WO2020250762A1 - 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜 - Google Patents

半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜 Download PDF

Info

Publication number
WO2020250762A1
WO2020250762A1 PCT/JP2020/021873 JP2020021873W WO2020250762A1 WO 2020250762 A1 WO2020250762 A1 WO 2020250762A1 JP 2020021873 W JP2020021873 W JP 2020021873W WO 2020250762 A1 WO2020250762 A1 WO 2020250762A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
semiconductor nanoparticle
nanoparticle composite
semiconductor
aliphatic
Prior art date
Application number
PCT/JP2020/021873
Other languages
English (en)
French (fr)
Inventor
信人 城戸
洋和 佐々木
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to CN202410367969.6A priority Critical patent/CN118421317A/zh
Priority to US17/596,483 priority patent/US20220308274A1/en
Priority to KR1020217042424A priority patent/KR20220020279A/ko
Priority to JP2021526029A priority patent/JP7468525B2/ja
Priority to CN202080043419.9A priority patent/CN114127229B/zh
Publication of WO2020250762A1 publication Critical patent/WO2020250762A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/207Filters comprising semiconducting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present invention relates to a semiconductor nanoparticle composite, a semiconductor nanoparticle composite dispersion, a semiconductor nanoparticle composite composition, and a semiconductor nanoparticle composite cured film.
  • Semiconductor nanoparticles that are so small that the quantum confinement effect is exhibited have a bandgap that depends on the particle size.
  • Excitons formed in semiconductor nanoparticles by means such as photoexcitation and charge injection emit photons with energy corresponding to the band gap by recombination, so the composition and particle size of the semiconductor nanoparticles are appropriately selected. This makes it possible to obtain light emission at a desired wavelength.
  • semiconductor nanoparticles were mainly studied for elements including Cd and Pb, but since Cd and Pb are regulated substances such as restrictions on the use of specific harmful substances, in recent years non-Cd type. Research on non-Pb-based semiconductor nanoparticles has been carried out.
  • Semiconductor nanoparticles are being attempted to be applied to various applications such as display applications, biomarking applications, and solar cell applications.
  • Semiconductor nanoparticles and semiconductor nanoparticles composites are prepared as dispersions by dispersing them in a dispersion medium, and are applied to various fields.
  • a dispersion liquid dispersed in a polar organic dispersion medium such as glycol ethers and glycol ether esters is used.
  • the semiconductor nanoparticles and the semiconductor nanoparticle composite synthesized by the liquid phase method are highly hydrophobic, they can be easily dispersed in a non-polar dispersion medium, but in a polar dispersion medium having an SP value of 8.5 or more. Dispersion was difficult.
  • a ligand exchange method is known as a method for making semiconductor nanoparticles dispersible in a polar dispersion medium having an SP value of 8.5 or more.
  • the ligand exchange method is a method of replacing a ligand contained in a semiconductor nanoparticle complex obtained by binding a ligand to the surface of semiconductor nanoparticles with a ligand having a hydrophilic group.
  • the semiconductor nanoparticle composite thus obtained can be dispersed in a polar dispersion medium.
  • the semiconductor nanoparticle composites disclosed in Non-Patent Documents 1 to 5 and Patent Document 1 enable dispersion of semiconductor nanoparticles in a polar dispersion medium, but the luminous efficiency is lowered. There's a problem.
  • the present invention provides a semiconductor nanoparticle composite that can be dispersed in a polar organic dispersion medium while maintaining the high fluorescence quantum efficiency (QY) of the semiconductor nanoparticles.
  • QY fluorescence quantum efficiency
  • Thiocarboxylic acid is known as a ligand for dispersing semiconductor nanoparticles in water, which is a kind of polar dispersion medium.
  • a semiconductor nanoparticles complex in which thiocarboxylic acid is coordinated with semiconductor nanoparticles is treated with an alkaline solution, the carboxyl group of the thiocarboxylic acid is ionized to form a carboxylate, and this carboxylate is ionized by hydration. As a result, electrostatic repulsion occurs, and it becomes possible to disperse in water.
  • the obtained semiconductor nanoparticle composite becomes a polar organic solvent while maintaining high fluorescence quantum efficiency.
  • the inventors have found that it is possible to disperse.
  • the present invention (1) is a semiconductor nanoparticle composite in which an organic ligand containing a ligand I is coordinated on the surface of the semiconductor nanoparticles.
  • the organic ligand is a ligand containing an organic group and a coordinating group.
  • the ligand I is a thiocarboxylic acid represented by the following general formula (1).
  • the mole fraction of the ligand I in the organic ligand is 0.20 mol% to 35.00 mol%.
  • a semiconductor nanoparticle composite characterized by the above.
  • the present invention (2) is characterized in that the organic ligand contains at least the ligand I and the polar ligand II having an SP value of 9.0 or more.
  • the semiconductor nanoparticle composite of (1) It provides the body.
  • the present invention (3) provides the semiconductor nanoparticle composite of (2), which is characterized in that the SP value of the polar ligand II is 9.3 or more.
  • the present invention (4) provides a semiconductor nanoparticle composite according to any one of (1) to (3), wherein the ligand I has a molecular weight of 300 or less.
  • the present invention (5) provides a semiconductor nanoparticle composite according to any one of (2) to (4), wherein the molecular weight of the polar ligand II is larger than the molecular weight of the ligand I.
  • the present invention (6) is characterized in that the ligand I is composed of one or more selected from the group consisting of thioglycolic acid, mercaptopropionic acid, mercaptocaproic acid, mercaptoundecanoic acid and thioapple acid ( It provides the semiconductor nanoparticle composite according to any one of 1) to (5).
  • the present invention (7) is characterized in that the ligand I comprises one or more selected from the group consisting of thioglycolic acid, mercaptopropionic acid and thioapple acid (1) to (6).
  • the present invention provides a semiconductor nanoparticle composite of the above.
  • the present invention (8) provides the semiconductor nanoparticle composite according to any one of (2) to (7), wherein the coordinating group of the polar ligand II is a carboxyl group or a mercapto group. It is a thing.
  • the present invention (9) provides the semiconductor nanoparticle composite according to any one of (2) to (8), wherein the organic group of the polar ligand II contains an ether bond or an ester bond. is there.
  • the present invention (10) provides the semiconductor nanoparticle composite according to any one of (2) to (9), wherein the organic ligand contains an aliphatic ligand.
  • the aliphatic ligand comprises one or more selected from the group consisting of an aliphatic thiol, an aliphatic carboxylic acid, an aliphatic amine, an aliphatic phosphine and an aliphatic phosphine oxide. It provides the featured semiconductor nanoparticle composite of (10).
  • the present invention (12) is characterized in that the molar ratio (aliphatic ligand / polar ligand II) of the aliphatic ligand to the polar ligand II is 0.10 to 5.00 (10) or. It provides the semiconductor nanoparticle composite of (11).
  • the present invention (13) is characterized in that the molar ratio (aliphatic ligand / polar ligand II) of the aliphatic ligand to the polar ligand II is 0.10 to 3.00 (10) to 3.00. (12) Any one of the semiconductor nanoparticle composites is provided.
  • the present invention (14) provides the semiconductor nanoparticle composite according to any one of (1) to (13), wherein the semiconductor nanoparticles contain zinc on the surface of the semiconductor nanoparticles. Is.
  • the present invention provides the semiconductor nanoparticle composite according to any one of (1) to (14), wherein the semiconductor nanoparticles contain indium and phosphorus.
  • the present invention (16) provides the semiconductor nanoparticle composite according to any one of (1) to (15), wherein the fluorescent particle yield of the semiconductor nanoparticle composite is 85% or more.
  • the present invention (17) provides the semiconductor nanoparticle composite according to any one of (1) to (16), wherein the half width of the emission spectrum of the semiconductor nanoparticle composite is 38 nm or less. Is.
  • the present invention provides a semiconductor nanoparticle composite dispersion liquid in which any of the semiconductor nanoparticle composites (1) to (17) is dispersed in an organic dispersion medium.
  • the present invention (19) is a semiconductor nanoparticle composite composition in which any of the semiconductor nanoparticle composites (1) to (17) is dispersed in a dispersion medium, wherein the dispersion medium is a monomer or a prepolymer.
  • a semiconductor nanoparticle composite composition is provided.
  • the present invention (20) provides a semiconductor nanoparticle composite cured film in which any of the semiconductor nanoparticle composites (1) to (17) is dispersed in a polymer matrix.
  • the range indicated by "-" is a range including the numbers indicated at both ends thereof.
  • the present invention relates to a semiconductor nanoparticle composite in which at least two or more ligands are coordinated to semiconductor nanoparticles.
  • the semiconductor nanoparticle composite is a semiconductor nanoparticle composite having light emitting characteristics.
  • the semiconductor nanoparticle composite of the present invention is a particle that absorbs light of 340 nm to 480 nm and emits light having an emission peak wavelength of 400 nm to 750 nm.
  • the semiconductor nanoparticle composite of the present invention is a semiconductor nanoparticle composite in which an organic ligand containing a ligand I is coordinated on the surface of the semiconductor nanoparticles.
  • the organic ligand is a ligand containing an organic group and a coordinating group.
  • the ligand I has the following general formula (1): HS-X- (COOH) n (1) (In the general formula (1), X is a (n + 1) -valent hydrocarbon group, and n is a natural number of 1 to 3.) It is a thiocarboxylic acid represented by It is a semiconductor nanoparticle composite in which the molar fraction of the ligand I in the organic ligand is 0.20 mol% to 35.00 mol%.
  • the semiconductor nanoparticle composite of the present invention has semiconductor nanoparticles and an organic ligand coordinated on the surface of the semiconductor nanoparticles.
  • the semiconductor nanoparticle composite of the present invention has high light emission characteristics and can be dispersed in a polar dispersion medium.
  • the full width at half maximum (FWHM) of the emission spectrum of the semiconductor nanoparticle composite of the present invention is preferably 38 nm or less, and more preferably 35 nm or less.
  • FWHM full width at half maximum
  • the fluorescence quantum efficiency (QY) of the semiconductor nanoparticle composite of the present invention is preferably 85% or more, more preferably 88% or more.
  • QY fluorescence quantum efficiency
  • the optical properties of the semiconductor nanoparticle composite can be measured using a quantum efficiency measurement system.
  • the semiconductor nanoparticle composite is dispersed in a dispersion liquid, and excitation light is applied to obtain an emission spectrum.
  • the fluorescence quantum efficiency (QY) and the half-value width (FWHM) are calculated from the emission spectrum after re-excitation correction excluding the re-excitation fluorescence emission spectrum of the portion re-excited and fluorescently emitted from the emission spectrum obtained here.
  • the dispersion liquid include normal hexane, PGMEA, and chloroform.
  • the semiconductor nanoparticles constituting the semiconductor nanoparticles composite of the present invention are not particularly limited as long as they satisfy the above-mentioned fluorescence quantum efficiency and emission characteristics such as half-value width.
  • the particles may be made of one type of semiconductor, or may be particles made of two or more different types of semiconductors.
  • the core-shell structure may be composed of these semiconductors.
  • semiconductor nanoparticles are core-shell type particles having a core containing group III and group V elements and a shell containing group II and group VI elements covering at least a part of the core. May be good.
  • the shell may have a plurality of shells having different compositions, or may have one or more gradient-type shells in which the ratio of the elements constituting the shell changes in the shell.
  • Group III elements include In, Al and Ga.
  • Specific examples of the Group V element include P, N and As.
  • the composition for forming the core is not particularly limited, but InP is preferable from the viewpoint of light emission characteristics and safety.
  • the group II element is not particularly limited, and examples thereof include Zn and Mg.
  • Group VI elements include, for example, S, Se, Te and O.
  • the composition for forming the shell is not particularly limited, but from the viewpoint of the quantum confinement effect, ZnS, ZnSe, ZnSeS, ZnTeS, ZnTeSe and the like are preferable. In particular, when the Zn element is present on the surface of the semiconductor nanoparticles, the effect of the present invention can be more exerted.
  • the shell When having a plurality of shells, it is sufficient that at least one shell having the above-mentioned composition is included. Further, when the shell has a gradient type shell in which the ratio of the elements constituting the shell changes, the shell does not necessarily have to have the composition according to the composition notation.
  • whether or not the shell covers at least a part of the core and the element distribution inside the shell are determined by, for example, energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. It can be confirmed by compositional analysis using.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • a core of semiconductor nanoparticles can be formed by heating a precursor mixture obtained by mixing a group III precursor, a group V precursor, and, if necessary, an additive in a solvent.
  • solvent a coordinating solvent or a non-coordinating solvent is used.
  • solvents include 1-octadecene, hexadecane, squalene, oleylamine, trioctylphosphine, trioctylphosphine oxide and the like.
