semiconductor layer 14, which is a base layer, is grown on the buffer layer 12 exposed from between the dielectric masks 13. When GaN is grown as the nitride semiconductor layer 14 by the MOCVD method, hydrogen and nitrogen are used as carrier gases, ammonia (NH 3 ) is used as a group V raw material, and TMG (Trimethylgallium) is used as a group III raw material. .. At this time, the growth sequence is composed of two steps, the growth temperature is kept constant after the temperature is raised, and the reactor pressure, the V / III ratio, and the growth time are changed. For example, in the first step immediately after the temperature rise, the V / III ratio is set to about 4000 to 5000, the pressure is set to 900 to 1000 hPa, and the pressure is maintained for about 10 to 20 minutes. In the second step, for example, the V / III ratio is set to about 100 to 200, the pressure is set to 100 to 150 hPa, and the pressure is maintained for 90 to 120 minutes.
次に、誘電体マスク13の間から露出するバッファ層12上に、下地層である窒化物半導体層14を成長させる。窒化物半導体層14としてMOCVD法を用いてGaNを成長する場合には、キャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH3)を用い、III族原料としてTMG(TrimethylGallium)を用いる。このとき、成長シーケンスは2段階で構成し、昇温した後に成長温度を一定とし、リアクタ圧力とV/III比および成長時間を変更している。例えば、昇温直後の第1ステップではV/III比を4000~5000程度とし、圧力を900~1000hPaとして10~20分程度維持する。第2ステップでは例えばV/III比を100~200程度とし、圧力を100~150hPaとして90~120分維持する。 (Underground layer growth process)
Next, the
本実施形態は図3の(b)に示すように、成長の初期段階において誘電体マスク13の間から露出したバッファ層12の表面に窒化物半導体の成長核17が生じ、成長核17から窒化物半導体層14のエピタキシャル成長が行われる。したがって窒化物半導体層14は、誘電体マスク13の表面や側面から成長せず、r面サファイア基板11の主面に対応したバッファ層12の表面からのみ成長するため、窒化物半導体層14の成長主面がa面となる。
In this embodiment, as shown in FIG. 3B, growth nuclei 17 of nitride semiconductors are formed on the surface of the buffer layer 12 exposed from between the dielectric masks 13 in the initial stage of growth, and the growth nuclei 17 are nitrided. Epitaxial growth of the material semiconductor layer 14 is performed. Therefore, the nitride semiconductor layer 14 does not grow from the surface or side surface of the dielectric mask 13, but grows only from the surface of the buffer layer 12 corresponding to the main surface of the r-plane sapphire substrate 11, so that the nitride semiconductor layer 14 grows. The main surface is the a surface.
窒化物半導体層14の成長を継続すると、誘電体マスク13の間から露出したバッファ層12の表面からのみ窒化物半導体層14は成長し、横方向成長によって誘電体マスク13上を覆うまで形成される。窒化物半導体層14の横方向成長に伴って貫通転位も横方向に曲げられて欠陥15aに集約され、欠陥密度は5×108cm-3程度まで低減される。
When the growth of the nitride semiconductor layer 14 is continued, the nitride semiconductor layer 14 grows only from the surface of the buffer layer 12 exposed from between the dielectric masks 13, and is formed until it covers the dielectric mask 13 by lateral growth. To. Threading dislocations with the lateral growth of the nitride semiconductor layer 14 is also aggregated into bent in defects 15a in the lateral direction, the defect density is reduced to about 5 × 10 8 cm -3.
最後に窒化物半導体層14が成長した後に室温まで冷却して取り出すことで、図3の(c)に示したようにr面サファイア基板11の主面にバッファ層12が形成され、誘電体マスク13を埋めて窒化物半導体層14が形成された本実施形態の半導体成長用基板10を得る。窒化物半導体層14を形成した後に、継続して半導体素子を構成するための各層をエピタキシャル成長させてもよい。
Finally, after the nitride semiconductor layer 14 has grown, it is cooled to room temperature and taken out to form a buffer layer 12 on the main surface of the r-plane sapphire substrate 11 as shown in FIG. 3C, and a dielectric mask is formed. The semiconductor growth substrate 10 of the present embodiment in which the nitride semiconductor layer 14 is formed by filling the 13 is obtained. After forming the nitride semiconductor layer 14, each layer for continuously forming the semiconductor element may be epitaxially grown.
