JP7430316B2 - Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method - Google Patents

Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method Download PDF

Info

Publication number
JP7430316B2
JP7430316B2 JP2018193569A JP2018193569A JP7430316B2 JP 7430316 B2 JP7430316 B2 JP 7430316B2 JP 2018193569 A JP2018193569 A JP 2018193569A JP 2018193569 A JP2018193569 A JP 2018193569A JP 7430316 B2 JP7430316 B2 JP 7430316B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
plane
buffer layer
aln buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193569A
Other languages
Japanese (ja)
Other versions
JP2020061526A (en
Inventor
大樹 神野
正吾 杉森
久芳 大長
智 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Meijo University
Original Assignee
Koito Manufacturing Co Ltd
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd, Meijo University filed Critical Koito Manufacturing Co Ltd
Priority to JP2018193569A priority Critical patent/JP7430316B2/en
Priority to PCT/JP2019/040305 priority patent/WO2020075852A1/en
Publication of JP2020061526A publication Critical patent/JP2020061526A/en
Application granted granted Critical
Publication of JP7430316B2 publication Critical patent/JP7430316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Description

特許法第30条第2項適用 平成30年3月 名城大学大学院 理工学研究科 電気電子・情報・材料工学専攻 博士論文「r面サファイア基板上無極性a面III族窒化物半導体のエピタキシャル成長に関する研究」にて公開Application of Article 30, Paragraph 2 of the Patent Law March 2018 Meijo University Graduate School of Science and Engineering, Department of Electrical and Electronic Engineering, Information Technology and Materials Engineering Doctoral Thesis "Study on epitaxial growth of non-polar a-plane group III nitride semiconductors on r-plane sapphire substrates" Published in

本発明は、半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法に関し、特にa面GaN結晶層を成長させる半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法に関する。 The present invention relates to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element, and a semiconductor element manufacturing method, and more particularly to a semiconductor growth substrate for growing an a-plane GaN crystal layer, a semiconductor element, a semiconductor light emitting element, and a semiconductor element manufacturing method.

照明用途に用いられる紫色から青色を発光するLEDとしては、窒化ガリウム(GaN)系材料の化合物半導体が一般的に用いられている。近年になって、発光ダイオード(LED:Light Emitting Diode)を用いた照明装置等が普及するにつれ、LEDチップの高輝度化が望まれるようになってきた。LEDを高輝度化するためには、電流密度を高くしても効率的に電子と正孔が発光再結合できるように、発光層の膜厚を厚くして発光層内部でのキャリア密度を下げる必要がある。 Compound semiconductors made of gallium nitride (GaN)-based materials are generally used as LEDs that emit light from violet to blue and are used for lighting purposes. In recent years, as lighting devices and the like using light emitting diodes (LEDs) have become widespread, there has been a desire for LED chips to have higher brightness. In order to increase the brightness of LEDs, the thickness of the light-emitting layer is increased to lower the carrier density inside the light-emitting layer so that electrons and holes can efficiently recombine through light emission even when the current density is increased. There is a need.

しかし、一般的に用いられているc面を主面とするGaN系半導体材料では、c軸方向にピエゾ電界が生じるため、厚膜化した発光層内に電位差が生じ電子と正孔が空間的に分離してしまい、発光再結合の効率が著しく低下してしまうドループ特性が問題となっている。 However, in the commonly used GaN-based semiconductor material whose main surface is the c-plane, a piezoelectric field is generated in the c-axis direction, which creates a potential difference in the thick light-emitting layer and causes electrons and holes to move spatially. The problem is the droop characteristic in which the radiative recombination efficiency is significantly reduced.

この問題を解決するため、非極性や半極性の面方位を主面としたGaN系材料で発光層を形成することで、積層方向へのピエゾ電界の影響を無くして厚膜化を図り、大電流での発光を可能にする技術も提案されている。GaN系半導体層では、a面やm面が非極性面であり、半極性面の代表例としてr面がある。 To solve this problem, by forming the light-emitting layer with a GaN-based material whose main surface is non-polar or semi-polar, the effect of the piezoelectric field in the stacking direction can be eliminated and the film can be made thicker. Techniques that enable light emission using electric current have also been proposed. In a GaN-based semiconductor layer, the a-plane and the m-plane are nonpolar planes, and the r-plane is a typical example of a semipolar plane.

特許文献1には、サファイア基板のr面上に有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を用いてa面GaN層を成長させる技術が開示されている。r面サファイア基板上に形成されたa面GaN層を下地層として用い、n型層と発光層とp型層とを順次成長させることで、発光層の主面をa面として厚膜化とLEDのドループ特性の改善を図ることができる。 Patent Document 1 discloses a technique of growing an a-plane GaN layer on the r-plane of a sapphire substrate using metal organic chemical vapor deposition (MOCVD). By using an a-plane GaN layer formed on an r-plane sapphire substrate as a base layer and growing an n-type layer, a light-emitting layer, and a p-type layer in sequence, the main surface of the light-emitting layer can be made to be an a-plane and the film can be thickened. It is possible to improve the droop characteristics of the LED.

特開2008-214132号公報Japanese Patent Application Publication No. 2008-214132

しかし、r面サファイア上に形成されるa面GaNでは、成長面内に+c軸方向、-c軸方向、m軸方向が存在して面内異方性が大きく、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を得ることが困難であった。 However, in a-plane GaN formed on r-plane sapphire, there are +c-axis, -c-axis, and m-axis directions within the growth plane, resulting in large in-plane anisotropy, good crystallinity, and a flat surface. It has been difficult to obtain a high quality a-plane GaN layer with excellent properties.

そこで本発明は、上記従来の問題点に鑑みなされたものであり、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能な半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and provides a semiconductor growth substrate and a semiconductor device capable of growing a high-quality a-plane GaN layer with good crystallinity and excellent surface flatness. An object of the present invention is to provide a semiconductor light emitting device and a semiconductor device manufacturing method.

上記課題を解決するために、本発明の半導体成長用基板は、r面を主面とするサファイア基板と、前記主面上に形成されたAlNバッファ層とを備え、前記AlNバッファ層は、積層方向にa軸方向への一軸配向性および面内方向に少なくともm軸方向への一軸配向性を有し、前記AlNバッファ層に含まれる炭素の不純物濃度が、2.5×1019atoms/cm未満であり、酸素の不純物濃度が、7.0×10 20 atoms/cm 未満であることを特徴とする。
In order to solve the above problems, a semiconductor growth substrate of the present invention includes a sapphire substrate having an r-plane as a main surface, and an AlN buffer layer formed on the main surface, and the AlN buffer layer is formed by stacking layers. The AlN buffer layer has a uniaxial orientation in the a-axis direction and a uniaxial orientation in the in-plane direction at least in the m-axis direction, and the impurity concentration of carbon contained in the AlN buffer layer is 2.5×10 19 atoms/cm. 3 , and the impurity concentration of oxygen is less than 7.0×10 20 atoms/cm 3 .