  • Group III precursors include, but are not limited to, acetates, carboxylates, and halides containing the Group III elements.
  • Group V precursors include, but are not limited to, organic compounds and gases containing the Group V elements.
  • the precursor is a gas
  • a core can be formed by reacting while injecting a gas into a precursor mixture containing a mixture other than the gas.
  • the semiconductor nanoparticles may contain one or more elements other than group III and group V as long as the effects of the present invention are not impaired. In that case, a precursor of the elements may be added at the time of core formation. Good.
  • the additive examples include, but are not limited to, carboxylic acids, amines, thiols, phosphines, phosphine oxides, phosphinic acids, and phosphonic acids as dispersants.
  • the dispersant can also serve as a solvent.
  • the emission characteristics of the semiconductor nanoparticles can be improved by adding a halide as needed.
  • the In precursor and, if necessary, a metal precursor solution with a dispersant added to the solvent are mixed under vacuum, once heated at 100 ° C. to 300 ° C. for 6 to 24 hours, and then further.
  • the P precursor is added and heated at 200 ° C. to 400 ° C. for 3 to 60 minutes, and then cooled.
  • a core particle dispersion containing core particles can be obtained by further adding a halogen precursor and heat-treating at 25 ° C. to 300 ° C., preferably 100 ° C. to 300 ° C., more preferably 150 ° C. to 280 ° C. ..
  • the semiconductor nanoparticles By adding a shell-forming precursor to the synthesized core particle dispersion, the semiconductor nanoparticles have a core-shell structure, and the fluorescence quantum efficiency (QY) and stability can be improved.
  • QY fluorescence quantum efficiency
  • the elements that make up the shell are thought to have a structure such as an alloy, heterostructure, or amorphous structure on the surface of the core particles, but it is also possible that some of them have moved to the inside of the core particles due to diffusion.
  • the added shell-forming element mainly exists near the surface of the core particles and has a role of protecting the semiconductor nanoparticles from external factors.
  • the shell covers at least a part of the core, and more preferably the entire surface of the core particles is uniformly covered.
  • carboxylic acid salts such as acetate, propionate, myristate, and oleate, halides, organic salts, and the like can be used.
  • the Zn precursor and the Se precursor are added to the core particle dispersion described above, and then heated at 150 ° C. to 300 ° C., preferably 180 ° C. to 250 ° C., and then the Zn precursor and the S precursor are added. Then, it is heated at 200 ° C. to 400 ° C., preferably 250 ° C. to 350 ° C. As a result, core-shell type semiconductor nanoparticles can be obtained.
  • the shell precursor may be mixed in advance and added once or in multiple times, or each may be added separately in one time or in multiple times.
  • the temperature may be changed and heated after each shell precursor is added.
  • the method for producing semiconductor nanoparticles is not particularly limited, and in addition to the methods shown above, conventional methods such as a hot injection method, a uniform solvent method, a reverse micelle method, and a CVD method can be used. Any method may be adopted.
  • a ligand is coordinated on the surface of the semiconductor nanoparticles.
  • the coordination described here means that the ligand chemically affects the surface of the semiconductor nanoparticles. It may be coordinated to the surface of the semiconductor nanoparticles or in any other bonding mode (eg, covalent bond, ionic bond, hydrogen bond, etc.) or coordinated to at least a portion of the surface of the semiconductor nanoparticles. If it has children, it does not necessarily have to form a bond.
  • the ligand that coordinates the semiconductor nanoparticles is an organic ligand, which has an organic group and a coordinating group.
  • An organic ligand containing ligand I is coordinated on the surface of the semiconductor nanoparticles. That is, the semiconductor nanoparticle complex of the present invention contains, as a ligand, a ligand I and an organic ligand other than at least one kind of ligand I.
  • the organic ligand other than the ligand I may be one kind or two or more kinds.
  • Ligand I is a thiocarboxylic acid represented by the following general formula (1).
  • X is a (n + 1) -valent hydrocarbon group, and n is a natural number of 1 to 3.
  • Ligand I may be used alone or in combination of two or more.
  • the molar fraction of ligand I in the entire organic ligand is 0.20 mol% to 35.00 mol%, preferably 0.20 to 30.00 mol%.
  • the molar fraction of ligand I in the entire organic ligand is within the above range, it becomes possible to disperse the ligand I in the polar organic dispersion medium while maintaining high quantum efficiency.
  • Ligand I preferably has a molecular weight of 300 or less. When the molecular weight of the ligand I is 300 or less, the dispersibility in the organic solvent is improved.
  • the ligand I is preferably one or more selected from the group consisting of thioglycolic acid, mercaptopropionic acid, mercaptohexanoic acid, mercaptoundecanoic acid and thioapple acid, and further from thioglycolic acid, mercaptopropionic acid and thioapple acid. It is preferable that there is at least one selected from the group.
  • organic ligands other than ligand I include polar ligand II.
  • the polar ligand II is a ligand containing a group having a charge bias in an organic group.
  • the polar ligand II may be used alone or in combination of two or more.
  • the semiconductor nanoparticle composite of the present invention preferably contains a ligand I and a polar ligand II as an organic ligand.
  • the SP value of the polar ligand II is preferably 9.0 or more, and more preferably 9.3 or more. When the SP value of the polar ligand II is in the above range, the dispersibility in a polar solvent such as PGMEA is improved.
  • the SP value of the polar ligand can be calculated and determined by the Y-MB method.
  • the coordinating group of polar ligand II is preferably a carboxyl group or a mercapto group.
  • the coordinating group of the polar ligand II is a carboxyl group or a mercapto group, the long-term stability of the semiconductor nanoparticle composite is improved.
  • the organic group of the polar ligand II is not particularly limited as long as the SP value of the polar ligand II is 9.0 or more, and is an alkyl group, an alkynyl group, an alkenyl group, an alkoxy group, a hydroxy group, an aldehyde group, a carboxyl group, or an amino group. , Imino group, nitro group, cyano group, vinyl group, aryl group, halogeno group, ketone group, ether bond, ester bond, siloxane bond and other groups, and in particular, ether bond or ester bond may be included. preferable.
  • the organic group of the polar ligand II contains an ether bond or an ester bond, the dispersibility of the semiconductor nanoparticle composite in a highly polar organic dispersion medium is improved.
  • the molecular weight of polar ligand II is preferably larger than the molecular weight of ligand I.
  • the molecular weight of the polar ligand II is larger than the molecular weight of the ligand I, the dispersibility of the semiconductor nanoparticle complex in the organic dispersion medium is improved.
  • organic ligands other than ligand I include aliphatic ligands.
  • the organic ligand contains an aliphatic ligand, the dispersibility window of the semiconductor nanoparticle complex is widened, and a dispersion medium having a wider SP value can be selected as the organic dispersion medium.
  • the aliphatic ligand may be used alone or in combination of two or more.
  • the aliphatic ligand is preferably one or more selected from the group consisting of aliphatic thiols, aliphatic carboxylic acids, aliphatic amines, aliphatic phosphines and aliphatic oxides.
  • the organic ligand preferably contains a polar ligand II and an aliphatic ligand in addition to the ligand I.
  • the molar ratio of the aliphatic ligand to the polar ligand II is 0.10 to 5.00. It is preferably 0.10 to 3.00, and more preferably 0.10 to 3.00.
  • the dispersibility window is widened, and a dispersion medium having a wider SP value can be selected as the dispersion medium. ..
  • the mole fraction of the total mole of the ligand II and the aliphatic ligand in the entire organic ligand is preferably 58.50 to 99.80 mol%, particularly preferably. Is 66.50 to 99.80 mol%.
  • the mole fraction of the total mole of the ligand I, the ligand II and the aliphatic ligand in the entire organic ligand is preferably 90.0 to 100.0 mol%. Particularly preferably, it is 95.0 to 100.0 mol%.
  • the semiconductor nanoparticle composite dispersion liquid of the present invention is a semiconductor nanoparticle composite dispersion liquid in which the semiconductor nanoparticle composite of the present invention is dispersed in an organic dispersion medium.
  • the semiconductor nanoparticle composite of the present invention can be dispersed in an organic dispersion medium to form a semiconductor nanoparticle composite dispersion liquid.
  • the state in which the semiconductor nanoparticle composite is dispersed in the dispersion medium means that the semiconductor nanoparticle composite does not precipitate when the semiconductor nanoparticle composite and the dispersion medium are mixed, or Indicates that the state does not remain as visible turbidity (cloudiness).
  • a semiconductor nanoparticle composite dispersed in an organic dispersion medium is referred to as a semiconductor nanoparticle composite dispersion.
  • the semiconductor nanoparticle composite of the present invention is also dispersed in an organic dispersion medium having an SP value of 8.0 or more, an organic dispersion medium having an SP value of 9.0 or more, or an organic dispersion medium having an SP value of 10.0 or more. Then, a semiconductor nanoparticle composite dispersion liquid is formed.
  • the SP value here is a value calculated from the Hansen solubility parameter in the same manner as in the method for determining the SP value of the polar ligand.
  • the Hansen solubility parameter is described in the handbook, for example, "Hansen Solubility Parameters: A User's Handbook", 2nd Edition, C.I. M. Hanson (2007), values in, Hanson and Abbot et al. It can be determined using the Practice (HSPiP) program (2nd edition) provided by.
  • Organic dispersion media not described in the handbook can be calculated and determined by the Y-MB method.
  • the semiconductor nanoparticle composite of the present invention contains alcohols such as methanol, ethanol, isopropyl alcohol and normal propyl alcohol, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone as organic dispersion media.
  • alcohols such as methanol, ethanol, isopropyl alcohol and normal propyl alcohol
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone as organic dispersion media.
  • Esters such as methyl acetate, ethyl acetate, isopropyl acetate, normal propyl acetate, normal butyl acetate, ethyl lactate, ethers such as diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , Diethylene glycol monomethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol diethyl Glycol ethers such as ether and dipropylene glycol diethyl ether, ethylene glycol acetate, ethylene glycol
  • the semiconductor nanoparticle composite of the present invention can be dispersed in PGMEA and PGME.
  • PGMEA and PGME are generally used as diluting solvents, and if the semiconductor nanoparticle composite can be dispersed in PGMEA and PGME, the semiconductor nanoparticle composite can be widely applied in the photoresist field. ..
  • the semiconductor nanoparticle composite of the present invention can disperse semiconductor nanoparticles in a mass fraction of 25% by mass or more, preferably 30% by mass or more.
  • the semiconductor nanoparticle composite composition of the present invention is a semiconductor nanoparticle composite composition in which the semiconductor nanoparticle composite of the present invention is dispersed in a monomer or a prepolymer.
  • a monomer or prepolymer can be selected as the organic dispersion medium of the semiconductor nanoparticle composite dispersion liquid of the present invention to form a semiconductor nanoparticle composite composition.
  • the monomer is not particularly limited, but a (meth) acrylic monomer that can be widely selected for application of semiconductor nanoparticles is preferable.
  • the (meth) acrylic monomer may be methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, or isoamyl (meth) depending on the application of the semiconductor nanoparticle dispersion liquid.
  • the acrylic monomer is preferably one or a mixture of two or more selected from lauryl (meth) acrylate and 1,6-hexadioldi (meth) acrylate depending on the application of the semiconductor nanoparticle dispersion medium.
  • a prepolymer can be selected as the organic dispersion medium of the semiconductor nanoparticle composite dispersion liquid of the present invention.
  • the prepolymer is not particularly limited, and examples thereof include an acrylic resin prepolymer, a silicone resin prepolymer, and an epoxy resin prepolymer.
  • a cross-linking agent may be added to the semiconductor nanoparticle composite composition of the present invention.
  • the cross-linking agent depends on the type of monomer in the semiconductor nanoparticle composite composition: polyfunctional (meth) acrylate, polyfunctional silane compound, polyfunctional amine, polyfunctional carboxylic acid, polyfunctional thiol, polyfunctional alcohol, and polyfunctional isocyanate. It is selected from.
  • aliphatic hydrocarbons such as pentane, hexane, cyclohexane, isohexane, heptane, octane and petroleum ether, alcohols, ketones, esters and glycol ethers , Glycol ether esters, aromatic hydrocarbons such as benzene, toluene, xylene and mineral spirits, and various organic solvents that do not affect curing, such as alkyl halides such as dichloromethane and chloroform.
  • the above-mentioned organic solvent can be used not only for diluting the semiconductor nanoparticle composite composition but also as an organic dispersion medium. That is, it is also possible to disperse the semiconductor nanoparticle composite of the present invention in the above-mentioned organic solvent to obtain a semiconductor nanoparticle composite dispersion liquid.
  • the semiconductor nanoparticle composite composition of the present invention has an appropriate initiator, scattering agent, catalyst, binder, surfactant, adhesion accelerator, and antioxidant depending on the type of monomer in the semiconductor nanoparticle composite composition.
  • Agents, UV absorbers, anti-aggregation agents, dispersants and the like may be included.
  • the semiconductor nanoparticle composite composition may contain a scattering agent.
