WO2020075852A1 - Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor light-emitting element - Google Patents

Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor light-emitting element Download PDF

Info

Publication number
WO2020075852A1
WO2020075852A1 PCT/JP2019/040305 JP2019040305W WO2020075852A1 WO 2020075852 A1 WO2020075852 A1 WO 2020075852A1 JP 2019040305 W JP2019040305 W JP 2019040305W WO 2020075852 A1 WO2020075852 A1 WO 2020075852A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
plane
aln buffer
buffer layer
Prior art date
Application number
PCT/JP2019/040305
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 神野
杉森 正吾
大長 久芳
上山 智
Original Assignee
株式会社小糸製作所
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所, 学校法人 名城大学 filed Critical 株式会社小糸製作所
Publication of WO2020075852A1 publication Critical patent/WO2020075852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present disclosure relates to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element and a semiconductor element manufacturing method, and more particularly to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element and a semiconductor element manufacturing method for growing an a-plane GaN crystal layer.
  • GaN gallium nitride
  • LEDs Light Emitting Diodes
  • the thickness of the light emitting layer is increased to reduce the carrier density inside the light emitting layer so that the electrons and holes can be efficiently emitted and recombined even if the current density is increased.
  • the light emitting layer is formed of a GaN-based material having a non-polar or semi-polar plane orientation as the main surface, thereby eliminating the influence of the piezoelectric field in the stacking direction and increasing the film thickness.
  • a technique that enables light emission with an electric current has also been proposed.
  • the a-plane and the m-plane are non-polar planes, and a typical example of the semi-polar plane is the r-plane.
  • Patent Document 1 discloses a technique for growing an a-plane GaN layer on the r-plane of a sapphire substrate using a metal organic chemical vapor deposition method (MOCVD method: Metal Organic Chemical Vapor Deposition).
  • MOCVD method Metal Organic Chemical Vapor Deposition
  • An a-plane GaN layer formed on an r-plane sapphire substrate is used as a base layer, and an n-type layer, a light-emitting layer, and a p-type layer are sequentially grown to increase the film thickness with the main surface of the light-emitting layer as the a-plane.
  • the droop characteristic of the LED can be improved.
  • the in-plane anisotropy is large, the crystallinity is good, and the surface is good. It was difficult to obtain a high quality a-plane GaN layer having excellent flatness.
  • the present disclosure has been made in view of the above conventional problems.
  • the present disclosure discloses a semiconductor growth substrate capable of growing a high-quality a-plane GaN layer having good crystallinity and excellent surface flatness, and a semiconductor device, a semiconductor light emitting device, and a semiconductor device manufacturing method using the same. The purpose is to provide.
  • a semiconductor growth substrate of the present disclosure includes a sapphire substrate having an r-plane as a main surface and an AlN buffer layer formed on the main surface, and the AlN buffer layer has a stacking direction. And has uniaxial orientation in the in-plane direction.
  • the AlN buffer layer has a uniaxial orientation in the stacking direction and the in-plane direction, abnormal growth is suppressed, crystallinity is good, and surface flatness is high. It becomes possible to grow an a-plane GaN layer.
  • the peak angle of X-ray diffraction in the stacking direction of the AlN buffer layer is shifted to the lower angle side in the range of 0.2 to 0.8 degrees compared to the bulk AlN single crystal. .
  • the peak angle of X-ray diffraction in the in-plane direction of the AlN buffer layer is shifted to a higher angle side in the range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal.
  • the impurity concentration of carbon contained in the AlN buffer layer is less than 2.5 ⁇ 10 19 atoms / cm 3 .
  • the impurity concentration of oxygen contained in the AlN buffer layer is less than 7.0 ⁇ 10 20 atoms / cm 3 .
  • a semiconductor device of the present disclosure is characterized by using the semiconductor growth substrate according to any one of the above and providing a functional layer on the semiconductor growth substrate.
  • a semiconductor light emitting device of the present disclosure is characterized by using the semiconductor growth substrate according to any one of the above and having an active layer on the semiconductor growth substrate.
  • a semiconductor element manufacturing method includes a sputtering step of forming an AlN buffer layer on a sapphire substrate having an r-plane as a main surface by a sputtering method, and annealing the AlN buffer layer. Then, an annealing process for uniaxially uniaxially crystallizing in the stacking direction and the in-plane direction, and a semiconductor layer growing process for growing an a-plane GaN layer on the AlN buffer layer are provided.
  • the AlN buffer layer has a uniaxial orientation in the stacking direction and the in-plane direction, abnormal growth is suppressed, crystallinity is good, and high-quality a It is possible to grow a planar GaN layer.
  • a semiconductor growth substrate capable of growing a high quality a-plane GaN layer having good crystallinity and excellent surface flatness, and a semiconductor element, a semiconductor light emitting element, and a semiconductor element using the same.
  • a manufacturing method can be provided.
  • FIG. 6 is a table showing the impurity concentration in the AlN buffer layer 2 and the crystallinity of the a-plane GaN layer 3 depending on the difference in sputtering conditions. It is a graph which shows the XRC (X-ray Rocking Curve) measurement result of AlN buffer layer 2, and shows the half value width in a surface. It is a graph which shows the XRC measurement result of AlN buffer layer 2, and shows the half value width in m surface. 6 is a graph showing the X-ray diffraction measurement results of the AlN buffer layer 2, (A-1) of FIG. 4 showing the 2 ⁇ / ⁇ measurement results, (B-1) of FIG.
  • FIG. 4 shows the 2 ⁇ / ⁇ measurement results
  • 4A-2 shows the relationship between the film thickness and the peak diffraction intensity on the a-plane
  • FIG. 4B-2 shows the relationship between the film thickness and the peak diffraction intensity on the m-plane
  • 6 is a graph showing a diffraction spectrum of an a-plane GaN layer 3 measured by XRC
  • FIG. 5 (A) shows a result in the c-axis direction in the a-plane
  • FIG. 5 (B) shows an m-axis in the a-plane
  • FIG. 5C shows the result in the ⁇ 10-11 ⁇ plane.
  • It is a schematic cross section which shows LED10 which is a semiconductor device of 2nd Embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor growth substrate according to the first embodiment of the present disclosure.
  • the semiconductor growth substrate of this embodiment includes a sapphire substrate 1 having a hexagonal r-plane as a main surface, an AlN buffer layer 2 formed on the sapphire substrate 1, and an AlN buffer layer 2. It is provided with an a-plane GaN layer 3 having an a-plane as a main surface formed thereon.
  • the sapphire substrate 1 is a just substrate having an inclination angle of 0 ° here, it may be an off substrate in which the r-plane is inclined several degrees in a predetermined plane direction.
  • the AlN buffer layer 2 is a layer for alleviating the difference in lattice constant between the sapphire substrate 1 and the a-plane GaN layer 3.
  • the range is preferably 5 to 300 nm, more preferably 5 to 90 nm, and further preferably 5 to 30 nm. preferable.
  • the concentration of impurities contained in the AlN buffer layer 2 is preferably less than 2.5 ⁇ 10 19 atoms / cm 3 for carbon and less than 7.0 ⁇ 10 20 atoms / cm 3 for oxygen. It is preferable. If the concentration of impurities contained in the AlN buffer layer 2 is above these ranges, it tends to be difficult to epitaxially grow the single crystal a-plane GaN layer 3.
  • the a-plane GaN layer 3 is a base layer grown on the AlN buffer layer 2 so that the main surface is the a-plane, and is a layer for epitaxially growing a nitride semiconductor layer thereon.
  • a method for forming the a-plane GaN layer 3 a known method such as MOCVD or HVPE (Hydride Vapor Phase Epitaxy) can be used, but the MOCVD method is preferably used.
  • the film thickness of the a-plane GaN layer 3 is not particularly limited, but it is preferably formed to 1 ⁇ m or more.
  • the AlN buffer layer 2 is formed by the sputtering method on the sapphire substrate 1 having the r-plane as the main surface.
  • a sputtering method for forming the AlN buffer layer 2 a reactive sputtering method using Al as a target material and N 2 and Ar gas may be adopted, but it is more preferable to use Ar gas as the target material and AlN.
  • the target material AlN may be a single crystal substrate or a powder fired body, and its state or form is not limited.
  • the AlN buffer layer 2 is formed by the reactive sputtering method using N 2 and Ar gas with Al as the target material, in addition to the physical deposition process of the AlN film, the reaction between the Al target material and the N 2 gas The process needs to be considered. Therefore, in the reactive sputtering method, it becomes difficult to appropriately set and control the film forming conditions for obtaining the desired AlN buffer layer 2. In particular, as the area of the semiconductor substrate increases, it becomes more difficult because the in-plane distribution of the substrate surface must be taken into consideration.
  • the substrate temperature is preferably in the range of 200 ° C. or higher and lower than 500 ° C.
  • the impurity concentration of oxygen and carbon contained in the AlN buffer layer 2 becomes high after film formation, and it tends to be difficult to epitaxially grow the a-plane GaN layer 3 on the AlN buffer layer 2. is there.
  • the sputtering step is performed at 200 to 500 ° C., which is lower than about 1500 ° C. at which high-quality AlN crystals are obtained, the AlN buffer layer 2 immediately after film formation has an amorphous-like crystal. It seems to be sex.
  • the AlN buffer layer 2 formed in the sputtering process is annealed to promote recrystallization of the AlN buffer layer 2 so as to have uniaxial orientation in the stacking direction and the in-plane direction.
  • a heat treatment apparatus using a high frequency induction heating method can be used.
  • an annealing condition it is preferable to continue a state in which the substrate temperature is maintained at 1300 ° C. or higher and lower than 1700 ° C. for 0.5 to 3.0 hours in an inert gas (eg nitrogen or Ar) atmosphere.
  • the substrate temperature is more preferably 1300 ° C. or higher and 1600 ° C. or lower.
  • An annealing temperature (substrate temperature) of 1700 ° C. or higher is not preferable because the sapphire substrate 1 may be thermally decomposed and deteriorated. If the annealing temperature is lower than 1300 ° C., the recrystallization of the AlN buffer layer 2 is insufficient, and the uniaxial orientation of the AlN buffer layer 2 in the stacking direction and the in-plane direction may be insufficient.
  • the MOCVD method Next, after cleaning the surface of the AlN buffer layer 2, hydrogen and nitrogen are used as a carrier gas, ammonia (NH 3 ) is used as a group V raw material, and TMG (Trimethyl Gallium) is used as a group III raw material by the MOCVD method.
  • the a-plane GaN layer 3 is grown.
  • the growth sequence is composed of two stages, the growth temperature is kept constant after the temperature is raised, and the reactor pressure, the V / III ratio and the growth time are changed. For example, in the first step immediately after raising the temperature, the V / III ratio is set to about 4000 to 5000 and the pressure is set to 900 to 1000 hPa and maintained for about 10 to 20 minutes.
  • the V / III ratio is set to about 100 to 200, the pressure is set to 100 to 150 hPa, and maintained for 90 to 120 minutes.
  • the a-plane GaN layer 3 is grown, it is cooled to room temperature and taken out, whereby the semiconductor growth substrate of the present embodiment shown in FIG. 1 can be obtained.
  • the AlN buffer layer 2 is formed under the conditions of RF output of 450 W, 10 rpm, Ar flow rate of 5.0 sccm, N 2 flow rate of 5.0 sccm, substrate temperature of 300 ° C., and ultimate vacuum of 1.53 ⁇ 10 ⁇ 5 Pa. did.
  • the substrate was set in the carbon susceptor of the heat treatment apparatus, depressurized, and then N 2 was filled to 380 torr, and the temperature was raised to 1600 ° C. at a heating rate of 20 ° C./min and annealed for 1 hour.