図4は、比較対象の半導体成長用基板20を示す模式断面図である。図4に示すように半導体成長用基板20は、r面サファイア基板21と、複数の凸形状21aと、バッファ層22と、窒化物半導体層24を備えている。
FIG. 4 is a schematic cross-sectional view showing the semiconductor growth substrate 20 to be compared. As shown in FIG. 4, the semiconductor growth substrate 20 includes an r-plane sapphire substrate 21, a plurality of convex shapes 21a, a buffer layer 22, and a nitride semiconductor layer 24.
凸形状21aは、ナノインプリント技術やフォトリソグラフィー技術を用いてr面サファイア基板21上にエッチングマスクをパターニングした後に、塩素系ガスを用いてr面サファイア基板21を異方性エッチングして形成することができる。またバッファ層22は、r面サファイア基板21の主面と凸形状21a全体を覆うように形成されている。窒化物半導体層24には、窒化物半導体層24の横方向成長によって凸形状21a上に集約された欠陥25aや、凸形状21a間のバッファ層22から窒化物半導体層24の表面まで伸びる欠陥25b、凸形状21aの側面から生じた欠陥25cを含んでいる。
The convex shape 21a can be formed by patterning an etching mask on the r-plane sapphire substrate 21 using nanoimprint technology or photolithography technology, and then anisotropically etching the r-plane sapphire substrate 21 with chlorine-based gas. it can. Further, the buffer layer 22 is formed so as to cover the main surface of the r-plane sapphire substrate 21 and the entire convex shape 21a. In the nitride semiconductor layer 24, defects 25a aggregated on the convex shape 21a due to lateral growth of the nitride semiconductor layer 24 and defects 25b extending from the buffer layer 22 between the convex shapes 21a to the surface of the nitride semiconductor layer 24. , Includes a defect 25c arising from the side surface of the convex shape 21a.
図4に示したように半導体成長用基板20では、凸形状21aの側面にもバッファ層22が形成されているため、窒化物半導体層24の成長初期段階において凸形状21aの側面にも成長核が生じる。凸形状21aの側面から成長した窒化物半導体層24は、a面とは異なる主面で結晶成長する可能性があるため、凸形状21aの側面から欠陥25cが生じやすくなる。したがって半導体成長用基板20では、横方向成長による欠陥密度の低減に限界があり、9×109cm-3程度の欠陥密度となってしまう。
As shown in FIG. 4, in the semiconductor growth substrate 20, since the buffer layer 22 is also formed on the side surface of the convex shape 21a, the growth nucleus is also formed on the side surface of the convex shape 21a at the initial stage of growth of the nitride semiconductor layer 24. Occurs. Since the nitride semiconductor layer 24 grown from the side surface of the convex shape 21a may grow crystals on a main surface different from the a surface, defects 25c are likely to occur from the side surface of the convex shape 21a. Therefore, in the semiconductor growth substrate 20, there is a limit to the reduction of the defect density due to the lateral growth, and the defect density is about 9 × 10 9 cm -3 .
それに対して本実施形態の半導体成長用基板10では、r面を主面とするr面サファイア基板11上にバッファ層12が形成され、バッファ層12上に複数の誘電体マスク13がパターニングされ、バッファ層12および誘電体マスク13を覆ってa面を主面とする窒化物半導体層14が形成されているため、欠陥密度を低減して高品質なa面を主面とする窒化物半導体層を成長させることが可能となる。
On the other hand, in the semiconductor growth substrate 10 of the present embodiment, the buffer layer 12 is formed on the r-plane sapphire substrate 11 having the r-plane as the main surface, and a plurality of dielectric masks 13 are patterned on the buffer layer 12. Since the nitride semiconductor layer 14 having the a-plane as the main surface is formed over the buffer layer 12 and the dielectric mask 13, the defect density is reduced and the high-quality nitride semiconductor layer having the a-plane as the main surface is formed. It becomes possible to grow.
(第2実施形態)
次に、本開示の第2実施形態について図5を用いて説明する。図5は本実施形態の半導体装置であるLEDを示す模式断面図である。図5に示すようにLEDは、r面サファイア基板11、バッファ層12、誘電体マスク13、窒化物半導体層14、活性層18、p型半導体層19、n側電極31、p側電極32を有している。 (Second Embodiment)
Next, the second embodiment of the present disclosure will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view showing an LED which is a semiconductor device of this embodiment. As shown in FIG. 5, the LED includes an r-plane sapphire substrate 11, a buffer layer 12, a dielectric mask 13, a nitride semiconductor layer 14, an active layer 18, a p-type semiconductor layer 19, an n-side electrode 31, and a p-side electrode 32. Have.