このような本発明の半導体成長用基板では、AlNバッファ層が積層方向および面内方向に一軸配向性を有することで、異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。 In such a substrate for semiconductor growth of the present invention, the AlN buffer layer has uniaxial orientation in the stacking direction and in-plane direction, thereby suppressing abnormal growth and producing a high-quality product with good crystallinity and excellent surface flatness. It becomes possible to grow an a-plane GaN layer.

また本発明の一態様では、前記AlNバッファ層は、積層方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で低角側にシフトしている。 Further, in one aspect of the present invention, the AlN buffer layer has an X-ray diffraction peak angle in the stacking direction shifted to a lower angle in the range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal. .

また本発明の一態様では、前記AlNバッファ層は、面内方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で高角側にシフトしている。 Further, in one aspect of the present invention, the AlN buffer layer has a peak angle of X-ray diffraction in the in-plane direction that is shifted to a higher angle side in a range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal. .

また本発明の一態様では、前記AlNバッファ層は、前記面内方向におけるX線ロッキングカーブ測定の半値幅が1度以下である Further, in one aspect of the present invention , the AlN buffer layer has a half width of 1 degree or less when measured by an X-ray rocking curve in the in-plane direction .

また上記課題を解決するために本発明の半導体素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に機能層を備えることを特徴とする。 Moreover, in order to solve the above-mentioned problem, a semiconductor element of the present invention uses the semiconductor growth substrate described in any one of the above, and is characterized in that a functional layer is provided on the semiconductor growth substrate.

また上記課題を解決するために本発明の半導体発光素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に活性層を備えることを特徴とする。 Further, in order to solve the above problems, a semiconductor light emitting device of the present invention is characterized in that it uses the semiconductor growth substrate described in any one of the above and includes an active layer on the semiconductor growth substrate.

また上記課題を解決するために本発明の半導体素子製造方法は、r面を主面とするサファイア基板上にスパッタ法を用いてAlNバッファ層を形成するスパッタ工程と、前記AlNバッファ層をアニールして、積層方向にa軸方向への一軸配向性および面内方向に少なくともm軸方向への一軸配向性を有する単結晶化するアニール工程と、前記AlNバッファ層上にa面GaN層を成長する半導体層成長工程備え、前記AlNバッファ層に含まれる炭素の不純物濃度が、2.5×10 19 atoms/cm 未満であり、酸素の不純物濃度が、7.0×10 20 atoms/cm 未満であることを特徴とする。
Further, in order to solve the above problems, the semiconductor device manufacturing method of the present invention includes a sputtering step of forming an AlN buffer layer by sputtering on a sapphire substrate having an r-plane as a main surface, and annealing the AlN buffer layer. an annealing step for single crystallization having uniaxial orientation in the a-axis direction in the stacking direction and uniaxial orientation in at least the m-axis direction in the in-plane direction; and growing an a-plane GaN layer on the AlN buffer layer. A semiconductor layer growth step is provided , and the AlN buffer layer has a carbon impurity concentration of less than 2.5×10 19 atoms/cm 3 and an oxygen impurity concentration of 7.0×10 20 atoms/cm 3 . It is characterized by being less than or equal to

このような本発明の半導体素子製造方法では、AlNバッファ層が積層方向および面内方向に一軸配向性を有するため、異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。 In such a semiconductor device manufacturing method of the present invention, since the AlN buffer layer has uniaxial orientation in the stacking direction and in-plane direction, abnormal growth is suppressed and a high-quality alumina with good crystallinity and excellent surface flatness is produced. It becomes possible to grow a planar GaN layer.

本発明では、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能な半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法を提供することができる。 The present invention provides a semiconductor growth substrate, a semiconductor device, a semiconductor light emitting device, and a method for manufacturing a semiconductor device, which are capable of growing a high-quality a-plane GaN layer with good crystallinity and excellent surface flatness. can.

第1実施形態における半導体成長用基板を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a semiconductor growth substrate in the first embodiment. スパッタ条件の違いによるAlNバッファ層2中の不純物濃度と、a面GaN層3の結晶性を示す表である。2 is a table showing the impurity concentration in the AlN buffer layer 2 and the crystallinity of the a-plane GaN layer 3 due to differences in sputtering conditions. AlNバッファ層2のXRC(X-ray Rocking Curve)測定結果を示すグラフであり、(A)はa面での半値幅を示し、(B)はm面での半値幅を示している。2 is a graph showing the results of XRC (X-ray Rocking Curve) measurement of the AlN buffer layer 2, in which (A) shows the half-value width in the a-plane, and (B) shows the half-value width in the m-plane. AlNバッファ層2のX線回折測定結果を示すグラフであり、(A-1)は2θ/θ測定結果を示し、(B-1)は2θχ/φ測定結果を示し、(A-2)は膜厚とa面でのピーク回折強度の関係を示し、(B-2)は膜厚とm面でのピーク回折強度の関係を示している。It is a graph showing the X-ray diffraction measurement results of the AlN buffer layer 2, (A-1) shows the 2θ/θ measurement results, (B-1) shows the 2θ χ /φ measurement results, and (A-2) (B-2) shows the relationship between the film thickness and the peak diffraction intensity on the a-plane, and (B-2) shows the relationship between the film thickness and the peak diffraction intensity on the m-plane. a面GaN層3のXRC測定の回折スペクトルを示すグラフであり、(A)はa面内のc軸方向での結果を示し、(B)はa面内のm軸方向での結果を示し、(C)は{10-11}面内での結果を示している。It is a graph showing the diffraction spectrum of the XRC measurement of the a-plane GaN layer 3, (A) shows the result in the c-axis direction in the a-plane, and (B) shows the result in the m-axis direction in the a-plane. , (C) shows the results within the {10-11} plane. 第2実施形態の半導体装置であるLED10を示す模式断面図である。It is a schematic cross-sectional view showing LED10 which is a semiconductor device of a 2nd embodiment.

(第1実施形態)
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本発明の第1実施形態における半導体成長用基板を示す模式断面図である。
(First embodiment)
Embodiments of the present invention will be described in detail below with reference to the drawings. Identical or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and redundant explanations will be omitted as appropriate. FIG. 1 is a schematic cross-sectional view showing a semiconductor growth substrate in a first embodiment of the present invention.

図1に示すように、本実施形態の半導体成長用基板は、六方晶のr面を主面とするサファイア基板1と、サファイア基板1上に形成されたAlNバッファ層2と、AlNバッファ層2上に形成されたa面を主面とするa面GaN層3を備えている。ここではサファイア基板1として傾斜角度が0度のジャスト基板を示したが、r面を所定の面方位に数度傾斜させたオフ基板としてもよい。 As shown in FIG. 1, the semiconductor growth substrate of this embodiment includes a sapphire substrate 1 having a hexagonal r-plane as its main surface, an AlN buffer layer 2 formed on the sapphire substrate 1, and an AlN buffer layer 2 formed on the sapphire substrate 1. An a-plane GaN layer 3 having an a-plane main surface formed thereon is provided. Although a just substrate with an inclination angle of 0 degrees is shown here as the sapphire substrate 1, it may be an off-substrate in which the r-plane is inclined several degrees in a predetermined plane direction.

