WO2020250400A1 - 端末及び無線通信方法 - Google Patents

端末及び無線通信方法 Download PDF

Info

Publication number
WO2020250400A1
WO2020250400A1 PCT/JP2019/023583 JP2019023583W WO2020250400A1 WO 2020250400 A1 WO2020250400 A1 WO 2020250400A1 JP 2019023583 W JP2019023583 W JP 2019023583W WO 2020250400 A1 WO2020250400 A1 WO 2020250400A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
dci
transmission
channel
mapping
Prior art date
Application number
PCT/JP2019/023583
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
シャオツェン グオ
ジン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP19932292.6A priority Critical patent/EP3986047A1/en
Priority to JP2021525525A priority patent/JP7308942B2/ja
Priority to US17/617,843 priority patent/US20220248426A1/en
Priority to PCT/JP2019/023583 priority patent/WO2020250400A1/ja
Priority to CN201980098886.9A priority patent/CN114175791A/zh
Priority to AU2019450301A priority patent/AU2019450301A1/en
Publication of WO2020250400A1 publication Critical patent/WO2020250400A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • a user terminal (User Equipment (UE)) performs repetition processing (repetition transmission) for a certain channel or signal at one or more transmission opportunities (transmission occasion). , Repeated reception, etc.) are being considered.
  • UE User Equipment
  • TCI state Transmission Configuration Indication state
  • TRP Transmission / Reception Point
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling repetitive processing.
  • the terminal maps the sequence of the redundant version (Redundancy Version (RV)) applied to the repeatedly transmitted channel to each transmission opportunity, and the downlink control information (Downlink Control) that schedules the channel. It is characterized by having a control unit that determines based on a field of Information (DCI)) and a receiving unit that receives the channel based on the mapping.
  • RV redundant Version
  • DCI field of Information
  • iterative processing can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of a TCI set.
  • 2A and 2B are diagrams showing an example of the correspondence between the TCI field and the TCI set.
  • FIG. 3 is a diagram showing an example of a case where the UE does not expect to receive a DCI indicating the number of TCI states different from the number of repetitions.
  • FIG. 4 is a diagram showing another example of the case where the UE does not expect to receive a DCI indicating the number of TCI states different from the number of repetitions.
  • FIG. 5 is a diagram showing an example of a case where the UE allows the UE to receive DCI indicating the number of TCI states different from the number of repetitions.
  • FIG. 3 is a diagram showing an example of a case where the UE does not expect to receive a DCI indicating the number of TCI states different from the number of repetitions.
  • FIG. 4 is a diagram showing another example of the case where the UE does not expect to receive a DCI indicating the number
  • FIG. 6 is a diagram showing another example of the case where the UE allows the UE to receive DCI indicating the number of TCI states different from the number of repetitions.
  • FIG. 7 is a diagram showing still another example in the case where the UE allows the UE to receive DCI indicating the number of TCI states different from the number of repetitions.
  • FIG. 8 is a diagram showing an example of RV mapping for each transmission opportunity.
  • 9A and 9B are diagrams showing an example of RV mapping for each transmission opportunity in Mapping 2-1.
  • 10A-10C is a diagram showing an example of RV applied repeatedly.
  • 11A and 11B are diagrams showing an example of RV mapping for each transmission opportunity in mapping 2-2.
  • 12A-12C is a diagram showing an example of RV applied repeatedly.
  • FIG. 13A and 13B are diagrams showing an example of RV mapping for each transmission opportunity in the third mapping.
  • 14A-14C is a diagram showing an example of RV applied repeatedly.
  • FIG. 15 is a diagram showing an example of the correspondence between the TCI-RV set field and the TCI-RV set.
  • 16A-16C are diagrams showing an example of TCI and RV applied repeatedly.
  • FIG. 17 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 18 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 19 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 20 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • At least one of a channel and a signal (may be expressed as "channel / signal"; hereinafter, “A / B” may be similarly read as “at least one of A and B”) is 1. It is being considered to transmit not only once but also multiple times (with repetition).
  • the UE or base station can read a transport block (Transport Block (TB)) (which may be read as the same TB) based on the same data. It is being considered to send.
  • Transport Block Transport Block
  • Each transmission opportunity may correspond to a predetermined time unit.
  • the predetermined time unit may be, for example, a slot or a time unit shorter than the slot (for example, a mini slot).
  • the minislot may consist of 7 symbols, 3 or 4 symbols, or 2 symbols.
  • the mini-slot may be referred to as a sub-slot, a half-slot, or the like.
  • the channels to which repeated transmission is applied include an uplink control channel (Physical Uplink Control Channel (PUCCH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and the like. It may be at least one such as a downlink shared channel (Physical Downlink Shared Channel (PDSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Control Channel
  • the UE may or may not repeatedly transmit a channel / signal when iterative transmission of a channel / signal is set or specified using higher layer signaling, physical layer signaling, or a combination thereof.
  • the channel / signal may be received (may be referred to as repeated reception).
  • the UE may repeatedly transmit or repeatedly receive a channel / signal for which the number of repetitions is set or specified.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Repeated transmission may be referred to as slot aggregation transmission, multi-slot transmission, multi-mini slot transmission, or the like.
