JP2019040898A - Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element - Google Patents

Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element Download PDF

Info

Publication number
JP2019040898A
JP2019040898A JP2017159232A JP2017159232A JP2019040898A JP 2019040898 A JP2019040898 A JP 2019040898A JP 2017159232 A JP2017159232 A JP 2017159232A JP 2017159232 A JP2017159232 A JP 2017159232A JP 2019040898 A JP2019040898 A JP 2019040898A
Authority
JP
Japan
Prior art keywords
semiconductor
plane
layer
main surface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017159232A
Other languages
Japanese (ja)
Inventor
大樹 神野
Daiki Kamino
大樹 神野
上山 智
Satoshi Kamiyama
智 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Meijo University
Original Assignee
Koito Manufacturing Co Ltd
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd, Meijo University filed Critical Koito Manufacturing Co Ltd
Priority to JP2017159232A priority Critical patent/JP2019040898A/en
Priority to PCT/JP2018/029298 priority patent/WO2019039240A1/en
Publication of JP2019040898A publication Critical patent/JP2019040898A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Led Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To provide a substrate for semiconductor growth, a semiconductor element, a semiconductor light-emitting element and a method of manufacturing a semiconductor element capable of growing a high-quality a-plane GaN layer that has a good crystallinity and that is excellent in surface flatness.SOLUTION: A substrate for semiconductor growth uses an r-plane of sapphire (1) as a principal surface, and nano-sized unevenness (1a) is formed on the principal surface. The maximum dimension in an in-plane direction of the principal surface of the unevenness (1a) is less than 1 μm.SELECTED DRAWING: Figure 4

Description

本発明は、半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法に関し、特にa面GaN結晶層を成長させる半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法に関する。   The present invention relates to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element, and a semiconductor element manufacturing method, and more particularly to a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element, and a semiconductor element manufacturing method for growing an a-plane GaN crystal layer.

照明用途に用いられる紫色から青色を発光するLEDとしては、窒化ガリウム(GaN)系材料の化合物半導体が一般的に用いられている。近年になって、発光ダイオード(LED:Light Emitting Diode)を用いた照明装置等が普及するにつれ、LEDチップの高輝度化が望まれるようになってきた。LEDを高輝度化するためには、電流密度を高くしても効率的に電子と正孔が発光再結合できるように、発光層の膜厚を厚くして発光層内部でのキャリア密度を下げる必要がある。   A compound semiconductor of a gallium nitride (GaN) -based material is generally used as an LED that emits purple to blue light used for illumination. In recent years, as an illuminating device using a light emitting diode (LED) has become widespread, it has been desired to increase the brightness of the LED chip. In order to increase the brightness of LEDs, the thickness of the light-emitting layer is increased to reduce the carrier density inside the light-emitting layer so that electrons and holes can efficiently recombine even when the current density is increased. There is a need.

しかし、一般的に用いられているc面を主面とするGaN系半導体材料では、c軸方向にピエゾ電界が生じるため、厚膜化した発光層内に電位差が生じ電子と正孔が空間的に分離してしまい、発光再結合の効率が著しく低下してしまうドループ特性が問題となっている。   However, in a GaN-based semiconductor material having a c-plane as a main surface that is generally used, a piezoelectric electric field is generated in the c-axis direction. Therefore, a potential difference is generated in the thickened light emitting layer, and electrons and holes are spatially separated. As a result, there is a problem of the droop characteristic that the efficiency of light emission recombination is significantly reduced.

この問題を解決するため、非極性や半極性の面方位を主面としたGaN系材料で発光層を形成することで、積層方向へのピエゾ電界の影響を無くして厚膜化を図り、大電流での発光を可能にする技術も提案されている。GaN系半導体層では、a面やm面が非極性面であり、反極性面の代表例としてr面がある。   In order to solve this problem, the light emitting layer is formed of a GaN-based material with a nonpolar or semipolar plane orientation as the main surface, thereby eliminating the influence of the piezoelectric field in the stacking direction and increasing the film thickness. Techniques that enable light emission with current have also been proposed. In a GaN-based semiconductor layer, the a-plane and m-plane are nonpolar planes, and r-planes are typical examples of antipolar planes.

特許文献1には、サファイア基板のr面上に有機金属気相成長法(MOCVD法:MetalOrganicChemicalVaporDeposition)を用いてa面GaN層を成長させる技術が開示されている。r面サファイア基板上に形成されたa面GaN層を下地層として用い、n型層と発光層とp型層とを順次成長させることで、発光層の主面をa面として厚膜化とLEDのドループ特性の改善を図ることができる。   Patent Document 1 discloses a technique for growing an a-plane GaN layer on an r-plane of a sapphire substrate using a metal organic chemical vapor deposition method (MOCVD method: Metal Organic Chemical Vapor Deposition). The a-plane GaN layer formed on the r-plane sapphire substrate is used as an underlayer, and an n-type layer, a light-emitting layer, and a p-type layer are grown sequentially to increase the thickness of the main surface of the light-emitting layer as the a-plane. The droop characteristics of the LED can be improved.

また従来から、c面サファイア基板上に窒化物系半導体層を成長する場合に、サファイア基板に凹凸構造を形成して(PSS:Patterned Sapphire Substrate)おくことで、窒化物半導体層の欠陥密度を低減する技術が用いられている。c面を主面とするPSS基板では、成長する半導体層の主面も面内異方性の小さいc面であるため等方的に成長が進行し、凹凸構造上に横方向に成長する半導体層中で転位が屈曲して、半導体層の表面にまで継続する転位や欠陥が減少する。   Conventionally, when a nitride-based semiconductor layer is grown on a c-plane sapphire substrate, an uneven structure is formed on the sapphire substrate (PSS: Patterned Sapphire Substrate) to reduce the defect density of the nitride semiconductor layer. Technology is used. In a PSS substrate having a c-plane as a main surface, the main surface of the semiconductor layer to be grown is also a c-plane having a small in-plane anisotropy, so that the growth proceeds isotropically and the semiconductor grows laterally on the concavo-convex structure. Dislocations bend in the layer, reducing dislocations and defects that continue to the surface of the semiconductor layer.

特開2008−214132号公報JP 2008-214132 A

しかし、r面サファイア上に形成されるa面GaNでは、成長面内に+c軸方向、−c軸方向、m軸方向が存在して面内異方性が大きく、r面を主面とするPSS基板を用いても凹凸構造上に異常成長が生じ、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を得ることが困難であった。   However, in the a-plane GaN formed on the r-plane sapphire, the + c-axis direction, the -c-axis direction, and the m-axis direction exist in the growth plane, and the in-plane anisotropy is large, and the r-plane is the main surface. Even when a PSS substrate is used, abnormal growth occurs on the concavo-convex structure, and it is difficult to obtain a high-quality a-plane GaN layer having good crystallinity and excellent surface flatness.