  • the scattering agent is a metal oxide such as titanium oxide or zinc oxide, and the particle size of these is preferably 100 nm to 500 nm. From the viewpoint of the effect of scattering, the particle size of the scattering agent is more preferably 200 nm to 400 nm. By including the scattering agent, the absorbance is improved by about twice.
  • the content of the scattering agent is preferably 2% by mass to 30% by mass with respect to the composition, and more preferably 5% by mass to 20% by mass from the viewpoint of maintaining the pattern property of the composition.
  • the diluted composition of the present invention is obtained by diluting the above-mentioned semiconductor nanoparticle composite composition of the present invention with an organic solvent.
  • the organic solvent for diluting the semiconductor nanoparticle composition is not particularly limited, and for example, aliphatic hydrocarbons such as pentane, hexane, cyclohexane, isohexane, heptane, octane and petroleum ether, alcohols, ketones, etc.
  • aliphatic hydrocarbons such as pentane, hexane, cyclohexane, isohexane, heptane, octane and petroleum ether, alcohols, ketones, etc.
  • esters include esters, glycol ethers, glycol ether esters, aromatic hydrocarbons such as benzene, toluene, xylene and mineral spirit, and alkyl halides such as dichloromethane and chloroform.
  • glycol ethers and glycol ether esters are preferable from the viewpoint of solubility in a wide range of resins and film uniformity at the time of coating film.
  • the semiconductor nanoparticle composite cured film is a film containing a semiconductor nanoparticle composite and represents a cured film.
  • the semiconductor nanoparticle composite cured film can be obtained by curing the above-mentioned semiconductor nanoparticle composite composition or diluted composition into a film.
  • the semiconductor nanoparticle composite cured film of the present invention contains a semiconductor nanoparticle composite and a polymer matrix.
  • the polymer matrix is not particularly limited, and examples thereof include (meth) acrylic resin, silicone resin, epoxy resin, silicone resin, maleic acid resin, butyral resin, polyester resin, melamine resin, phenol resin, and polyurethane resin.
  • a semiconductor nanoparticle composite cured film may be obtained by curing the semiconductor nanoparticle composite composition described above.
  • the semiconductor nanoparticle composite cured film may further contain a cross-linking agent.
  • the method for curing the film is not particularly limited, but the film can be cured by a curing method suitable for the composition constituting the film, such as heat treatment and ultraviolet treatment.
  • the semiconductor nanoparticles and the ligand coordinated on the surface of the semiconductor nanoparticles contained in the cured film of the semiconductor nanoparticle composite of the present invention preferably constitute the above-mentioned semiconductor nanoparticle composite.
  • the absorbance of the semiconductor nanoparticle composite cured film can be increased.
  • the absorbance is preferably 1.0 or more, preferably 1.3 or more, with respect to light having a wavelength of 450 nm from the perpendicular direction of the semiconductor nanoparticle composite cured film. More preferably, it is more preferably 1.5 or more.
  • the semiconductor nanoparticle composite cured film of the present invention contains a semiconductor nanoparticle composite having high light emitting characteristics, it is possible to provide a semiconductor nanoparticle composite cured film having high light emitting characteristics.
  • the fluorescence quantum efficiency of the cured film of the semiconductor nanoparticle composite is preferably 70% or more, and more preferably 80% or more.
  • the thickness of the semiconductor nanoparticle composite cured film is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less in order to reduce the size of the device to which the semiconductor nanoparticle composite cured film is applied. Is even more preferable.
  • Example 1 An InP-based semiconductor nanoparticle composite was produced according to the following method.
  • Indium acetate (0.3 mmol) and zinc oleate (0.6 mmol) are added to a mixture of oleic acid (0.9 mmol), 1-dodecanethiol (0.1 mmol) and octadecene (10 mL) under vacuum ( ⁇ 20 Pa).
  • oleic acid 0.9 mmol
  • 1-dodecanethiol 0.1 mmol
  • octadecene 10 mL
  • the mixture reacted under vacuum was placed in a nitrogen atmosphere at 25 ° C., tris (trimethylsilyl) phosphine (0.2 mmol) was added, and then the mixture was heated to about 300 ° C.
  • Triethylene glycol monomethyl ether thiol TAG-SH
  • TAG-SH Triethylene glycol monomethyl ether thiol
  • the precipitate was dissolved in 1M NaOH solution (40 mL), NaCl (10 g) was added, and the mixture was stirred at room temperature for 1 hour to remove the ethyl group at the end of PEG.
  • the solution was adjusted to pH 3.0 by the addition of 6M HCl.
  • the obtained solution was extracted with a chloroform-aqueous system to obtain PEG-COOH having a molecular weight of 450.
  • a semiconductor nanoparticle 1-octadecene dispersion was prepared by dispersing the purified semiconductor nanoparticles in 1-octadecene so as to have a mass ratio of 10% by mass in a flask. 10.0 g of the prepared semiconductor nanoparticles 1-octadecene dispersion was placed in a flask, and 0.08 g of thioglycolic acid as a thiocarboxylic acid and 4.0 g of triethylene glycol monomethyl ether thiol (TEG-SH) as a polar ligand were added.
  • TAG-SH triethylene glycol monomethyl ether thiol
  • the optical properties of the semiconductor nanoparticles were measured using a fluorescence quantum efficiency measurement system (QE-2100, manufactured by Otsuka Electronics Co., Ltd.).
  • the semiconductor nanoparticle composite obtained by the synthesis is separated, dispersed in a dispersion medium, and irradiated with excitation light to obtain an emission spectrum.
  • the fluorescence quantum efficiency (QY) and the half-value width (FWHM) are calculated from the emission spectrum after re-excitation correction excluding the re-excitation fluorescence emission spectrum of the portion re-excited and fluorescently emitted from the emission spectrum obtained here.
  • PGMEA was used as the dispersion.
  • the obtained fluorescence characteristics and full width at half maximum are shown in Table 2.
  • Thermogravimetric analysis The purified semiconductor nanoparticle composite was heated to 550 ° C. by differential thermogravimetric analysis (DTA-TG), held for 10 minutes, and cooled. The residual mass after the analysis was taken as the mass of the semiconductor nanoparticles, and the mass ratio of the semiconductor nanoparticles to the semiconductor nanoparticles composite was confirmed from this value.
  • DTA-TG differential thermogravimetric analysis
  • Example 2 Except for using 0.01 g of 3-mercaptopropionic acid as the thiocarboxylic acid, 4.0 g of methyl mercaptopropionate as the polar ligand, and 1.0 g of oleic acid as the aliphatic ligand in the process of preparing the semiconductor nanoparticle complex.
  • a semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 3 In the process of preparing the semiconductor nanoparticle complex, except that 0.01 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, 4.0 g of PEG-SH was used as the polar ligand, and 1.0 g of oleic acid was used as the aliphatic ligand.
  • a semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 4 Example 1 except that 0.03 g of thiolinic acid was used as the thiocarboxylic acid, 4.0 g of PEG-SH was used as the polar ligand, and 1.0 g of oleic acid was used as the aliphatic ligand in the step of preparing the semiconductor nanoparticle composite.
  • a semiconductor nanoparticle composite was obtained in the same manner as in.
  • Example 5 Except for using 0.08 g of 6-mercaptohexanoic acid as the thiocarboxylic acid, 4.0 g of the mercaptopropionic acid PEG ester as the polar ligand, and 1.0 g of oleic acid as the aliphatic ligand in the process of preparing the semiconductor nanoparticle complex. Obtained a semiconductor nanoparticle composite in the same manner as in Example 1.
  • Example 6 Except for using 0.13 g of 11-mercaptoundecanoic acid as the thiocarboxylic acid, 4.0 g of the mercaptopropionic acid PEG ester as the polar ligand, and 1.0 g of oleic acid as the aliphatic ligand in the step of preparing the semiconductor nanoparticle complex. Obtained a semiconductor nanoparticle composite in the same manner as in Example 1.
  • Example 7 In the process of preparing the semiconductor nanoparticle complex, 0.25 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, 4.0 g of PEG-COOH was used as the polar ligand, and 1.0 g of oleic acid was used as the aliphatic ligand. A semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 8 In the process of preparing the semiconductor nanoparticle complex, it was carried out except that 0.5 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, 4.0 g of PEG-SH was used as the polar ligand, and 1.0 g of oleic acid was used as the aliphatic ligand. A semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 9 (Example 9) Conducted except that 0.03 g of 3-mercaptopropionic acid as thiocarboxylic acid, 2.5 g of PEG-SH as polar ligand, and 2.5 g of oleic acid as aliphatic ligand were used in the step of preparing the semiconductor nanoparticle complex.
  • a semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 10 In the process of preparing the semiconductor nanoparticle composite, 0.03 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, 2.0 g of PEG-SH was used as the polar ligand, and 3.0 g of oleic acid was used as the aliphatic ligand. A semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 11 In the step of preparing the semiconductor nanoparticle composite, 0.03 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, 1.5 g of PEG-SH was used as the polar ligand, and 3.5 g of oleic acid was used as the aliphatic ligand.
  • the semiconductor nanoparticle composite was obtained by stirring at 110 ° C. for 60 minutes in a nitrogen atmosphere and cooling to 25 ° C.
  • the reaction solution containing the semiconductor nanoparticle composite was transferred to a centrifuge tube, acetone was added, and the mixture was centrifuged at 4000 G for 20 minutes to separate into a transparent organic phase and a semiconductor nanoparticle composite phase.
  • the organic phase was removed and the remaining semiconductor nanoparticle composite phase was recovered.
  • 5.0 mL of normal hexane was added to the obtained semiconductor nanoparticle composite phase to prepare a dispersion.
  • 50 mL of acetone was added to the obtained dispersion, and the mixture was centrifuged at 4000 G for 20 minutes. After centrifugation, the clear supernatant was removed and the precipitate was collected. This operation was repeated several times to obtain a purified semiconductor nanoparticle composite.
  • Hexane was used as the dispersion medium for measuring the fluorescence quantum efficiency.
  • Example 12 Example 1 except that 0.03 g of thioglycolic acid was used as the thiocarboxylic acid, 4.9 g of TEG-SH was used as the polar ligand, and 0.1 g of dodecanethiol was used as the aliphatic ligand in the step of preparing the semiconductor nanoparticle composite.
  • a semiconductor nanoparticle composite was obtained in the same manner as in.
  • Example 13 In the step of preparing the semiconductor nanoparticle composite, 0.03 g of thioglycolic acid was used as the thiocarboxylic acid and 5.0 g of PEG-SH was used as the polar ligand, and no aliphatic ligand was added. A semiconductor nanoparticle composite was obtained in the same manner as in Example 1 except for the above.
  • Example 14 Except for using 0.03 g of 3-mercaptopropionic acid as the thiocarboxylic acid, 4.0 g of PEG-NH 2 as the polar ligand, and 1.0 g of oleic acid as the aliphatic ligand in the process of preparing the semiconductor nanoparticle complex.
  • a semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 15 In the process of preparing a semiconductor nanoparticle complex, 0.03 g of 3-mercaptopropionic acid as a thiocarboxylic acid, 3.5 g of 6-mercapto-1-hexanol as a polar ligand, and 1.5 g of oleic acid as an aliphatic ligand are used. A semiconductor nanoparticle composite was obtained in the same manner as in Example 1 except for the above. Ethanol was used as the dispersion medium for measuring the fluorescence quantum efficiency.
  • Example 16 The same as in Example 1 except that 4.0 g of methyl mercaptopropionate was used as the polar ligand and 1.0 g of oleic acid was used as the aliphatic ligand in the step of preparing the semiconductor nanoparticle complex without adding thiocarboxylic acid.
  • a semiconductor nanoparticle composite was obtained by the method.
  • Example 17 Except for using 0.003 g of 3-mercaptopropionic acid as the thiocarboxylic acid, 4.0 g of methyl mercaptopropionate as the polar ligand, and 1.0 g of oleic acid as the aliphatic ligand in the process of preparing the semiconductor nanoparticle complex.
  • a semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 18 Except for using 0.006 g of 3-mercaptopropionic acid as the thiocarboxylic acid, 4.0 g of methyl mercaptopropionate as the polar ligand, and 1.0 g of oleic acid as the aliphatic ligand in the process of preparing the semiconductor nanoparticle complex.
  • a semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 19 In the process of preparing the semiconductor nanoparticle complex, it was carried out except that 0.75 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, 4.0 g of PEG-SH was used as the polar ligand, and 1.0 g of oleic acid was used as the aliphatic ligand. A semiconductor nanoparticle composite was obtained in the same manner as in Example 1.
  • Example 20 In the process of preparing the semiconductor nanoparticle complex, 4.0 g of 3-mercaptopropionic acid was used as the thiocarboxylic acid, and a saturated sodium hydrogen carbonate solution was further added without adding an aliphatic ligand and a polar ligand under a nitrogen atmosphere.
  • the semiconductor nanoparticle composite was obtained by stirring at 80 ° C. for 12 hours and cooling to 25 ° C.
  • the reaction solution containing the semiconductor nanoparticle complex was transferred to a centrifuge tube and centrifuged at 4000 G for 20 minutes to separate into a transparent 1-octadecene phase and an aqueous phase containing the semiconductor nanoparticle complex.
  • the aqueous phase was recovered and the semiconductor nanoparticle composite was reprecipitated in a large amount of methanol.
  • the solid was collected by filtration and dried to obtain a purified semiconductor nanoparticle composite. Water was used as the dispersion medium for the fluorescence quantum efficiency measurement.
  • TEG-SH Triethylene glycol monomethyl ether thiol
  • MPA-Me Methyl mercaptopropionate
  • DDT Dodecane thiol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