  • the temperature was raised to 1010 ° C., and then the growth temperature was kept constant at 1010 ° C., the V / III ratio was 4400, the pressure was 933 hPa, and the growth time was 10 minutes in the first step, and the second step was the second step.
  • the a-plane GaN layer 3 was grown at a V / III ratio of 100, a pressure of 100 hPa, and a growth time of 90 minutes to obtain a semiconductor growth substrate.
  • the AlN buffer layers 2 having the film thicknesses of 30 nm, 90 nm, and 180 nm were taken as Examples 1 to 3, respectively.
  • Example 3 A semiconductor growth substrate was obtained under the same conditions as in Example 1 except that the semiconductor element growth step was performed without performing the annealing step after the sputtering step.
  • the AlN buffer layers 2 having thicknesses of 30 nm, 90 nm, and 180 nm were set as Comparative Examples 1 to 3, respectively.
  • Comparative example 4 A semiconductor growth substrate of Comparative Example 4 was obtained under the same conditions as in Comparative Example 1 except that the substrate temperature in the sputtering step was 600 ° C. and the ultimate vacuum was 4.47 ⁇ 10 ⁇ 4 Pa.
  • FIG. 2 is a table showing the impurity concentration in the AlN buffer layer 2 and the crystallinity of the a-plane GaN layer 3 depending on the difference in sputtering conditions.
  • the impurity concentration in the AlN buffer layer 2 was measured by SIMS (Secondary Ion Mass Spectrometry), and the crystallinity of the a-plane GaN layer 3 was evaluated by SEM (Scanning Electron Microscope) image and X-ray diffraction.
  • the results of Example 1 are shown on the left side of the figure, and the results of Comparative Example 4 are shown on the right side of the figure.
  • the concentration of impurities contained in the AlN buffer layer 2 was 6.58 ⁇ 10 20 atoms / cm 3 in Example 1 and 2.19 ⁇ 10 19 atoms / cm 3 in carbon concentration. Met.
  • the oxygen concentration was 2.66 ⁇ 10 21 atoms / cm 3 and the carbon concentration was 9.72 ⁇ 10 19 atoms / cm 3 .
  • the single crystal a-plane GaN layer 3 could be grown on the AlN buffer layer 2, but in Comparative Example 4, the single crystal a-plane GaN layer 3 could be grown. I know I haven't. Therefore, it is understood that when the sputtering condition is 500 ° C. or higher, the ultimate vacuum degree is low and the impurity concentration is high, so that it is difficult to grow the single crystal a-plane GaN layer.
  • 3A and 3B are graphs showing XRC (X-ray Rocking Curve) measurement results of the AlN buffer layer 2.
  • FIG. 3A shows the full width at half maximum on the a-plane
  • FIG. 3B shows the full width at half maximum on the m-plane.
  • annealed sp-AlN indicates Examples 1 to 3
  • sp-AlN indicates Comparative Examples 1 to 3
  • ep-AlN indicates Comparative Examples 5 to 7.
  • the FWHMs on the a-plane and the m-plane are the largest in Comparative Examples 1 to 3, and the smallest in Examples 1 to 3. Therefore, it can be seen that the crystallinity of the AlN buffer layer 2 is the best in Examples 1 to 3 which have undergone the annealing process after being formed by the sputtering method.
  • FIG. 4 is a graph showing the X-ray diffraction measurement result of the AlN buffer layer 2.
  • 4A-1 shows the 2 ⁇ / ⁇ measurement result
  • FIG. 4B-1 shows the 2 ⁇ / ⁇ measurement result
  • FIG. 4A-2 shows the film thickness and the a-plane. The relationship between the peak diffraction intensities is shown
  • FIG. 4B-2 shows the relationship between the film thickness and the peak diffraction intensities on the m-plane.
  • (A-1) of FIG. 4 diffraction peaks can be confirmed around 53 ° and around 59 ° in all measurement results.
  • the peak near 53 ° corresponds to the r-plane of the sapphire substrate 1
  • the peak near 59 ° corresponds to the a-plane of the AlN buffer layer 2.
  • the peak angle was shifted to the lower angle side in the range of 0.2 to 0.8 degrees than the theoretical peak angle of the bulk AlN single crystal.
  • the peak angle to the low angle side in the 2 ⁇ / ⁇ measurement shows the spread of the lattice plane spacing in the stacking direction of the AlN buffer layer 2, and it is considered that tensile stress acts in the stacking direction in Examples 1 to 3. .
  • the peak intensities of Examples 1 to 3 are significantly higher than those of Comparative Examples 1 to 3, and the peak intensities of Examples 1 and 2 are higher than those of Comparative Examples 5 and 6. . Therefore, it can be seen that in Examples 1 and 2, the AlN buffer layer 2 is favorably a-axis oriented in the stacking direction.
  • the peak intensities of Examples 1 and 2 are significantly larger than those of Comparative Examples 1 and 2, and the peak intensity of Example 1 is larger than that of Comparative Example 5. Therefore, in Examples 1 and 2, it can be seen that the AlN buffer layer 2 is favorably oriented in the in-plane m-axis.
  • the uniaxial orientation in the in-plane direction and the stacking direction of the AlN buffer layer 2 is highest in Examples 1 and 2, and the uniaxial orientation in the in-plane direction is better as the film thickness is smaller. Can be said. Further, in Examples 1 to 3, the angle was shifted to the lower angle side in the range of 0.2 to 0.8 degrees in the stacking direction from the theoretical peak angle in the bulk AlN single crystal, and 0.2 in the in-plane direction. The angle shifts to the high angle side in the range of up to 0.8 degrees, and the in-plane compressive stress is applied to the AlN buffer layer 2.
  • FIG. 5 is a graph showing a diffraction spectrum of the a-plane GaN layer 3 measured by XRC.
  • 5A shows the result in the c-axis direction in the a-plane
  • FIG. 5B shows the result in the m-axis direction in the a-plane
  • FIG. 5C shows ⁇ 10- 11 ⁇ shows the results in the plane.
  • 5A to 5C show the measurement results of Example 1, Comparative Example 1, and Comparative Example 5 in which the thickness of the AlN buffer layer 2 was 30 nm.
  • the full width at half maximum (unit: arcsec) in the measurement result shown in FIG. 5A was 505 in Example 1, 609 in Comparative Example 1, and 562 in Comparative Example 5.
  • Example 1 was 729
  • Comparative Example 1 was 758
  • Comparative Example 5 was 995.
  • FIG. 5C the result was 1071 in Example 1, 1472 in Comparative Example 1, and 1404 in Comparative Example 5.
  • Example 1 As shown in (A) to (C) of FIG. 5, the crystallinity of Example 1 is better than that of Comparative Examples 1 and 5.
  • the crystallinity and surface flatness of the a-plane GaN layer 3 can be improved.
  • the AlN buffer layer has the uniaxial orientation in the stacking direction and the in-plane direction, so that abnormal growth is suppressed and crystallinity is good and surface flatness is improved. It becomes possible to grow an excellent and high quality a-plane GaN layer.
  • FIG. 6 is a schematic cross-sectional view showing the LED 10 which is the semiconductor device of the second embodiment.
  • the LED 10 includes a sapphire substrate 11 having an r-plane as a main surface, an AlN buffer layer 12, an a-plane GaN layer 13, an n-type semiconductor layer 14, a light emitting layer (active layer) 15, and a p-type semiconductor layer 16. , N-side electrode 17 and p-side electrode 18.
  • a sapphire substrate 11 whose main surface is the r-plane is prepared, and an AlN buffer layer 12 is formed on the sapphire substrate 11 by a sputtering process.
  • the AlN buffer layer 12 is annealed to be a single crystal, and has uniaxial orientation in the stacking direction and the in-plane direction.
  • the a-plane GaN layer 13 is epitaxially grown on the AlN buffer layer 12 in the semiconductor layer growth step, and then the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are sequentially grown by the MOCVD method to form a semiconductor substrate.
  • an LED 10 is obtained by forming an electrode material on the exposed surfaces of the n-type semiconductor layer 14 and the p-type semiconductor layer 16 by vapor deposition or the like, and dicing it into individual chips.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 16 have been described as single layers, respectively, a plurality of layers having different materials and compositions may be included.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 16 may include a clad layer, a contact layer, a current diffusion layer, an electron block layer, a waveguide layer, and the like.
  • the light emitting layer 15 has been described as a single layer, it may be formed of a plurality of layers such as a multi quantum well structure (MQW: Multi Quantum Well).
  • MQW Multi Quantum Well
  • the n-type semiconductor layer 14 is a layer whose main surface is the a-plane epitaxially grown on the a-plane GaN layer 13.
  • the n-type semiconductor layer 14 is a semiconductor layer doped with an n-type impurity, and is a layer into which electrons are injected from the n-side electrode 17 and supplies the electrons to the light emitting layer 15.
  • Examples of the material forming the n-type semiconductor layer 14 include GaN, AlGaN, InGaN, and AlInGaN as the III-V compound semiconductor layer, and Si as the n-type impurity.
  • the light emitting layer 15 is a semiconductor layer whose main surface is an a-plane epitaxially grown on the n-type semiconductor layer 14.
  • the LED 10 emits light when the electrons and the holes are radiatively recombined in the light emitting layer 15.
  • the light emitting layer 15 is made of a material having a smaller band gap than the n-type semiconductor layer 14 and the p-type semiconductor layer 16. Examples of such a material include InGaN and AlInGaN.
  • the light emitting layer 15 may be non-doped intentionally containing no impurities, n-type containing n-type impurities or p-type containing p-type impurities.
  • the light-emitting layer 15 is a semiconductor layer having the a-plane as the main surface, even if the light-emitting layer 15 is made thicker, spatial separation of electrons and holes due to the piezoelectric field is less likely to occur, and even if the current density is increased, positive electrons and holes are efficiently generated.
  • the holes can be radiatively recombined.
  • the p-type semiconductor layer 16 is a semiconductor layer whose main surface is the a-plane epitaxially grown on the light emitting layer 15. Holes are injected from the p-side electrode 18 into the p-type semiconductor layer 16. Then, the p-type semiconductor layer 16 supplies the injected holes to the light emitting layer 15.
  • Examples of the material forming the p-type semiconductor layer 16 include GaN, AlGaN, InGaN, and AlInGaN for the III-V group compound semiconductor layer, and Zn, Mg, and the like for the p-type impurity.
  • the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are formed on the AlN buffer layer 12 having a uniaxial orientation in the stacking direction and the in-plane direction with the a-plane GaN layer 13 as a base layer. It is epitaxially grown. Therefore, as described in the first embodiment, the a-plane GaN layer 13 has good crystallinity and surface flatness, and the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 grown on the a-plane GaN layer 13 are also good. Good crystallinity and surface flatness.
  • the characteristics of the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are improved, and the external quantum efficiency of the LED 10 is expected to be improved.
  • the present embodiment is an example in which the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are provided as the functional layers.
  • the functional layer is a layer for exhibiting predetermined electrical and chemical functions in the semiconductor element.
  • the semiconductor element may not include the light emitting layer 15.
  • the LED 10 which is the semiconductor device of the present invention can achieve high brightness because it has little droop due to the piezoelectric field and has small anisotropy in the a-plane and good crystal quality. By using it for a lamp such as a lamp, it is possible to reduce the number of chips and increase the output.
  • the semiconductor device is not limited to the LED, and may be other applications such as a semiconductor laser and a high electron mobility transistor (HEMT: High Electron Mobility Transistor).
  • the functional layer is a layer for exhibiting a predetermined electrical and chemical function in the semiconductor element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a substrate for semiconductor growth, comprising a sapphire substrate (1) having an r-plane as a principle surface, and an AlN buffer layer (2) formed on the principle surface, wherein the AlN buffer layer (2) has uniaxial alignment in the laminating direction and in the in-plane direction.