図9は、r面サファイア基板の主面に数μmサイズの凹凸を形成したPSS基板を用いた場合のa面GaN層の状態を示すSEM像であり、図9(a)は凹凸を形成したr面サファイア基板の表面であり、図9(b)はa面GaN層の全体像であり、図9(c)は部分拡大断面であり、図9(d)は部分拡大表面である。図9(a)に示したように、r面サファイア基板の主面に高さと幅が数μmの円錐状の突起を複数形成し、AlNバッファ層とa面GaN層を成長させたところ、図9(b)のような表面状態のa面GaN層が得られた。   FIG. 9 is an SEM image showing the state of the a-plane GaN layer in the case where a PSS substrate having irregularities of several μm size formed on the main surface of the r-plane sapphire substrate, and FIG. 9A shows the irregularities formed. FIG. 9B is an entire image of the a-plane GaN layer, FIG. 9C is a partially enlarged cross section, and FIG. 9D is a partially enlarged surface. As shown in FIG. 9A, when a plurality of conical protrusions having a height and width of several μm are formed on the main surface of the r-plane sapphire substrate, an AlN buffer layer and an a-plane GaN layer are grown. An a-plane GaN layer having a surface state such as 9 (b) was obtained.

図9(c)の部分拡大断面において白い矢印で示したように、凹凸の上方にはa面GaN層の内部に異常成長領域が生じている。また、図9(b)中の黒抜き丸で示した領域を拡大したものが図9(d)であり、a面GaN層の表面にも異常成長の影響が残っており、a面GaN層の結晶性と表面平坦性は良好ではないことがわかる。   As indicated by the white arrows in the partially enlarged cross section of FIG. 9C, an abnormal growth region is generated inside the a-plane GaN layer above the irregularities. Further, FIG. 9D is an enlarged view of the region indicated by the black circles in FIG. 9B, and the influence of abnormal growth remains on the surface of the a-plane GaN layer. It can be seen that the crystallinity and surface flatness are not good.

そこで本発明は、上記従来の問題点に鑑みなされたものであり、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能な半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described conventional problems, and a semiconductor growth substrate and semiconductor element capable of growing a high-quality a-plane GaN layer having good crystallinity and excellent surface flatness. An object of the present invention is to provide a semiconductor light emitting device and a semiconductor device manufacturing method.

上記課題を解決するために、本発明の半導体成長用基板は、サファイアのr面を主面とし、前記主面にナノサイズの凹凸が形成されていることを特徴とする。   In order to solve the above problems, the semiconductor growth substrate of the present invention is characterized in that the r-plane of sapphire is the main surface, and nano-sized irregularities are formed on the main surface.

このような本発明の半導体成長用基板では、サファイアのr面にナノサイズの凹凸を形成しているため、凹凸状の異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。   In such a semiconductor growth substrate of the present invention, since the sapphire r-plane has nano-sized irregularities, the irregular growth of irregularities is suppressed, the crystallinity is good, and the surface flatness is high quality. An a-plane GaN layer can be grown.

また本発明の一態様では、前記凹凸は、前記主面の面内方向における最大寸法が1μm未満である。   In one embodiment of the present invention, the unevenness has a maximum dimension in the in-plane direction of the main surface of less than 1 μm.

また本発明の一態様では、前記主面上にa面GaN層を備える。   In one embodiment of the present invention, an a-plane GaN layer is provided on the main surface.

また本発明の一態様では、前記主面と前記a面GaN層との間にAlNバッファ層を備える。   In one embodiment of the present invention, an AlN buffer layer is provided between the main surface and the a-plane GaN layer.

また本発明の一態様では、前記凹凸は、前記主面上に三角格子状に複数配列されている。   In one embodiment of the present invention, a plurality of the irregularities are arranged in a triangular lattice pattern on the main surface.

また上記課題を解決するために本発明の半導体素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に機能層を備えることを特徴とする。   In order to solve the above-mentioned problems, a semiconductor element of the present invention is characterized in that the semiconductor growth substrate according to any one of the above is used and a functional layer is provided on the semiconductor growth substrate.

また上記課題を解決するために本発明の半導体発光素子は、上記何れか一つに記載の半導体成長用基板を用い、前記半導体成長用基板上に活性層を備えることを特徴とする。   In order to solve the above problems, a semiconductor light emitting device according to the present invention is characterized by using the semiconductor growth substrate according to any one of the above and having an active layer on the semiconductor growth substrate.

また上記課題を解決するために本発明の半導体素子製造方法は、r面を主面とするサファイア上にナノサイズの凹凸を形成する工程と、前記主面上に窒化物半導体層を成長する工程とを備えることを特徴とする。   In order to solve the above problems, a method for manufacturing a semiconductor device of the present invention includes a step of forming nano-sized irregularities on sapphire having an r-plane as a main surface, and a step of growing a nitride semiconductor layer on the main surface. It is characterized by providing.

このような本発明の半導体素子製造方法では、サファイアのr面にナノサイズの凹凸を形成しているため、凹凸状の異常成長を抑制し結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能となる。   In such a semiconductor element manufacturing method of the present invention, nano-sized irregularities are formed on the r-plane of sapphire, so that the abnormal growth of irregularities is suppressed, the crystallinity is good, and the surface flatness is high quality. An a-plane GaN layer can be grown.

本発明では、結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能な半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法を提供することができる。   The present invention provides a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element, and a semiconductor element manufacturing method capable of growing a high-quality a-plane GaN layer having good crystallinity and excellent surface flatness. it can.

第1実施形態における半導体成長用基板を示す模式図であり、図1(a)は模式断面図であり、図1(b)は模式平面図である。It is a schematic diagram which shows the board | substrate for semiconductor growth in 1st Embodiment, Fig.1 (a) is a schematic cross section, FIG.1 (b) is a schematic plan view. 第1実施形態におけるナノサイズの凹凸1aの形成方法を示す工程図であり、図2(a)はレジスト塗布工程、図2(b)はナノインプリントおよびパターニング工程、図2(c)はエッチング工程、図2(d)はレジスト除去工程である。It is process drawing which shows the formation method of the nanosized unevenness | corrugation 1a in 1st Embodiment, FIG.2 (a) is a resist application process, FIG.2 (b) is a nanoimprint and patterning process, FIG.2 (c) is an etching process, FIG. 2D shows a resist removal process. 第1実施形態におけるa面GaN層3の成長シーケンスを示す図である。It is a figure which shows the growth sequence of the a-plane GaN layer 3 in 1st Embodiment. 実施例1の半導体成長用基板を示すSEM像であり、図4(a)はナノサイズの凹凸1aを形成したr面サファイア基板(NPSS)の平面像であり、図4(b)はナノサイズの凹凸1aを拡大して示す拡大斜視像であり、図4(c)はa面GaN層3を成長させた後の拡大断面であり、図4(d)はa面GaN層3を成長させた後の鳥瞰像である。FIG. 4A is a SEM image showing a semiconductor growth substrate of Example 1, FIG. 4A is a planar image of an r-plane sapphire substrate (NPSS) on which nano-sized irregularities 1a are formed, and FIG. 4B is a nano-size image. 4 (c) is an enlarged perspective view showing the projections and recesses 1a in an enlarged manner, FIG. 4 (c) is an enlarged cross-section after the a-plane GaN layer 3 is grown, and FIG. 4 (d) is a diagram showing the growth of the a-plane GaN layer 3. It is a bird's-eye view after. 実施例1および比較例についてa面GaN層3のX線ロッキングカーブ測定をした結果の半値幅を示すグラフである。It is a graph which shows the half value width of the result of having carried out the X-ray rocking curve measurement of the a-plane GaN layer 3 about Example 1 and a comparative example. 実施例1,2および比較例1,2の構造を示す模式断面図であり、図6(a)は比較例2、図6(b)は実施例2、図6(A)は比較例1、図6(B)は実施例1を示している。FIGS. 6A and 6B are schematic cross-sectional views showing structures of Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 6A is Comparative Example 2, FIG. 6B is Example 2, and FIG. FIG. 6B shows the first embodiment. 実施例1,2および比較例1,2についてのX線ロッキングカーブ測定の結果を示し、図7(a)は(11−20)回折についてc軸方向から測定した結果であり、図7(b)は(11−20)回折についてm軸方向から測定した結果であり、図7(c)は(10−12)回折について測定した結果である。FIG. 7A shows the results of X-ray rocking curve measurement for Examples 1 and 2 and Comparative Examples 1 and 2, and FIG. 7A shows the results of measuring (11-20) diffraction from the c-axis direction. ) Is the result of measuring (11-20) diffraction from the m-axis direction, and FIG. 7C is the result of measuring (10-12) diffraction. 第2実施形態の半導体装置であるLED10を示す模式断面図である。It is a schematic cross section which shows LED10 which is a semiconductor device of 2nd Embodiment. r面サファイア基板の主面に数μmサイズの凹凸を形成したPSS基板を用いた場合のa面GaN層の状態を示すSEM像であり、図9(a)は凹凸を形成したr面サファイア基板の表面であり、図9(b)はa面GaN層の全体像であり、図9(c)は部分拡大断面であり、図9(d)は部分拡大表面である。FIG. 9A is an SEM image showing the state of the a-plane GaN layer when using a PSS substrate having irregularities of several μm size formed on the main surface of the r-plane sapphire substrate, and FIG. 9A is an r-plane sapphire substrate having irregularities formed thereon. FIG. 9B is an overall image of the a-plane GaN layer, FIG. 9C is a partially enlarged cross section, and FIG. 9D is a partially enlarged surface.