AlNバッファ層2はサファイア基板1とa面GaN層3との格子定数の相違を緩和するための層である。AlNバッファ層2の厚みとしては、厚くしすぎるとa面GaN層3の結晶品質が低下するため5~300nmの範囲が好ましく、5~90nmの範囲がより好ましく、5~30nmの範囲がさらに好ましい。また、AlNバッファ層2中に含まれる不純物濃度は、炭素が2.5×1019atoms/cm未満であり、酸素が7.0×1020atoms/cm未満であることが好ましい。AlNバッファ層2中に含まれる不純物濃度がこれらの範囲以上であると、単結晶のa面GaN層3をエピタキシャル成長できない。 The AlN buffer layer 2 is a layer for alleviating the difference in lattice constant between the sapphire substrate 1 and the a-plane GaN layer 3. The thickness of the AlN buffer layer 2 is preferably in the range of 5 to 300 nm, more preferably in the range of 5 to 90 nm, even more preferably in the range of 5 to 30 nm, since the crystal quality of the a-plane GaN layer 3 will deteriorate if it is too thick. . Further, the impurity concentration contained in the AlN buffer layer 2 is preferably less than 2.5×10 19 atoms/cm 3 for carbon and less than 7.0×10 20 atoms/cm 3 for oxygen. If the impurity concentration contained in the AlN buffer layer 2 is above these ranges, the single crystal a-plane GaN layer 3 cannot be epitaxially grown.

a面GaN層3は、AlNバッファ層2上において、主面がa面となるように成長された下地層であり、その上に窒化物半導体層をエピタキシャル成長するための層である。a面GaN層3の形成方法としては、MOCVD法やHVPE法(ハイドライド気相成長法:Hydride Vapor Phase Epitaxy)などの公知の方法を用いることができるが、MOCVD法を用いることが好ましい。a面GaN層3の膜厚は特に限定されないが、1μm以上形成することが好ましい。 The a-plane GaN layer 3 is a base layer grown on the AlN buffer layer 2 so that its main surface becomes the a-plane, and is a layer on which a nitride semiconductor layer is epitaxially grown. As a method for forming the a-plane GaN layer 3, known methods such as MOCVD and HVPE (Hydride Vapor Phase Epitaxy) can be used, but it is preferable to use MOCVD. Although the thickness of the a-plane GaN layer 3 is not particularly limited, it is preferably formed to be 1 μm or more.

次に、図1に示した半導体成長用基板の製造方法について説明する。 Next, a method for manufacturing the semiconductor growth substrate shown in FIG. 1 will be described.

(スパッタ工程)
はじめに、r面を主面とするサファイア基板1上に、スパッタ法を用いてAlNバッファ層2を形成する。AlNバッファ層2を形成するスパッタ法としては、Alをターゲット材としてNおよびArガスを用いる反応性スパッタ法を採用してもよいが、AlNをターゲット材としてArガスを用いることがより好ましい。ターゲット材となるAlNとしては単結晶基板であっても粉末焼体であってもよく、その状態や形態は限定されない。
(Sputtering process)
First, an AlN buffer layer 2 is formed using a sputtering method on a sapphire substrate 1 having an r-plane as its main surface. As the sputtering method for forming the AlN buffer layer 2, a reactive sputtering method using Al as a target material and N 2 and Ar gas may be adopted, but it is more preferable to use Ar gas as AlN as a target material. The AlN serving as the target material may be a single crystal substrate or a powder fired body, and its state and form are not limited.

反応性スパッタ法によりAlをターゲット材としてNおよびArガスを用いてAlNバッファ層2を形成する場合には、AlN膜の物理的な堆積プロセスに加えて、Alターゲット材とNガスの反応プロセスを考慮する必要がある。そのため反応性スパッタ法では、所望のAlNバッファ層2を得るための成膜条件を適切に設定して制御する難易度が高くなる。特に、半導体基板の大面積化が進むと、基板表面の面内分布も考慮する必要があるためさらに難易度が高くなる。 When forming the AlN buffer layer 2 using N2 and Ar gas using Al as a target material by reactive sputtering, in addition to the physical deposition process of the AlN film, a reaction between the Al target material and N2 gas is required. Process needs to be considered. Therefore, in the reactive sputtering method, it is difficult to appropriately set and control film forming conditions to obtain the desired AlN buffer layer 2. In particular, as semiconductor substrates become larger in area, it becomes even more difficult as it becomes necessary to consider the in-plane distribution of the substrate surface.

一方、AlNをターゲット材としてArガスを用いるスパッタ法によりAlNバッファ層2を形成する場合には、Alターゲット材とNの反応プロセスを考慮する必要が無く、Arガス流量やチャンバー内の真空度等のパラメータを最適化するだけでよい。したがって、反応性スパッタ法でAlNバッファ層2を形成するよりも、AlNをターゲット材としてArガスを用いるスパッタ法を用いるほうが、AlNバッファ層2を形成する際の成膜条件の設定や制御が容易であり、大面積化にも対応が容易となる。 On the other hand, when forming the AlN buffer layer 2 by a sputtering method using AlN as a target material and Ar gas, there is no need to consider the reaction process between the Al target material and N2 , and the Ar gas flow rate and the vacuum degree in the chamber are All you need to do is to optimize the parameters such as Therefore, it is easier to set and control the film forming conditions when forming the AlN buffer layer 2 by using a sputtering method using Ar gas using AlN as a target material than by forming the AlN buffer layer 2 by a reactive sputtering method. Therefore, it is easy to cope with increasing the area.

AlNバッファ層2を形成する反応性スパッタの条件としては、基板温度は200℃以上500℃未満の範囲が好ましい。基板温度を500℃よりも高温にすると、成膜後にAlNバッファ層2に含まれる酸素や炭素の不純物濃度が高くなり、AlNバッファ層2上にa面GaN層3をエピタキシャル成長できないため、好ましくない。本実施形態の半導体素子成長方法では、高品質なAlN結晶が得られる1500℃程度よりも低温の200~500℃でスパッタ工程を実施するため、成膜直後のAlNバッファ層2はアモルファスライクな結晶性であると思われる。 As conditions for reactive sputtering to form the AlN buffer layer 2, the substrate temperature is preferably in a range of 200°C or more and less than 500°C. If the substrate temperature is higher than 500° C., the impurity concentration of oxygen and carbon contained in the AlN buffer layer 2 after film formation becomes high, making it impossible to epitaxially grow the a-plane GaN layer 3 on the AlN buffer layer 2, which is not preferable. In the semiconductor device growth method of this embodiment, the sputtering process is performed at a temperature of 200 to 500°C, which is lower than the 1500°C at which high-quality AlN crystals are obtained. It seems to be sexual.