Description

半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法Substrate for semiconductor growth, semiconductor device, semiconductor light emitting device, and method for manufacturing semiconductor device
 本開示は、半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法に関し、特にa面GaN結晶層を成長させる半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法に関する。 The present disclosure relates to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element and a semiconductor element manufacturing method, and more particularly to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element and a semiconductor element manufacturing method for growing an a-plane GaN crystal layer.
 照明用途に用いられる紫色から青色を発光するLED(Light Emitting Diode)としては、窒化ガリウム(GaN)系材料の化合物半導体が一般的に用いられている。近年になって、発光ダイオード(LED)を用いた照明装置等が普及するにつれ、LEDチップの高輝度化が望まれるようになってきた。LEDを高輝度化するためには、電流密度を高くしても効率的に電子と正孔が発光再結合できるように、発光層の膜厚を厚くして発光層内部でのキャリア密度を下げる必要がある。 Compound semiconductors of gallium nitride (GaN) -based materials are generally used as LEDs (Light Emitting Diodes) that emit purple to blue light used for lighting purposes. In recent years, with the spread of lighting devices and the like using light emitting diodes (LEDs), there has been a demand for higher brightness of LED chips. In order to increase the brightness of the LED, the thickness of the light emitting layer is increased to reduce the carrier density inside the light emitting layer so that the electrons and holes can be efficiently emitted and recombined even if the current density is increased. There is a need.
 しかし、一般的に用いられているc面を主面とするGaN系半導体材料では、c軸方向にピエゾ電界が生じるため、厚膜化した発光層内に電位差が生じ電子と正孔が空間的に分離してしまい、発光再結合の効率が著しく低下してしまうドループ特性が問題となっている。 However, in a commonly used GaN-based semiconductor material having a c-plane as a main surface, a piezo electric field is generated in the c-axis direction, so that a potential difference occurs in the thickened light emitting layer and electrons and holes are spatially separated. However, there is a problem with the droop characteristic in that the efficiency of the radiative recombination is remarkably lowered.
 この問題を解決するため、非極性や半極性の面方位を主面としたGaN系材料で発光層を形成することで、積層方向へのピエゾ電界の影響を無くして厚膜化を図り、大電流での発光を可能にする技術も提案されている。GaN系半導体層では、a面やm面が非極性面であり、半極性面の代表例としてr面がある。 In order to solve this problem, the light emitting layer is formed of a GaN-based material having a non-polar or semi-polar plane orientation as the main surface, thereby eliminating the influence of the piezoelectric field in the stacking direction and increasing the film thickness. A technique that enables light emission with an electric current has also been proposed. In the GaN-based semiconductor layer, the a-plane and the m-plane are non-polar planes, and a typical example of the semi-polar plane is the r-plane.
 特許文献1には、サファイア基板のr面上に有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を用いてa面GaN層を成長させる技術が開示されている。r面サファイア基板上に形成されたa面GaN層を下地層として用い、n型層と発光層とp型層とを順次成長させることで、発光層の主面をa面として厚膜化とLEDのドループ特性の改善を図ることができる。 Patent Document 1 discloses a technique for growing an a-plane GaN layer on the r-plane of a sapphire substrate using a metal organic chemical vapor deposition method (MOCVD method: Metal Organic Chemical Vapor Deposition). An a-plane GaN layer formed on an r-plane sapphire substrate is used as a base layer, and an n-type layer, a light-emitting layer, and a p-type layer are sequentially grown to increase the film thickness with the main surface of the light-emitting layer as the a-plane. The droop characteristic of the LED can be improved.
日本国特開2008-214132号公報Japanese Patent Laid-Open No. 2008-214132
 しかし、r面サファイア基板上に形成されるa面GaNでは、成長面内に+c軸方向、-c軸方向、m軸方向が存在して面内異方性が大きく、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を得ることが困難であった。 However, in the a-plane GaN formed on the r-plane sapphire substrate, the + c-axis direction, the −c-axis direction, and the m-axis direction are present in the growth plane, the in-plane anisotropy is large, the crystallinity is good, and the surface is good. It was difficult to obtain a high quality a-plane GaN layer having excellent flatness.
 本開示は、上記従来の問題点に鑑みなされたものである。本開示は、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能な半導体成長用基板、並びにそれを用いた半導体素子、半導体発光素子および半導体素子製造方法を提供することを目的とする。 The present disclosure has been made in view of the above conventional problems. The present disclosure discloses a semiconductor growth substrate capable of growing a high-quality a-plane GaN layer having good crystallinity and excellent surface flatness, and a semiconductor device, a semiconductor light emitting device, and a semiconductor device manufacturing method using the same. The purpose is to provide.
 上記課題を解決するために、本開示の半導体成長用基板は、r面を主面とするサファイア基板と、前記主面上に形成されたAlNバッファ層を備え、前記AlNバッファ層は、積層方向および面内方向に一軸配向性を有することを特徴とする。 In order to solve the above problems, a semiconductor growth substrate of the present disclosure includes a sapphire substrate having an r-plane as a main surface and an AlN buffer layer formed on the main surface, and the AlN buffer layer has a stacking direction. And has uniaxial orientation in the in-plane direction.
 このような本開示の半導体成長用基板では、AlNバッファ層が積層方向および面内方向に一軸配向性を有することで、異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。 In such a semiconductor growth substrate of the present disclosure, since the AlN buffer layer has a uniaxial orientation in the stacking direction and the in-plane direction, abnormal growth is suppressed, crystallinity is good, and surface flatness is high. It becomes possible to grow an a-plane GaN layer.
 また本開示の一態様では、前記AlNバッファ層は、積層方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で低角側にシフトしている。 In one aspect of the present disclosure, the peak angle of X-ray diffraction in the stacking direction of the AlN buffer layer is shifted to the lower angle side in the range of 0.2 to 0.8 degrees compared to the bulk AlN single crystal. .
 また本開示の一態様では、前記AlNバッファ層は、面内方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で高角側にシフトしている。 Further, in one aspect of the present disclosure, the peak angle of X-ray diffraction in the in-plane direction of the AlN buffer layer is shifted to a higher angle side in the range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal. .
 また本開示の一態様では、前記AlNバッファ層に含まれる炭素の不純物濃度が、2.5×1019atoms/cm3未満である。 In one aspect of the present disclosure, the impurity concentration of carbon contained in the AlN buffer layer is less than 2.5 × 10 19 atoms / cm 3 .
 また本開示の一態様では、前記AlNバッファ層に含まれる酸素の不純物濃度が、7.0×1020atoms/cm3未満である。 In one aspect of the present disclosure, the impurity concentration of oxygen contained in the AlN buffer layer is less than 7.0 × 10 20 atoms / cm 3 .
 また上記課題を解決するために本開示の半導体素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に機能層を備えることを特徴とする。 In order to solve the above problems, a semiconductor device of the present disclosure is characterized by using the semiconductor growth substrate according to any one of the above and providing a functional layer on the semiconductor growth substrate.
 また上記課題を解決するために本開示の半導体発光素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に活性層を備えることを特徴とする。 In order to solve the above problems, a semiconductor light emitting device of the present disclosure is characterized by using the semiconductor growth substrate according to any one of the above and having an active layer on the semiconductor growth substrate.
 また上記課題を解決するために本開示の半導体素子製造方法は、r面を主面とするサファイア基板上にスパッタ法を用いてAlNバッファ層を形成するスパッタ工程と、前記AlNバッファ層をアニールして、積層方向および面内方向に一軸配向性を有する単結晶化するアニール工程と、前記AlNバッファ層上にa面GaN層を成長させる半導体層成長工程とを備えることを特徴とする。 Further, in order to solve the above problems, a semiconductor element manufacturing method according to the present disclosure includes a sputtering step of forming an AlN buffer layer on a sapphire substrate having an r-plane as a main surface by a sputtering method, and annealing the AlN buffer layer. Then, an annealing process for uniaxially uniaxially crystallizing in the stacking direction and the in-plane direction, and a semiconductor layer growing process for growing an a-plane GaN layer on the AlN buffer layer are provided.
 このような本開示の半導体素子製造方法では、AlNバッファ層が積層方向および面内方向に一軸配向性を有するため、異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。 In such a semiconductor device manufacturing method of the present disclosure, since the AlN buffer layer has a uniaxial orientation in the stacking direction and the in-plane direction, abnormal growth is suppressed, crystallinity is good, and high-quality a It is possible to grow a planar GaN layer.
 本開示によれば、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能な半導体成長用基板、並びにそれを用いた半導体素子、半導体発光素子および半導体素子製造方法を提供することができる。 According to the present disclosure, a semiconductor growth substrate capable of growing a high quality a-plane GaN layer having good crystallinity and excellent surface flatness, and a semiconductor element, a semiconductor light emitting element, and a semiconductor element using the same. A manufacturing method can be provided.
第1実施形態における半導体成長用基板を示す模式断面図である。It is a schematic cross section which shows the semiconductor growth substrate in 1st Embodiment. スパッタ条件の違いによるAlNバッファ層2中の不純物濃度と、a面GaN層3の結晶性を示す表である。6 is a table showing the impurity concentration in the AlN buffer layer 2 and the crystallinity of the a-plane GaN layer 3 depending on the difference in sputtering conditions. AlNバッファ層2のXRC(X-ray Rocking Curve)測定結果を示すグラフであり、a面での半値幅を示すものである。It is a graph which shows the XRC (X-ray Rocking Curve) measurement result of AlN buffer layer 2, and shows the half value width in a surface. AlNバッファ層2のXRC測定結果を示すグラフであり、m面での半値幅を示すものである。It is a graph which shows the XRC measurement result of AlN buffer layer 2, and shows the half value width in m surface. AlNバッファ層2のX線回折測定結果を示すグラフであり、図4の(A-1)は2θ/θ測定結果を示し、図4の(B-1)は2θχ/φ測定結果を示し、図4の(A-2)は膜厚とa面でのピーク回折強度の関係を示し、図4の(B-2)は膜厚とm面でのピーク回折強度の関係を示している。6 is a graph showing the X-ray diffraction measurement results of the AlN buffer layer 2, (A-1) of FIG. 4 showing the 2θ / θ measurement results, (B-1) of FIG. 4 showing the 2θχ / φ measurement results, 4A-2 shows the relationship between the film thickness and the peak diffraction intensity on the a-plane, and FIG. 4B-2 shows the relationship between the film thickness and the peak diffraction intensity on the m-plane. a面GaN層3のXRC測定の回折スペクトルを示すグラフであり、図5の(A)はa面内のc軸方向での結果を示し、図5の(B)はa面内のm軸方向での結果を示し、図5の(C)は{10-11}面内での結果を示している。6 is a graph showing a diffraction spectrum of an a-plane GaN layer 3 measured by XRC, FIG. 5 (A) shows a result in the c-axis direction in the a-plane, and FIG. 5 (B) shows an m-axis in the a-plane. FIG. 5C shows the result in the {10-11} plane. 第2実施形態の半導体装置であるLED10を示す模式断面図である。It is a schematic cross section which shows LED10 which is a semiconductor device of 2nd Embodiment.