(第1実施形態)
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本発明の第1実施形態における半導体成長用基板を示す模式図であり、図1(a)は模式断面図であり、図1(b)は模式平面図である。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. FIG. 1 is a schematic view showing a semiconductor growth substrate in the first embodiment of the present invention, FIG. 1 (a) is a schematic cross-sectional view, and FIG. 1 (b) is a schematic plan view.

図1(a)に示すように、本実施形態の半導体成長用基板は、六方晶のr面を主面とするr面サファイア基板1と、r面サファイア基板1上に形成されたAlNバッファ層2と、AlNバッファ層2上に形成されたa面を主面とするa面GaN層3を備えている。また、r面サファイア基板1の主面にはナノサイズの凹凸1aが形成されている(NPSS:Nano−Patterned Sapphire Substrate)。ここではr面サファイア基板1として傾斜角度が0度のジャスト基板を示したが、r面を所定の面方位に数度傾斜させたオフ基板としてもよい。   As shown in FIG. 1A, the semiconductor growth substrate of this embodiment includes an r-plane sapphire substrate 1 having a hexagonal r-plane as a main surface, and an AlN buffer layer formed on the r-plane sapphire substrate 1. 2 and an a-plane GaN layer 3 formed on the AlN buffer layer 2 and having an a-plane as a main surface. In addition, nano-sized irregularities 1a are formed on the main surface of the r-plane sapphire substrate 1 (NPSS: Nano-Patterned Sapphire Substrate). Here, a just substrate having an inclination angle of 0 degrees is shown as the r-plane sapphire substrate 1, but an r-plane may be an off-substrate that is inclined several degrees in a predetermined plane orientation.

ナノサイズの凹凸1aは、r面サファイア基板1の主面を加工して形成されたナノサイズの凹凸構造であり、例えば円錐形状の突起を複数周期的に配置したものが挙げられる。ここで、凹凸1aがナノサイズであるとは、凹凸1aを構成する凹部または凸部の高さや深さ、幅方向のサイズが1μmに満たないことをいう。図1(b)に示した例では、ナノサイズの凹凸1aを三角格子状に主面上に複数配置しており、r面サファイア基板1上に成長されるa面GaN層3のc軸方向に対して三角格子の一辺が平行となっている。隣り合う凹凸1a同士のピッチは1μm以上であってもよいが、a面GaN層3の結晶品質を向上させるためには1μm未満のピッチで形成することが好ましい。   The nano-sized unevenness 1a is a nanosized uneven structure formed by processing the main surface of the r-plane sapphire substrate 1, and includes, for example, a structure in which a plurality of conical protrusions are periodically arranged. Here, that the unevenness 1a is nano-sized means that the height or depth of the concave portion or the convex portion constituting the unevenness 1a and the size in the width direction are less than 1 μm. In the example shown in FIG. 1B, a plurality of nano-sized irregularities 1a are arranged on the main surface in a triangular lattice shape, and the c-axis direction of the a-plane GaN layer 3 grown on the r-plane sapphire substrate 1 Is parallel to one side of the triangular lattice. The pitch between adjacent irregularities 1a may be 1 μm or more, but in order to improve the crystal quality of the a-plane GaN layer 3, it is preferably formed with a pitch of less than 1 μm.

AlNバッファ層2はr面サファイア基板1とa面GaN層3との格子定数の相違を緩和するための層である。AlNバッファ層2の厚みとしては、厚くしすぎるとa面GaN層3の結晶品質が低下するため5〜300nmの範囲が好ましく、5〜90nmの範囲がより好ましく、5〜30nmの範囲がさらに好ましい。ここではr面サファイア基板1とa面GaN層3との間にAlNバッファ層2を形成する例を示したが、後述するようにAlNバッファ層2を介在させずとも、r面サファイア基板1の主面にナノサイズの凹凸1aを形成することでa面GaN層3の結晶品質を向上させ表面平坦性を改善する効果を得ることができる。   The AlN buffer layer 2 is a layer for relaxing the difference in lattice constant between the r-plane sapphire substrate 1 and the a-plane GaN layer 3. The thickness of the AlN buffer layer 2 is preferably in the range of 5 to 300 nm, more preferably in the range of 5 to 90 nm, and still more preferably in the range of 5 to 30 nm because the crystal quality of the a-plane GaN layer 3 is deteriorated if the thickness is too large. . Here, an example in which the AlN buffer layer 2 is formed between the r-plane sapphire substrate 1 and the a-plane GaN layer 3 has been shown, but the r-plane sapphire substrate 1 of the r-plane sapphire substrate 1 is not required to be interposed as will be described later. By forming the nano-sized irregularities 1a on the main surface, the crystal quality of the a-plane GaN layer 3 can be improved and the surface flatness can be improved.

a面GaN層3は、主面がa面となるように成長された下地層であり、その上に窒化物半導体層をエピタキシャル成長するための層である。a面GaN層3の形成方法としては、MOCVD法やHVPE法(ハイドライド気相成長法:Hydride Vapor Phase Epitaxy)などの公知の方法を用いることができるが、MOCVD法を用いることが好ましい。a面GaN層3の膜厚は特に限定されないが、1μm以上形成することが好ましい。   The a-plane GaN layer 3 is a base layer grown so that the main surface is an a-plane, and is a layer for epitaxially growing a nitride semiconductor layer thereon. As a method for forming the a-plane GaN layer 3, a known method such as MOCVD method or HVPE method (hydride vapor phase epitaxy) can be used, but MOCVD method is preferably used. The thickness of the a-plane GaN layer 3 is not particularly limited, but is preferably 1 μm or more.