次に、本開示の第2実施形態について図5を用いて説明する。図5は本実施形態の半導体装置であるLEDを示す模式断面図である。図5に示すようにLEDは、r面サファイア基板11、バッファ層12、誘電体マスク13、窒化物半導体層14、活性層18、p型半導体層19、n側電極31、p側電極32を有している。 (Second Embodiment)
Next, the second embodiment of the present disclosure will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view showing an LED which is a semiconductor device of this embodiment. As shown in FIG. 5, the LED includes an r-
第1実施形態と同様に、r面サファイア基板11を用意し、バッファ層12、誘電体マスク13を形成し、MOCVD法で窒化物半導体層14をエピタキシャル成長させる。続いて、MOCVD法で活性層18、p型半導体層19を順次成長させて半導体基板を得る。
Similar to the first embodiment, the r-plane sapphire substrate 11 is prepared, the buffer layer 12 and the dielectric mask 13 are formed, and the nitride semiconductor layer 14 is epitaxially grown by the MOCVD method. Subsequently, the active layer 18 and the p-type semiconductor layer 19 are sequentially grown by the MOCVD method to obtain a semiconductor substrate.
次に、フォトリソグラフィーとエッチングによりp型半導体層19と活性層18の一部を除去して窒化物半導体層14の一部を露出させる。次に、窒化物半導体層14とp型半導体層19の露出面に蒸着等により電極材料を形成し、ダイシングして個別チップ化することでLEDを得る。
Next, a part of the p-type semiconductor layer 19 and the active layer 18 is removed by photolithography and etching to expose a part of the nitride semiconductor layer 14. Next, an electrode material is formed on the exposed surfaces of the nitride semiconductor layer 14 and the p-type semiconductor layer 19 by vapor deposition or the like, and the LED is obtained by dicing and forming individual chips.
活性層18は、窒化物半導体層14上でエピタキシャル成長したa面を主面とする半導体層である。活性層18の層内で電子と正孔が発光再結合することでLEDが発光する。活性層18は、窒化物半導体層14とp型半導体層19よりもバンドギャップが小さい材料で構成されている。このような材料としては、例えばInGaN、AlInGaNなどが挙げられる。活性層18は意図的に不純物を含まないノンドープとしてもよく、n型不純物を含むn型やp型不純物を含むp型としてもよい。活性層18は、a面を主面とする半導体層なので、厚膜化してもピエゾ電界による電子と正孔の空間的な分離は生じにくく、電流密度を高くしても効率的に電子と正孔が発光再結合できる。
The active layer 18 is a semiconductor layer whose main surface is the a-plane epitaxially grown on the nitride semiconductor layer 14. The LED emits light when electrons and holes emit light and recombine in the layer of the active layer 18. The active layer 18 is made of a material having a bandgap smaller than that of the nitride semiconductor layer 14 and the p-type semiconductor layer 19. Examples of such a material include InGaN and AlInGaN. The active layer 18 may be intentionally non-doped containing impurities, or may be n-type containing n-type impurities or p-type containing p-type impurities. Since the active layer 18 is a semiconductor layer having the a-plane as the main surface, spatial separation of electrons and holes due to the piezo electric field is unlikely to occur even if the film is thickened, and even if the current density is increased, the electrons and holes are efficiently positive. Holes can luminescence recombine.
p型半導体層19は、活性層18上でエピタキシャル成長したa面を主面とする半導体層である。p型半導体層19には、p側電極32から正孔が注入される。そして、p型半導体層19は、注入された正孔を活性層18に供給する。
The p-type semiconductor layer 19 is a semiconductor layer whose main surface is the a-plane epitaxially grown on the active layer 18. Holes are injected into the p-type semiconductor layer 19 from the p-side electrode 32. Then, the p-type semiconductor layer 19 supplies the injected holes to the active layer 18.