  • the repetition of PDSCH includes “multiple PDSCHs for each of a plurality of time units (for example, a plurality of slots, subslots or minislots)", “PDSCH blind retransmission", “multi-slot PDSCH”, and the like. It may be paraphrased as “multi-subslot PDSCH”, “multi-mini slot PDSCH”, “plurality of PDSCHs including the same TB”, and the like. Similar paraphrases may be used for other channels.
  • transmission opportunity, reception opportunity, repetition (or unit of repetition), slot, mini-slot, etc. may be read as each other. Further, in the present disclosure, the repetition may be read as at least one of the repeated transmission and the repeated reception.
  • the number of repetitions, the number of repetitions (repetition number), the repetition factor (repetition factor), the repetition coefficient, K, and the like may be read as each other.
  • the number of repetitions of a certain channel / signal is 1, it may indicate that the channel / signal is transmitted once (no repetition).
  • the same symbol assignment may be applied between K time units (eg, slots or minislots).
  • the UE in each time unit is based on the starting symbol index and the number of symbols determined based on the value of a given field in the DCI (eg, the Time domain Resource Allocation (TDRA) field).
  • TDRA Time domain Resource Allocation
  • the redundant version (Redundancy Version (RV)) applied to the TB based on the same data may be the same, or at least a part may be different.
  • the RV applied to the TB in the nth time unit may be determined based on the value of a predetermined field (eg, RV field) in the DCI.
  • TCI state Transmission Configuration Indication state
  • TRP Transmission / Reception Point
  • each transmission opportunity of the TB (each minislot particle size) is in one TCI state and one RV. It may correspond. Further, for example, when one TB is repeatedly transmitted over different slots, each transmission opportunity of the TB may correspond to one TCI state and one RV.
  • the present inventors have conceived a method for appropriately controlling the iterative process.
  • the panel Uplink (UL) transmission entity, TRP, spatial relationship, control resource set (COntrol REsource SET (CORESET)), PDSCH, code word, base station, predetermined antenna port (for example, reference for demodulation).
  • Signal DeModulation Reference Signal (DMRS) port
  • predetermined antenna port group for example, DMRS port group
  • predetermined group for example, Code Division Multiplexing (CDM) group, predetermined reference signal group, CORESET group
  • CDMRS Code Division Multiplexing
  • the panel Identifier (ID) and the panel may be read as each other. That is, the TRP ID and TRP, the CORESET group ID and the CORESET group, and the like may be read as each other. The ID and index may be read as each other.
  • sequences, lists, sets, groups, etc. may be read as each other.
  • Repeated transmission using at least one of a plurality of TCI states and a plurality of RVs is mainly considered for use in a case where a multi-TRP PDSCH is scheduled by a single DCI based on URLLC.
  • the application of each embodiment of the present disclosure is not limited to this case.
  • Each embodiment may include content in which the PDSCH is replaced with another channel / signal (eg, PUSCH, PUCCH, PDCCH).
  • another channel / signal eg, PUSCH, PUCCH, PDCCH.
  • the TCI state and the RV sequence may be indicated for the repetition of PDSCH based on different fields of DCI.
  • the PDSCH repetition (transmission opportunity) and TCI state mapping relationship and the PDSCH repetition and RV sequence mapping relationship may be defined separately.
  • the UE may set a set of TCI states (hereinafter, also simply referred to as TCI) applied to each repeating unit by higher layer signaling (for example, RRC signaling).
  • TCI TCI states
  • the TCI set may be read as a TCI sequence, a TCI group, a TCI pattern, etc. that are repeatedly applied.
  • the TCI set may consist of one or more TCIs.
  • the UE may set the correspondence between the index of the TCI set and one or more TCI indexes corresponding to the TCI set by RRC signaling.
  • FIG. 1 is a diagram showing an example of a TCI set.
  • eight TCI sets from TCI sets 0 to 7 are shown as TCI sets.
  • the number of TCI sets set in the UE is not limited to eight.
  • TCI set 0 corresponds to one TCI (TCI # 1) and TCI set 7 corresponds to four TCIs (TCI # 1- # 4).
  • TCI index #x is also simply referred to as TCI # x for the sake of simplicity.
  • one or more TCI sets among the TCI sets set by RRC signaling may be activated by MAC signaling (for example, MAC CE).
  • the eight TCI sets shown in FIG. 1 may correspond to the TCI set activated by MAC CE among the eight TCI sets set more than eight.
  • the MAC CE may include information such as, for example, a TCI set index, one or more TCI indexes to be activated, and the like.
  • the UE may determine one TCI set based on a specific field of DCI (eg, DCI format 1-11) from the TCI set set, activated, etc. by at least one of RRC signaling and MAC CE.
  • the DCI may correspond to a DCI instructing the repetition of PDSCH.
  • the specific field may be a field for identifying the TCI to be applied repeatedly, and may be called a TCI field, a TCI set field, or the like.
  • the number of bits in the TCI field may vary depending on the number of candidates (or maximum number) of the TCI set set or the TCI set to be activated.
  • 2A and 2B are diagrams showing an example of the correspondence between the TCI field and the TCI set.
  • the value of the TCI field contained in the DCI (which may be called the code point) and the corresponding TCI set are shown.
  • an example of a 3-bit TCI field is shown.