(アニール工程)
次に、スパッタ工程で成膜したAlNバッファ層2のアニール処理を実施し、AlNバッファ層2の再結晶化を促進して、積層方向および面内方向に一軸配向性を持たせる。アニール処理としては、例えば高周波誘導加熱方式による熱処理装置を用いることができる。アニール条件としては、不活性ガス(例えば窒素やAr)雰囲気中において1300℃以上1700℃未満の基板温度を0.5~3.0時間継続することが好ましい。より好ましくは1300℃以上1600℃以下である。アニール温度が1700℃以上であると、サファイア基板1が熱分解して劣化するため好ましくない。また、アニール温度が1300℃未満であると、AlNバッファ層2の再結晶化が不十分であり、AlNバッファ層2の積層方向および面内方向における一軸配向性が不十分となる。
(annealing process)
Next, the AlN buffer layer 2 formed by the sputtering process is annealed to promote recrystallization of the AlN buffer layer 2 and give it uniaxial orientation in the stacking direction and in-plane direction. For the annealing treatment, for example, a heat treatment apparatus using a high frequency induction heating method can be used. As for the annealing conditions, it is preferable to maintain the substrate temperature at 1300° C. or higher and lower than 1700° C. for 0.5 to 3.0 hours in an inert gas (eg, nitrogen or Ar) atmosphere. More preferably, the temperature is 1300°C or higher and 1600°C or lower. If the annealing temperature is 1700° C. or higher, the sapphire substrate 1 will be thermally decomposed and deteriorated, which is not preferable. Further, if the annealing temperature is less than 1300° C., the recrystallization of the AlN buffer layer 2 will be insufficient, and the uniaxial orientation of the AlN buffer layer 2 in the stacking direction and in-plane direction will be insufficient.

(半導体層成長工程)
次に、AlNバッファ層2の表面を洗浄した後に、キャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH)を用い、III族原料としてTMG(TrimethylGallium)を用いて、MOCVD法でa面GaN層3を成長させる。このとき、成長シーケンスは2段階で構成し、昇温した後に成長温度を一定とし、リアクタ圧力とV/III比および成長時間を変更している。例えば、昇温直後の第1ステップではV/III比を4000~5000程度とし、圧力を900~1000hPaとして10~20分程度維持する。第2ステップでは例えばV/III比を100~200程度とし、圧力を100~150hPaとして90~120分維持する。a面GaN層3を成長した後に室温まで冷却して取り出すことで、図1に示した本実施形態の半導体成長用基板を得ることができる。
(Semiconductor layer growth process)
Next, after cleaning the surface of the AlN buffer layer 2, an MOCVD method is performed using hydrogen and nitrogen as a carrier gas, ammonia (NH 3 ) as a group V raw material, and TMG (TrimethylGallium) as a group III raw material. An a-plane GaN layer 3 is grown. At this time, the growth sequence consists of two stages, in which the growth temperature is held constant after the temperature is raised, and the reactor pressure, V/III ratio, and growth time are changed. For example, in the first step immediately after raising the temperature, the V/III ratio is set to about 4000 to 5000, the pressure is set to 900 to 1000 hPa, and the pressure is maintained for about 10 to 20 minutes. In the second step, for example, the V/III ratio is set to about 100 to 200, and the pressure is maintained at 100 to 150 hPa for 90 to 120 minutes. By growing the a-plane GaN layer 3 and then cooling it to room temperature and taking it out, the semiconductor growth substrate of this embodiment shown in FIG. 1 can be obtained.

(実施例1-3)
スパッタ工程で、RF出力450W、10rpm、Ar流量5.0sccm、N流量5.0sccm、基板温度を300℃、到達真空度1.53×10-5Paの条件で、AlNバッファ層2を形成した。その後にアニール工程で、熱処理装置のカーボンサセプタ内に基板をセットし、減圧した後にN封入して380torrにし、昇温レート20℃/minで1600℃まで昇温して一時間アニールした。次に半導体素子成長工程で、温度を1010℃まで昇温した後に成長温度を1010℃で一定とし、第1段階ではV/III比4400、圧力933hPa、成長時間を10分とし、第2段階ではV/III比100、圧力100hPa、成長時間を90分でa面GaN層3を成長させて半導体成長用基板を得た。AlNバッファ層2の膜厚が30nm、90nm、180nmのものをそれぞれ実施例1-3とした。
(Example 1-3)
In the sputtering process, the AlN buffer layer 2 is formed under the following conditions: RF output of 450 W, 10 rpm, Ar flow rate of 5.0 sccm, N 2 flow rate of 5.0 sccm, substrate temperature of 300° C., and ultimate vacuum of 1.53×10 -5 Pa. did. Thereafter, in an annealing step, the substrate was set in a carbon susceptor of a heat treatment apparatus, the pressure was reduced, N 2 was filled in to 380 torr, the temperature was raised to 1600° C. at a temperature increase rate of 20° C./min, and annealing was performed for one hour. Next, in the semiconductor device growth process, the temperature was raised to 1010°C, and then the growth temperature was kept constant at 1010°C. In the first stage, the V/III ratio was 4400, the pressure was 933 hPa, and the growth time was 10 minutes. An a-plane GaN layer 3 was grown at a V/III ratio of 100, a pressure of 100 hPa, and a growth time of 90 minutes to obtain a substrate for semiconductor growth. Examples 1-3 were those in which the thickness of the AlN buffer layer 2 was 30 nm, 90 nm, and 180 nm, respectively.

(比較例1-3)
スパッタ工程の後にアニール工程を実施せず、半導体素子成長工程を実施した他は実施例1と同様の条件で半導体成長用基板を得た。AlNバッファ層2の膜厚が30nm、90nm、180nmのものをそれぞれ比較例1-3とした。
(Comparative example 1-3)
A substrate for semiconductor growth was obtained under the same conditions as in Example 1, except that the annealing process was not performed after the sputtering process and the semiconductor element growth process was performed. Comparative Examples 1-3 were those in which the AlN buffer layer 2 had a thickness of 30 nm, 90 nm, and 180 nm, respectively.

(比較例4)
スパッタ工程での基板温度を600℃とし、到達真空度が4.47×10-4Paである他は比較例1と同様の条件で比較例4の半導体成長用基板を得た。
(Comparative example 4)
A semiconductor growth substrate of Comparative Example 4 was obtained under the same conditions as Comparative Example 1, except that the substrate temperature in the sputtering step was 600 ° C. and the ultimate vacuum was 4.47×10 −4 Pa.

(比較例5-7)
スパッタ工程を用いず、r面を主面とするサファイア基板1上に、MOCVD法を用いてAlNバッファ層2をエピタキシャル成長させた他は、比較例1-3と同様にして半導体成長用基板を得た。成長条件は、成長温度1340℃、V/III比6300、であった。AlNバッファ層2の膜厚が30nm、90nm、180nmのものをそれぞれ比較例5-7とした。
(Comparative Example 5-7)
A substrate for semiconductor growth was obtained in the same manner as Comparative Example 1-3, except that an AlN buffer layer 2 was epitaxially grown using the MOCVD method on a sapphire substrate 1 having an r-plane main surface without using a sputtering process. Ta. The growth conditions were a growth temperature of 1340° C. and a V/III ratio of 6300. Comparative Examples 5-7 were those in which the AlN buffer layer 2 had a thickness of 30 nm, 90 nm, and 180 nm, respectively.