ここでは窒化物半導体層14、p型半導体層19をそれぞれ単層で説明したが、それぞれ材料や組成の異なる複数の層を含んでいるとしてもよい。例えば、窒化物半導体層14とp型半導体層19にクラッド層、コンタクト層、電流拡散層、電子ブロック層、導波路層などを含めてもよい。また、活性層18も単層で説明したが、多重量子井戸構造(MQW:Multi Quantum Well)などの複数層で構成してもよい。
Here, the nitride semiconductor layer 14 and the p-type semiconductor layer 19 have been described as a single layer, but each may include a plurality of layers having different materials and compositions. For example, the nitride semiconductor layer 14 and the p-type semiconductor layer 19 may include a clad layer, a contact layer, a current diffusion layer, an electron block layer, a waveguide layer, and the like. Further, although the active layer 18 has been described as a single layer, it may be composed of a plurality of layers such as a multiple quantum well structure (MQW: Multi Quantum Well).
本実施の形態でも、r面サファイア基板11上にバッファ層12および誘電体マスク13が形成されており、窒化物半導体層14、活性層18、p型半導体層19をエピタキシャル成長している。第1実施形態で述べたように窒化物半導体層14は結晶性も表面平坦性も良好であり、欠陥密度が低減されている。したがって、欠陥密度が低減された窒化物半導体層14上に成長された活性層18、p型半導体層19も結晶性と表面平坦性が良好となる。これにより、活性層18、p型半導体層19の特性も良好になり、LEDの外部量子効率の向上などが見込まれる。なお、本実施形態は、機能層として、活性層18を備えた例である。ここで、機能層とは、半導体素子において所定の電気的、化学的な機能を発揮するための層である。
Also in this embodiment, the buffer layer 12 and the dielectric mask 13 are formed on the r-plane sapphire substrate 11, and the nitride semiconductor layer 14, the active layer 18, and the p-type semiconductor layer 19 are epitaxially grown. As described in the first embodiment, the nitride semiconductor layer 14 has good crystallinity and surface flatness, and the defect density is reduced. Therefore, the active layer 18 and the p-type semiconductor layer 19 grown on the nitride semiconductor layer 14 having the reduced defect density also have good crystallinity and surface flatness. As a result, the characteristics of the active layer 18 and the p-type semiconductor layer 19 are also improved, and it is expected that the external quantum efficiency of the LED will be improved. In addition, this embodiment is an example which provided the active layer 18 as a functional layer. Here, the functional layer is a layer for exerting a predetermined electrical and chemical function in the semiconductor element.
本開示の半導体装置であるLEDは、上述したようにピエゾ電界によるドループが少なく、且つa面内での異方性が小さく良好な結晶品質であることから高輝度化を実現できるので、車両用灯具などの灯具に用いることでチップ数の低減や高出力化を図ることが可能となる。また、半導体装置はLEDに限定されず、半導体レーザであってもよく、二次元電子ガスを発生させる機能層を有する高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の他の用途であってもよい。
As described above, the LED, which is the semiconductor device of the present disclosure, has less droop due to the piezo electric field, has less anisotropy in the a-plane, and has good crystal quality, so that high brightness can be realized. By using it for lighting equipment such as lighting equipment, it is possible to reduce the number of chips and increase the output. Further, the semiconductor device is not limited to the LED, and may be a semiconductor laser, and is used for other purposes such as a high electron mobility transistor (HEMT) having a functional layer for generating two-dimensional electron gas. You may.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
本出願は、2019年6月11日出願の日本国特許出願(特願2019-108460号)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application filed on June 11, 2019 (Japanese Patent Application No. 2019-108460), the contents of which are incorporated herein by reference.
10,20…半導体成長用基板
11,21…r面サファイア基板
12,22…バッファ層
13…誘電体マスク
14,24…窒化物半導体層
15a,15b,25a,25b,25c…欠陥
16…レジスト膜
17…成長核
18…活性層
19…p型半導体層
21a…凸形状
31…n側電極
32…p側電極 10, 20 ... Semiconductor growth substrate 11,21 ... r- plane sapphire substrate 12, 22 ... Buffer layer 13 ... Dielectric mask 14, 24 ... Nitride semiconductor layer 15a, 15b, 25a, 25b, 25c ... Defect 16 ... Resist film 17 ... Growth nucleus 18 ... Active layer 19 ... P-type semiconductor layer 21a ... Convex shape 31 ... n-side electrode 32 ... p-side electrode
11,21…r面サファイア基板
12,22…バッファ層
13…誘電体マスク
14,24…窒化物半導体層
15a,15b,25a,25b,25c…欠陥
16…レジスト膜
17…成長核
18…活性層
19…p型半導体層
21a…凸形状
31…n側電極
32…p側電極 10, 20 ...