  • FIG. 2A shows the correspondence of cases where TCI set 0-7 is set by RRC
  • FIG. 2B shows the correspondence of cases where TCI set 0-7 is activated by MAC CE.
  • the UE may set the TCI set as shown in FIG. 1, or set or specify one or a plurality of TCIs directly corresponding to the code points of the TCI field shown in FIG. 2A without going through the TCI set. May be done.
  • the maximum number of (corresponding) TCI states included in each TCI set may be set in the UE by higher layer signaling, may be based on UE capability, or may be predetermined by specifications.
  • the UE may specify a different TCI by a plurality of TCI fields included in the DCI. For example, when the DCI includes two TCI fields (TCI fields 1 and 2), the UE constitutes one TCI set in which the TCI 1 indicated by the TCI field 1 and the TCI 2 indicated by the TCI field 2 constitute one TCI set (PDSCH). It may be assumed that it is applied repeatedly).
  • the UE receives a DCI indicating the same number of TCI states as the number of repetitions.
  • UE processing can be simplified.
  • FIG. 3 is a diagram showing an example of a case where the UE does not expect to receive a DCI indicating the number of TCI states different from the number of repetitions.
  • the lower part of FIG. 3 shows an example of the correspondence between the value (code point) of the TCI field included in DCI and TCI (TCI set).
  • Each code point corresponds to one or more TCI states corresponding to the TCI set shown in FIG.
  • FIG. 3 shows an example of DCI and PDSCH repetition scheduled by the DCI.
  • the repetition is performed at temporal intervals (discrete), but the repetition may be performed using a continuous time resource.
  • the repetition is performed at temporal intervals (discrete), but the repetition may be performed using a continuous time resource.
  • the repetition may be performed using a continuous time resource.
  • the UE may determine that the nth iteration (nth PDSCH) is the nth TCI state of the corresponding TCI set. For example, the UE may determine that the first iteration (1 st PDSCH) is the first TCI state (TCI # 1) of the corresponding TCI set.
  • FIG. 4 is a diagram showing another example of the case where the UE does not expect to receive a DCI indicating the number of TCI states different from the number of repetitions. Since it is the same as FIG. 3 except that the values of K, Y, TCI code points, etc. corresponding to DCI are different, the duplicate description will not be repeated.
  • the UE may determine that the nth iteration (nth PDSCH) is the nth TCI state of the corresponding TCI set.
  • the UE may determine that the first iteration (1 st PDSCH) is the first TCI state (TCI # 1) of the corresponding TCI set.
  • the UE may allow the UE to receive a DCI indicating the number of TCI states that is different from the number of PDSCH time domain iterations.
  • mod (A, B) may correspond to the remainder (modulo operation) obtained by dividing A by B.
  • FIG. 5 is a diagram showing an example of a case where the UE allows the UE to receive DCI indicating the number of TCI states different from the number of repetitions. Since it is the same as FIG. 3 except that the values of K, Y, TCI code points, etc. corresponding to DCI are different, the duplicate description will not be repeated.
  • the first, second, third, and fourth repetitions correspond to TCI # 1, # 2, # 1, and # 2, respectively.
  • the UE transmits at least one of the TCIs of the TCI set. May be applied on occasion.
  • FIG. 6 is a diagram showing another example of the case where the UE allows the UE to receive DCI indicating the number of TCI states different from the number of repetitions. Since it is the same as FIG. 3 except that the values of K, Y, TCI code points, etc. corresponding to DCI are different, the duplicate description will not be repeated.
  • the UE may receive a DCI indicating the same number of TCI states as the number of iterations, as shown in FIG. ..
  • the UE may determine that the nth iteration (nth PDSCH) is the mod (n-1, Y) + 1st TCI state of the corresponding TCI set.
  • the first, second, third, and fourth repetitions correspond to TCI # 1, # 2, # 3, and # 4, respectively.
  • FIG. 7 is a diagram showing still another example in the case where the UE allows the UE to receive DCI indicating the number of TCI states different from the number of repetitions. Since it is the same as FIG. 3 except that the values of K, Y, TCI code points, etc. corresponding to DCI are different, the duplicate description will not be repeated.
  • the UE may determine that the nth iteration (nth PDSCH) is the mod (n-1, Y) + 1st TCI state of the corresponding TCI set.
  • the first and second iterations correspond to TCI # 1 and # 2, respectively.
  • the UE applies only a part of the TCI set to the PDSCH repetition. You may.
  • the mapping between the nth transmission opportunity and the Y TCI states is not limited to the previous examples.
  • the first and second repetitions correspond to TCI # 4 and # 3, respectively.
  • RV sequence ⁇ # 0, # 2, # 3, # 1 ⁇ an RV sequence that includes different RV indexes (does not contain the same RV index).
  • the RV sequence may be composed of one or more RV indexes.
  • the UE determines the RV (which may be read as RV index, RV value, etc.) corresponding to the nth iteration based on the value of a predetermined field (for example, RV field) in the DCI that schedules the PDSCH iteration. You may.
  • the nth repetition may be read as the n-1th repetition with each other (for example, the first repetition may be expressed as the 0th repetition).