(スパッタ条件)
図2は、スパッタ条件の違いによるAlNバッファ層2中の不純物濃度と、a面GaN層3の結晶性を示す表である。AlNバッファ層2中の不純物濃度はSIMS(Secondary Ion Mass Spectrometry)により測定し、a面GaN層3の結晶性はSEM(Scanning Electron Microscope)像とX線回折により評価した。図中左側に実施例1の結果を示し、図中右側に比較例4の結果を示している。
(Sputtering conditions)
FIG. 2 is a table showing the impurity concentration in the AlN buffer layer 2 and the crystallinity of the a-plane GaN layer 3 depending on the sputtering conditions. The impurity concentration in the AlN buffer layer 2 was measured by SIMS (Secondary Ion Mass Spectrometry), and the crystallinity of the a-plane GaN layer 3 was evaluated by a SEM (Scanning Electron Microscope) image and X-ray diffraction. The left side of the figure shows the results of Example 1, and the right side of the figure shows the results of Comparative Example 4.

図2に示したように、AlNバッファ層2に含まれる不純物濃度は、実施例1では酸素濃度が6.58×1020atoms/cm、炭素濃度が2.19×1019atoms/cmであった。また、比較例4では酸素濃度が2.66×1021atoms/cmであり、炭素が9.72×1019atoms/cmであった。SEM像およびX線回折の結果から、実施例1ではAlNバッファ層2上に単結晶のa面GaN層3を成長できているが、比較例4では単結晶のa面GaN層3を成長できていないことわかる。したがって、スパッタ条件が500℃以上であると、到達真空度が低いため不純物濃度が高くなり、単結晶のa面GaN層を成長できないことがわかる。 As shown in FIG. 2, in Example 1, the impurity concentrations contained in the AlN buffer layer 2 are such that the oxygen concentration is 6.58×10 20 atoms/cm 3 and the carbon concentration is 2.19×10 19 atoms/cm 3 . Met. Further, in Comparative Example 4, the oxygen concentration was 2.66×10 21 atoms/cm 3 and the carbon concentration was 9.72×10 19 atoms/cm 3 . From the SEM image and X-ray diffraction results, in Example 1, a single-crystal a-plane GaN layer 3 could be grown on the AlN buffer layer 2, but in Comparative Example 4, a single-crystal a-plane GaN layer 3 could not be grown. I know that it's not. Therefore, it can be seen that when the sputtering condition is 500° C. or higher, the impurity concentration becomes high due to the low ultimate vacuum degree, making it impossible to grow a single-crystal a-plane GaN layer.

(AlNバッファ層2の評価)
図3は、AlNバッファ層2のXRC(X-ray Rocking Curve)測定結果を示すグラフであり、(A)はa面での半値幅を示し、(B)はm面での半値幅を示している。グラフ中のannealed sp-AlNは実施例1-3を示し、sp-AlNは比較例1-3を示し、ep-AlNは比較例5-7を示している。
(Evaluation of AlN buffer layer 2)
FIG. 3 is a graph showing the results of XRC (X-ray Rocking Curve) measurement of the AlN buffer layer 2, in which (A) shows the half-width in the a-plane, and (B) shows the half-width in the m-plane. ing. Annealed sp-AlN in the graph indicates Example 1-3, sp-AlN indicates Comparative Example 1-3, and ep-AlN indicates Comparative Example 5-7.

図3の(A)(B)に示したように、a面およびm面での半値幅は比較例1-3で最も大きく、実施例1-3が最も小さい。したがって、スパッタ法で形成した後に、アニール工程を経た実施例1-3でAlNバッファ層2の結晶性が最も良好であることがわかる。 As shown in (A) and (B) of FIG. 3, the half width in the a-plane and the m-plane is the largest in Comparative Example 1-3, and the smallest in Example 1-3. Therefore, it can be seen that the crystallinity of the AlN buffer layer 2 is the best in Example 1-3, which was formed by sputtering and then subjected to an annealing process.

図4は、AlNバッファ層2のX線回折測定結果を示すグラフであり、(A-1)は2θ/θ測定結果を示し、(B-1)は2θχ/φ測定結果を示し、(A-2)は膜厚とa面でのピーク回折強度の関係を示し、(B-2)は膜厚とm面でのピーク回折強度の関係を示している。 FIG. 4 is a graph showing the X-ray diffraction measurement results of the AlN buffer layer 2, (A-1) shows the 2θ/θ measurement results, (B-1) shows the 2θ χ /φ measurement results, and ( A-2) shows the relationship between the film thickness and the peak diffraction intensity on the a-plane, and (B-2) shows the relationship between the film thickness and the peak diffraction intensity on the m-plane.

(A-1)では、全ての測定結果で53°付近と59°付近に回折ピークが確認できる。53°付近のピークはサファイア基板1のr面に対応し、59°付近のピークはAlNバッファ層2のa面に対応している。また実施例1-3では、バルクのAlN単結晶での理論的なピーク角度よりも、ピーク角度が0.2~0.8度の範囲で低角側にシフトしている。2θ/θ測定における低角側へのピーク角度は、AlNバッファ層2の積層方向における格子面間隔の広がりを示しており、実施例1-3では積層方向に引張応力が働いていると思われる。 In (A-1), diffraction peaks can be confirmed around 53° and 59° in all measurement results. The peak around 53° corresponds to the r-plane of the sapphire substrate 1, and the peak around 59° corresponds to the a-plane of the AlN buffer layer 2. Further, in Example 1-3, the peak angle is shifted to a lower angle in the range of 0.2 to 0.8 degrees than the theoretical peak angle in the bulk AlN single crystal. The peak angle toward the lower angle side in the 2θ/θ measurement indicates the spread of the lattice spacing in the stacking direction of the AlN buffer layer 2, and it seems that tensile stress is acting in the stacking direction in Example 1-3. .

また(A-2)に示すように、実施例1-3では比較例1-3よりもピーク強度が著しく大きく、実施例1,2では比較例5,6よりもピーク強度が大きい。したがって、実施例1,2では、AlNバッファ層2が積層方向に良好にa軸配向していることがわかる。 Furthermore, as shown in (A-2), the peak intensity in Example 1-3 is significantly greater than that in Comparative Example 1-3, and the peak intensity in Examples 1 and 2 is greater than that in Comparative Examples 5 and 6. Therefore, it can be seen that in Examples 1 and 2, the AlN buffer layer 2 is well oriented along the a-axis in the stacking direction.

(B-1)では、全ての測定結果で33°付近に回折ピークが確認できる。33°付近のピークはAlNバッファ層2のm面に対応している。また実施例1-3では、バルクのAlN単結晶での理論的なピーク角度よりも、ピーク角度が0.2~0.8度の範囲で高角側にシフトしている。2θχ/φ測定における高角側へのピーク角度は、AlNバッファ層2の面内方向における格子面間隔の狭まりを示しており、実施例1-3では面内圧縮応力が働いていると思われる。 In (B-1), a diffraction peak can be seen around 33° in all measurement results. The peak near 33° corresponds to the m-plane of the AlN buffer layer 2. Further, in Example 1-3, the peak angle is shifted to a higher angle in the range of 0.2 to 0.8 degrees than the theoretical peak angle in the bulk AlN single crystal. The peak angle toward the high angle side in the 2θ χ /φ measurement indicates a narrowing of the lattice spacing in the in-plane direction of the AlN buffer layer 2, and it seems that in-plane compressive stress is acting in Example 1-3. .