次に、図2および図3を用いて本発明における半導体成長用基板の製造方法について説明する。図2は、本実施形態におけるナノサイズの凹凸1aの形成方法を示す工程図であり、図2(a)はレジスト塗布工程、図2(b)はナノインプリントおよびパターニング工程、図2(c)はエッチング工程、図2(d)はレジスト除去工程である。図3は、本実施形態におけるa面GaN層3の成長シーケンスを示す図である。   Next, a method for manufacturing a semiconductor growth substrate in the present invention will be described with reference to FIGS. 2A and 2B are process diagrams showing a method for forming the nano-sized irregularities 1a in the present embodiment. FIG. 2A is a resist coating process, FIG. 2B is a nanoimprint and patterning process, and FIG. The etching process, FIG. 2D is a resist removal process. FIG. 3 is a diagram showing a growth sequence of the a-plane GaN layer 3 in the present embodiment.

始めに図2(a)に示すように、レジスト塗布工程では、r面を主面とする単結晶のサファイア基板1を用意し、スピンコート法等を用いてサファイア基板1の主面上にレジスト膜4を塗布する。レジスト膜4の種類は限定されず、ナノサイズのパターニングが可能であれば熱硬化型であってもUV硬化型であってもよい。   First, as shown in FIG. 2A, in the resist coating process, a single crystal sapphire substrate 1 having an r-plane as a main surface is prepared, and a resist is formed on the main surface of the sapphire substrate 1 by using a spin coat method or the like. The film 4 is applied. The type of the resist film 4 is not limited, and may be a thermosetting type or a UV curable type as long as nano-size patterning is possible.

次に図2(b)に示すように、ナノインプリントおよびパターニング工程では、所定のパターンが形成されたモールド5を用いて、ナノインプリント技術を用いてレジスト膜4にパターンの転写を行う。パターン転写の方法としては、ナノサイズの凹凸が形成されたモールド5をレジスト4に押し当て、熱硬化やUV硬化などの公知の方法を用いてレジスト膜4を硬化させる。モールド5の材料としては、ナノサイズのパターニングが可能であれば限定されない。図2(b)に示した例では、モールド5の凹部が1μm未満の円形の例を示している。   Next, as shown in FIG. 2B, in the nanoimprinting and patterning step, the pattern is transferred to the resist film 4 by using the nanoimprint technique using the mold 5 on which a predetermined pattern is formed. As a pattern transfer method, the mold 5 on which nano-sized irregularities are formed is pressed against the resist 4 and the resist film 4 is cured using a known method such as heat curing or UV curing. The material of the mold 5 is not limited as long as nano-size patterning is possible. In the example shown in FIG. 2B, an example in which the concave portion of the mold 5 is a circle having a diameter of less than 1 μm is shown.

次に図2(c)に示すように、エッチング工程では、パターニングされたレジスト膜4を用いてサファイア基板1のエッチングを行う。サファイア基板1のエッチング方法としては特に限定されないが、BCl等の塩素系ガスを用いたドライエッチングを用いることができる。サファイア基板1のエッチングが進行するとともにレジスト膜4もエッチングされ、パターニングされたレジスト膜4のサイズも徐々に小さくなり、サファイア基板1のエッチング面はテーパー形状となる。 Next, as shown in FIG. 2C, in the etching step, the sapphire substrate 1 is etched using the patterned resist film 4. The etching method of the sapphire substrate 1 is not particularly limited, but dry etching using a chlorine-based gas such as BCl 3 can be used. As the etching of the sapphire substrate 1 proceeds, the resist film 4 is also etched, the size of the patterned resist film 4 gradually decreases, and the etched surface of the sapphire substrate 1 has a tapered shape.

次に図2(d)に示すように、レジスト除去工程では、レジスト膜4を除去してサファイア基板1表面の洗浄を行う。エッチング工程でサファイア基板1がエッチングされることで、サファイア基板1の主面上にはナノサイズの凹凸1aが複数形成される。図2(d)ではナノサイズの凹凸1aの上部が平坦面となっている例を示しているが、レジスト膜4の厚さやパターニングされる面積を調整することで、ナノサイズの凹凸1aの形状を頂部が尖った円錐形状の突起とすることもできる。   Next, as shown in FIG. 2D, in the resist removal step, the resist film 4 is removed and the surface of the sapphire substrate 1 is cleaned. By etching the sapphire substrate 1 in the etching step, a plurality of nano-sized irregularities 1 a are formed on the main surface of the sapphire substrate 1. Although FIG. 2D shows an example in which the upper part of the nano-sized unevenness 1a is a flat surface, the shape of the nano-sized unevenness 1a is adjusted by adjusting the thickness of the resist film 4 and the area to be patterned. Can be a conical protrusion with a sharp top.

図2(a)〜(d)に示した製造方法により、r面を主面とするサファイア基板1の主面にナノサイズの凹凸1aが複数形成された半導体成長用基板(NPSS)が得られる。図2(d)に示したナノサイズの凹凸1aが形成されたr面を主面とするサファイア基板1では、後述するように結晶性が良好で表面平坦性に優れた高品質なa面GaN層を成長させることが可能である。   2A to 2D, a semiconductor growth substrate (NPSS) in which a plurality of nano-sized irregularities 1a are formed on the main surface of the sapphire substrate 1 whose main surface is the r-plane is obtained. . In the sapphire substrate 1 whose main surface is the r-plane on which the nano-sized irregularities 1a shown in FIG. 2D are formed, a high-quality a-plane GaN having excellent crystallinity and excellent surface flatness as described later. It is possible to grow layers.

次に、ナノサイズの凹凸1aを複数形成したサファイア基板1(NPSS)上に、例えば膜厚が30nm程度のAlNバッファ層2を形成する。AlNバッファ層2の形成方法としては、MOCVD法やスパッタ法などの公知の方法を用いることができるが、スパッタ法を用いることが好ましい。AlNバッファ層2を形成するスパッタ法としては、Alをターゲット材としてN及びArガスを用いる反応性スパッタ法を採用してもよいが、AlNをターゲット材としてArガスを用いることがより好ましい。ターゲット材となるAlNとしては単結晶基板であっても粉末焼体であってもよく、その状態や形態は限定されない。 Next, an AlN buffer layer 2 having a thickness of, for example, about 30 nm is formed on a sapphire substrate 1 (NPSS) on which a plurality of nano-sized irregularities 1a are formed. As a method for forming the AlN buffer layer 2, a known method such as an MOCVD method or a sputtering method can be used, but a sputtering method is preferably used. As a sputtering method for forming the AlN buffer layer 2, a reactive sputtering method using N 2 and Ar gas with Al as a target material may be employed, but it is more preferable to use Ar gas with AlN as a target material. The AlN used as the target material may be a single crystal substrate or a powder fired body, and its state and form are not limited.

反応性スパッタ法によりAlをターゲット材としてN及びArガスを用いてAlNバッファ層2を形成する場合には、AlN膜の物理的な堆積プロセスに加えて、Alターゲット材とNガスの反応プロセスを考慮する必要がある。そのため反応性スパッタ法では、所望のAlNバッファ層2を得るための成膜条件を適切に設定して制御する難易度が高くなる。特に、半導体基板の大面積化が進むと、基板表面の面内分布も考慮する必要があるためさらに難易度が高くなる。 In the case where the AlN buffer layer 2 is formed using N 2 and Ar gas with Al as the target material by reactive sputtering, in addition to the physical deposition process of the AlN film, the reaction between the Al target material and N 2 gas. Process needs to be considered. Therefore, in the reactive sputtering method, the difficulty of setting and controlling the film forming conditions for obtaining the desired AlN buffer layer 2 is increased. In particular, when the area of a semiconductor substrate is increased, the in-plane distribution on the surface of the substrate needs to be taken into consideration, so that the difficulty becomes higher.