半導体ナノ粒子の表面に、リガンドIとリガンドIIを含む2種以上のリガンドが配位した半導体ナノ粒子複合体であって、前記リガンドは有機基と配位性基を含む有機リガンドであり、前記リガンドIは下記一般式(1)で表されるチオカルボン酸であり、前記リガンドに占める前記リガンドIのモル分率が0.2mоl%~35.0mоl%である、半導体ナノ粒子複合体。 一般式(1): HS-X-(COOH) (1) (一般式(1)中、Xは(n+1)価の炭化水素基であり、nは1~3の自然数である。) 本発明によれば、半導体ナノ粒子の高い蛍光量子効率(QY)を保ったまま、極性を有する分散媒に高質量分率で分散可能な半導体ナノ粒子複合体の提供することができる。

Description

半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
 本発明は半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜に関する。
 量子閉じ込め効果が発現するほど微小な半導体ナノ粒子は、粒径に依存したバンドギャップを有する。光励起、電荷注入等の手段によって半導体ナノ粒子内に形成された励起子は、再結合によりバンドギャップに応じたエネルギーの光子を放出するため、半導体ナノ粒子の組成とその粒径を適切に選択することにより、所望の波長での発光を得ることができる。
 半導体ナノ粒子は、研究初期はCdやPbを含む元素を中心に検討が行われてきたが、CdやPbが特定有害物質使用制限などの規制対象物質であることから、近年では非Cd系、非Pb系の半導体ナノ粒子の研究がなされてきている。
 半導体ナノ粒子は、ディスプレイ用途、生体標識用途、太陽電池用途など、様々な用途への応用が試みられている。
特開2013-136498号公報
神隆著、「半導体量子ドット、その合成法と生命科学への応用」、生産と技術、第63巻、第2号、p.58-63、2011年 Fabien Dubois et al, "A Versatile Strategy for Quantum Dot Ligand Exchange" J.AM.CHEM.SOC Vol.129, No.3, p.482-483, 2007 Boon-Kin Pong et al, "Modified Ligand-Exchange for Efficient Solubilization of CdSe/ZnS Quantum Dots in Water: A Procedure Guided by Computational Studies" Langmuir Vol.24, No.10, p.5270-5276, 2008 Samsulida Abd. Rahman et al, "Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose" Sensors Vol.17, No.7, p.1537, 2017 Whitney Nowak Wenger et al, "Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability" Langmuir, Vol.33, No.33, pp8239-8245, 2017
 半導体ナノ粒子および半導体ナノ粒子複合体は、分散媒に分散させることで分散液として調製され、各分野に応用される。特に、ディスプレイ用途においては、グリコールエーテル類、およびグリコールエーテルエステル類等の極性有機分散媒に分散させた分散液を使用する。
 液相法で合成された半導体ナノ粒子および半導体ナノ粒子複合体は、疎水性が高いため、非極性分散媒への分散は容易であるが、SP値が8.5以上の極性分散媒への分散は困難であった。半導体ナノ粒子をSP値8.5以上の極性分散媒へ分散可能にする方法としては、リガンド交換法が知られている。
 リガンド交換法は、半導体ナノ粒子の表面にリガンドを結合させて得た半導体ナノ粒子複合体に含まれるリガンドを、親水基を有するリガンドに置換する方法である。これによって得られる半導体ナノ粒子複合体は、極性分散媒に分散させることが可能である。しかし、非特許文献1~非特許文献5、および特許文献1で開示されている半導体ナノ粒子複合体は、半導体ナノ粒子の極性分散媒への分散は可能になるが、発光効率が低下するという問題がある。
 そこで本発明は、上記の問題点を解決すべく、半導体ナノ粒子の高い蛍光量子効率(QY)を保ったまま、極性を有する有機分散媒に分散可能な半導体ナノ粒子複合体を提供することを目的とする。
発明を解決するための手段
 極性分散媒の一種である水に対して半導体ナノ粒子を分散させるためのリガンドとしてチオカルボン酸が知られている。半導体ナノ粒子にチオカルボン酸が配位した半導体ナノ粒子複合体は、アルカリ溶液で処理することにより、チオカルボン酸のカルボキシル基がイオン化してカルボン酸塩となり、このカルボン酸塩が水和によって電離するになることで静電反発が起こり、水中で分散することが可能となる。
 ところが、極性分散媒でも極性有機溶媒中の場合、溶媒と塩との相互作用が水の場合と比較して弱いため、溶媒和によってカルボン酸塩を電離させることはできず、静電反発によって分散させることはできない。また、イオン化していないチオカルボン酸リガンドは、カルボン酸同士が水素結合すること、さらにチオール基とカルボキシル基がそれぞれ別の量子ドット表面へ結合することが原因となり、凝集を招いてしまうため、極性有機分散媒中ではチオカルボン酸を用いて極性有機分散媒に分散させることは困難であった。そのため、これまでチオカルボン酸は極性有機溶媒分散のためのリガンドとして積極的に採用されてこなかった。
 しかし、有機分散媒中において分散に寄与しないチオカルボン酸を他のリガンド種と共に半導体ナノ粒子に配位させた場合、得られた半導体ナノ粒子複合体が高い蛍光量子効率を保ちつつ、極性有機溶媒へ分散することが可能であることを発明者らは見出した。
 すなわち、本発明(1)は、半導体ナノ粒子の表面に、リガンドIを含む有機リガンドが配位した半導体ナノ粒子複合体であって、
 前記有機リガンドは有機基と配位性基を含むリガンドであり、
 前記リガンドIは下記一般式(1)で表されるチオカルボン酸であり、
 前記有機リガンドに占める前記リガンドIのモル分率が0.20mоl%~35.00mоl%であること、
を特徴とする半導体ナノ粒子複合体を提供するものである。
 一般式(1):
   HS-X-(COOH)   (1)
(一般式(1)中、Xは(n+1)価の炭化水素基であり、nは1~3の自然数である。)
 また、本発明(2)は、前記有機リガンドは、少なくとも、前記リガンドIと、SP値が9.0以上である極性リガンドIIと、を含むことを特徴とする(1)の半導体ナノ粒子複合体を提供するものである。
 また、本発明(3)は、前記極性リガンドIIのSP値が9.3以上であることを特徴とする(2)の半導体ナノ粒子複合体を提供するものである。
 また、本発明(4)は、前記リガンドIの分子量が300以下であることを特徴とする(1)~(3)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(5)は、前記極性リガンドIIの分子量が前記リガンドIの分子量より大きいことを特徴とする(2)~(4)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(6)は、前記リガンドIは、チオグリコール酸、メルカプトプロピオン酸、メルカプトヘキサン酸、メルカプトウンデカン酸及びチオリンゴ酸からなる群から選択される1種以上からなることを特徴とする(1)~(5)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(7)は、前記リガンドIは、チオグリコール酸、メルカプトプロピオン酸及びチオリンゴ酸からなる群から選択される1種以上からなることを特徴とする(1)~(6)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(8)は、前記極性リガンドIIの配位性基が、カルボキシル基又はメルカプト基であることを特徴とする(2)~(7)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(9)は、前記極性リガンドIIの有機基は、エーテル結合又はエステル結合を含むことを特徴とする(2)~(8)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(10)は、前記有機リガンドは、脂肪族リガンドを含むことを特徴とする(2)~(9)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(11)は、前記脂肪族リガンドは、脂肪族チオール、脂肪族カルボン酸、脂肪族アミン、脂肪族ホスフィン及び脂肪族ホスフィンオキシドからなる群から選択される1種以上からなることを特徴とする(10)の半導体ナノ粒子複合体を提供するものである。
 また、本発明(12)は、前記脂肪族リガンドと前記極性リガンドIIとのモル比(脂肪族リガンド/極性リガンドII)が0.10~5.00であることを特徴とする(10)又は(11)の半導体ナノ粒子複合体を提供するものである。
 また、本発明(13)は、前記脂肪族リガンドと前記極性リガンドIIとのモル比(脂肪族リガンド/極性リガンドII)が0.10~3.00であることを特徴とする(10)~(12)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(14)は、前記半導体ナノ粒子は、該半導体ナノ粒子の表面に亜鉛を含有することを特徴とする(1)~(13)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(15)は、前記半導体ナノ粒子はインジウムおよびリンを含むことを特徴とする(1)~(14)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(16)は、前記半導体ナノ粒子複合体の蛍光粒子収率が85%以上である(1)~(15)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(17)は、前記半導体ナノ粒子複合体の発光スペクトルの半値幅が38nm以下であることを特徴とする(1)~(16)いずれかの半導体ナノ粒子複合体を提供するものである。
 また、本発明(18)は、(1)~(17)いずれかの半導体ナノ粒子複合体が有機分散媒に分散した半導体ナノ粒子複合体分散液を提供するものである。
 また、本発明(19)は、(1)~(17)いずれかの半導体ナノ粒子複合体が分散媒に分散した半導体ナノ粒子複合体組成物であって、前記分散媒はモノマーまたはプレポリマーである、半導体ナノ粒子複合体組成物を提供するものである。
 また、本発明(20)は、(1)~(17)いずれかの半導体ナノ粒子複合体が高分子マトリクス中に分散した半導体ナノ粒子複合体硬化膜を提供するものである。
 なお、本願において「~」で示す範囲は、その両端に示す数字を含んだ範囲とする。
 本発明によれば、高い量子効率を保ったまま極性有機分散媒に分散可能な半導体ナノ粒子複合体を提供することができる。
(半導体ナノ粒子複合体)
 本発明は半導体ナノ粒子に少なくとも2種以上のリガンドが配位した半導体ナノ粒子複合体に関する。本発明において、半導体ナノ粒子複合体とは、発光特性を有する半導体のナノ粒子複合体である。本発明の半導体ナノ粒子複合体は340nm~480nmの光を吸収し、発光ピーク波長が400nm~750nmの光を発光する粒子である。
 本発明の半導体ナノ粒子複合体は、半導体ナノ粒子の表面に、リガンドIを含む有機リガンドが配位した半導体ナノ粒子複合体であって、
 前記有機リガンドは有機基と配位性基を含むリガンドであり、
 前記リガンドIは下記一般式(1):
   HS-X-(COOH)   (1)
(一般式(1)中、Xは(n+1)価の炭化水素基であり、nは1~3の自然数である。)
で表されるチオカルボン酸であり、
 前記有機リガンドに占める前記リガンドIのモル分率が0.20mоl%~35.00mоl%である、半導体ナノ粒子複合体である。
 本発明の半導体ナノ粒子複合体は、半導体ナノ粒子と、該半導体ナノ粒子の表面に配位している有機リガンドと、を有する。
 本発明の半導体ナノ粒子複合体は、高い発光特性を有し、且つ、極性分散媒に分散することが可能である。
 本発明の半導体ナノ粒子複合体の発光スペクトルの半値幅(FWHM)は38nm以下であることが好ましく、さらには35nm以下であることが好ましい。発光スペクトルの半値幅が前記範囲であることで、半導体ナノ粒子複合体をディスプレイ等に応用した際に混色を低減することができる。
 本発明の半導体ナノ粒子複合体の蛍光量子効率(QY)は、85%以上であることが好ましく、88%以上であることがより好ましい。半導体ナノ粒子複合体の蛍光量子効率が85%以上であることで、より効率よく色変換ができる。
 本発明において、半導体ナノ粒子複合体の光学特性を、量子効率測定システムを用いて測定することができる。半導体ナノ粒子複合体を分散液に分散させ、励起光を当て発光スペクトルを得る。ここで得られた発光スペクトルより再励起されて蛍光発光した分の再励起蛍光発光スペクトルを除いた再励起補正後の発光スペクトルより蛍光量子効率(QY)と半値幅(FWHM)を算出する。分散液は例えばノルマルヘキサンやPGMEA、クロロホルム等が挙げられる。
-半導体ナノ粒子-
 本発明の半導体ナノ粒子複合体を構成する半導体ナノ粒子、すなわち、リガンドが配位する粒子は、前述した蛍光量子効率、及び半値幅のような発光特性を満たすものであれば特に限定されず、1種類の半導体からなる粒子でもよいし、2種類以上の異なる半導体からなる粒子であってもよい。半導体ナノ粒子が、2種類以上の異なる半導体からなる粒子の場合には、それらの半導体でコア-シェル構造を構成していてもよい。例えば、半導体ナノ粒子は、III族元素およびV族元素を含有するコアと、前記コアの少なくとも一部を覆うII族およびVI族元素を含有するシェルとを有するコア-シェル型の粒子であってもよい。ここで、前記シェルは異なる組成からなる複数のシェルを有していてもよく、シェル中でシェルを構成する元素の比率が変化する勾配型のシェルを1つ以上有していてもよい。
 III族元素としては、具体的にはIn、AlおよびGaが挙げられる。V族元素としては、具体的にはP、NおよびAsが挙げられる。コアを形成する組成としては、特に限定はないが、発光特性および安全性の観点からはInPが好ましい。
 II族元素としては、特に限定はないが、例えばZnおよびMg等が挙げられる。VI族元素としては、例えば、S、Se、TeおよびOが挙げられる。シェルを形成する組成としては、特に限定はないが、量子閉じ込め効果の観点からは、ZnS、ZnSe、ZnSeS、ZnTeSおよびZnTeSe等が好ましい。特に半導体ナノ粒子の表面にZn元素が存在している場合、本発明の効果をより発揮することができる。
 複数のシェルを有する場合、前述した組成のシェルが少なくとも1つ含まれていればよい。また、シェル中でシェルを構成する元素の比率が変化する勾配型のシェルを有している場合、シェルは必ずしも組成表記通りの組成である必要はない。
 ここで、本発明において、シェルがコアの少なくとも一部を覆っているかどうかや、シェル内部の元素分布は、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)を用いて組成分析解析することにより確認することができる。
 以下に半導体ナノ粒子の作製方法に関する例を開示する。
 III族の前駆体、V族の前駆体、および必要に応じて添加物を溶媒中で混合し得られた前駆体混合液を加熱することで、半導体ナノ粒子のコアを形成することができる。
 溶媒としては配位性溶媒や非配位性溶媒が用いられる。溶媒の例としては、1-オクタデセン、ヘキサデカン、スクアラン、オレイルアミン、トリオクチルホスフィン、およびトリオクチルホスフィンオキシドなどが挙げられる。
 III族の前駆体としては、前記III族元素を含む酢酸塩、カルボン酸塩、およびハロゲン化物等が挙げられるが、これらに限定されるものではない。
 V族の前駆体としては、前記V族元素を含む有機化合物やガスが挙げられるが、これらに限定されるものではない。前駆体がガスの場合には、前記ガス以外を含む前駆体混合液にガスを注入しながら反応させることでコアを形成することができる。
 半導体ナノ粒子は、本発明の効果を害さない限り、III族、およびV族以外の元素を1種またはそれ以上含んでいてもよく、その場合は前記元素の前駆体をコア形成時に添加すればよい。
 添加物としては、例えば、分散剤としてカルボン酸、アミン類、チオール類、ホスフィン類、ホスフィンオキシド類、ホスフィン酸類、およびホスホン酸類などが挙げられるが、これらに限定されるものではない。分散剤は溶媒を兼ねることもできる。
 半導体ナノ粒子のコアを形成後、必要に応じてハロゲン化物を加えることで、半導体ナノ粒子の発光特性を向上させることができる。
 ある実施形態では、In前駆体、および必要に応じて分散剤を溶媒中に添加した金属前駆体溶液を真空下で混合し、一旦100℃~300℃で6時間~24時間加熱した後、さらにP前駆体を添加して200℃~400℃で3分~60分加熱後、冷却する。さらにハロゲン前駆体を添加し、25℃~300℃、好ましくは100℃~300℃、より好ましくは150℃~280℃で加熱処理することで、コア粒子を含むコア粒子分散液を得ることができる。
 合成されたコア粒子分散液に、シェル形成前駆体を添加することにより、半導体ナノ粒子はコア-シェル構造をとり、蛍光量子効率(QY)および安定性を高めることができる。
 シェルを構成する元素はコア粒子の表面で合金やヘテロ構造、またはアモルファス構造等の構造を取っていると思われるが、一部は拡散によりコア粒子の内部に移動していることも考えられる。