Claims (9)
- r面を主面とするr面サファイア基板と、
前記主面上に形成されたバッファ層と、
前記バッファ層上に形成された複数の誘電体マスクと、
前記バッファ層および前記誘電体マスクを覆って形成されたa面を主面とする窒化物半導体層と、を備える、半導体成用長基板。 An r-plane sapphire substrate whose main surface is the r-plane,
The buffer layer formed on the main surface and
A plurality of dielectric masks formed on the buffer layer and
A semiconductor growth substrate comprising the buffer layer and a nitride semiconductor layer having an a-plane as a main surface formed by covering the dielectric mask. - 請求項1に記載の半導体成長用基板であって、
前記誘電体マスクは、前記主面の面内方向における最大寸法が1.2μm未満、高さ方向の最大寸法が2μm未満である、半導体成長用基板。 The semiconductor growth substrate according to claim 1.
The dielectric mask is a semiconductor growth substrate having a maximum dimension of the main surface in the in-plane direction of less than 1.2 μm and a maximum dimension of the main surface in the height direction of less than 2 μm. - 請求項1または2に記載の半導体成長用基板であって、
前記誘電体マスクは、SiO2で構成されている、半導体成長用基板。 The semiconductor growth substrate according to claim 1 or 2.
The dielectric mask is a semiconductor growth substrate composed of SiO 2 . - 請求項1から3の何れか一つに記載の半導体成長用基板であって、
前記バッファ層は、AlNで構成されている、半導体成長用基板。 The semiconductor growth substrate according to any one of claims 1 to 3.
The buffer layer is a semiconductor growth substrate made of AlN. - 請求項1から4の何れか一つに記載の半導体成長用基板であって、
前記窒化物半導体層は、GaNで構成されている、半導体成長用基板。 The semiconductor growth substrate according to any one of claims 1 to 4.
The nitride semiconductor layer is a semiconductor growth substrate made of GaN. - 請求項1から5の何れか一つに記載の半導体成長用基板を用い、
前記半導体成長用基板上に機能層を備える、半導体素子。 Using the semiconductor growth substrate according to any one of claims 1 to 5,
A semiconductor device having a functional layer on the semiconductor growth substrate. - 請求項1から5の何れか一つに記載の半導体成長用基板を用い、
前記半導体成長用基板上に活性層を備える、半導体発光素子。 Using the semiconductor growth substrate according to any one of claims 1 to 5,
A semiconductor light emitting device having an active layer on the semiconductor growth substrate. - r面を主面とするr面サファイア基板の前記主面上にバッファ層を形成するバッファ層形成工程と、
前記バッファ層上に誘電体マスクを形成するマスク形成工程と、
前記誘電体マスクの間から露出する前記バッファ層からa面を主面とする窒化物半導体層を成長させる下地層成長工程と、を備える、半導体成長用基板の製造方法。 A buffer layer forming step of forming a buffer layer on the main surface of the r-plane sapphire substrate having the r-plane as the main surface, and
A mask forming step of forming a dielectric mask on the buffer layer,
A method for manufacturing a semiconductor growth substrate, comprising a base layer growth step of growing a nitride semiconductor layer having a surface a as a main surface from the buffer layer exposed between the dielectric masks. - 請求項8に記載の半導体成長用基板の製造方法であって、
前記バッファ層形成工程では、スパッタ法を用いてAlNで前記バッファ層を形成する、半導体成長用基板の製造方法。 The method for manufacturing a semiconductor growth substrate according to claim 8.