 (第1実施形態)
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本開示の第1実施形態における半導体成長用基板を示す模式断面図である。
(1st Embodiment)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing will be denoted by the same reference numerals, and duplicated description will be omitted as appropriate. FIG. 1 is a schematic cross-sectional view showing a semiconductor growth substrate according to the first embodiment of the present disclosure.
 図1に示すように、本実施形態の半導体成長用基板は、六方晶のr面を主面とするサファイア基板1と、サファイア基板1上に形成されたAlNバッファ層2と、AlNバッファ層2上に形成されたa面を主面とするa面GaN層3を備えている。ここではサファイア基板1として傾斜角度が0度のジャスト基板を示したが、r面を所定の面方位に数度傾斜させたオフ基板としてもよい。 As shown in FIG. 1, the semiconductor growth substrate of this embodiment includes a sapphire substrate 1 having a hexagonal r-plane as a main surface, an AlN buffer layer 2 formed on the sapphire substrate 1, and an AlN buffer layer 2. It is provided with an a-plane GaN layer 3 having an a-plane as a main surface formed thereon. Although the sapphire substrate 1 is a just substrate having an inclination angle of 0 ° here, it may be an off substrate in which the r-plane is inclined several degrees in a predetermined plane direction.
 AlNバッファ層2はサファイア基板1とa面GaN層3との格子定数の相違を緩和するための層である。AlNバッファ層2の厚みとしては、厚くしすぎるとa面GaN層3の結晶品質が低下するため、5~300nmの範囲が好ましく、5~90nmの範囲がより好ましく、5~30nmの範囲がさらに好ましい。また、AlNバッファ層2中に含まれる不純物濃度は、炭素が2.5×1019atoms/cm3未満であることが好ましく、また、酸素が7.0×1020atoms/cm3未満であることが好ましい。AlNバッファ層2中に含まれる不純物濃度がこれらの範囲以上であると、単結晶のa面GaN層3をエピタキシャル成長させにくくなる傾向にある。 The AlN buffer layer 2 is a layer for alleviating the difference in lattice constant between the sapphire substrate 1 and the a-plane GaN layer 3. As the thickness of the AlN buffer layer 2 is too thick, the crystal quality of the a-plane GaN layer 3 deteriorates, so that the range is preferably 5 to 300 nm, more preferably 5 to 90 nm, and further preferably 5 to 30 nm. preferable. The concentration of impurities contained in the AlN buffer layer 2 is preferably less than 2.5 × 10 19 atoms / cm 3 for carbon and less than 7.0 × 10 20 atoms / cm 3 for oxygen. It is preferable. If the concentration of impurities contained in the AlN buffer layer 2 is above these ranges, it tends to be difficult to epitaxially grow the single crystal a-plane GaN layer 3.
 a面GaN層3は、AlNバッファ層2上において、主面がa面となるように成長した下地層であり、その上に窒化物半導体層をエピタキシャル成長させるための層である。a面GaN層3の形成方法としては、MOCVD法やHVPE法(ハイドライド気相成長法:Hydride Vapor Phase Epitaxy)などの公知の方法を用いることができるが、MOCVD法を用いることが好ましい。a面GaN層3の膜厚は特に限定されないが、1μm以上形成することが好ましい。 The a-plane GaN layer 3 is a base layer grown on the AlN buffer layer 2 so that the main surface is the a-plane, and is a layer for epitaxially growing a nitride semiconductor layer thereon. As a method for forming the a-plane GaN layer 3, a known method such as MOCVD or HVPE (Hydride Vapor Phase Epitaxy) can be used, but the MOCVD method is preferably used. The film thickness of the a-plane GaN layer 3 is not particularly limited, but it is preferably formed to 1 μm or more.
 次に、図1に示した半導体成長用基板の製造方法について説明する。 Next, a method of manufacturing the semiconductor growth substrate shown in FIG. 1 will be described.
 (スパッタ工程)
 はじめに、r面を主面とするサファイア基板1上に、スパッタ法を用いてAlNバッファ層2を形成する。AlNバッファ層2を形成するスパッタ法としては、Alをターゲット材としてN2およびArガスを用いる反応性スパッタ法を採用してもよいが、AlNをターゲット材としてArガスを用いることがより好ましい。ターゲット材となるAlNとしては、単結晶基板であっても粉末焼体であってもよく、その状態や形態は限定されない。
(Sputtering process)
First, the AlN buffer layer 2 is formed by the sputtering method on the sapphire substrate 1 having the r-plane as the main surface. As a sputtering method for forming the AlN buffer layer 2, a reactive sputtering method using Al as a target material and N 2 and Ar gas may be adopted, but it is more preferable to use Ar gas as the target material and AlN. The target material AlN may be a single crystal substrate or a powder fired body, and its state or form is not limited.
 反応性スパッタ法によりAlをターゲット材としてN2およびArガスを用いてAlNバッファ層2を形成する場合には、AlN膜の物理的な堆積プロセスに加えて、Alターゲット材とN2ガスの反応プロセスを考慮する必要がある。そのため反応性スパッタ法では、所望のAlNバッファ層2を得るための成膜条件を適切に設定して制御する難易度が高くなる。特に、半導体基板の大面積化が進むと、基板表面の面内分布も考慮する必要があるためさらに難易度が高くなる。 When the AlN buffer layer 2 is formed by the reactive sputtering method using N 2 and Ar gas with Al as the target material, in addition to the physical deposition process of the AlN film, the reaction between the Al target material and the N 2 gas The process needs to be considered. Therefore, in the reactive sputtering method, it becomes difficult to appropriately set and control the film forming conditions for obtaining the desired AlN buffer layer 2. In particular, as the area of the semiconductor substrate increases, it becomes more difficult because the in-plane distribution of the substrate surface must be taken into consideration.
 一方、AlNをターゲット材としてArガスを用いるスパッタ法によりAlNバッファ層2を形成する場合には、Alターゲット材とN2の反応プロセスを考慮する必要が無く、Arガス流量やチャンバー内の真空度等のパラメータを最適化するだけでよい。したがって、反応性スパッタ法でAlNバッファ層2を形成するよりも、AlNをターゲット材としてArガスを用いるスパッタ法を用いるほうが、AlNバッファ層2を形成する際の成膜条件の設定や制御が容易であり、大面積化にも対応が容易となる。 On the other hand, when forming the AlN buffer layer 2 by the sputtering method using AlN as a target material and Ar gas, it is not necessary to consider the reaction process of the Al target material and N 2 , and the flow rate of Ar gas and the degree of vacuum in the chamber are not required. It is only necessary to optimize the parameters such as. Therefore, it is easier to set and control film forming conditions when forming the AlN buffer layer 2 by using the sputtering method using Ar gas with AlN as the target material than forming the AlN buffer layer 2 by the reactive sputtering method. Therefore, it becomes easy to deal with a large area.
 AlNバッファ層2を形成する反応性スパッタの条件としては、基板温度は200℃以上500℃未満の範囲が好ましい。基板温度を500℃以上にすると、成膜後にAlNバッファ層2に含まれる酸素や炭素の不純物濃度が高くなり、AlNバッファ層2上にa面GaN層3をエピタキシャル成長させることが困難になる傾向にある。本実施形態の半導体素子成長方法では、高品質なAlN結晶が得られる1500℃程度よりも低温の200~500℃でスパッタ工程を実施するため、成膜直後のAlNバッファ層2はアモルファスライクな結晶性であると思われる。 As the conditions for the reactive sputtering for forming the AlN buffer layer 2, the substrate temperature is preferably in the range of 200 ° C. or higher and lower than 500 ° C. When the substrate temperature is set to 500 ° C. or higher, the impurity concentration of oxygen and carbon contained in the AlN buffer layer 2 becomes high after film formation, and it tends to be difficult to epitaxially grow the a-plane GaN layer 3 on the AlN buffer layer 2. is there. In the semiconductor device growth method of the present embodiment, since the sputtering step is performed at 200 to 500 ° C., which is lower than about 1500 ° C. at which high-quality AlN crystals are obtained, the AlN buffer layer 2 immediately after film formation has an amorphous-like crystal. It seems to be sex.
 (アニール工程)
 次に、スパッタ工程で成膜したAlNバッファ層2のアニール処理を実施し、AlNバッファ層2の再結晶化を促進して、積層方向および面内方向に一軸配向性を持たせる。アニール処理としては、例えば高周波誘導加熱方式による熱処理装置を用いることができる。アニール条件としては、不活性ガス(例えば窒素やAr)雰囲気中において基板温度を1300℃以上1700℃未満に保った状態を0.5~3.0時間継続することが好ましい。基板温度は、より好ましくは1300℃以上1600℃以下である。アニール温度(基板温度)が1700℃以上であると、サファイア基板1が熱分解して劣化する恐れがあるため好ましくない。また、アニール温度が1300℃未満であると、AlNバッファ層2の再結晶化が不十分であり、AlNバッファ層2の積層方向および面内方向における一軸配向性が不十分となる恐れがある。
(Annealing process)
Next, the AlN buffer layer 2 formed in the sputtering process is annealed to promote recrystallization of the AlN buffer layer 2 so as to have uniaxial orientation in the stacking direction and the in-plane direction. As the annealing treatment, for example, a heat treatment apparatus using a high frequency induction heating method can be used. As an annealing condition, it is preferable to continue a state in which the substrate temperature is maintained at 1300 ° C. or higher and lower than 1700 ° C. for 0.5 to 3.0 hours in an inert gas (eg nitrogen or Ar) atmosphere. The substrate temperature is more preferably 1300 ° C. or higher and 1600 ° C. or lower. An annealing temperature (substrate temperature) of 1700 ° C. or higher is not preferable because the sapphire substrate 1 may be thermally decomposed and deteriorated. If the annealing temperature is lower than 1300 ° C., the recrystallization of the AlN buffer layer 2 is insufficient, and the uniaxial orientation of the AlN buffer layer 2 in the stacking direction and the in-plane direction may be insufficient.
 (半導体層成長工程)
 次に、AlNバッファ層2の表面を洗浄した後に、キャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH3)を用い、III族原料としてTMG(TrimethylGallium)を用いて、MOCVD法でa面GaN層3を成長させる。このとき、成長シーケンスは2段階で構成し、昇温した後に成長温度を一定とし、リアクタ圧力とV/III比および成長時間を変更している。例えば、昇温直後の第1ステップではV/III比を4000~5000程度とし、圧力を900~1000hPaとして10~20分程度維持する。第2ステップでは例えばV/III比を100~200程度とし、圧力を100~150hPaとして90~120分維持する。a面GaN層3が成長した後に室温まで冷却して取り出すことで、図1に示した本実施形態の半導体成長用基板を得ることができる。
(Semiconductor layer growth process)
Next, after cleaning the surface of the AlN buffer layer 2, hydrogen and nitrogen are used as a carrier gas, ammonia (NH 3 ) is used as a group V raw material, and TMG (Trimethyl Gallium) is used as a group III raw material by the MOCVD method. The a-plane GaN layer 3 is grown. At this time, the growth sequence is composed of two stages, the growth temperature is kept constant after the temperature is raised, and the reactor pressure, the V / III ratio and the growth time are changed. For example, in the first step immediately after raising the temperature, the V / III ratio is set to about 4000 to 5000 and the pressure is set to 900 to 1000 hPa and maintained for about 10 to 20 minutes. In the second step, for example, the V / III ratio is set to about 100 to 200, the pressure is set to 100 to 150 hPa, and maintained for 90 to 120 minutes. After the a-plane GaN layer 3 is grown, it is cooled to room temperature and taken out, whereby the semiconductor growth substrate of the present embodiment shown in FIG. 1 can be obtained.
 (実施例1~3)
 スパッタ工程で、RF出力450W、10rpm、Ar流量5.0sccm、N2流量5.0sccm、基板温度を300℃、到達真空度1.53×10-5Paの条件で、AlNバッファ層2を形成した。その後にアニール工程で、熱処理装置のカーボンサセプタ内に基板をセットし、減圧した後にN2封入して380torrにし、昇温レート20℃/minで1600℃まで昇温して一時間アニールした。次に半導体素子成長工程で、温度を1010℃まで昇温した後に成長温度を1010℃で一定とし、第1段階ではV/III比4400、圧力933hPa、成長時間を10分とし、第2段階ではV/III比100、圧力100hPa、成長時間を90分でa面GaN層3を成長させて半導体成長用基板を得た。AlNバッファ層2の膜厚が30nm、90nm、180nmのものをそれぞれ実施例1~3とした。
(Examples 1 to 3)