  • the UE may determine the RV index to be applied to the first iteration based on the 2-bit RV field. For example, if the value of the RV field is "00", “01”, “10", “11”, the RV index of the first repetition is “0”, “1", “2”, “3”, respectively. It may correspond to'.
  • FIG. 8 is a diagram showing an example of RV mapping for each transmission opportunity.
  • the leftmost column of the table in FIG. 8 shows the RV index (rv id ) indicated by the RV field.
  • the UE may determine the RV index applied to the nth iteration (transmission opportunity) according to this value.
  • the UE may apply the right RV for each repetition of the RV sequence ⁇ # 0, # 2, # 3, # 1 ⁇ , starting from the RV indicated by the RV field.
  • RV sequences greater than 1 include, for example, RV sequences ⁇ # 0, # 2, # 3, # 1 ⁇ , ⁇ # 0, # 3, # 0, # 3 ⁇ , ⁇ # 0, # 0, # 0, It may include # 0 ⁇ and the like.
  • the UE may configure at least one of the more than 1 RV sequences by higher layer signaling for PDSCH iterations. For example, the UE may determine the RV index to be applied to the first iteration from the set RV sequence based on the 2-bit RV field. The UE may determine the RV index applied to the nth iteration (transmission opportunity), as described above in the first mapping, based on the RV index applied to the first iteration.
  • the second mapping may be broadly divided into the following three depending on how the RV field of DCI is constructed: (Mapping 2-1) The number of bits in the RV field is fixed, (Mapping 2-2) The number of bits in the RV field is variable, (Mapping 2-3) Does not include RV fields.
  • the size (number of bits) of the RV field of the DCI may be a fixed number of bits (for example, 2 bits) regardless of the RV sequence set in the UE.
  • the number of RV indexes that can be applied to the first iteration is less than the number of values that can be represented by the fixed number of bits, the number of possible values of the RV field is applied to the first iteration. It may be assumed that the number of RV indexes obtained is limited.
  • the first mapping is described above.
  • the UE may determine the RV index applied to each iteration based on the relationship as shown in FIG.
  • 9A and 9B are diagrams showing an example of RV mapping for each transmission opportunity in mapping 2-1. Since the view of the table is the same as that in FIG. 8, duplicate explanations will not be repeated.
  • the UE may determine the RV index applied to each iteration based on.
  • the UE may determine the RV index applied to each iteration based on the relationship.
  • RV index 1 and 2 indicated by the RV field in FIG. 9A
  • the UE may treat a part of the RV field as a virtual cyclic redundancy check (Virtual Cyclic Redundancy Check (V-CRC)) bit, which can be expected to improve the DCI reception performance.
  • V-CRC Virtual Cyclic Redundancy Check
  • FIG. 10A-10C is a diagram showing an example of RV applied repeatedly. In this example, it is assumed that the UE has set the RV sequence ⁇ # 0, # 2, # 3, # 1 ⁇ for repeating PDSCH.
  • the size (number of bits) of the RV field of the DCI may be a variable number of bits (for example, 0-2 bits) according to the RV sequence set in the UE.
  • a UE in which the RV sequence ⁇ # 0, # 2, # 3, # 1 ⁇ is set may assume that the RV field of DCI is 2 bits.
  • a UE in which an RV sequence (for example, ⁇ # 0, # 3, # 0, # 3 ⁇ ) including the same RV index is partially set may assume that the RV field of DCI is 1 bit.
  • a UE set with an RV sequence (for example, ⁇ # 0, # 0, # 0, # 0 ⁇ ) composed of all the same RV indexes may assume that the RV field of DCI is 0 bit.
  • the RV sequence may be explicitly set in the UE, or the number of bits of the RV field may be set instead of setting the RV sequence. In the latter case, the UE may assume that a particular RV sequence has been set according to the number of bits of the set RV field (eg, in the example of assuming the RV field size from the set of RV sequences described above). Reverse).
  • the UE may determine the RV index applied to each iteration.
  • FIGS. 11A and 11B are diagrams showing an example of RV mapping for each transmission opportunity in mapping 2-2. Since the view of the table is the same as that in FIG. 8, duplicate explanations will not be repeated.
  • mapping 2-2 when the set RV sequence is an RV sequence (for example, ⁇ # 0, # 3, # 0, # 3 ⁇ ) containing the same RV index in part, the relationship as shown in FIG. 11A.
  • the UE may determine the RV index applied to each iteration based on.
  • mapping 2-2 when the set RV sequences are all RV sequences composed of the same RV index (for example, ⁇ # 0, # 0, # 0, # 0 ⁇ ), as shown in FIG. 11B.
  • the UE may determine the RV index applied to each iteration based on the relationship.
  • FIG. 12A-12C is a diagram showing an example of RV applied repeatedly. In this example, it is assumed that the UE has set the RV sequence ⁇ # 0, # 3, # 0, # 3 ⁇ for repeating the PDSCH.
  • Mapping 2-3 the DCI that schedules the iterations does not include the RV field.
  • the UE may determine the RV sequence to be applied repeatedly based on other fields (eg, TCI fields).
  • mapping 2-3 the scheduling offset (in other words, time offset) between the reception of DL DCI (DCI scheduling PDSCH) and the corresponding PDSCH (PDSCH scheduled by the DCI) is less than the threshold value.