一方、AlNをターゲット材としてArガスを用いるスパッタ法によりAlNバッファ層2を形成する場合には、Alターゲット材とNの反応プロセスを考慮する必要が無く、Arガス流量やチャンバー内の真空度等のパラメータを最適化するだけでよい。したがって、反応性スパッタ法でAlNバッファ層2を形成するよりも、AlNをターゲット材としてArガスを用いるスパッタ法を用いるほうが、AlNバッファ層2を形成する際の成膜条件の設定や制御が容易であり、大面積化にも対応が容易となる。 On the other hand, when the AlN buffer layer 2 is formed by sputtering using Ar gas with AlN as the target material, there is no need to consider the reaction process between the Al target material and N 2 , and the Ar gas flow rate and the degree of vacuum in the chamber It is only necessary to optimize parameters such as. Therefore, it is easier to set and control the film formation conditions when forming the AlN buffer layer 2 by using the sputtering method using Ar gas with AlN as the target material than forming the AlN buffer layer 2 by the reactive sputtering method. Therefore, it is easy to cope with an increase in area.

次に、AlNバッファ層2の表面を洗浄した後に、キャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH)を用い、III族原料としてTMG(TrimethylGallium)を用いて、MOCVD法でa面GaN層3を約4μm成長させる。このとき、成長シーケンスは図3に示すような2段階で構成し、温度を1010℃まで昇温した後にステップ(I)とステップ(II)では成長温度を一定とし、リアクタ圧力とV/III比および成長時間を変更している。ステップ(I)では例えばV/III比を4000〜5000程度とし、圧力を900〜1000hPaとして10〜20分程度維持し、ステップ(II)では例えばV/III比を100〜200程度とし、圧力を100〜150hPaとして90〜120分維持する。a面GaN層3を成長した後に室温まで冷却して取り出すことで、r面サファイア基板1の主面にナノサイズの凹凸1aが複数形成され、AlNバッファ層2およびa面GaN層3が形成された本実施形態の半導体成長用基板を得ることができる。 Next, after cleaning the surface of the AlN buffer layer 2, hydrogen and nitrogen are used as a carrier gas, ammonia (NH 3 ) is used as a group V source, and TMG (Trimethyl Gallium) is used as a group III source by MOCVD. The a-plane GaN layer 3 is grown by about 4 μm. At this time, the growth sequence is composed of two stages as shown in FIG. 3. After the temperature is raised to 1010 ° C., the growth temperature is kept constant in steps (I) and (II), the reactor pressure and the V / III ratio are increased. And changing the growth time. In step (I), for example, the V / III ratio is set to about 4000 to 5000, the pressure is set to 900 to 1000 hPa and maintained for about 10 to 20 minutes, and in step (II), for example, the V / III ratio is set to about 100 to 200 and the pressure is set. Maintain 100-150 hPa for 90-120 minutes. After the a-plane GaN layer 3 is grown and cooled to room temperature, a plurality of nano-sized irregularities 1a are formed on the main surface of the r-plane sapphire substrate 1, and the AlN buffer layer 2 and the a-plane GaN layer 3 are formed. In addition, the semiconductor growth substrate of this embodiment can be obtained.

(実施例1)
図4は、実施例1の半導体成長用基板を示すSEM像であり、図4(a)はナノサイズの凹凸1aを形成したr面サファイア基板(NPSS)の平面像であり、図4(b)はナノサイズの凹凸1aを拡大して示す拡大斜視像であり、図4(c)はa面GaN層3を成長させた後の拡大断面であり、図4(d)はa面GaN層3を成長させた後の鳥瞰像である。
Example 1
FIG. 4 is an SEM image showing the semiconductor growth substrate of Example 1, and FIG. 4A is a planar image of an r-plane sapphire substrate (NPSS) on which nano-sized irregularities 1a are formed, and FIG. ) Is an enlarged perspective view showing the nano-sized irregularities 1a in an enlarged manner, FIG. 4C is an enlarged cross-section after the a-plane GaN layer 3 is grown, and FIG. 4D is an a-plane GaN layer. It is a bird's-eye view after growing 3.

図4(a)(b)に示したように、実施例1として、r面を主面としたサファイア基板1の主面上に、幅Dが900nm、高さHが600nmの円錐形状の突起を三角格子状に複数形成してNPSSを得た。隣接する突起の間隔Pは100nmとなっている。このNPSS上に、上述したようにスパッタ法でAlNバッファ層2を30nm形成し、MOCVD法でa面GaN層3を4μm成長した。図4(c)に示すようにa面GaN層3中には異常成長が発生せず、図4(d)に示すように表面状態も良好であった。   As shown in FIGS. 4A and 4B, as Example 1, a conical protrusion having a width D of 900 nm and a height H of 600 nm on the main surface of the sapphire substrate 1 having the r-plane as the main surface. Was formed in a triangular lattice shape to obtain NPSS. The interval P between adjacent protrusions is 100 nm. On this NPSS, as described above, an AlN buffer layer 2 having a thickness of 30 nm was formed by sputtering, and an a-plane GaN layer 3 was grown by 4 μm by MOCVD. Abnormal growth did not occur in the a-plane GaN layer 3 as shown in FIG. 4C, and the surface condition was good as shown in FIG.

(比較例1)
凹凸を形成せず平坦なr面を主面とするサファイア基板を用い、実施例1と同様にスパッタ法でAlNバッファ層2を30nm形成し、MOCVD法でa面GaN層3を4μm成長した。
(Comparative Example 1)
Using a sapphire substrate having a flat r-plane as a main surface without forming irregularities, the AlN buffer layer 2 was formed to 30 nm by the sputtering method in the same manner as in Example 1, and the a-plane GaN layer 3 was grown to 4 μm by the MOCVD method.

図5は、実施例1および比較例1についてa面GaN層3のX線ロッキングカーブ測定をした結果の半値幅を示すグラフである。グラフ中の縦軸はX線ロッキングカーブ測定の半値幅(XRC−FWHM:X−ray Rocking Curve Full Width at Half Maximum)を示している。グラフの横軸には、左から(11−20)回折についてc軸方向から測定した結果、(11−20)回折についてm軸方向から測定した結果、(10−12)回折について測定した結果を示している。また、比較例1をa−GaN/AlN/FSSで左側に示し、実施例1はa−GaN/AlN/NPSSで右側に示している。図5のグラフに示したように、いずれの方向からの測定においても比較例1よりも実施例1の半値幅が小さく、結晶性が良好なa面GaN層3が形成されていることがわかる。   FIG. 5 is a graph showing the full width at half maximum as a result of measuring the X-ray rocking curve of the a-plane GaN layer 3 in Example 1 and Comparative Example 1. The vertical axis | shaft in a graph has shown the half value width (XRC-FWHM: X-ray Rocking Curve Width at Half Maximum) of a X-ray rocking curve measurement. On the horizontal axis of the graph, as a result of measuring (11-20) diffraction from the c-axis direction from the left, as a result of measuring (11-20) diffraction from the m-axis direction, and as a result of measuring (10-12) diffraction. Show. Further, Comparative Example 1 is shown on the left side with a-GaN / AlN / FSS, and Example 1 is shown on the right side with a-GaN / AlN / NPSS. As shown in the graph of FIG. 5, it can be seen that the a-plane GaN layer 3 having a smaller full width at half maximum of Example 1 than that of Comparative Example 1 and good crystallinity is formed in measurement from any direction. .