 添加されたシェル形成元素は、主にコア粒子の表面付近に存在し、半導体ナノ粒子を外的因子から保護する役割を持っている。本発明の実施形態に係る半導体ナノ粒子のコア-シェル構造はシェルがコアの少なくとも一部を覆っていることが好ましく、さらに好ましくはコア粒子の表面全体を均一に覆っていることが好ましい。
 シェル形成時に添加する前駆体としては、酢酸塩、プロピオン酸塩、ミリスチン酸塩、およびオレイン酸塩等のカルボン酸塩や、ハロゲン化物、有機塩等を用いることができる。
 ある実施形態では、前述したコア粒子分散液にZn前駆体とSe前駆体を添加後、150℃~300℃、好ましくは180℃~250℃で加熱し、その後Zn前駆体とS前駆体を添加し、200℃~400℃、好ましくは250℃~350℃で加熱する。これによりコア-シェル型の半導体ナノ粒子を得ることができる。
 シェルの前駆体はあらかじめ混合し、一度で、あるいは複数回に分けて添加してもよいし、それぞれ別々に一度で、あるいは複数回に分けて添加してもよい。シェル前駆体を複数回に分けて添加する場合は、各シェル前駆体添加後にそれぞれ温度を変えて加熱してもよい。
 本発明において半導体ナノ粒子の作製方法は特に限定されず、上記に示した方法の他、従来行われている、ホットインジェクション法や、均一溶媒法、逆ミセル法、CVD法等による作製方法や、任意の方法を採用しても構わない。
-リガンド-
 本発明の半導体ナノ粒子複合体は、前記半導体ナノ粒子の表面にリガンドが配位したものである。ここで述べる配位とは、配位子が半導体ナノ粒子の表面に化学的に影響していることを表す。半導体ナノ粒子の表面に配位結合や他の任意の結合様式(例えば共有結合、イオン結合、水素結合等)で結合していてもよいし、あるいは半導体ナノ粒子の表面の少なくとも一部に配位子を有している場合には、必ずしも結合を形成していなくてもよい。
 本発明において、半導体ナノ粒子に配位するリガンドは、有機リガンドであり、有機基と配位性基を有する。半導体ナノ粒子の表面には、リガンドIを含む有機リガンドが配位している。つまり、本発明の半導体ナノ粒子複合体は、リガンドとして、リガンドIと、少なくとも1種のリガンドI以外の有機リガンドと、を含む。リガンドI以外の有機リガンドは、1種であっても、2種以上であってもよい。
 リガンドIは、下記一般式(1)で表されるチオカルボン酸である。
 一般式(1):
   HS-X-(COOH)   (1)
 一般式(1)中、Xは(n+1)価の炭化水素基であり、nは1~3の自然数である。リガンドIは、1種単独であっても、2種以上の組み合わせであってもよい。
 本発明の半導体ナノ粒子複合体において、有機リガンド全体に占めるリガンドIのモル分率は、0.20mоl%~35.00mоl%、好ましくは0.20~30.00mol%である。有機リガンド全体に占めるリガンドIのモル分率が上記範囲であることで、高い量子効率を保ったまま極性有機分散媒に分散させることが可能となる。
 リガンドIは、分子量が300以下であることが好ましい。リガンドIの分子量が300以下であることで、有機溶媒への分散性が向上する。
 リガンドIは、チオグリコール酸、メルカプトプロピオン酸、メルカプトヘキサン酸、メルカプトウンデカン酸及びチオリンゴ酸からなる群から選択される1種以上であることが好ましく、さらにチオグリコール酸、メルカプトプロピオン酸及びチオリンゴ酸からなる群から選択される1種以上であることが好ましい。
 リガンドI以外の有機リガンドとしては、極性リガンドIIが挙げられる。極性リガンドIIとは、有機基に電荷の偏りを有する基を含むリガンドである。極性リガンドIIは、1種単独であっても、2種以上の組み合わせであってもよい。本発明の半導体ナノ粒子複合体は、有機リガンドとして、リガンドIと極性リガンドIIとを含むことが好ましい。極性リガンドIIのSP値は、9.0以上であることが好ましく、さらに9.3以上であることが好ましい。極性リガンドIIのSP値が上記範囲であることで、PGMEAなど極性溶媒への分散性が向上する。なお、極性リガンドのSP値はY-MB法により計算して決定することができる。
 極性リガンドIIの配位性基は、カルボキシル基又はメルカプト基であることが好ましい。極性リガンドIIの配位性基がカルボキシル基又はメルカプト基であることで、半導体ナノ粒子複合体の長期安定性が向上する。
 極性リガンドIIの有機基は、極性リガンドIIのSP値が9.0以上である限り特に制限はなく、アルキル基、アルキニル基、アルケニル基、アルコキシ基、ヒドロキシ基、アルデヒド基、カルボキシル基、アミノ基、イミノ基、ニトロ基、シアノ基、ビニル基、アリール基、ハロゲノ基、ケトン基、エーテル結合、エステル結合、シロキサン結合などの基を含むことができ、特に、エーテル結合またはエステル結合を含むことが好ましい。極性リガンドIIの有機基が、エーテル結合又はエステル結合を含むことで極性の高い有機分散媒への半導体ナノ粒子複合体の分散性が向上する。
 極性リガンドIIの分子量は、リガンドIの分子量より大きいことが好ましい。極性リガンドIIの分子量が、リガンドIの分子量より大きいことで、有機分散媒への半導体ナノ粒子複合体の分散性が向上する。
 リガンドI以外の有機リガンドとしては、脂肪族リガンドが挙げられる。有機リガンドが脂肪族リガンドを含むことで、半導体ナノ粒子複合体の分散性のウィンドウが広がり、有機分散媒としてより幅広いSP値の分散媒を選択することができる。脂肪族リガンドは、1種単独であっても、2種以上の組み合わせであってもよい。脂肪族リガンドは、脂肪族チオール、脂肪族カルボン酸、脂肪族アミン、脂肪族ホスフィン及び脂肪族オキシドからなる群から選択される1種以上であることが好ましい。そして、有機リガンドが、リガンドIに加え、極性リガンドII及び脂肪族リガンドを含むことが好ましい。
 有機リガンドが、リガンドIに加え、極性リガンドII及び脂肪族リガンドを含む場合、脂肪族リガンドと極性リガンドIIのモル比(脂肪族リガンド/極性リガンドII)は、0.10~5.00であることが好ましく、0.10~3.00であることがより好ましい。脂肪族リガンドと極性リガンドIIのモル比(脂肪族リガンド/極性リガンドII)が前記範囲にあることで、分散性のウィンドウが広がり、分散媒としてより幅広いSP値の分散媒を選択することができる。
 有機リガンドが、極性リガンドII及び/又は脂肪族リガンドを含む場合、有機リガンド全体に占めるリガンドII及び脂肪族リガンドの合計モルのモル分率は、好ましくは58.50~99.80mol%、特に好ましくは66.50~99.80mol%である。
 有機リガンドが、極性リガンドII及び/又は脂肪族リガンドを含む場合、有機リガンド全体に占めるリガンドI、リガンドII及び脂肪族リガンドの合計モルのモル分率は、好ましくは90.0~100.0mol%、特に好ましくは95.0~100.0mol%である。
(分散液)
 本発明の半導体ナノ粒子複合体分散液は、本発明の半導体ナノ粒子複合体が有機分散媒に分散した半導体ナノ粒子複合体分散液である。本発明の半導体ナノ粒子複合体は有機分散媒に分散し、半導体ナノ粒子複合体分散液を形成することができる。なお、本発明において、半導体ナノ粒子複合体が分散媒に分散している状態とは、半導体ナノ粒子複合体と分散媒とを混合させた場合に、半導体ナノ粒子複合体が沈殿しない状態、もしくは目視可能な濁り(曇り)として残留しない状態であることを表す。なお、半導体ナノ粒子複合体が有機分散媒に分散しているものを半導体ナノ粒子複合体分散液と表す。
 本発明の半導体ナノ粒子複合体は、SP値が8.0以上の有機分散媒、さらにはSP値が9.0以上の有機分散媒やSP値が10.0以上の有機分散媒にも分散し、半導体ナノ粒子複合体分散液を形成する。ここでのSP値は、前記極性リガンドのSP値の決定方法と同様に、ハンセン溶解度パラメーターから算出した値である。ハンセン溶解度パラメーターは、ハンドブック、例えば“Hansen Solubility Parameters: A User’s Handbook”,第2版、C. M. Hansen (2007),中の値や、HansonおよびAbbot et al.によって提供されているPractice(HSPiP)プログラム(第2版)を用いて決定することができる。前記ハンドブックに記載のない有機分散媒はY-MB法により計算して決定することができる。
 本発明の半導体ナノ粒子複合体は、分散させる有機分散媒として、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、酢酸ノルマルブチル、乳酸エチルなどのエステル類、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフランなどのエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテルなどのグリコールエーテル類、エチレングリコールアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、ジプロピレングリコールモノエチルエーテルアセテートなどのグリコールエーテルエステル類などを選択することが可能となる。半導体ナノ粒子複合体をこれらの有機分散媒に分散させることで、後述する硬化膜や樹脂への分散に応用する際に、半導体ナノ粒子複合体の分散性を保ったまま使用することができる。
 本発明の半導体ナノ粒子複合体を、PGMEA、PGMEに分散させることができる。フォトレジストの分野ではPGMEAおよびPGMEが希釈溶媒として一般に用いられており、半導体ナノ粒子複合体がPGMEAおよびPGMEへ分散可能であると、半導体ナノ粒子複合体をフォトレジスト分野に広く応用することができる。
 本発明の半導体ナノ粒子複合体分散液において、本発明の半導体ナノ粒子複合体は、半導体ナノ粒子を、質量分率で25質量%以上、好ましくは30質量%以上分散させることができる。
(半導体ナノ粒子複合体組成物)
 本発明の半導体ナノ粒子複合体組成物は、モノマー又はプレポリマーに本発明の半導体ナノ粒子複合体が分散した半導体ナノ粒子複合体組成物である。本発明の半導体ナノ粒子複合体分散液の有機分散媒としてモノマー又はプレポリマーを選択し、半導体ナノ粒子複合体組成物を形成することができる。
 モノマーは特に限定しないが、半導体ナノ粒子の応用先が幅広く選択できる(メタ)アクリルモノマーであることが好ましい。(メタ)アクリルモノマーは半導体ナノ粒子分散液の応用に応じて、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3、5、5-トリメチルシクロヘキサノール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシトリエチレングリコールアクリレート、2-エチルヘキシルジグリコールアクリレート、メトキシポリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、フェノキシエチル(メタ)アクリレート、2-フェノキシジエチレングリコール(メタ)アクリレート、2-フェノキシポリエチレングリコール(メタ)アクリレート(n≒2)、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、ジシクロペンタニルオキシルエチル(メタ)アクリレート、イソボルニルオキシルエチル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジメチルアダマンチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシエチル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、o-フェニルフェノールエトキシ(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、グリシジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルりん酸、アクリロイルモルホリン、ジメチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、イロプロピルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、およびN-アクリロイルオキシエチルヘキサヒドロフタルイミドなどの(メタ)アクリルモノマーから選択される。これらは単独で使用することもできるし、2種類以上混合して使用することもできる。特にアクリルモノマーは半導体ナノ粒子分散媒の応用に応じて、ラウリル(メタ)アクリレート、および1、6-ヘキサジオールジ(メタ)アクリレートから選ばれる1種または2種以上の混合物であることが好ましい。
 本発明の半導体ナノ粒子複合体分散液の有機分散媒として、プレポリマーを選択することができる。プレポリマーは特に限定しないが、アクリル樹脂プレポリマー、シリコーン樹脂プレポリマー、およびエポキシ樹脂プレポリマーが挙げられる。さらに、本発明の半導体ナノ粒子複合体組成物は架橋剤を添加してもよい。
 架橋剤は半導体ナノ粒子複合体組成物中のモノマーの種類によって、多官能(メタ)アクリレート、多官能シラン化合物、多官能アミン、多官能カルボン酸、多官能チオール、多官能アルコール、および多官能イソシアネートなどから選択される。
 さらに、本発明の半導体ナノ粒子複合体組成物中に、ペンタン、ヘキサン、シクロヘキサン、イソヘキサン、へプタン、オクタンおよび石油エーテル等の脂肪族炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、グリコールエーテルエステル類、ベンゼン、トルエン、キシレンおよびミネラルスピリット等の芳香族炭化水素類、およびジクロロメタンおよびクロロホルム等のハロゲン化アルキルなど、硬化に影響しない各種有機溶媒をさらに含むことができる。なお、上記の有機溶媒は、半導体ナノ粒子複合体組成物の希釈用としてだけでなく、有機分散媒としても用いることができる。すなわち、本発明の半導体ナノ粒子複合体を上記の有機溶媒に分散させて、半導体ナノ粒子複合体分散液とすることも可能である。
 また、本発明の半導体ナノ粒子複合体組成物は、半導体ナノ粒子複合体組成物中のモノマーの種類によって、適切な開始剤や散乱剤、触媒、バインダー、界面活性剤、密着促進剤、酸化防止剤、紫外線吸収剤、凝集防止剤、および分散剤等を含んでもよい。
 さらに、本発明の半導体ナノ粒子複合体組成物、あるいは後述する発光性ナノ粒子硬化膜の光学特性を向上するために、半導体ナノ粒子複合体組成物に散乱剤を含んでもよい。散乱剤は酸化チタンや酸化亜鉛などの金属酸化物であり、これらの粒径は100nm~500nmであることが好ましい。散乱の効果の観点から、散乱剤の粒径は200nm~400nmであることがさらに好ましい。散乱剤が含まれることで、吸光度が2倍程度向上する。散乱剤の含有量は組成物に対して2質量%~30質量%であることが好ましく、組成物のパターン性の維持の観点から5質量%~20質量%であることがより好ましい。
(希釈組成物)
 本発明の希釈組成物は、前述の本発明の半導体ナノ粒子複合体組成物が有機溶媒で希釈されてなるものである。
 半導体ナノ粒子組成物を希釈する有機溶媒は特に限定されるものではなく、例えば、ペンタン、ヘキサン、シクロヘキサン、イソヘキサン、へプタン、オクタンおよび石油エーテル等の脂肪族炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、グリコールエーテルエステル類、ベンゼン、トルエン、キシレンおよびミネラルスピリット等の芳香族炭化水素類、およびジクロロメタン、クロロホルム等のハロゲン化アルキルなどが挙げられる。これらの中でも、幅広い樹脂への溶解性および塗膜時の被膜均一性の観点からは、グリコールエーテル類およびグリコールエーテルエステル類が好ましい。
(半導体ナノ粒子複合体硬化膜)
 本発明において、半導体ナノ粒子複合体硬化膜とは半導体ナノ粒子複合体を含有した膜であり、硬化しているものを表す。半導体ナノ粒子複合体硬化膜は、前述の半導体ナノ粒子複合体組成物または希釈組成物を膜状に硬化することで得ることができる。
 本発明の半導体ナノ粒子複合体硬化膜は、半導体ナノ粒子複合体と高分子マトリクスを含んでいる。
 高分子マトリクスとしては特に限定はないが、(メタ)アクリル樹脂、シリコーン樹脂、エポキシ樹脂、シリコーン樹脂、マレイン酸樹脂、ブチラール樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン樹脂などが挙げられる。なお、前述した半導体ナノ粒子複合体組成物を硬化させることで半導体ナノ粒子複合体硬化膜を得てもよい。半導体ナノ粒子複合体硬化膜は架橋剤をさらに含んでもよい。
 膜を硬化させる方法は特に限定されないが、熱処理、紫外線処理など膜を構成する組成物に適した硬化方法により硬化することができる。
 本発明の半導体ナノ粒子複合体硬化膜中に含まれる、半導体ナノ粒子と半導体ナノ粒子の表面に配位したリガンドは、前述した半導体ナノ粒子複合体を構成していることが好ましい。   
 本発明の半導体ナノ粒子複合体硬化膜は、半導体ナノ粒複合体子を高質量分率で含有しているため、半導体ナノ粒子複合体硬化膜の吸光度を高めることができる。半導体ナノ粒子複合体硬化膜を10μmの厚さとした時、半導体ナノ粒子複合体硬化膜の垂線方向からの波長450nmの光に対して、吸光度は1.0以上が好ましく、1.3以上であることがより好ましく、1.5以上であることがさらに好ましい。
 さらに、本発明の半導体ナノ粒子複合体硬化膜には、高い発光特性を有する半導体ナノ粒子複合体を含有しているため、発光特性が高い半導体ナノ粒子複合体硬化膜を提供できる。半導体ナノ粒子複合体硬化膜の蛍光量子効率は70%以上であることが好ましく、80%以上であることがさらに好ましい。