  • DCI scheduling PDSCH DCI scheduling PDSCH
  • PDSCH scheduled by the DCI PDSCH scheduled by the DCI
  • it may be assumed to be used. This is because the TCI field of the case is ignored in the Rel-15 NR (the default Quasi-Co-Location (QCL) assumption is applied to the PDSCH).
  • QCL Quasi-Co-Location
  • the scheduling offset for the repetitive PDSCH may mean an offset between the DCI and a specific PDSCH transmission opportunity (for example, the first or last repetitive transmission opportunity) corresponding to the DCI.
  • the thresholds are the QCL time length, "Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI”, RRC parameters "timeDurationForQCL”, “Threshold-Sched-Offset”, and schedule offset threshold. , Scheduling offset threshold, etc.
  • the threshold may be set by higher layer signaling.
  • the UE may use the first or last x bit (x> 0) of another field (for example, TCI field) as the RV field described above in mappings 2-1 and 2-2.
  • x may be fixed to a predetermined number of bits (for example, 2 bits), or may be set by higher layer signaling (for example, either 0-2 bits).
  • the UE may assume that PDSCH is not repeated in the case where the scheduling offset is equal to or greater than the threshold value. In other words, the UE may assume that PDSCH iterations occur only in cases where the scheduling offset is less than the threshold.
  • a specific TCI set as described later in the second embodiment may be used, or a fixed TCI state may be used.
  • mappings for example, the first mapping described above and the third mapping described later
  • other mappings are also based on other fields (for example, TCI fields) instead of the RV field or in addition to the RV field.
  • the RV sequence applied to the iteration may be determined.
  • RV sequences greater than 1 include, for example, RV sequences ⁇ # 0, # 2, # 3, # 1 ⁇ , ⁇ # 0, # 3, # 0, # 3 ⁇ , ⁇ # 0, # 0, # 0, It may include # 0 ⁇ and the like.
  • the UE may set more than 1 RV sequence by higher layer signaling for PDSCH iterations.
  • the UE may determine the RV sequence to be applied to the repetition from the set RV sequence based on, for example, a 2-bit RV field.
  • the number of bits of the RV field included in the DCI may vary depending on the number of set RV sequences.
  • the UE may apply the nth RV index of the determined RV sequence to the nth repetition (transmission opportunity). For example, assuming that the size of the determined RV sequence (the number of RV indexes included in the RV sequence) is Z, the UE will perform the mod (n-1, Z) + 1th of the determined RV sequence at the nth repetition. It may be decided to use the RV of. For example, Z may be 4.
  • FIGS. 13A and 13B are diagrams showing an example of RV mapping for each transmission opportunity in the third mapping. This example is similar to FIG. 8, except that the right part of the table shows the RV sequence.
  • FIG. 13A shows a case where four RV sequences (first to fourth RV sequences) are set
  • FIG. 13B shows a case where three RV sequences (first to third RV sequences) are set. is there.
  • the number of RV sequences set is less than 4
  • the value of the unused RV field may correspond to the reservation.
  • 14A-14C is a diagram showing an example of RV applied repeatedly.
  • the UE has ⁇ # 0, # 2, # 3, # 1 ⁇ as the first RV sequence, ⁇ # 0, # 3, # 0, # 3 ⁇ as the second RV sequence, and the third. It is assumed that ⁇ # 0, # 0, # 0, # 0 ⁇ is set as the RV sequence.
  • the TCI and RV regarding the repetition of PDSCH can be appropriately determined based on the different fields of DCI.
  • the TCI state and RV sequence may be jointly indicated (collectively) based on one field of DCI for PDSCH iterations.
  • the one field may be referred to as a TCI-RV field, a joint field, or the like.
  • the same rules may be defined for the PDSCH repetition (transmission opportunity) and TCI state mapping relationship and the PDSCH repetition and RV sequence mapping relationship.
  • the UE uses a combination of one or more TCIs applied to each repeating unit and an RV sequence (hereinafter, also referred to as a TCI-RV set) for higher layer signaling (eg, TCI-RV set or the like). It may be set by RRC signaling).
  • one or more TCIs may be set in association with the index of the TCI set, or the RV sequence may be set in association with the index of the RV sequence.
  • the TCI-RV set may be set in association with at least one such as a TCI set index, an RV set index, a TCI index, and an RV index.
  • the TCI-RV set may be set in association with the TCI-RV set index to identify the TCI-RV set.
  • one or more TCI-RV sets of the TCI-RV sets set by RRC signaling may be activated by MAC signaling (eg, MAC CE).
  • the MAC CE may include, for example, information such as one or more TCI-RV indexes to be activated.
  • the UE may determine one TCI-RV set based on a particular field of DCI (eg, DCI format 1-11) from the TCI-RV set set, activated, etc. by at least one of RRC signaling and MAC CE. Good.
  • the DCI may correspond to a DCI instructing the repetition of PDSCH.
  • the specific field may be a field for identifying the TCI-RV set to be applied repeatedly, and may be called a TCI-RV set field or the like.
  • the number of bits in the TCI-RV set field may vary depending on the number of candidates (or maximum number) of the set TCI-RV set or the activated TCI-RV set.
  • FIG. 15 is a diagram showing an example of the correspondence between the TCI-RV set field and the TCI-RV set.