In the sputtering process, the AlN buffer layer 2 is formed under the conditions of RF output of 450 W, 10 rpm, Ar flow rate of 5.0 sccm, N 2 flow rate of 5.0 sccm, substrate temperature of 300 ° C., and ultimate vacuum of 1.53 × 10 −5 Pa. did. After that, in the annealing step, the substrate was set in the carbon susceptor of the heat treatment apparatus, depressurized, and then N 2 was filled to 380 torr, and the temperature was raised to 1600 ° C. at a heating rate of 20 ° C./min and annealed for 1 hour. Next, in the semiconductor element growth step, the temperature was raised to 1010 ° C., and then the growth temperature was kept constant at 1010 ° C., the V / III ratio was 4400, the pressure was 933 hPa, and the growth time was 10 minutes in the first step, and the second step was the second step. The a-plane GaN layer 3 was grown at a V / III ratio of 100, a pressure of 100 hPa, and a growth time of 90 minutes to obtain a semiconductor growth substrate. The AlN buffer layers 2 having the film thicknesses of 30 nm, 90 nm, and 180 nm were taken as Examples 1 to 3, respectively.
 (比較例1~3)
 スパッタ工程の後にアニール工程を実施せず、半導体素子成長工程を実施した他は実施例1と同様の条件で半導体成長用基板を得た。AlNバッファ層2の膜厚が30nm、90nm、180nmのものをそれぞれ比較例1~3とした。
(Comparative Examples 1 to 3)
A semiconductor growth substrate was obtained under the same conditions as in Example 1 except that the semiconductor element growth step was performed without performing the annealing step after the sputtering step. The AlN buffer layers 2 having thicknesses of 30 nm, 90 nm, and 180 nm were set as Comparative Examples 1 to 3, respectively.
 (比較例4)
 スパッタ工程での基板温度を600℃とし、到達真空度が4.47×10-4Paである他は比較例1と同様の条件で比較例4の半導体成長用基板を得た。
(Comparative example 4)
A semiconductor growth substrate of Comparative Example 4 was obtained under the same conditions as in Comparative Example 1 except that the substrate temperature in the sputtering step was 600 ° C. and the ultimate vacuum was 4.47 × 10 −4 Pa.
 (比較例5~7)
 スパッタ工程を用いず、r面を主面とするサファイア基板1上に、MOCVD法を用いてAlNバッファ層2をエピタキシャル成長させた他は、比較例1~3と同様にして半導体成長用基板を得た。成長条件は、成長温度1340℃、V/III比6300、であった。AlNバッファ層2の膜厚が30nm、90nm、180nmのものをそれぞれ比較例5~7とした。
(Comparative Examples 5 to 7)
Substrates for semiconductor growth were obtained in the same manner as in Comparative Examples 1 to 3 except that the AlN buffer layer 2 was epitaxially grown on the sapphire substrate 1 having the r-plane as the main surface by the MOCVD method without using the sputtering process. It was The growth conditions were a growth temperature of 1340 ° C. and a V / III ratio of 6300. The AlN buffer layers 2 having thicknesses of 30 nm, 90 nm, and 180 nm were set as Comparative Examples 5 to 7, respectively.
 (スパッタ条件)
 図2は、スパッタ条件の違いによるAlNバッファ層2中の不純物濃度と、a面GaN層3の結晶性を示す表である。AlNバッファ層2中の不純物濃度はSIMS(Secondary Ion Mass Spectrometry)により測定し、a面GaN層3の結晶性はSEM(Scanning Electron Microscope)像とX線回折により評価した。図中左側に実施例1の結果を示し、図中右側に比較例4の結果を示している。
(Sputtering conditions)
FIG. 2 is a table showing the impurity concentration in the AlN buffer layer 2 and the crystallinity of the a-plane GaN layer 3 depending on the difference in sputtering conditions. The impurity concentration in the AlN buffer layer 2 was measured by SIMS (Secondary Ion Mass Spectrometry), and the crystallinity of the a-plane GaN layer 3 was evaluated by SEM (Scanning Electron Microscope) image and X-ray diffraction. The results of Example 1 are shown on the left side of the figure, and the results of Comparative Example 4 are shown on the right side of the figure.
 図2に示したように、AlNバッファ層2に含まれる不純物濃度は、実施例1では酸素濃度が6.58×1020atoms/cm3、炭素濃度が2.19×1019atoms/cm3であった。また、比較例4では酸素濃度が2.66×1021atoms/cm3であり、炭素が9.72×1019atoms/cm3であった。SEM像およびX線回折の結果から、実施例1ではAlNバッファ層2上に単結晶のa面GaN層3を成長できているが、比較例4では単結晶のa面GaN層3を成長できていないことわかる。したがって、スパッタ条件が500℃以上であると、到達真空度が低いため不純物濃度が高くなり、単結晶のa面GaN層を成長させにくいことがわかる。 As shown in FIG. 2, the concentration of impurities contained in the AlN buffer layer 2 was 6.58 × 10 20 atoms / cm 3 in Example 1 and 2.19 × 10 19 atoms / cm 3 in carbon concentration. Met. In Comparative Example 4, the oxygen concentration was 2.66 × 10 21 atoms / cm 3 and the carbon concentration was 9.72 × 10 19 atoms / cm 3 . From the results of the SEM image and the X-ray diffraction, in Example 1, the single crystal a-plane GaN layer 3 could be grown on the AlN buffer layer 2, but in Comparative Example 4, the single crystal a-plane GaN layer 3 could be grown. I know I haven't. Therefore, it is understood that when the sputtering condition is 500 ° C. or higher, the ultimate vacuum degree is low and the impurity concentration is high, so that it is difficult to grow the single crystal a-plane GaN layer.
 (AlNバッファ層2の評価)
 図3A及び図3Bは、AlNバッファ層2のXRC(X-ray Rocking Curve)測定結果を示すグラフである。図3Aはa面での半値幅を示し、図3Bはm面での半値幅を示している。グラフ中のannealed sp-AlNは実施例1~3を示し、sp-AlNは比較例1~3を示し、ep-AlNは比較例5~7を示している。
(Evaluation of AlN buffer layer 2)
3A and 3B are graphs showing XRC (X-ray Rocking Curve) measurement results of the AlN buffer layer 2. FIG. 3A shows the full width at half maximum on the a-plane, and FIG. 3B shows the full width at half maximum on the m-plane. In the graph, annealed sp-AlN indicates Examples 1 to 3, sp-AlN indicates Comparative Examples 1 to 3, and ep-AlN indicates Comparative Examples 5 to 7.
 図3A及び図3Bに示したように、a面およびm面での半値幅は比較例1~3で最も大きく、実施例1~3が最も小さい。したがって、スパッタ法で形成した後に、アニール工程を経た実施例1~3は、AlNバッファ層2の結晶性が最も良好であることがわかる。 As shown in FIGS. 3A and 3B, the FWHMs on the a-plane and the m-plane are the largest in Comparative Examples 1 to 3, and the smallest in Examples 1 to 3. Therefore, it can be seen that the crystallinity of the AlN buffer layer 2 is the best in Examples 1 to 3 which have undergone the annealing process after being formed by the sputtering method.
 図4は、AlNバッファ層2のX線回折測定結果を示すグラフである。図4の(A-1)は2θ/θ測定結果を示し、図4の(B-1)は2θχ/φ測定結果を示し、図4の(A-2)は膜厚とa面でのピーク回折強度の関係を示し、図4の(B-2)は膜厚とm面でのピーク回折強度の関係を示している。 FIG. 4 is a graph showing the X-ray diffraction measurement result of the AlN buffer layer 2. 4A-1 shows the 2θ / θ measurement result, FIG. 4B-1 shows the 2θχ / φ measurement result, and FIG. 4A-2 shows the film thickness and the a-plane. The relationship between the peak diffraction intensities is shown, and FIG. 4B-2 shows the relationship between the film thickness and the peak diffraction intensities on the m-plane.
 図4の(A-1)では、全ての測定結果で53°付近と59°付近に回折ピークが確認できる。53°付近のピークはサファイア基板1のr面に対応し、59°付近のピークはAlNバッファ層2のa面に対応している。また実施例1~3では、バルクのAlN単結晶での理論的なピーク角度よりも、ピーク角度が0.2~0.8度の範囲で低角側にシフトしている。2θ/θ測定における低角側へのピーク角度は、AlNバッファ層2の積層方向における格子面間隔の広がりを示しており、実施例1~3では積層方向に引張応力が働いていると思われる。 In (A-1) of FIG. 4, diffraction peaks can be confirmed around 53 ° and around 59 ° in all measurement results. The peak near 53 ° corresponds to the r-plane of the sapphire substrate 1, and the peak near 59 ° corresponds to the a-plane of the AlN buffer layer 2. Further, in Examples 1 to 3, the peak angle was shifted to the lower angle side in the range of 0.2 to 0.8 degrees than the theoretical peak angle of the bulk AlN single crystal. The peak angle to the low angle side in the 2θ / θ measurement shows the spread of the lattice plane spacing in the stacking direction of the AlN buffer layer 2, and it is considered that tensile stress acts in the stacking direction in Examples 1 to 3. .
 また図4の(A-2)に示すように、実施例1~3では比較例1~3よりもピーク強度が著しく大きく、実施例1,2では比較例5,6よりもピーク強度が大きい。したがって、実施例1,2では、AlNバッファ層2が積層方向に良好にa軸配向していることがわかる。 Further, as shown in (A-2) of FIG. 4, the peak intensities of Examples 1 to 3 are significantly higher than those of Comparative Examples 1 to 3, and the peak intensities of Examples 1 and 2 are higher than those of Comparative Examples 5 and 6. . Therefore, it can be seen that in Examples 1 and 2, the AlN buffer layer 2 is favorably a-axis oriented in the stacking direction.
 図4の(B-1)では、全ての測定結果で33°付近に回折ピークが確認できる。33°付近のピークはAlNバッファ層2のm面に対応している。また実施例1~3では、バルクのAlN単結晶での理論的なピーク角度よりも、ピーク角度が0.2~0.8度の範囲で高角側にシフトしている。2θχ/φ測定における高角側へのピーク角度は、AlNバッファ層2の面内方向における格子面間隔の狭まりを示しており、実施例1~3では面内圧縮応力が働いていると思われる。 In (B-1) of Fig. 4, a diffraction peak can be confirmed around 33 ° in all the measurement results. The peak near 33 ° corresponds to the m-plane of the AlN buffer layer 2. Further, in Examples 1 to 3, the peak angle was shifted to a higher angle side within a range of 0.2 to 0.8 degrees than the theoretical peak angle of the bulk AlN single crystal. The peak angle to the high angle side in the 2θχ / φ measurement indicates the narrowing of the lattice plane spacing in the in-plane direction of the AlN buffer layer 2, and it is considered that the in-plane compressive stress is working in Examples 1 to 3.
 また図4の(B-2)に示すように、実施例1,2では比較例1,2よりもピーク強度が著しく大きく、実施例1では比較例5よりもピーク強度が大きい。したがって、実施例1,2では、AlNバッファ層2が面内方向に良好にm軸配向していることがわかる。 Further, as shown in (B-2) of FIG. 4, the peak intensities of Examples 1 and 2 are significantly larger than those of Comparative Examples 1 and 2, and the peak intensity of Example 1 is larger than that of Comparative Example 5. Therefore, in Examples 1 and 2, it can be seen that the AlN buffer layer 2 is favorably oriented in the in-plane m-axis.
 図4で示したように、AlNバッファ層2の面内方向および積層方向での一軸配向性は実施例1,2が最も高く、面内方向の一軸配向性は膜厚が小さいほど良好であると言える。また実施例1~3では、バルクのAlN単結晶での理論的なピーク角度よりも積層方向で0.2~0.8度の範囲で低角側にシフトし、面内方向で0.2~0.8度の範囲で高角側にシフトしており、AlNバッファ層2に面内圧縮応力が加わっている。 As shown in FIG. 4, the uniaxial orientation in the in-plane direction and the stacking direction of the AlN buffer layer 2 is highest in Examples 1 and 2, and the uniaxial orientation in the in-plane direction is better as the film thickness is smaller. Can be said. Further, in Examples 1 to 3, the angle was shifted to the lower angle side in the range of 0.2 to 0.8 degrees in the stacking direction from the theoretical peak angle in the bulk AlN single crystal, and 0.2 in the in-plane direction. The angle shifts to the high angle side in the range of up to 0.8 degrees, and the in-plane compressive stress is applied to the AlN buffer layer 2.
 (a面GaN層3の結晶性評価)
 図5は、a面GaN層3のXRC測定の回折スペクトルを示すグラフである。図5の(A)はa面内のc軸方向での結果を示し、図5の(B)はa面内のm軸方向での結果を示し、図5の(C)は{10-11}面内での結果を示している。図5の(A)~(C)では、AlNバッファ層2の膜厚を30nmとした実施例1、比較例1、比較例5の測定結果を示している。
(Crystallinity evaluation of a-plane GaN layer 3)
FIG. 5 is a graph showing a diffraction spectrum of the a-plane GaN layer 3 measured by XRC. 5A shows the result in the c-axis direction in the a-plane, FIG. 5B shows the result in the m-axis direction in the a-plane, and FIG. 5C shows {10- 11} shows the results in the plane. 5A to 5C show the measurement results of Example 1, Comparative Example 1, and Comparative Example 5 in which the thickness of the AlN buffer layer 2 was 30 nm.