(実施例2)
次に、ナノサイズの凹凸1aを形成したr面サファイア基板(NPSS)にa面GaN層3を直接成長した。バッファ層を介さずにa面GaN層3直接成長する以外は実施例1と同様にして、実施例2の半導体成長用基板を得た。
(Example 2)
Next, an a-plane GaN layer 3 was directly grown on an r-plane sapphire substrate (NPSS) on which nano-sized irregularities 1a were formed. A semiconductor growth substrate of Example 2 was obtained in the same manner as in Example 1 except that the a-plane GaN layer 3 was directly grown without using a buffer layer.

(比較例2)
また、凹凸を形成せず平坦なr面を主面とするサファイア基板を用い、a面GaN層3を直接成長した。バッファ層を介さずにa面GaN層3直接成長する以外は比較例1と同様にして、比較例2の半導体成長用基板を得た。
(Comparative Example 2)
Moreover, the a-plane GaN layer 3 was directly grown using a sapphire substrate having a flat r-plane as a main surface without forming irregularities. A semiconductor growth substrate of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the a-plane GaN layer 3 was directly grown without using a buffer layer.

図6は、実施例1,2および比較例1,2の構造を示す模式断面図であり、図6(a)は比較例2、図6(b)は実施例2、図6(A)は比較例1、図6(B)は実施例1を示している。図7は、実施例1,2および比較例1,2についてのX線ロッキングカーブ測定の結果を示し、図7(a)は(11−20)回折についてc軸方向から測定した結果であり、図7(b)は(11−20)回折についてm軸方向から測定した結果であり、図7(c)は(10−12)回折について測定した結果である。図7のグラフ中では、実施例1の結果を実線で示し、実施例2の結果を大きい破線で示し、比較例1の結果を一点鎖線で示し、比較例2の結果を小さい破線で示している。各測定結果の半値幅を表1に示す。表中のサンプル構造の欄は、図6に示した構造に対応している。   6 is a schematic cross-sectional view showing the structures of Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 6 (a) is Comparative Example 2, FIG. 6 (b) is Example 2, and FIG. FIG. 6 shows Comparative Example 1, and FIG. FIG. 7 shows the results of X-ray rocking curve measurement for Examples 1 and 2 and Comparative Examples 1 and 2, and FIG. 7 (a) is the result of measuring (11-20) diffraction from the c-axis direction. FIG. 7B shows the results of measuring (11-20) diffraction from the m-axis direction, and FIG. 7C shows the results of measuring (10-12) diffraction. In the graph of FIG. 7, the result of Example 1 is indicated by a solid line, the result of Example 2 is indicated by a large broken line, the result of Comparative Example 1 is indicated by a one-dot chain line, and the result of Comparative Example 2 is indicated by a small broken line. Yes. Table 1 shows the half width of each measurement result. The column of the sample structure in the table corresponds to the structure shown in FIG.

表1に示したように、AlNバッファ層を設けない実施例2でも比較例2よりも半値幅が小さく、結晶性の良好なa面GaN層3が形成されていることがわかる。また、(11−20)回折についてc軸方向から測定した結果と、(10−12)回折について測定した結果では、主面に凹凸を設けずAlNバッファ層2を形成した比較例1よりも、AlNバッファ層を設けずナノサイズの凹凸1aを形成した実施例2のNPSSのほうが半値幅は小さく、結晶性は実施例2と比較例1とで同等であることがわかる。よって、本発明のNPSSでは、AlNバッファ層2を設けなくともa面GaN層3の結晶性を向上でき、AlNバッファ層2を設けることでさらに結晶性を向上させることができることがわかる。   As shown in Table 1, it can be seen that even in Example 2 in which no AlN buffer layer was provided, the a-plane GaN layer 3 having a smaller half width than that of Comparative Example 2 and having good crystallinity was formed. Moreover, in the result measured from the c-axis direction for (11-20) diffraction and the result measured for (10-12) diffraction, compared to Comparative Example 1 in which the AlN buffer layer 2 was formed without providing irregularities on the main surface, It can be seen that the NPSS of Example 2 in which the nano-sized unevenness 1a is formed without providing the AlN buffer layer has a smaller half-value width, and the crystallinity is the same in Example 2 and Comparative Example 1. Therefore, it can be seen that in the NPSS of the present invention, the crystallinity of the a-plane GaN layer 3 can be improved without providing the AlN buffer layer 2, and the crystallinity can be further improved by providing the AlN buffer layer 2.

上述したように本発明では、r面を主面とするサファイア基板1の主面にナノサイズの凹凸1aを形成しているので、その上に成長するa面GaN層3の結晶性が良好で、異常成長を抑制して表面平坦性に優れた高品質なものとなる。   As described above, in the present invention, since the nano-sized irregularities 1a are formed on the main surface of the sapphire substrate 1 having the r-plane as the main surface, the crystallinity of the a-plane GaN layer 3 grown thereon is good. In addition, it suppresses abnormal growth and becomes high quality with excellent surface flatness.

(第2実施形態)
次に、本発明の第2実施形態について図8を用いて説明する。図8は本実施形態の半導体装置であるLED10を示す模式断面図である。図8に示すようにLED10は、r面を主面とするサファイア基板11、ナノサイズの凹凸11a、AlNバッファ層12、a面GaN層13、n型半導体層14、発光層15、p型半導体層16、n側電極17、p側電極18を有している。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic cross-sectional view showing the LED 10 which is the semiconductor device of the present embodiment. As shown in FIG. 8, the LED 10 includes a sapphire substrate 11 having an r-plane as a main surface, nano-sized irregularities 11a, an AlN buffer layer 12, an a-plane GaN layer 13, an n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor. It has a layer 16, an n-side electrode 17, and a p-side electrode 18.

第1実施形態と同様に、r面を主面とするサファイア基板11を用意し、ナノサイズの凹凸11aを形成し、スパッタ法でAlNバッファ層12をサファイア基板11上に形成し、MOCVD法でa面GaN層13をAlNバッファ層12上にエピタキシャル成長する。続いて、MOCVD法でn型半導体層14、発光層15、p型半導体層16を順次成長して半導体基板を得る。   As in the first embodiment, a sapphire substrate 11 having an r-plane as a main surface is prepared, nano-sized irregularities 11a are formed, an AlN buffer layer 12 is formed on the sapphire substrate 11 by sputtering, and MOCVD is used. An a-plane GaN layer 13 is epitaxially grown on the AlN buffer layer 12. Subsequently, the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are sequentially grown by MOCVD to obtain a semiconductor substrate.