また(B-2)に示すように、実施例1,2では比較例1,2よりもピーク強度が著しく大きく、実施例1では比較例5よりもピーク強度が大きい。したがって、実施例1,2では、AlNバッファ層2が面内方向に良好にm軸配向していることがわかる。 Furthermore, as shown in (B-2), the peak intensity in Examples 1 and 2 is significantly greater than that in Comparative Examples 1 and 2, and the peak intensity in Example 1 is greater than that in Comparative Example 5. Therefore, it can be seen that in Examples 1 and 2, the AlN buffer layer 2 has good m-axis orientation in the in-plane direction.

図4で示したように、AlNバッファ層2の面内方向および積層方向での一軸配向性は実施例1,2が最も高く、面内方向の一軸配向性は膜厚が小さいほど良好であると言える。また実施例1-3では、バルクのAlN単結晶での理論的なピーク角度よりも積層方向で0.2~0.8度の範囲で低角側にシフトし、面内方向で0.2~0.8度の範囲で高角側にシフトしており、AlNバッファ層2に面内圧縮応力が加わっている。 As shown in FIG. 4, the uniaxial orientation of the AlN buffer layer 2 in the in-plane direction and the stacking direction is highest in Examples 1 and 2, and the smaller the film thickness, the better the uniaxial orientation in the in-plane direction. I can say that. Furthermore, in Example 1-3, the theoretical peak angle in the bulk AlN single crystal was shifted to a lower angle in the range of 0.2 to 0.8 degrees in the stacking direction, and by 0.2 degrees in the in-plane direction. The angle is shifted to the high angle side in the range of ~0.8 degrees, and in-plane compressive stress is applied to the AlN buffer layer 2.

(a面GaN層3の結晶性評価)
図5は、a面GaN層3のXRC測定の回折スペクトルを示すグラフであり、(A)はa面内のc軸方向での結果を示し、(B)はa面内のm軸方向での結果を示し、(C)は{10-11}面内での結果を示している。図5(A)~(C)では、AlNバッファ層2の膜厚を30nmとした実施例1、比較例1、比較例5の測定結果を示している。
(Evaluation of crystallinity of a-plane GaN layer 3)
FIG. 5 is a graph showing the diffraction spectrum of the XRC measurement of the a-plane GaN layer 3, where (A) shows the results in the c-axis direction in the a-plane, and (B) shows the results in the m-axis direction in the a-plane. (C) shows the results in the {10-11} plane. 5A to 5C show the measurement results of Example 1, Comparative Example 1, and Comparative Example 5 in which the thickness of the AlN buffer layer 2 was 30 nm.

図5(A)に示した測定結果における半値幅(単位:arcsec)は、実施例1が505、比較例1が609、比較例5が562であった。図5(B)では、実施例1が729、比較例1が758、比較例5が995であった。図5(C)では、実施例1が1071、比較例1が1472、比較例5が1404であった。 The half width (unit: arcsec) in the measurement results shown in FIG. 5(A) was 505 for Example 1, 609 for Comparative Example 1, and 562 for Comparative Example 5. In FIG. 5(B), the number was 729 for Example 1, 758 for Comparative Example 1, and 995 for Comparative Example 5. In FIG. 5(C), the number was 1071 for Example 1, 1472 for Comparative Example 1, and 1404 for Comparative Example 5.

図5(A)~(C)に示したように、実施例1の結晶性は比較例1,5よりも良好であり、面内方向および積層方向での一軸配向性を有するAlNバッファ層2を用いることで、a面GaN層3の結晶性と表面平坦性を良好にすることができる。 As shown in FIGS. 5A to 5C, the crystallinity of Example 1 was better than that of Comparative Examples 1 and 5, and the AlN buffer layer 2 had uniaxial orientation in the in-plane direction and the stacking direction. By using this, the crystallinity and surface flatness of the a-plane GaN layer 3 can be improved.

以上に述べたように、本実施形態の半導体成長用基板では、AlNバッファ層が積層方向および面内方向に一軸配向性を有することで、異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。 As described above, in the semiconductor growth substrate of this embodiment, the AlN buffer layer has uniaxial orientation in the stacking direction and in-plane direction, which suppresses abnormal growth and provides good crystallinity and surface flatness. It becomes possible to grow an excellent high quality a-plane GaN layer.

(第2実施形態)
次に、本発明の第2実施形態について図6を用いて説明する。図6は第2実施形態の半導体装置であるLED10を示す模式断面図である。図6に示すようにLED10は、r面を主面とするサファイア基板11、AlNバッファ層12、a面GaN層13、n型半導体層14、発光層(活性層)15、p型半導体層16、n側電極17、p側電極18を有している。
(Second embodiment)
Next, a second embodiment of the present invention will be described using FIG. 6. FIG. 6 is a schematic cross-sectional view showing an LED 10 which is a semiconductor device of the second embodiment. As shown in FIG. 6, the LED 10 includes a sapphire substrate 11 having an r-plane main surface, an AlN buffer layer 12, an a-plane GaN layer 13, an n-type semiconductor layer 14, a light emitting layer (active layer) 15, and a p-type semiconductor layer 16. , an n-side electrode 17, and a p-side electrode 18.

第1実施形態と同様に、r面を主面とするサファイア基板11を用意し、スパッタ工程でAlNバッファ層12をサファイア基板11上に形成する。次に、アニール工程でAlNバッファ層12をアニールして単結晶化し、積層方向および面内方向に一軸配向性をもたせる。次に、半導体層成長工程でa面GaN層13をAlNバッファ層12上にエピタキシャル成長し、続けてMOCVD法でn型半導体層14、発光層15、p型半導体層16を順次成長して半導体基板を得る。 Similar to the first embodiment, a sapphire substrate 11 having an r-plane as its main surface is prepared, and an AlN buffer layer 12 is formed on the sapphire substrate 11 by a sputtering process. Next, in an annealing step, the AlN buffer layer 12 is annealed to become a single crystal, and has uniaxial orientation in the stacking direction and in-plane direction. Next, in a semiconductor layer growth step, an a-plane GaN layer 13 is epitaxially grown on the AlN buffer layer 12, and then an n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor layer 16 are sequentially grown by MOCVD to form a semiconductor substrate. get.

次に、所定のパターンを用いてフォトリソグラフィーとエッチングによりp型半導体層16と発光層15の一部を除去してn型半導体層14の一部を露出させる。次に、n型半導体層14とp型半導体層16の露出面に蒸着等により電極材料を形成し、ダイシングして個別チップ化することでLED10を得る。 Next, a portion of the p-type semiconductor layer 16 and the light emitting layer 15 are removed by photolithography and etching using a predetermined pattern to expose a portion of the n-type semiconductor layer 14. Next, an electrode material is formed on the exposed surfaces of the n-type semiconductor layer 14 and the p-type semiconductor layer 16 by vapor deposition or the like, and the LED 10 is obtained by dicing into individual chips.