  • the value of the TCI-RV set field included in the DCI (which may be called the joint code point), the corresponding TCI (TCI set), and the corresponding RV sequence are shown.
  • TCI set TCI set
  • RV sequence the corresponding TCI
  • an example of a 3-bit TCI-RV set field is shown.
  • the code point value may correspond to the TCI-RV set index.
  • the UE will perform the nth iteration.
  • mod (n-1, Z1) + 1st TCI may be determined to be applied.
  • Z1 may be 4.
  • Mod (n-1, Z2) + 1st RV may be determined to be applied.
  • Z2 may be 4.
  • Z2 may be the same as or different from Z1.
  • 16A-16C is a diagram showing an example of TCI and RV applied repeatedly. In this example, it is assumed that the UE has set the correspondence between the code point of FIG. 15 and the TCI-RV set.
  • the UE will assume that the TCI state applied to each repeat is the default QCL assumption (eg, Rel-15 NR). It may be assumed that the QCL assumption of the minimum CORESET ID of the latest slot specified in the above is followed, or it may be assumed that the QCL is the same as the PDCCH (CORESET) that receives the DCI.
  • the default QCL assumption eg, Rel-15 NR
  • the UE may assume that the TCI state applied to each iteration is based on a specific TCI set among the TCI sets set by higher layer signaling.
  • the particular TCI set may be a TCI set corresponding to a particular TCI-RV set (or TCI set) index (eg, maximum or minimum TCI-RV set (or TCI set) index) or specific. It may be a TCI set corresponding to the DCI code point (for example, 000) of.
  • the UE may assume that the RV sequence applied to the repeated PDSCH is predetermined by the specification, or of the RV sequence set or activated by higher layer signaling. Of these, it may be assumed that it is based on a specific RV sequence.
  • the particular RV sequence may be an RV sequence corresponding to a particular TCI-RV set (or TCI set) index (eg, maximum or minimum TCI-RV set (or TCI set) index) or specific. It may be an RV sequence corresponding to the DCI code point (for example, 000) of.
  • the UE may assume that the TCI state applied to each iteration follows the default QCL assumption and the RV follows the particular RV sequence.
  • At least one of these assumptions may be used in the case where the scheduling offset is less than the threshold value.
  • the TCI and RV regarding the repetition of PDSCH can be appropriately determined based on the same field of DCI.
  • the UE does not explicitly set or instruct the number of repetitions of a certain channel / signal, the number of TCI states applied to the channel / signal (for example, the size of the TCI set to be used) and the RV.
  • the number of iterations of the channel / signal may be determined based on at least one of the number of sequences.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 17 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 18 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may repeatedly transmit a channel / signal (for example, PDSCH) to the user terminal 20.
  • the control unit 110 may control the generation and transmission of control information (RRC signaling, MAC CE, DCI, etc.) for the repeated transmission.
  • FIG. 19 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the control unit 210 sets the Transmission Configuration Indication state (TCI state) applied to the repeatedly transmitted channel (for example, PDSCH) to the downlink control information (DCI)) that schedules the channel. It may be determined based on the field.
  • the field may be a field for TCI (TCI field) or a joint field for TCI and RV (TCI-RV field).
  • the transmission / reception unit 220 may receive the channel based on the set.
  • the reception of the channel may include a reception process of the channel (for example, decoding).
  • the control unit 210 may not expect to receive the DCI indicating the set having a number of TCI states different from the number of repetitions of the channel.
  • the control unit 210 may assume that the nth transmission opportunity of the channel is related to the mod (n-1, Y) + 1st TCI state among the Y TCI states of the set.
  • control unit 210 the control unit has a scheduling offset between the reception of the DCI and the reception of the channel (for example, the reception of the first repetition of the channel) smaller than the threshold value (for example, the QCL time length).
  • the threshold value for example, the QCL time length
  • control unit 210 maps the sequence of the redundant version (Redundancy Version (RV)) applied to the repeatedly transmitted channel (for example, PDSCH) to each transmission opportunity, and the downlink control information (for example) that schedules the channel. It may be judged based on the field of Downlink Control Information (DCI)).
  • the field may be a field for RV (RV field) or a joint field for TCI and RV (TCI-RV field).
  • the transmission / reception unit 220 may receive the channel based on the mapping.
  • the reception of the channel may include a reception process of the channel (for example, decoding).
  • the control unit 210 may determine the size of the DCI field based on the sequence set in the user terminal 20.
  • the control unit 210 When the scheduling offset between the reception of the DCI and the reception of the channel (for example, the reception of the first repetition of the channel) is smaller than the threshold value, the control unit 210 includes the Transmission Configuration Indication state (TCI) included in the DCI.
  • TCI Transmission Configuration Indication state
  • the mapping may be determined based on the field for the state).
  • control unit 210 may assume that the sequence is a specific RV sequence regardless of the field.