次に、所定のモールドパターンを用いてフォトリソグラフィーとエッチングによりp型半導体層16と発光層15の一部を除去してn型半導体層14の一部を露出させる。次に、n型半導体層14とp型半導体層16の露出面に蒸着等により電極材料を形成し、ダイシングして個別チップ化することでLED10を得る。   Next, a part of the p-type semiconductor layer 16 and the light emitting layer 15 are removed by photolithography and etching using a predetermined mold pattern to expose a part of the n-type semiconductor layer 14. Next, an electrode material is formed on the exposed surfaces of the n-type semiconductor layer 14 and the p-type semiconductor layer 16 by vapor deposition or the like, and the LED 10 is obtained by dicing into individual chips.

ここではn型半導体層14、p型半導体層16をそれぞれ単層で説明したが、それぞれ材料や組成の異なる複数の層を含んでいるとしてもよく、例えば、n型半導体層14とp型半導体層16にクラッド層、コンタクト層、電流拡散層、電子ブロック層、導波路層などを含めてもよい。また、発光層15も単層で説明したが、多重量子井戸構造(MQW:Multi Quantum Well)などの複数層で構成してもよい。   Here, the n-type semiconductor layer 14 and the p-type semiconductor layer 16 have been described as single layers. However, the n-type semiconductor layer 14 and the p-type semiconductor layer 16 may include a plurality of layers having different materials and compositions. The layer 16 may include a cladding layer, a contact layer, a current diffusion layer, an electron block layer, a waveguide layer, and the like. Moreover, although the light emitting layer 15 was demonstrated with the single layer, you may comprise by multiple layers, such as a multiple quantum well structure (MQW: Multi Quantum Well).

n型半導体層14は、a面GaN層13上にエピタキシャル成長され、a面を主面とするn型不純物がドープされた半導体層であり、n側電極17から電子が注入されて発光層15に電子を供給する層である。n型半導体層14を構成する材料は、III−V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、n型不純物としてはSiなどが挙げられる。   The n-type semiconductor layer 14 is a semiconductor layer epitaxially grown on the a-plane GaN layer 13 and doped with an n-type impurity whose main surface is the a-plane. Electrons are injected from the n-side electrode 17 into the light emitting layer 15. It is a layer that supplies electrons. Examples of the material constituting the n-type semiconductor layer 14 include GaN, AlGaN, InGaN, AlInGaN and the like as the III-V group compound semiconductor layer, and Si and the like as the n-type impurity.

発光層15は、n型半導体層14上にエピタキシャル成長され、a面を主面とする半導体層であり、層内で電子と正孔が発光再結合することでLED10が発光する。発光層15は、n型半導体層14とp型半導体層16よりもバンドギャップが小さい材料で構成されており、例えばInGaN、AlInGaNなどが挙げられる。発光層15は意図的に不純物を含まないノンドープとしてもよく、n型不純物を含むn型やp型不純物を含むp型としてもよい。発光層15は、a面を主面とする半導体層なので、厚膜化してもピエゾ電界による電子と正孔の空間的な分離は生じにくく、電流密度を高くしても効率的に電子と正孔が発光再結合できる。   The light emitting layer 15 is a semiconductor layer that is epitaxially grown on the n-type semiconductor layer 14 and has the a-plane as a main surface, and the LEDs 10 emit light by recombination of electrons and holes in the layer. The light emitting layer 15 is made of a material having a smaller band gap than the n-type semiconductor layer 14 and the p-type semiconductor layer 16, and examples thereof include InGaN and AlInGaN. The light emitting layer 15 may be intentionally non-doped without impurities, or may be n-type containing n-type impurities or p-type containing p-type impurities. Since the light-emitting layer 15 is a semiconductor layer having an a-plane as a main surface, even if the film is thickened, electrons and holes are not easily separated by a piezoelectric field, and even if the current density is increased, electrons and positive electrons are efficiently generated. The holes can recombine with light emission.

p型半導体層16は、発光層15上にエピタキシャル成長され、a面を主面とする半導体層であり、p側電極18から正孔が注入されて発光層15に正孔を供給する層である。p型半導体層16を構成する材料は、III−V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、p型不純物としてはZnやMgなどが挙げられる。   The p-type semiconductor layer 16 is a semiconductor layer that is epitaxially grown on the light-emitting layer 15 and has the a-plane as a main surface, and is a layer that injects holes from the p-side electrode 18 and supplies holes to the light-emitting layer 15. . Examples of the material constituting the p-type semiconductor layer 16 include GaN, AlGaN, InGaN, and AlInGaN as the III-V compound semiconductor layer, and examples of the p-type impurity include Zn and Mg.

本実施の形態でも、LED10はナノサイズの凹凸11aが形成されたr面を主面とするサファイア基板11(NPSS)上にスパッタ法でAlNバッファ層12を形成し、a面GaN層13を下地層としてn型半導体層14、発光層15、p型半導体層16をエピタキシャル成長している。したがって、第1実施形態で述べたようにa面GaN層13は結晶性も表面平坦性も良好であり、その上に成長されたn型半導体層14、発光層15、p型半導体層16も結晶性と表面平坦性が良好となる。これにより、n型半導体層14、発光層15、p型半導体層16の特性も良好になり、LED10の外部量子効率の向上などが見込まれる。   Also in the present embodiment, the LED 10 forms the AlN buffer layer 12 by sputtering on the sapphire substrate 11 (NPSS) whose main surface is the r-plane on which the nano-sized irregularities 11a are formed, and the a-plane GaN layer 13 is disposed below. An n-type semiconductor layer 14, a light-emitting layer 15, and a p-type semiconductor layer 16 are epitaxially grown as the ground layer. Therefore, as described in the first embodiment, the a-plane GaN layer 13 has good crystallinity and surface flatness, and the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 grown thereon are also included. Crystallinity and surface flatness are improved. Thereby, the characteristics of the n-type semiconductor layer 14, the light emitting layer 15, and the p-type semiconductor layer 16 are also improved, and an improvement in the external quantum efficiency of the LED 10 is expected.

(第3実施形態)
本発明の半導体装置であるLED10は、上述したようにピエゾ電界によるドループが少なく、且つa面内での異方性が小さく良好な結晶品質であることから高輝度化を実現できるので、車両用灯具などの灯具に用いることでチップ数の低減や高出力化を図ることが可能となる。
(Third embodiment)
As described above, the LED 10 which is a semiconductor device of the present invention has low droop due to a piezoelectric field, low anisotropy in the a plane, and good crystal quality. When used for a lamp such as a lamp, it is possible to reduce the number of chips and increase the output.

(第4実施形態)
第2実施形態では、LED10としてr面を主面としナノサイズの凹凸11aが形成されたサファイア基板11とAlNバッファ層12を含めた構造のものを示したが、基板裏面側から研磨やエッチング、レーザーアブレーションなどの技術を用いて、サファイア基板11とAlNバッファ層12を除去するとしてもよい。また、r面サファイア基板11を除去した側にn側電極17を設け、p側電極18とn側電極17とを対向させてもよい。
(Fourth embodiment)
In the second embodiment, the LED 10 has a structure including the sapphire substrate 11 and the AlN buffer layer 12 on which the r-plane is the main surface and the nano-sized irregularities 11a are formed. The sapphire substrate 11 and the AlN buffer layer 12 may be removed using a technique such as laser ablation. Further, the n-side electrode 17 may be provided on the side from which the r-plane sapphire substrate 11 is removed, and the p-side electrode 18 and the n-side electrode 17 may be opposed to each other.

さらに、半導体装置はLEDに限定されず、半導体レーザや高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の他の用途であってもよい。   Further, the semiconductor device is not limited to the LED, and may be other applications such as a semiconductor laser or a high electron mobility transistor (HEMT).