 半導体ナノ粒子複合体硬化膜の厚みは、半導体ナノ粒子複合体硬化膜を適用するデバイスの小型化するために、50μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることが更に好ましい。
 本明細書に記載の構成および/または方法は例として示され、多数の変形形態が可能であるため、これらの具体例または実施例は限定の意味であると見なすべきではないことが理解されよう。本明細書に記載の特定の手順または方法は、多数の処理方法の1つを表しうる。したがって、説明および/または記載される種々の行為は、説明および/または記載される順序で行うことができ、または省略することもできる。同様に前述の方法の順序は変更可能である。
 本開示の主題は、本明細書に開示される種々の方法、システムおよび構成、並びにほかの特徴、機能、行為、および/または性質のあらゆる新規のかつ自明でない組み合わせおよび副次的組み合わせ、並びにそれらのあらゆる均等物を含む。
 以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[例1]
 以下の方法に従って、InP系半導体ナノ粒子複合体の作製を行った。
(コア粒子の製造)
 酢酸インジウム(0.3mmol)とオレイン酸亜鉛(0.6mmol)を、オレイン酸(0.9mmol)と1-ドデカンチオール(0.1mmol)とオクタデセン(10mL)の混合物に加え、真空下(<20Pa)で約120℃に加熱し、1時間反応させた。真空下で反応させた混合物を25℃、窒素雰囲気下にして、トリス(トリメチルシリル)ホスフィン(0.2mmol)を加えたのち、約300℃に加熱し、10分間反応させた。反応液を25℃に冷却し、オクタン酸クロリド(0.45mmol)を注入し、約250℃で30分間加熱後、25℃に冷却して、InP系半導体ナノ粒子の分散液を得た。
 このInP系半導体ナノ粒子をコアとして使用し、コア表面に以下のようにシェルを形成してコア-シェル型半導体ナノ粒子を作製し、光学特性の測定を行った。
(シェル形成用の前駆体)
 シェルの作製にあたって、まずは以下の前駆体の調製を行った。
-Zn前駆体溶液の調製-
 40mmolのオレイン酸亜鉛と75mLのオクタデセンを混合し、真空化で110℃にて1時間加熱し、[Zn]=0.4MのZn前駆体を調製した。
-Se前駆体(セレン化トリオクチルホスフィン)の調製-
 22mmolのセレン粉末と10mLのトリオクチルホスフィンを窒素中で混合し、全て溶けるまで撹拌して[Se]=2.2Mのセレン化トリオクチルホスフィンを得た。
-S前駆体(硫化トリオクチルホスフィン)の調製-
 22mmolの硫黄粉末と10mLのトリオクチルホスフィンを窒素中で混合し、全て溶けるまで撹拌して[S]=2.2Mの硫化トリオクチルホスフィンを得た。
 上記のようにして得られた各前駆体を用いて、前記InP系半導体ナノ粒子(コア)の表面に次のようにしてシェルの形成を行った。
(シェルの形成)
 コアの分散液を200℃まで加熱した。200℃において0.75mLのZn前駆体溶液、セレン化トリオクチルホスフィン(Se前駆体)を同時に添加し、30分間反応させInP系半導体ナノ粒子の表面にZnSeシェルを形成した。
 さらに、1.5mLのZn前駆体溶液と0.6mmolの硫化トリオクチルホスフィン(S前駆体)を添加し、250℃に昇温して1時間反応させZnSシェルを形成した。
 合成で得られた半導体ナノ粒子の反応溶液をアセトンに加え、良く混合したのち遠心分離した。遠心加速度は4000Gとした。沈殿物を回収し、沈殿物にノルマルヘキサンを加え、分散液を作製した。この操作を数回繰り返し、精製した半導体ナノ粒子を得た。
(リガンド)
<リガンド単体の作製>
-PEG-SHの調製方法-
 フラスコに210gのメトキシPEG-OH(分子量450)および93gのトリエチルアミンを収め、420mLのTHF(テトラヒドロフラン)に溶解させた。溶液を0℃に冷却し、反応熱で反応溶液の温度が5℃を超えないよう注意しながら、窒素雰囲気下で51gのメタンスルホン酸クロリドを徐々に滴下した。その後、反応溶液を室温に昇温し2時間撹拌した。この溶液をクロロホルム-水系で抽出し、有機相を回収した。得られた溶液を硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ過で取り除いたのち、ろ液をエバポレーションにより濃縮して、オイル状の中間体を得た。これを別のフラスコに移し、窒素雰囲気下で400mLの1.3Mのチオ尿素水溶液を加えた。溶液を2時間還流したのち、21gのNaOHを加え、さらに1.5時間還流した。反応溶液を室温まで冷却し、1M HCl水溶液をpH=7になるまで加え、中和した。得られた溶液をクロロホルム-水系で抽出し、目的とするリガンド(PEG-SH、分子量450)を得た。
-トリエチレングリコールモノメチルエーテルチオール(TEG-SH)の調製方法-
 210gのメトキシPEG-OH(分子量450)を77gのトリエチレングリコールモノメチルエーテルに変え、上記と同様に調製を行うことで、トリエチレングリコールモノメチルエーテルチオール(TEG-SH)を得た。
-メルカプトプロピオン酸PEGエステルの調製方法-
 フラスコに4.2gの3-メルカプトプロピオン酸(40mmol)と21.6gのメトキシPEG-OH(分子量450、48mmol)、および0.2gの濃硫酸を窒素雰囲気下で混合した。溶液を60℃で撹拌しながら、30mmHg以下に減圧し24時間反応した。反応溶液を室温まで冷却後トルエンに溶解し、飽和重曹水、水、飽和食塩水を用いて順に洗浄した。得られた有機相を硫酸マグネシウムを用いて乾燥したのち、有機相をろ過してエバポレーションで濃縮して目的とするリガンド(メルカプトプロピオン酸PEGエステル、分子量550)を得た。
-PEG-COOHの調製方法-
 メトキシPEG-OH(分子量400、15g)をトルエン(100mL)に60℃で溶解し、4.2gのカリウムtert-ブトキシドを加え、6時間反応させた。その後、5.5gのエチルブロモアセテートを混合物に添加し、PEG中のヒドロキシル基は酢酸エチル基によって保護した。混合物を濾過し、濾液をジエチルエーテル中で沈殿させた。沈殿を1M NaOH溶液(40mL)に溶解し、NaCl(10g)を加え、室温で1時間撹拌してPEGの末端のエチル基を除外した。この溶液を6M HClの添加によりpH3.0に調整した。得られた溶液をクロロホルム-水系で抽出し、分子量450のPEG-COOHを得た。
(半導体ナノ粒子複合体の作製)
 フラスコに、精製した半導体ナノ粒子を質量比で10質量%となるように1-オクタデセンに分散させた半導体ナノ粒子1-オクタデセン分散液を調製した。調製した半導体ナノ粒子1-オクタデセン分散液10.0gをフラスコに収め、チオカルボン酸としてチオグリコール酸を0.08gと、極性リガンドとしてトリエチレングリコールモノメチルエーテルチオール(TEG-SH)を4.0gと、脂肪族リガンドとしてドデカンチオールを1.0g添加し、窒素雰囲気下で110℃、60分間攪拌し、25℃まで冷却することで、半導体ナノ粒子複合体を得た。前記半導体ナノ粒子複合体を含む反応溶液を遠沈管に移し、4000Gで20分間遠心分離すると、透明な1-オクタデセン相と半導体ナノ粒子複合体相に分離した。1-オクタデセン相を取り除き、残った半導体ナノ粒子複合体相を回収した。
 得られた半導体ナノ粒子複合体相にアセトン5.0mLを加え、分散液を作製した。得られた分散液に50mLのノルマルヘキサンを加え、4000Gで20分間遠心分離した。遠心分離後、透明な上澄みを取り除き、沈殿物を回収した。この操作を数回繰り返し、精製された半導体ナノ粒子複合体を得た。
分析内容
(蛍光量子効率測定)
 また、半導体ナノ粒子の光学特性は蛍光量子効率測定システム(大塚電子製、QE-2100)を用いて測定した。合成にて得られた半導体ナノ粒子複合体を分取し、分散媒に分散させ、励起光を当て発光スペクトルを得る。ここで得られた発光スペクトルより再励起されて蛍光発光した分の再励起蛍光発光スペクトルを除いた再励起補正後の発光スペクトルより蛍光量子効率(QY)と半値幅(FWHM)を算出する。分散液はPGMEAを用いた。得られた蛍光特性と半値幅については表2に記載した。
(安定性試験)
 精製した半導体ナノ粒子複合体に、半導体ナノ粒子の濃度が1質量%となるようにクロロホルムを添加した。調製した溶液を蛍光灯照明の下、室温で72時間静置した。前記手法に基づき静置前後の蛍光量子収率を測定し、安定性(静置前の蛍光量子収率/静置後の蛍光量子収率×100)を算出した。得られた安定性について表2に記載した。
(熱重量分析)
 精製した半導体ナノ粒子複合体を示唆熱重量分析(DTA-TG)で550℃まで加熱後、10分保持し、降温した。分析後の残留質量を半導体ナノ粒子の質量とし、この値から半導体ナノ粒子複合体中に対する半導体ナノ粒子の質量比を確認した。
(分散性試験)
 前記質量比を参考に、半導体ナノ粒子複合体に、半導体ナノ粒子の濃度が1質量%になるように有機分散媒(ラウリルアクリレート(LA)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、エタノール)を添加し、その時の分散状態を確認した。分散しているものには○を、沈殿、および濁りが観察されたものには×を表2に記載した。
(1H-NMR測定)
 精製された半導体ナノ粒子複合体について、半導体ナノ粒子に配位しているリガンドを、核磁気共鳴(NMR)装置(日本電子株式会社製JNM-LA400)を用いて分析した。すべての測定において溶媒には重クロロホルムを、化学シフトの内標準物質にはテトラメチルシランを使用し、1H-NMRを測定した。例1で得られた半導体ナノ粒子複合体0.8ppm~2.5ppm付近にオレイン酸のアルキル基に起因するシグナルを、3.3ppm付近にチオグリコール酸のメチレン基に起因するシグナルを、と3.5ppm~4.0ppm付近にTEG-SHのエチレングリコール骨格に起因するシグナルがそれぞれ観測された。これらのシグナルの面積比から、各リガンドの存在比を算出した。各リガンドの存在比から、有機リガンド全体に対するリガンドIのモル比、ならびに極性リガンドに対する脂肪族リガンドのモル比を算出し、表1に記載した。
(例2)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.01g、極性リガンドとしてメルカプトプロピオン酸メチルを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例3)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.01g、極性リガンドとしてPEG-SHを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例4)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸としてチオリンゴ酸を0.03g、極性リガンドとしてPEG-SHを4.0g、脂肪族リガンドとして1.0gのオレイン酸を用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例5)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として6-メルカプトヘキサン酸を0.08g、極性リガンドとしてメルカプトプロピオン酸PEGエステルを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例6)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として11-メルカプトウンデカン酸を0.13g、極性リガンドとしてメルカプトプロピオン酸PEGエステルを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例7)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.25g、極性リガンドとしてPEG-COOHを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例8)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.5g、極性リガンドとしてPEG-SHを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例9)
 半導体ナノ粒子複合体を作製する工程でチオカルボン酸として0.03gの3-メルカプトプロピオン酸を、極性リガンドとしてPEG-SHを2.5g、脂肪族リガンドとしてオレイン酸を2.5g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。   
(例10)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.03g、極性リガンドとしてPEG-SHを2.0g、脂肪族リガンドとしてオレイン酸を3.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例11)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.03g、極性リガンドとしてPEG-SHを1.5g、脂肪族リガンドとしてオレイン酸を3.5g用いた。窒素雰囲気下で110℃、60分間攪拌し、25℃まで冷却することで、半導体ナノ粒子複合体を得た。前記半導体ナノ粒子複合体を含む反応溶液を遠沈管に移し、アセトンを加えて4000Gで20分間遠心分離すると、透明な有機相と半導体ナノ粒子複合体相に分離した。有機相取り除き、残った半導体ナノ粒子複合体相を回収した。得られた半導体ナノ粒子複合体相にノルマルヘキサン5.0mLを加え、分散液を作製した。得られた分散液に50mLのアセトンを加え、4000Gで20分間遠心分離した。遠心分離後、透明な上澄みを取り除き、沈殿物を回収した。この操作を数回繰り返し、精製された半導体ナノ粒子複合体を得た。蛍光量子効率測定の分散媒はヘキサンを用いた。
(例12)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸としてチオグリコール酸を0.03g、極性リガンドとしてTEG-SHを4.9g、脂肪族リガンドとしてドデカンチオールを0.1g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例13)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸としてチオグリコール酸0.03gを、極性リガンドとしてPEG-SHを5.0g用い、脂肪族リガンドは添加しなかった。それ以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例14)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.03g、極性リガンドとしてPEG-NHを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例15)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.03g、極性リガンドとして6-メルカプト-1-ヘキサノールを3.5g、脂肪族リガンドとしてオレイン酸を1.5g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。蛍光量子効率測定の分散媒としてはエタノールを用いた。
(例16)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸を添加せず、極性リガンドとしてメルカプトプロピオン酸メチルを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例17)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.003g、極性リガンドとしてメルカプトプロピオン酸メチルを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例18)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.006g、極性リガンドとしてメルカプトプロピオン酸メチルを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例19)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を0.75g、極性リガンドとしてPEG-SHを4.0g、脂肪族リガンドとしてオレイン酸を1.0g用いた以外は実施例1と同様の方法で半導体ナノ粒子複合体を得た。
(例20)
 半導体ナノ粒子複合体を作製する工程で、チオカルボン酸として3-メルカプトプロピオン酸を4.0g用いて、脂肪族リガンドおよび極性リガンドは添加せずにさらに飽和炭酸水素ナトリウム溶液を加えて窒素雰囲気下で80℃、12時間攪拌し、25℃まで冷却することで、半導体ナノ粒子複合体を得た。前記半導体ナノ粒子複合体を含む反応溶液を遠沈管に移し、4000Gで20分間遠心分離すると、透明な1-オクタデセン相と半導体ナノ粒子複合体を含む水相に分離した。水相を回収し、大量のメタノールに半導体ナノ粒子複合体を再沈殿させた。固体をろ過により回収し、乾燥して精製された半導体ナノ粒子複合体を得た。蛍光量子効率測定の分散媒として水を用いた。
 なお、表1~表2に示されている略号の意味は次の通りである。
TEG-SH:トリエチレングリコールモノメチルエーテルチオール
MPA-Me:メルカプトプロピオン酸メチル
DDT   :ドデカンチオール
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (20)