In the buffer layer forming step, a method for manufacturing a semiconductor growth substrate, wherein the buffer layer is formed of AlN by using a sputtering method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019108460A JP7345286B2 (en) | 2019-06-11 | 2019-06-11 | Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method |
JP2019-108460 | 2019-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250849A1 true WO2020250849A1 (en) | 2020-12-17 |
Family
ID=73743580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022521 WO2020250849A1 (en) | 2019-06-11 | 2020-06-08 | Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and method for manufacturing semiconductor growth substrate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7345286B2 (en) |
WO (1) | WO2020250849A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347863A (en) * | 2005-05-19 | 2006-12-28 | Sumitomo Chemical Co Ltd | Manufacturing method of group 3-5 nitride semiconductor laminated substrate, and group 3-5 nitride semiconductor independence substrate, and semiconductor element |
JP2008091608A (en) * | 2006-10-02 | 2008-04-17 | Sony Corp | Light emitting diode and its manufacturing method, illumination source cell unit, light emitting diode backlight, light emitting diode lighting device, light emitting diode display, electronic instrument, electronic apparatus, and manufacturing method of the electronic apparatus |
JP2015129057A (en) * | 2014-01-07 | 2015-07-16 | 東レ株式会社 | Crystal substrate having uneven structure |
JP2017038006A (en) * | 2015-08-12 | 2017-02-16 | 学校法人金沢工業大学 | Nitride semiconductor light emitting diode and nitride semiconductor light emitting diode manufacturing method |
JP2019040898A (en) * | 2017-08-22 | 2019-03-14 | 株式会社小糸製作所 | Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element |
-
2019
- 2019-06-11 JP JP2019108460A patent/JP7345286B2/en active Active
-
2020
- 2020-06-08 WO PCT/JP2020/022521 patent/WO2020250849A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006347863A (en) * | 2005-05-19 | 2006-12-28 | Sumitomo Chemical Co Ltd | Manufacturing method of group 3-5 nitride semiconductor laminated substrate, and group 3-5 nitride semiconductor independence substrate, and semiconductor element |
JP2008091608A (en) * | 2006-10-02 | 2008-04-17 | Sony Corp | Light emitting diode and its manufacturing method, illumination source cell unit, light emitting diode backlight, light emitting diode lighting device, light emitting diode display, electronic instrument, electronic apparatus, and manufacturing method of the electronic apparatus |
JP2015129057A (en) * | 2014-01-07 | 2015-07-16 | 東レ株式会社 | Crystal substrate having uneven structure |
JP2017038006A (en) * | 2015-08-12 | 2017-02-16 | 学校法人金沢工業大学 | Nitride semiconductor light emitting diode and nitride semiconductor light emitting diode manufacturing method |
JP2019040898A (en) * | 2017-08-22 | 2019-03-14 | 株式会社小糸製作所 | Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
JP7345286B2 (en) | 2023-09-15 |
JP2020202302A (en) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8415180B2 (en) | Method for fabricating wafer product and method for fabricating gallium nitride based semiconductor optical device | |
US20170069793A1 (en) | Ultraviolet light-emitting device and production method therefor | |
US20090224270A1 (en) | Group iii nitride semiconductor thin film and group iii semiconductor light emitting device | |
US20100059759A1 (en) | Nitride semiconductor light emitting device and method for forming the same | |
JP2011517099A (en) | MOCVD growth technology for planar semipolar (Al, In, Ga, B) N-based light-emitting diodes | |
JP2011517098A (en) | Method for the production of semipolar (Al, In, Ga, B) N-based light emitting diodes | |
JP4883931B2 (en) | Manufacturing method of semiconductor laminated substrate | |
US8878211B2 (en) | Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof | |
JP2008118049A (en) | GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE | |
JP5128335B2 (en) | GaN-based semiconductor substrate, manufacturing method thereof, and semiconductor device | |
US7368309B2 (en) | Nitride semiconductor and fabrication method thereof | |
WO2020090814A1 (en) | Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element and method for producing substrate for semiconductor growth | |
KR101028585B1 (en) | Hetero-substrate, ?-nitride semiconductor devices using the same and manufacturing method of thereof | |
WO2020250849A1 (en) | Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and method for manufacturing semiconductor growth substrate | |
JP4255168B2 (en) | Nitride semiconductor manufacturing method and light emitting device | |
JP2010267798A (en) | Method for manufacturing semiconductor light-emitting element | |
WO2008056632A1 (en) | GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT | |
JP2008118048A (en) | GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE | |
WO2020075849A1 (en) | Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor element | |
JP2009027022A (en) | Nitride semiconductor light-emitting element | |
JP4924498B2 (en) | Nitride-based semiconductor light-emitting device, epitaxial wafer, and method for manufacturing nitride-based semiconductor light-emitting device | |
WO2020256028A1 (en) | Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element and method for producing semiconductor element | |
JPH10341036A (en) | Semiconductor substrate, semiconductor device and manufacture thereof | |
WO2019039240A1 (en) | Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element, and method for producing semiconductor element | |
JP7430316B2 (en) | Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20823489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20823489 Country of ref document: EP Kind code of ref document: A1 |