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

1,11…サファイア基板
10…LED
1a,11a…凹凸
2,12…AlNバッファ層
3,13…a面GaN層
4…レジスト膜
5…モールド
14…n型半導体層
15…発光層
16…p型半導体層
17…n側電極
18…p側電極
1,11 ... Sapphire substrate 10 ... LED
1a, 11a ... irregularities 2, 12 ... AlN buffer layers 3, 13 ... a-plane GaN layer 4 ... resist film 5 ... mold 14 ... n-type semiconductor layer 15 ... light emitting layer 16 ... p-type semiconductor layer 17 ... n-side electrode 18 ... p-side electrode

Claims (8)

サファイアのr面を主面とし、前記主面にナノサイズの凹凸が形成されていることを特徴とする半導体成長用基板。   A substrate for semiconductor growth, wherein the r-plane of sapphire is a main surface, and nano-sized irregularities are formed on the main surface. 請求項1に記載の半導体成長用基板であって、
前記凹凸は、前記主面の面内方向における最大寸法が1μm未満であることを特徴とする半導体成長用基板。
A semiconductor growth substrate according to claim 1,
The substrate for semiconductor growth, wherein the unevenness has a maximum dimension in the in-plane direction of the main surface of less than 1 μm.
請求項1または2に記載の半導体成長用基板であって、
前記主面上にa面GaN層を備えることを特徴とする半導体成長用基板。
A semiconductor growth substrate according to claim 1 or 2,
A semiconductor growth substrate comprising an a-plane GaN layer on the main surface.
請求項3に記載の半導体成長用基板であって、
前記主面と前記a面GaN層との間にAlNバッファ層を備えることを特徴とする半導体成長用基板。
The semiconductor growth substrate according to claim 3,
A semiconductor growth substrate comprising an AlN buffer layer between the main surface and the a-plane GaN layer.
請求項1から4の何れか一つに記載の半導体成長用基板であって、
前記凹凸は、前記主面上に三角格子状に複数配列されていることを特徴とする半導体成長用基板。
A semiconductor growth substrate according to any one of claims 1 to 4,
A substrate for semiconductor growth, wherein a plurality of the irregularities are arranged in a triangular lattice pattern on the main surface.
請求項1から5の何れか一つに記載の半導体成長用基板を用い、
前記半導体成長用基板上に機能層を備えることを特徴とする半導体素子。
Using the semiconductor growth substrate according to any one of claims 1 to 5,
A semiconductor element comprising a functional layer on the semiconductor growth substrate.
請求項1から5の何れか一つに記載の半導体成長用基板を用い、
前記半導体成長用基板上に活性層を備えることを特徴とする半導体発光素子。
Using the semiconductor growth substrate according to any one of claims 1 to 5,
A semiconductor light emitting device comprising an active layer on the semiconductor growth substrate.
r面を主面とするサファイア上にナノサイズの凹凸を形成する工程と、
前記主面上に窒化物半導体層を成長する工程とを備えることを特徴とする半導体素子製造方法。
forming nano-sized irregularities on sapphire having an r-plane as a main surface;
And a step of growing a nitride semiconductor layer on the main surface.
JP2017159232A 2017-08-22 2017-08-22 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element Pending JP2019040898A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017159232A JP2019040898A (en) 2017-08-22 2017-08-22 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element
PCT/JP2018/029298 WO2019039240A1 (en) 2017-08-22 2018-08-03 Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element, and method for producing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159232A JP2019040898A (en) 2017-08-22 2017-08-22 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element

Publications (1)

Publication Number Publication Date
JP2019040898A true JP2019040898A (en) 2019-03-14

Family

ID=65438792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159232A Pending JP2019040898A (en) 2017-08-22 2017-08-22 Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element

Country Status (2)

Country Link
JP (1) JP2019040898A (en)
WO (1) WO2019039240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202302A (en) * 2019-06-11 2020-12-17 株式会社小糸製作所 Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and manufacturing method of semiconductor element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696285B2 (en) * 2005-02-25 2011-06-08 京セラ株式会社 R-plane sapphire substrate, epitaxial substrate and semiconductor device using the same, and manufacturing method thereof
JP2009054882A (en) * 2007-08-28 2009-03-12 Univ Of Tokushima Manufacturing method of light emitting device
CN103208568A (en) * 2013-04-01 2013-07-17 厦门市三安光电科技有限公司 Nitride light-emitting diode and manufacturing method
JP2016111354A (en) * 2014-11-26 2016-06-20 旭化成イーマテリアルズ株式会社 Semiconductor template substrate for led, and led element using the same
JP2017137201A (en) * 2016-02-01 2017-08-10 パナソニック株式会社 Epitaxial substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020202302A (en) * 2019-06-11 2020-12-17 株式会社小糸製作所 Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and manufacturing method of semiconductor element
WO2020250849A1 (en) * 2019-06-11 2020-12-17 株式会社小糸製作所 Semiconductor growth substrate, semiconductor element, semiconductor light-emitting element, and method for manufacturing semiconductor growth substrate
JP7345286B2 (en) 2019-06-11 2023-09-15 株式会社小糸製作所 Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method

Also Published As

Publication number Publication date
WO2019039240A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
US9024294B2 (en) Group III nitride nanorod light emitting device
US20170069793A1 (en) Ultraviolet light-emitting device and production method therefor
US8946772B2 (en) Substrate for epitaxial growth, process for manufacturing GaN-based semiconductor film, GaN-based semiconductor film, process for manufacturing GaN-based semiconductor light emitting element and GaN-based semiconductor light emitting element
JP4989978B2 (en) Nitride-based light emitting device and manufacturing method thereof
JP2007103774A (en) Group iii nitride semiconductor stacked structure and its manufacturing method
WO2013042297A1 (en) Gallium nitride compound semiconductor light emitting element and light source device using same
US20190157069A1 (en) Semipolar amd nonpolar light-emitting devices
JP6925141B2 (en) Semiconductor substrates, semiconductor light emitting devices and lamps
US20110175126A1 (en) Light-emitting diode structure
WO2011058697A1 (en) Method for manufacturing nitride semiconductor element
US10995403B2 (en) Method of forming aluminum nitride film and method of manufacturing semiconductor light-emitting element
JP5265404B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP7053209B2 (en) Manufacturing method of semiconductor growth substrate, semiconductor element, semiconductor light emitting element and semiconductor growth substrate
JP4936653B2 (en) Sapphire substrate and light emitting device using the same
JP2019040898A (en) Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element and method of manufacturing semiconductor element
JP7305428B2 (en) Semiconductor growth substrate, semiconductor device, semiconductor light-emitting device, and semiconductor device manufacturing method
WO2019235459A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element and method for producing semiconductor element
JP7350477B2 (en) Method for manufacturing semiconductor growth substrate, semiconductor element, semiconductor light emitting device, and semiconductor growth substrate
TWI828945B (en) Nitride semiconductor ultraviolet light-emitting element
JP2009231609A (en) Production method of semiconductor light-emitting element
JP2008118048A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
WO2020075849A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor element
JP2005019964A (en) Ultraviolet light-emitting element
JP2009224704A (en) Nitride semiconductor light-emitting device, epitaxial wafer, and method of manufacturing the nitride semiconductor light-emitting device
JP7345286B2 (en) Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and semiconductor element manufacturing method