ここではn型半導体層14、p型半導体層16をそれぞれ単層で説明したが、それぞれ材料や組成の異なる複数の層を含んでいるとしてもよく、例えば、n型半導体層14とp型半導体層16にクラッド層、コンタクト層、電流拡散層、電子ブロック層、導波路層などを含めてもよい。また、発光層15も単層で説明したが、多重量子井戸構造(MQW:Multi Quantum Well)などの複数層で構成してもよい。 Although the n-type semiconductor layer 14 and the p-type semiconductor layer 16 are each described as a single layer here, they may each include a plurality of layers having different materials and compositions. For example, the n-type semiconductor layer 14 and the p-type semiconductor layer Layer 16 may include cladding layers, contact layers, current spreading layers, electron blocking layers, waveguide layers, and the like. Furthermore, although the light emitting layer 15 has been described as a single layer, it may be configured with multiple layers such as a multi-quantum well structure (MQW).

n型半導体層14は、a面GaN層13上にエピタキシャル成長され、a面を主面とするn型不純物がドープされた半導体層であり、n側電極17から電子が注入されて発光層15に電子を供給する層である。n型半導体層14を構成する材料は、III-V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、n型不純物としてはSiなどが挙げられる。 The n-type semiconductor layer 14 is an n-type impurity-doped semiconductor layer that is epitaxially grown on the a-plane GaN layer 13 and has the a-plane as its main surface. Electrons are injected from the n-side electrode 17 into the light emitting layer 15. This is a layer that supplies electrons. As for the material constituting the n-type semiconductor layer 14, examples of the III-V compound semiconductor layer include GaN, AlGaN, InGaN, and AlInGaN, and examples of the n-type impurity include Si.

発光層15は、n型半導体層14上にエピタキシャル成長され、a面を主面とする半導体層であり、層内で電子と正孔が発光再結合することでLED10が発光する。発光層15は、n型半導体層14とp型半導体層16よりもバンドギャップが小さい材料で構成されており、例えばInGaN、AlInGaNなどが挙げられる。発光層15は意図的に不純物を含まないノンドープとしてもよく、n型不純物を含むn型やp型不純物を含むp型としてもよい。発光層15は、a面を主面とする半導体層なので、厚膜化してもピエゾ電界による電子と正孔の空間的な分離は生じにくく、電流密度を高くしても効率的に電子と正孔が発光再結合できる。 The light-emitting layer 15 is a semiconductor layer that is epitaxially grown on the n-type semiconductor layer 14 and has an a-plane as its main surface, and the LED 10 emits light by radiative recombination of electrons and holes within the layer. The light emitting layer 15 is made of a material whose band gap is smaller than that of the n-type semiconductor layer 14 and the p-type semiconductor layer 16, and examples thereof include InGaN and AlInGaN. The light emitting layer 15 may be a non-doped layer that does not intentionally contain impurities, or may be an n-type layer that includes an n-type impurity, or a p-type layer that includes a p-type impurity. Since the light-emitting layer 15 is a semiconductor layer whose main surface is the a-plane, spatial separation of electrons and holes due to a piezoelectric field is difficult to occur even when the film is thickened, and even if the current density is increased, electrons and holes are efficiently separated. The pores are capable of luminescent recombination.

p型半導体層16は、発光層15上にエピタキシャル成長され、a面を主面とする半導体層であり、p側電極18から正孔が注入されて発光層15に正孔を供給する層である。p型半導体層16を構成する材料は、III-V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、p型不純物としてはZnやMgなどが挙げられる。 The p-type semiconductor layer 16 is a semiconductor layer that is epitaxially grown on the light-emitting layer 15 and has an a-plane as its main surface, and is a layer in which holes are injected from the p-side electrode 18 and supplies holes to the light-emitting layer 15. . As for the material constituting the p-type semiconductor layer 16, examples of the III-V compound semiconductor layer include GaN, AlGaN, InGaN, and AlInGaN, and examples of the p-type impurity include Zn and Mg.

本実施の形態でも、積層方向および面内方向に一軸配向性を有するAlNバッファ層12上に、a面GaN層13を下地層としてn型半導体層14、発光層15、p型半導体層16をエピタキシャル成長している。したがって、第1実施形態で述べたようにa面GaN層13は結晶性も表面平坦性も良好であり、その上に成長されたn型半導体層14、発光層15、p型半導体層16も結晶性と表面平坦性が良好となる。これにより、n型半導体層14、発光層15、p型半導体層16の特性も良好になり、LED10の外部量子効率の向上などが見込まれる。なお、本実施形態は、機能層として、n型半導体層14、発光層15、及びp型半導体層16を備えた例である。ここで、機能層とは、半導体素子において所定の電気的な機能を発揮するための層である。
In this embodiment as well, an n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor layer 16 are formed on an AlN buffer layer 12 having uniaxial orientation in the stacking direction and in-plane direction, with an a-plane GaN layer 13 as a base layer. Epitaxial growth. Therefore, as described in the first embodiment, the a-plane GaN layer 13 has good crystallinity and surface flatness, and the n-type semiconductor layer 14, light-emitting layer 15, and p-type semiconductor layer 16 grown thereon also have good crystallinity and surface flatness. Good crystallinity and surface flatness. This improves the characteristics of the n-type semiconductor layer 14, the light-emitting layer 15, and the p-type semiconductor layer 16, and is expected to improve the external quantum efficiency of the LED 10. Note that this embodiment is an example including an n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor layer 16 as functional layers. Here, the functional layer is a layer for exhibiting a predetermined electrical function in a semiconductor element.

(第3実施形態)
本発明の半導体装置であるLED10は、上述したようにピエゾ電界によるドループが少なく、且つa面内での異方性が小さく良好な結晶品質であることから高輝度化を実現できるので、車両用灯具などの灯具に用いることでチップ数の低減や高出力化を図ることが可能となる。
(Third embodiment)
The LED 10, which is a semiconductor device of the present invention, has little droop due to the piezoelectric field as described above, and has small anisotropy in the a-plane and has good crystal quality, so it can achieve high brightness, so it can be used in vehicles. By using it in lamps and other lamps, it is possible to reduce the number of chips and increase output.

さらに、半導体装置はLEDに限定されず、半導体レーザや高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の他の用途であってもよい。これらの半導体装置においても、機能層とは、半導体素子において所定の電気的な機能を発揮するための層である。
Further, the semiconductor device is not limited to an LED, and may be used for other purposes such as a semiconductor laser or a high electron mobility transistor (HEMT). Also in these semiconductor devices, the functional layer is a layer for exhibiting a predetermined electrical function in the semiconductor element.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.