  1.  半導体ナノ粒子の表面に、リガンドIを含む有機リガンドが配位した半導体ナノ粒子複合体であって、
     前記有機リガンドは有機基と配位性基を含むリガンドであり、
     前記リガンドIは下記一般式(1)で表されるチオカルボン酸であり、
     前記有機リガンドに占める前記リガンドIのモル分率が0.20mоl%~35.00mоl%であること、
    を特徴とする半導体ナノ粒子複合体。
     一般式(1):
       HS-X-(COOH)   (1)
    (一般式(1)中、Xは(n+1)価の炭化水素基であり、nは1~3の自然数である。)
  2.  前記有機リガンドは、少なくとも、前記リガンドIと、SP値が9.0以上である極性リガンドIIと、を含むことを特徴とする請求項1記載の半導体ナノ粒子複合体。
  3.  前記極性リガンドIIのSP値が9.3以上であることを特徴とする請求項2記載の半導体ナノ粒子複合体。
  4.  前記リガンドIの分子量が300以下であることを特徴とする請求項1~3いずれか1項記載の半導体ナノ粒子複合体。
  5.  前記極性リガンドIIの分子量が前記リガンドIの分子量より大きいことを特徴とする請求項2~4いずれか1項記載の半導体ナノ粒子複合体。
  6.  前記リガンドIは、チオグリコール酸、メルカプトプロピオン酸、メルカプトヘキサン酸、メルカプトウンデカン酸及びチオリンゴ酸からなる群から選択される1種以上からなることを特徴とする請求項1~5いずれか1項記載の半導体ナノ粒子複合体。
  7.  前記リガンドIは、チオグリコール酸、メルカプトプロピオン酸及びチオリンゴ酸からなる群から選択される1種以上からなることを特徴とする請求項1~6いずれか1項記載の半導体ナノ粒子複合体。
  8.  前記極性リガンドIIの配位性基が、カルボキシル基又はメルカプト基であることを特徴とする請求項2~7いずれか1項記載の半導体ナノ粒子複合体。
  9.  前記極性リガンドIIの有機基は、エーテル結合又はエステル結合を含むことを特徴とする請求項2~8いずれか1項記載の半導体ナノ粒子複合体。
  10.  前記有機リガンドは、脂肪族リガンドを含むことを特徴とする請求項2~9いずれか1項記載の半導体ナノ粒子複合体。
  11.  前記脂肪族リガンドは、脂肪族チオール、脂肪族カルボン酸、脂肪族アミン、脂肪族ホスフィン及び脂肪族ホスフィンオキシドからなる群から選択される1種以上からなることを特徴とする請求項10記載の半導体ナノ粒子複合体。
  12.  前記脂肪族リガンドと前記極性リガンドIIとのモル比(脂肪族リガンド/極性リガンドII)が0.10~5.00であることを特徴とする請求項10又は11記載の半導体ナノ粒子複合体。
  13.  前記脂肪族リガンドと前記極性リガンドIIとのモル比(脂肪族リガンド/極性リガンドII)が0.10~3.00であることを特徴とする請求項10~12いずれか1項記載の半導体ナノ粒子複合体。
  14.  前記半導体ナノ粒子は、該半導体ナノ粒子の表面に亜鉛を含有することを特徴とする請求項1~13いずれか1項記載の半導体ナノ粒子複合体。
  15.  前記半導体ナノ粒子はインジウムおよびリンを含むことを特徴とする請求項1~14いずれか1項記載の半導体ナノ粒子複合体。
  16.  前記半導体ナノ粒子複合体の蛍光粒子収率が85%以上である請求項1~15いずれか1項記載の半導体ナノ粒子複合体。
  17.  前記半導体ナノ粒子複合体の発光スペクトルの半値幅が38nm以下であることを特徴とする請求項1~16いずれか1項に記載の半導体ナノ粒子複合体。
  18.  請求項1~17いずれか1項記載の半導体ナノ粒子複合体が有機分散媒に分散した半導体ナノ粒子複合体分散液。
  19.  請求項1~17いずれか1項記載の半導体ナノ粒子複合体が分散媒に分散した半導体ナノ粒子複合体組成物であって、前記分散媒はモノマーまたはプレポリマーである、半導体ナノ粒子複合体組成物。
  20.  請求項1~17いずれか1項記載の半導体ナノ粒子複合体が高分子マトリクス中に分散した半導体ナノ粒子複合体硬化膜。
PCT/JP2020/021873 2019-06-13 2020-06-03 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜 WO2020250762A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202410367969.6A CN118421317A (zh) 2019-06-13 2020-06-03 半导体纳米粒子复合体及其分散液、组合物和固化膜
US17/596,483 US20220308274A1 (en) 2019-06-13 2020-06-03 Semiconductor nanoparticle complex, semiconductor nanoparticle complex dispersion liquid, semiconductor nanoparticle complex composition, and semiconductor nanoparticle complex cured film
KR1020217042424A KR20220020279A (ko) 2019-06-13 2020-06-03 반도체 나노 입자 복합체, 반도체 나노 입자 복합체 분산액, 반도체 나노 입자 복합체 조성물 및 반도체 나노 입자 복합체 경화막
JP2021526029A JP7468525B2 (ja) 2019-06-13 2020-06-03 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
CN202080043419.9A CN114127229B (zh) 2019-06-13 2020-06-03 半导体纳米粒子复合体、半导体纳米粒子复合体分散液、半导体纳米粒子复合体组合物和半导体纳米粒子复合体固化膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-110305 2019-06-13
JP2019110305 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020250762A1 true WO2020250762A1 (ja) 2020-12-17