 図5の(A)に示した測定結果における半値幅(単位:arcsec)は、実施例1が505、比較例1が609、比較例5が562であった。図5の(B)では、実施例1が729、比較例1が758、比較例5が995であった。図5の(C)では、実施例1が1071、比較例1が1472、比較例5が1404であった。 The full width at half maximum (unit: arcsec) in the measurement result shown in FIG. 5A was 505 in Example 1, 609 in Comparative Example 1, and 562 in Comparative Example 5. In FIG. 5 (B), Example 1 was 729, Comparative Example 1 was 758, and Comparative Example 5 was 995. In FIG. 5C, the result was 1071 in Example 1, 1472 in Comparative Example 1, and 1404 in Comparative Example 5.
 図5の(A)~(C)に示したように、実施例1の結晶性は比較例1,5よりも良好である。実施例1のように、面内方向および積層方向での一軸配向性を有するAlNバッファ層2を用いることで、a面GaN層3の結晶性と表面平坦性を良好にすることができる。 As shown in (A) to (C) of FIG. 5, the crystallinity of Example 1 is better than that of Comparative Examples 1 and 5. By using the AlN buffer layer 2 having the uniaxial orientation in the in-plane direction and the stacking direction as in Example 1, the crystallinity and surface flatness of the a-plane GaN layer 3 can be improved.
 以上に述べたように、本実施形態の半導体成長用基板では、AlNバッファ層が積層方向および面内方向に一軸配向性を有することで、異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。 As described above, in the semiconductor growth substrate of the present embodiment, the AlN buffer layer has the uniaxial orientation in the stacking direction and the in-plane direction, so that abnormal growth is suppressed and crystallinity is good and surface flatness is improved. It becomes possible to grow an excellent and high quality a-plane GaN layer.
 (第2実施形態)
 次に、本発明の第2実施形態について図6を用いて説明する。図6は第2実施形態の半導体装置であるLED10を示す模式断面図である。図6に示すようにLED10は、r面を主面とするサファイア基板11、AlNバッファ層12、a面GaN層13、n型半導体層14、発光層(活性層)15、p型半導体層16、n側電極17、p側電極18を有している。
(2nd Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view showing the LED 10 which is the semiconductor device of the second embodiment. As shown in FIG. 6, the LED 10 includes a sapphire substrate 11 having an r-plane as a main surface, an AlN buffer layer 12, an a-plane GaN layer 13, an n-type semiconductor layer 14, a light emitting layer (active layer) 15, and a p-type semiconductor layer 16. , N-side electrode 17 and p-side electrode 18.
 第1実施形態と同様に、r面を主面とするサファイア基板11を用意し、スパッタ工程でAlNバッファ層12をサファイア基板11上に形成する。次に、アニール工程でAlNバッファ層12をアニールして単結晶化し、積層方向および面内方向に一軸配向性をもたせる。次に、半導体層成長工程でa面GaN層13をAlNバッファ層12上にエピタキシャル成長させ、続けてMOCVD法でn型半導体層14、発光層15、p型半導体層16を順次成長させて半導体基板を得る。 Similar to the first embodiment, a sapphire substrate 11 whose main surface is the r-plane is prepared, and an AlN buffer layer 12 is formed on the sapphire substrate 11 by a sputtering process. Next, in the annealing step, the AlN buffer layer 12 is annealed to be a single crystal, and has uniaxial orientation in the stacking direction and the in-plane direction. Next, the a-plane GaN layer 13 is epitaxially grown on the AlN buffer layer 12 in the semiconductor layer growth step, and then the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are sequentially grown by the MOCVD method to form a semiconductor substrate. To get
 次に、所定のパターンを用いてフォトリソグラフィーとエッチングによりp型半導体層16と発光層15の一部を除去してn型半導体層14の一部を露出させる。次に、n型半導体層14とp型半導体層16の露出面に蒸着等により電極材料を形成し、ダイシングして個別チップ化することでLED10を得る。 Next, a part of the p-type semiconductor layer 16 and the light emitting layer 15 is removed by photolithography and etching using a predetermined pattern to expose a part of the n-type semiconductor layer 14. Next, an LED 10 is obtained by forming an electrode material on the exposed surfaces of the n-type semiconductor layer 14 and the p-type semiconductor layer 16 by vapor deposition or the like, and dicing it into individual chips.
 ここではn型半導体層14、p型半導体層16をそれぞれ単層で説明したが、それぞれ材料や組成の異なる複数の層を含んでいるとしてもよい。例えば、n型半導体層14とp型半導体層16にクラッド層、コンタクト層、電流拡散層、電子ブロック層、導波路層などを含めてもよい。また、発光層15も単層で説明したが、多重量子井戸構造(MQW:Multi Quantum Well)などの複数層で構成してもよい。 Here, although the n-type semiconductor layer 14 and the p-type semiconductor layer 16 have been described as single layers, respectively, a plurality of layers having different materials and compositions may be included. For example, the n-type semiconductor layer 14 and the p-type semiconductor layer 16 may include a clad layer, a contact layer, a current diffusion layer, an electron block layer, a waveguide layer, and the like. Although the light emitting layer 15 has been described as a single layer, it may be formed of a plurality of layers such as a multi quantum well structure (MQW: Multi Quantum Well).
 n型半導体層14は、a面GaN層13上でエピタキシャル成長したa面を主面とする層である。また、n型半導体層14は、n型不純物がドープされた半導体層であり、n側電極17から電子が注入されて発光層15に電子を供給する層である。n型半導体層14を構成する材料は、III-V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、n型不純物としてはSiなどが挙げられる。 The n-type semiconductor layer 14 is a layer whose main surface is the a-plane epitaxially grown on the a-plane GaN layer 13. The n-type semiconductor layer 14 is a semiconductor layer doped with an n-type impurity, and is a layer into which electrons are injected from the n-side electrode 17 and supplies the electrons to the light emitting layer 15. Examples of the material forming the n-type semiconductor layer 14 include GaN, AlGaN, InGaN, and AlInGaN as the III-V compound semiconductor layer, and Si as the n-type impurity.
 発光層15は、n型半導体層14上でエピタキシャル成長したa面を主面とする半導体層である。発光層15の層内で電子と正孔が発光再結合することでLED10が発光する。発光層15は、n型半導体層14とp型半導体層16よりもバンドギャップが小さい材料で構成されている。このような材料としては、例えばInGaN、AlInGaNなどが挙げられる。発光層15は意図的に不純物を含まないノンドープとしてもよく、n型不純物を含むn型やp型不純物を含むp型としてもよい。発光層15は、a面を主面とする半導体層なので、厚膜化してもピエゾ電界による電子と正孔の空間的な分離は生じにくく、電流密度を高くしても効率的に電子と正孔が発光再結合できる。 The light emitting layer 15 is a semiconductor layer whose main surface is an a-plane epitaxially grown on the n-type semiconductor layer 14. The LED 10 emits light when the electrons and the holes are radiatively recombined in the light emitting layer 15. The light emitting layer 15 is made of a material having a smaller band gap than the n-type semiconductor layer 14 and the p-type semiconductor layer 16. Examples of such a material include InGaN and AlInGaN. The light emitting layer 15 may be non-doped intentionally containing no impurities, n-type containing n-type impurities or p-type containing p-type impurities. Since the light-emitting layer 15 is a semiconductor layer having the a-plane as the main surface, even if the light-emitting layer 15 is made thicker, spatial separation of electrons and holes due to the piezoelectric field is less likely to occur, and even if the current density is increased, positive electrons and holes are efficiently generated. The holes can be radiatively recombined.
 p型半導体層16は、発光層15上でエピタキシャル成長したa面を主面とする半導体層である。p型半導体層16には、p側電極18から正孔が注入される。そして、p型半導体層16は、注入された正孔を発光層15に供給する。p型半導体層16を構成する材料は、III-V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、p型不純物としてはZnやMgなどが挙げられる。 The p-type semiconductor layer 16 is a semiconductor layer whose main surface is the a-plane epitaxially grown on the light emitting layer 15. Holes are injected from the p-side electrode 18 into the p-type semiconductor layer 16. Then, the p-type semiconductor layer 16 supplies the injected holes to the light emitting layer 15. Examples of the material forming the p-type semiconductor layer 16 include GaN, AlGaN, InGaN, and AlInGaN for the III-V group compound semiconductor layer, and Zn, Mg, and the like for the p-type impurity.
 本実施の形態でも、積層方向および面内方向に一軸配向性を有するAlNバッファ層12上に、a面GaN層13を下地層としてn型半導体層14、発光層15、p型半導体層16をエピタキシャル成長させている。したがって、第1実施形態で述べたようにa面GaN層13は結晶性も表面平坦性も良好であり、その上に成長されたn型半導体層14、発光層15、p型半導体層16も結晶性と表面平坦性が良好となる。これにより、n型半導体層14、発光層15、p型半導体層16の特性も良好になり、LED10の外部量子効率の向上などが見込まれる。なお、本実施形態は、機能層として、n型半導体層14、発光層15、及びp型半導体層16を備えた例である。ここで、機能層とは、半導体素子において所定の電気的、化学的な機能を発揮するための層である。ある局面において、半導体素子は、発光層15を備えていなくてもよい。 Also in the present embodiment, the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are formed on the AlN buffer layer 12 having a uniaxial orientation in the stacking direction and the in-plane direction with the a-plane GaN layer 13 as a base layer. It is epitaxially grown. Therefore, as described in the first embodiment, the a-plane GaN layer 13 has good crystallinity and surface flatness, and the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 grown on the a-plane GaN layer 13 are also good. Good crystallinity and surface flatness. As a result, the characteristics of the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are improved, and the external quantum efficiency of the LED 10 is expected to be improved. The present embodiment is an example in which the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are provided as the functional layers. Here, the functional layer is a layer for exhibiting predetermined electrical and chemical functions in the semiconductor element. In one aspect, the semiconductor element may not include the light emitting layer 15.
 (第3実施形態)
 本発明の半導体装置であるLED10は、上述したようにピエゾ電界によるドループが少なく、且つa面内での異方性が小さく良好な結晶品質であることから高輝度化を実現できるので、車両用灯具などの灯具に用いることでチップ数の低減や高出力化を図ることが可能となる。
(Third embodiment)
As described above, the LED 10 which is the semiconductor device of the present invention can achieve high brightness because it has little droop due to the piezoelectric field and has small anisotropy in the a-plane and good crystal quality. By using it for a lamp such as a lamp, it is possible to reduce the number of chips and increase the output.
 さらに、半導体装置はLEDに限定されず、半導体レーザや高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の他の用途であってもよい。これらの半導体装置においても、機能層とは、半導体素子において所定の電気的、化学的な機能を発揮するための層である。 Further, the semiconductor device is not limited to the LED, and may be other applications such as a semiconductor laser and a high electron mobility transistor (HEMT: High Electron Mobility Transistor). Also in these semiconductor devices, the functional layer is a layer for exhibiting a predetermined electrical and chemical function in the semiconductor element.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本出願は、2018年10月12日出願の日本国特許出願(特願2018-193569号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on October 12, 2018 (Japanese Patent Application No. 2018-193569), the contents of which are incorporated herein by reference.
10…LED
1,11…サファイア基板
2,12…AlNバッファ層
3,13…a面GaN層
14…n型半導体層
15…発光層
16…p型半導体層
17…n側電極
18…p側電極
10 ... LED
1, 11 ... Sapphire substrate 2, 12 ... AlN buffer layers 3, 13 ... a-plane GaN layer 14 ... N-type semiconductor layer 15 ... Light-emitting layer 16 ... P-type semiconductor layer 17 ... N-side electrode 18 ... P-side electrode