10…LED
1,11…サファイア基板
2,12…AlNバッファ層
3,13…a面GaN層
14…n型半導体層
15…発光層
16…p型半導体層
17…n側電極
18…p側電極
10...LED
1, 11... Sapphire substrate 2, 12... AlN buffer layer 3, 13... A-plane GaN layer 14... N-type semiconductor layer 15... Light-emitting layer 16... P-type semiconductor layer 17... N-side electrode 18... P-side electrode

Claims (7)

r面を主面とするサファイア基板と、
前記主面上に形成されたAlNバッファ層とを備え、
前記AlNバッファ層は、積層方向にa軸方向への一軸配向性および面内方向に少なくともm軸方向への一軸配向性を有し、
前記AlNバッファ層に含まれる炭素の不純物濃度が、2.5×1019atoms/cm未満であり、酸素の不純物濃度が、7.0×10 20 atoms/cm 未満であることを特徴とする半導体成長用基板。
a sapphire substrate with an r-plane as its main surface;
an AlN buffer layer formed on the main surface,
The AlN buffer layer has uniaxial orientation in the a-axis direction in the stacking direction and uniaxial orientation in the in-plane direction at least in the m-axis direction,
The AlN buffer layer has a carbon impurity concentration of less than 2.5×10 19 atoms/cm 3 and an oxygen impurity concentration of less than 7.0×10 20 atoms/cm 3 . A substrate for semiconductor growth.
請求項1に記載の半導体成長用基板であって、
前記AlNバッファ層は、積層方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で低角側にシフトしていることを特徴とする半導体成長用基板。
The semiconductor growth substrate according to claim 1 ,
The AlN buffer layer is for semiconductor growth, characterized in that the peak angle of X-ray diffraction in the stacking direction is shifted to a lower angle in the range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal. substrate.
請求項1または2に記載の半導体成長用基板であって、
前記AlNバッファ層は、面内方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で高角側にシフトしていることを特徴とする半導体成長用基板。
The semiconductor growth substrate according to claim 1 or 2 ,
The AlN buffer layer is for semiconductor growth, characterized in that the peak angle of X-ray diffraction in the in-plane direction is shifted to a higher angle side in the range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal. substrate.
請求項1から3の何れか一つに記載の半導体成長用基板であって、
前記AlNバッファ層は、前記面内方向におけるX線ロッキングカーブ測定の半値幅が1度以下であることを特徴とする半導体成長用基板。
A substrate for semiconductor growth according to any one of claims 1 to 3 ,
A substrate for semiconductor growth, wherein the AlN buffer layer has a half width of 1 degree or less when measured by an X-ray rocking curve in the in-plane direction.
請求項1から4の何れか一つに記載の半導体成長用基板を用い、
前記半導体成長用基板上に機能層を備えることを特徴とする半導体素子。
Using the semiconductor growth substrate according to any one of claims 1 to 4 ,
A semiconductor device comprising a functional layer on the semiconductor growth substrate.
請求項1から4の何れか一つに記載の半導体成長用基板を用い、
前記半導体成長用基板上に活性層を備えることを特徴とする半導体発光素子。
Using the semiconductor growth substrate according to any one of claims 1 to 4 ,
A semiconductor light emitting device comprising an active layer on the semiconductor growth substrate.
r面を主面とするサファイア基板上にスパッタ法を用いてAlNバッファ層を形成するスパッタ工程と、
前記AlNバッファ層をアニールして、積層方向にa軸方向への一軸配向性および面内方向に少なくともm軸方向への一軸配向性を有する単結晶化するアニール工程と、
前記AlNバッファ層上にa面GaN層を成長する半導体層成長工程を備え、
前記AlNバッファ層に含まれる炭素の不純物濃度が、2.5×1019atoms/cm未満であり、酸素の不純物濃度が、7.0×1020atoms/cm未満であることを特徴とする半導体素子製造方法。
a sputtering step of forming an AlN buffer layer using a sputtering method on a sapphire substrate having an r-plane as its main surface;
an annealing step of annealing the AlN buffer layer to form a single crystal having uniaxial orientation in the a-axis direction in the stacking direction and uniaxial orientation in at least the m-axis direction in the in-plane direction;
comprising a semiconductor layer growth step of growing an a-plane GaN layer on the AlN buffer layer,
The AlN buffer layer has a carbon impurity concentration of less than 2.5×10 19 atoms/cm 3 and an oxygen impurity concentration of less than 7.0×10 20 atoms/cm 3 . A semiconductor device manufacturing method.
JP2018193569A 2018-10-12 2018-10-12 Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method Active JP7430316B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018193569A JP7430316B2 (en) 2018-10-12 2018-10-12 Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method
PCT/JP2019/040305 WO2020075852A1 (en) 2018-10-12 2019-10-11 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193569A JP7430316B2 (en) 2018-10-12 2018-10-12 Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method

Publications (2)

Publication Number Publication Date
JP2020061526A JP2020061526A (en) 2020-04-16
JP7430316B2 true JP7430316B2 (en) 2024-02-13

Family

ID=70164282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193569A Active JP7430316B2 (en) 2018-10-12 2018-10-12 Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method

Country Status (2)

Country Link
JP (1) JP7430316B2 (en)
WO (1) WO2020075852A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154964A (en) 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 Crystal substrate, ultraviolet emission element, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI380368B (en) * 2009-02-04 2012-12-21 Univ Nat Chiao Tung Manufacture method of a multilayer structure having non-polar a-plane {11-20} iii-nitride layer
JP2011082570A (en) * 2011-01-11 2011-04-21 Showa Denko Kk Method of manufacturing group iii nitride semiconductor light emitting device
JP6925141B2 (en) * 2016-03-02 2021-08-25 株式会社小糸製作所 Semiconductor substrates, semiconductor light emitting devices and lamps

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154964A (en) 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 Crystal substrate, ultraviolet emission element, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2020061526A (en) 2020-04-16
WO2020075852A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP5684455B2 (en) Method of manufacturing a III-nitride device or III-nitride semiconductor using a p-type semipolar III nitride semiconductor doped with a p-type dopant during growth, a semipolar III nitride semiconductor, and a p-type III Method for manufacturing a nitride semiconductor
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
US20090224270A1 (en) Group iii nitride semiconductor thin film and group iii semiconductor light emitting device
US20100059759A1 (en) Nitride semiconductor light emitting device and method for forming the same
JP2009526405A5 (en)
WO2006080376A1 (en) Nitride semiconductor device and method of growing nitride semiconductor crystal layer
JP2005019872A (en) Method of manufacturing nitride semiconductor, semiconductor wafer, and semiconductor device
JP2007103774A (en) Group iii nitride semiconductor stacked structure and its manufacturing method
US20150091047A1 (en) Method of growing nitride semiconductor, method of manufacturing template for semiconductor fabrication and method of manufacturing semiconductor light emitting device using the same
WO2013042297A1 (en) Gallium nitride compound semiconductor light emitting element and light source device using same
WO2011058682A1 (en) Gallium nitride compound semiconductor light-emitting element
US20060189019A1 (en) Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
JP6925141B2 (en) Semiconductor substrates, semiconductor light emitting devices and lamps
KR100841269B1 (en) Group ¥² nitride semiconductor multilayer structure
KR101028585B1 (en) Hetero-substrate, ?-nitride semiconductor devices using the same and manufacturing method of thereof
WO2020075849A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor element
JP7350477B2 (en) Method for manufacturing semiconductor growth substrate, semiconductor element, semiconductor light emitting device, and semiconductor growth substrate
WO2011099469A1 (en) Structural body, and method for producing semiconductor substrate
JP2008098224A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP4960621B2 (en) Nitride semiconductor growth substrate and manufacturing method thereof
JP7430316B2 (en) Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method
US20120244686A1 (en) Method for fabricating semiconductor device
WO2008056632A1 (en) GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221222

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20230110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240123

R150 Certificate of patent or registration of utility model

Ref document number: 7430316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150