Family

ID=73781477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021873 WO2020250762A1 (ja) 2019-06-13 2020-06-03 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜

Country Status (5)

Country Link
US (1) US20220308274A1 (ja)
JP (1) JP7468525B2 (ja)
KR (1) KR20220020279A (ja)
CN (2) CN118421317A (ja)
WO (1) WO2020250762A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250663A1 (ja) * 2019-06-13 2020-12-17 昭栄化学工業株式会社 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121549A (ja) * 2000-06-26 2002-04-26 Mitsubishi Chemicals Corp 半導体超微粒子
JP2002162501A (ja) * 2000-11-28 2002-06-07 Mitsubishi Chemicals Corp 半導体結晶粒子を含有する薄膜状成形体、及びその用途
JP2009216603A (ja) * 2008-03-11 2009-09-24 Toray Ind Inc 生体分子の結合可能なナノ粒子およびその製造方法
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
WO2017038487A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 半導体ナノ粒子、分散液、フィルムおよび半導体ナノ粒子の製造方法
WO2017188300A1 (ja) * 2016-04-26 2017-11-02 昭栄化学工業株式会社 量子ドット材料及び量子ドット材料の製造方法
WO2018016589A1 (ja) * 2016-07-20 2018-01-25 富士フイルム株式会社 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
JP2019073705A (ja) * 2017-10-17 2019-05-16 エルジー ディスプレイ カンパニー リミテッド 発光体、発光フィルム、発光ダイオードおよび発光体を含む発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881045B2 (ja) 2011-10-11 2016-03-09 国立研究開発法人産業技術総合研究所 量子ドット含有チタン化合物及びその製造方法、並びに該量子ドット含有チタン化合物を用いた光電変換素子
CN102925138B (zh) * 2012-11-06 2015-07-22 大连理工大学 一种ⅱ-ⅵ型长寿命量子点及其制备方法
CN103772872B (zh) * 2013-12-27 2016-06-01 Tcl集团股份有限公司 量子点/丙烯酸酯聚合物纳米晶体复合物及制备方法和彩色转化膜
GB201613014D0 (en) * 2016-07-27 2016-09-07 Univ Oxford Innovation Ltd Process
CN109321236A (zh) * 2017-07-31 2019-02-12 Tcl集团股份有限公司 一种量子点及其制备方法与应用
WO2018223747A1 (zh) * 2017-06-08 2018-12-13 Tcl集团股份有限公司 一种量子点-配体复合物及制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121549A (ja) * 2000-06-26 2002-04-26 Mitsubishi Chemicals Corp 半導体超微粒子
JP2002162501A (ja) * 2000-11-28 2002-06-07 Mitsubishi Chemicals Corp 半導体結晶粒子を含有する薄膜状成形体、及びその用途
JP2009216603A (ja) * 2008-03-11 2009-09-24 Toray Ind Inc 生体分子の結合可能なナノ粒子およびその製造方法
WO2017038487A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 半導体ナノ粒子、分散液、フィルムおよび半導体ナノ粒子の製造方法
WO2017188300A1 (ja) * 2016-04-26 2017-11-02 昭栄化学工業株式会社 量子ドット材料及び量子ドット材料の製造方法
WO2018016589A1 (ja) * 2016-07-20 2018-01-25 富士フイルム株式会社 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
JP2019073705A (ja) * 2017-10-17 2019-05-16 エルジー ディスプレイ カンパニー リミテッド 発光体、発光フィルム、発光ダイオードおよび発光体を含む発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAHMOUD, WALEED E. ET AL.: "6-Mercaptohexanoic acid assisted synthesis of high quality InP quantum dots for optoelectronic applications", SUPERLATTICES AND MICROSTRUCTURES, vol. 56, 17 January 2013 (2013-01-17), pages 86 - 91, XP028988298, ISSN: 0749-6036, DOI: 10.1016/j.spmi.2013.01.001 *

Also Published As

Publication number Publication date
CN114127229A (zh) 2022-03-01
CN114127229B (zh) 2024-04-05
US20220308274A1 (en) 2022-09-29
CN118421317A (zh) 2024-08-02
TW202111080A (zh) 2021-03-16
JP7468525B2 (ja) 2024-04-16
JPWO2020250762A1 (ja) 2020-12-17
KR20220020279A (ko) 2022-02-18

Similar Documents

Publication Publication Date Title
TWI833967B (zh) 半導體奈米粒子複合體、半導體奈米粒子複合體分散液、半導體奈米粒子複合體組成物及半導體奈米粒子複合體硬化膜
US20240263067A1 (en) Semiconductor nanoparticle complex, semiconductor nanoparticle complex composition, semiconductor nanoparticle complex cured membrane, semiconductor nanoparticle complex dispersion liquid, method for producing semiconductor nanoparticle complex composition, and method for producing semiconductor nanoparticle complex cured membrane
WO2020241874A1 (ja) 半導体ナノ粒子複合体組成物、希釈組成物、半導体ナノ粒子複合体硬化膜、半導体ナノ粒子複合体パターニング膜、表示素子、および半導体ナノ粒子複合体分散液
JP7468525B2 (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
WO2020241872A1 (ja) 半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
TWI845703B (zh) 半導體奈米粒子複合體、半導體奈米粒子複合體分散液、半導體奈米粒子複合體組成物及半導體奈米粒子複合體硬化膜
US12054657B2 (en) Semiconductor nanoparticle complex, semiconductor nanoparticle complex dispersion liquid, semiconductor nanoparticle complex composition, and semiconductor nanoparticle complex cured film
JP7476893B2 (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物、半導体ナノ粒子複合体硬化膜および半導体ナノ粒子複合体の精製方法
JP6973469B2 (ja) 半導体ナノ粒子集合体、半導体ナノ粒子集合体分散液、半導体ナノ粒子集合体組成物及び半導体ナノ粒子集合体硬化膜
WO2020241875A1 (ja) 半導体ナノ粒子複合体
WO2021124935A1 (ja) 半導体ナノ粒子集合体、半導体ナノ粒子集合体分散液、半導体ナノ粒子集合体組成物及び半導体ナノ粒子集合体硬化膜
KR20210104121A (ko) 표면 개질된 반도체 발광 나노입자 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042424

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20823601

Country of ref document: EP

Kind code of ref document: A1