Claims (8)

  1.  r面を主面とするサファイア基板と、
     前記主面上に形成されたAlNバッファ層と、を備え、
     前記AlNバッファ層は、積層方向および面内方向に一軸配向性を有する、半導体成長用基板。
    a sapphire substrate whose main surface is the r-plane,
    An AlN buffer layer formed on the main surface,
    The substrate for semiconductor growth, wherein the AlN buffer layer has a uniaxial orientation in the stacking direction and the in-plane direction.
  2.  請求項1に記載の半導体成長用基板であって、
     前記AlNバッファ層は、積層方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で低角側にシフトしている、半導体成長用基板。
    The semiconductor growth substrate according to claim 1, wherein
    The AlN buffer layer is a substrate for semiconductor growth, wherein the peak angle of X-ray diffraction in the stacking direction is shifted to a lower angle side in the range of 0.2 to 0.8 degrees than that of the bulk AlN single crystal.
  3.  請求項1または2に記載の半導体成長用基板であって、
     前記AlNバッファ層は、面内方向におけるX線回折のピーク角度が、バルクAlN単結晶よりも0.2~0.8度の範囲で高角側にシフトしている、半導体成長用基板。
    The semiconductor growth substrate according to claim 1 or 2, wherein
    The AlN buffer layer is a semiconductor growth substrate in which the peak angle of X-ray diffraction in the in-plane direction is shifted to a higher angle side in the range of 0.2 to 0.8 degrees than the bulk AlN single crystal.
  4.  請求項1から3のいずれか一項に記載の半導体成長用基板であって、
     前記AlNバッファ層に含まれる炭素の不純物濃度が、2.5×1019atoms/cm3未満である、半導体成長用基板。
    The semiconductor growth substrate according to any one of claims 1 to 3,
    A substrate for semiconductor growth, wherein the impurity concentration of carbon contained in the AlN buffer layer is less than 2.5 × 10 19 atoms / cm 3 .
  5.  請求項1から4のいずれか一項に記載の半導体成長用基板であって、
     前記AlNバッファ層に含まれる酸素の不純物濃度が、7.0×1020atoms/cm3未満である、半導体成長用基板。
    The semiconductor growth substrate according to any one of claims 1 to 4,
    A substrate for semiconductor growth, wherein the impurity concentration of oxygen contained in the AlN buffer layer is less than 7.0 × 10 20 atoms / cm 3 .
  6.  請求項1から5のいずれか一項に記載の半導体成長用基板を用い、
     前記半導体成長用基板上に機能層を備える、半導体素子。
    Using the semiconductor growth substrate according to claim 1,
    A semiconductor device comprising a functional layer on the semiconductor growth substrate.
  7.  請求項1から5の何れか一つに記載の半導体成長用基板を用い、
     前記半導体成長用基板上に活性層を備える、半導体発光素子。
    The semiconductor growth substrate according to claim 1,
    A semiconductor light emitting device comprising an active layer on the semiconductor growth substrate.
  8.  r面を主面とするサファイア基板上にスパッタ法を用いてAlNバッファ層を形成するスパッタ工程と、
     前記AlNバッファ層をアニールして、積層方向および面内方向に一軸配向性を有する単結晶化するアニール工程と、
     前記AlNバッファ層上にa面GaN層を成長させる半導体層成長工程と、を備える、半導体素子製造方法。
    a sputtering step of forming an AlN buffer layer on the sapphire substrate whose main surface is the r-plane by a sputtering method;
    An annealing step of annealing the AlN buffer layer to form a single crystal having uniaxial orientation in the stacking direction and the in-plane direction;
    A semiconductor layer growing step of growing an a-plane GaN layer on the AlN buffer layer.
PCT/JP2019/040305 2018-10-12 2019-10-11 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor light-emitting element WO2020075852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018193569A JP7430316B2 (en) 2018-10-12 2018-10-12 Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method
JP2018-193569 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075852A1 true WO2020075852A1 (en) 2020-04-16

Family

ID=70164282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040305 WO2020075852A1 (en) 2018-10-12 2019-10-11 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor light-emitting element

Country Status (2)

Country Link
JP (1) JP7430316B2 (en)
WO (1) WO2020075852A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183050A (en) * 2009-02-04 2010-08-19 Jiaotong Univ Multilayered structure having non-polar group iii nitride layer, and method of manufacturing the same
JP2011082570A (en) * 2011-01-11 2011-04-21 Showa Denko Kk Method of manufacturing group iii nitride semiconductor light emitting device
JP2017154964A (en) * 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 Crystal substrate, ultraviolet emission element, and manufacturing method thereof
JP2018065733A (en) * 2016-03-02 2018-04-26 株式会社小糸製作所 Semiconductor substrate, semiconductor light emitting element and lamp fitting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183050A (en) * 2009-02-04 2010-08-19 Jiaotong Univ Multilayered structure having non-polar group iii nitride layer, and method of manufacturing the same
JP2011082570A (en) * 2011-01-11 2011-04-21 Showa Denko Kk Method of manufacturing group iii nitride semiconductor light emitting device
JP2017154964A (en) * 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 Crystal substrate, ultraviolet emission element, and manufacturing method thereof
JP2018065733A (en) * 2016-03-02 2018-04-26 株式会社小糸製作所 Semiconductor substrate, semiconductor light emitting element and lamp fitting

Also Published As

Publication number Publication date
JP7430316B2 (en) 2024-02-13
JP2020061526A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US8183071B2 (en) Method for producing nitride semiconductor optical device and epitaxial wafer
US20090224270A1 (en) Group iii nitride semiconductor thin film and group iii semiconductor light emitting device
TWI524552B (en) Semiconductor wafer with a layer of alzga1-zn and process for producing it
KR101074178B1 (en) Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp
JP6902255B2 (en) Ultraviolet light emitting element
WO2006080376A1 (en) Nitride semiconductor device and method of growing nitride semiconductor crystal layer
JP2008285364A (en) GaN SUBSTRATE, AND EPITAXIAL SUBSTRATE AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT USING THE SAME
JP4891462B2 (en) Gallium nitride compound semiconductor light emitting device
JP2010003768A (en) Group iii nitride semiconductor light emitting element, method for manufacturing the same, and lamp
WO2009113497A1 (en) Method for producing group iii nitride semiconductor layer, method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
WO2008075559A1 (en) Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
WO2013042297A1 (en) Gallium nitride compound semiconductor light emitting element and light source device using same
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
US20060189019A1 (en) Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JP6925141B2 (en) Semiconductor substrates, semiconductor light emitting devices and lamps
JP2002252177A (en) Semiconductor element
TW201633562A (en) Method of manufacturing group iii nitride semiconductor light emitting element, and group iii nitride semiconductor light emitting element
JP2002176197A (en) Substrate for photonic device and its fabricating method
JP2002176196A (en) Photonic device and its fabricating method
WO2020075849A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor element
US8253125B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4960621B2 (en) Nitride semiconductor growth substrate and manufacturing method thereof
JP2009516377A (en) Method for manufacturing a high quality semiconductor light emitting device on a silicon substrate
WO2020090814A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element and method for producing substrate for semiconductor growth
WO2020075852A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871066

Country of ref document: EP

Kind code of ref document: A1