  • each functional block is realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block for functioning transmission may be referred to as a transmitting unit, a transmitter, or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” such as resolution, selection, choosing, establishment, and comparison. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Abstract

本開示の一態様に係る端末は、繰り返し送信されるチャネルについて適用する冗長バージョン(Redundancy Version(RV))のシーケンスの各送信機会へのマッピングを、当該チャネルをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))のフィールドに基づいて判断する制御部と、前記マッピングに基づいて前記チャネルを受信する受信部と、を有することを特徴とする。本開示の一態様によれば、繰り返しの処理を適切に制御できる。

Description

端末及び無線通信方法
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、ユーザ端末(User Equipment(UE))が、1つ以上の送信機会(transmission occasion)において、あるチャネル又は信号に対して繰り返し(repetition)処理(繰り返し送信、繰り返し受信など)を行うことが検討されている。
 また、NRにおいて、繰り返し送信に、複数の送信構成指示状態(Transmission Configuration Indication state(TCI状態))を適用することが検討されている。複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)を用いてチャネルが繰り返し送信される場合には、各繰り返しが異なるTCI状態に対応することが考えられるためである。
 しかしながら、このような繰り返し送信に対するTCI状態及びRVを、UEがどのように判断して各送信機会にマップするかについては、検討が進んでいない。繰り返しの処理が適切に行われない場合、通信スループットの増大が抑制されるおそれがある。
 そこで、本開示は、繰り返しの処理を適切に制御できる端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係る端末は、繰り返し送信されるチャネルについて適用する冗長バージョン(Redundancy Version(RV))のシーケンスの各送信機会へのマッピングを、当該チャネルをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))のフィールドに基づいて判断する制御部と、前記マッピングに基づいて前記チャネルを受信する受信部と、を有することを特徴とする。
 本開示の一態様によれば、繰り返しの処理を適切に制御できる。
図1は、TCIセットの一例を示す図である。 図2A及び2Bは、TCIフィールドとTCIセットの対応関係の一例を示す図である。 図3は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが予期しない場合の一例を示す図である。 図4は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが予期しない場合の別の一例を示す図である。 図5は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合の一例を示す図である。 図6は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合の別の一例を示す図である。 図7は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合のさらに別の一例を示す図である。 図8は、各送信機会に対するRVのマッピングの一例を示す図である。 図9A及び9Bは、マッピング2-1における各送信機会に対するRVのマッピングの一例を示す図である。 図10A-10Cは、繰り返しに適用するRVの一例を示す図である。 図11A及び11Bは、マッピング2-2における各送信機会に対するRVのマッピングの一例を示す図である。 図12A-12Cは、繰り返しに適用するRVの一例を示す図である。 図13A及び13Bは、第3のマッピングにおける各送信機会に対するRVのマッピングの一例を示す図である。 図14A-14Cは、繰り返しに適用するRVの一例を示す図である。 図15は、TCI-RVセットフィールドとTCI-RVセットの対応関係の一例を示す図である。 図16A-16Cは、繰り返しに適用するTCI及びRVの一例を示す図である。 図17は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図18は、一実施形態に係る基地局の構成の一例を示す図である。 図19は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図20は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(繰り返し送信)
 NRでは、チャネル及び信号の少なくとも一方(「チャネル/信号」と表記されてもよい。以下、「A/B」は同様に、「A及びBの少なくとも一方」で読み替えられてもよい)を1回だけでなく、複数回繰り返して(with repetition)送信することが検討されている。
 例えば、NRでは、1つ以上の送信機会(transmission occasion)において、UE又は基地局が、同一のデータに基づくトランスポートブロック(Transport Block(TB))(同一のTBで読み替えられてもよい)を送信することが検討されている。各送信機会は所定の時間ユニットに該当してもよい。
 所定の時間ユニットは、例えば、スロットであってもよいし、スロットよりも短い時間ユニット(例えば、ミニスロット)であってもよい。ミニスロットは、7シンボル、3又は4シンボル、又は、2シンボルで構成されてもよい。ミニスロットは、サブスロット又はハーフスロット等と呼ばれてもよい。
 例えば、繰り返し送信が適用されるチャネルは、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))などの少なくとも1つであってもよい。
 例えば、UEは、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてあるチャネル/信号の繰り返し送信が設定又は指定された場合、当該チャネル/信号を繰り返し送信してもよいし、繰り返し送信されたチャネル/信号を受信(繰り返し受信と呼ばれてもよい)してもよい。UEは、繰り返し回数が設定又は指定されたチャネル/信号について、繰り返し送信又は繰り返し受信を行ってもよい。
 なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 繰り返し送信は、スロットアグリゲーション(slot aggregation)送信、マルチスロット送信、マルチミニスロット送信などと呼ばれてもよい。
 なお、PDSCHの繰り返しは、「複数の時間ユニット(例えば、複数のスロット、サブスロット又はミニスロット)それぞれの複数のPDSCH」、「PDSCHブラインド再送信(PDSCH blind retransmission)」、「マルチスロットPDSCH」、「マルチサブスロットPDSCH」、「マルチミニスロットPDSCH」、「同一のTBを含む複数のPDSCH」などと言い換えられてもよい。他のチャネルについても同様の言い換えが用いられてもよい。
 本開示において、送信機会、受信機会(reception occasion)、繰り返し(又は繰り返しの単位)、スロット、ミニスロットなどは、互いに読み替えられてもよい。また、本開示において、繰り返し(repetition)は、繰り返し送信、繰り返し受信の少なくとも一方で読み替えられてもよい。
 なお、本開示において、繰り返し回数、繰り返し数(repetition number)、繰り返し因数(repetition factor)、繰り返し係数、Kなどは、互いに読み替えられてもよい。なお、あるチャネル/信号の繰り返し回数が1であることは、当該チャネル/信号を1回送信する(繰り返しなしである)ことを示してもよい。
 K個の時間ユニット(例えば、スロット又はミニスロット)間では、同一のシンボル割り当てが適用されてもよい。例えば、UEは、DCI内の所定フィールド(例えば、時間領域リソース割り当て(Time domain Resource Allocation(TDRA))フィールド)の値に基づいて決定される開始シンボルインデックス及びシンボル数に基づいて、各時間ユニットにおけるシンボル割り当てを決定してもよい。
 K個の時間ユニット間では、同一データに基づくTBに適用される冗長バージョン(Redundancy Version(RV))は、同一であってもよいし、又は、少なくとも一部が異なってもよい。例えば、n番目の時間ユニットで当該TBに適用されるRVは、DCI内の所定フィールド(例えば、RVフィールド)の値に基づいて決定されてもよい。
 Rel-16以降のNRにおいて、高信頼かつ低遅延通信(Ultra-Reliable and Low-Latency Communications(URLLC))サービスへの繰り返し送信の適用が検討されている。例えば、繰り返し送信に、複数の送信構成指示状態(Transmission Configuration Indication state(TCI状態))を適用することが検討されている。複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)を用いてPDSCHが繰り返し送信される場合には、各繰り返しが異なるTCI状態に対応することが考えられるためである。
 例えば、シングルスロット内で、重複しない時間リソースを用いて1つのTBの繰り返し送信が行われる場合、当該TBの各送信機会(それぞれ、ミニスロットの粒度)は、1つのTCI状態及び1つのRVに対応してもよい。また、例えば、異なるスロットにわたって1つのTBの繰り返し送信が行われる場合、当該TBの各送信機会は、1つのTCI状態及び1つのRVに対応してもよい。
 しかしながら、繰り返し送信に対するTCI状態及びRVを、UEがどのように判断して各送信機会にマップするかについては、検討が進んでいない。繰り返しの処理が適切に行われない場合、通信スループットの増大が抑制されるおそれがある。
 そこで、本発明者らは、繰り返しの処理を適切に制御するための方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本開示において、パネル、Uplink(UL)送信エンティティ、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ)などは、互いに読み替えられてもよい。
 また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。つまり、TRP IDとTRP、CORESETグループIDとCORESETグループなどは、互いに読み替えられてもよい。ID及びインデックスは、互いに読み替えられてもよい。
 また、本開示において、シーケンス、リスト、セット、グループなどは、互いに読み替えられてもよい。
 複数のTCI状態及び複数のRVの少なくとも一方を利用する繰り返し送信は、URLLCベースでマルチTRPのPDSCHがシングルDCIによってスケジュールされるケースへの利用が主に検討されている。しかしながら、本開示の各実施形態の適用は、このケースに限定されない。
 以下の実施形態の説明は、PDSCHの繰り返しを想定するが、これに限られない。各実施形態は、PDSCHを他のチャネル/信号(例えば、PUSCH、PUCCH、PDCCH)に置き換えた内容を含んでもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態においては、PDSCHの繰り返しに関して、TCI状態とRVシーケンスとを、DCIのそれぞれ別のフィールドに基づいて指示されてもよい。PDSCHの繰り返し(送信機会)及びTCI状態のマッピング関係と、PDSCHの繰り返し及びRVシーケンスのマッピング関係と、は別々に定義されてもよい。
[PDSCHの繰り返しのためのTCI状態]
 第1の実施形態においては、UEは、各繰り返し単位に適用するTCI状態(以下、単にTCIとも書く)のセットを、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されてもよい。
 なお、TCIのセット(TCIセット)は、繰り返しに適用されるTCIのシーケンス、TCIのグループ、TCIのパターンなどと互いに読み替えられてもよい。本開示において、TCIセットは、1つ又は複数のTCIから構成されてもよい。
 UEは、RRCシグナリングによって、TCIセットのインデックスと、当該TCIセットに対応する1つ又は複数のTCIインデックスと、の対応関係を設定されてもよい。
 図1は、TCIセットの一例を示す図である。本例では、TCIセットとしてTCIセット0から7の8つのTCIセットが示されている。なお、UEに設定されるTCIセットの数は、8に限られない。
 図1に示されるように、TCIセットごとに、含まれる(又は対応する)TCIの数は、異なってもよい。例えば、TCIセット0は1つのTCI(TCI#1)に対応し、TCIセット7は4つのTCI(TCI#1-#4)に対応する。なお、本開示では、簡単のため、TCIインデックス#xを単にTCI#xとも表す。
 なお、RRCシグナリングによって設定されたTCIセットのうち1つ又は複数のTCIセットが、MACシグナリング(例えば、MAC CE)によってアクティベートされてもよい。
 例えば、図1に示した8つのTCIセットは、8つより多く設定されたTCIセットのうち、MAC CEによってアクティベートされたTCIセットに該当してもよい。当該MAC CEは、例えば、TCIセットのインデックス、アクティベートする1つ以上のTCIインデックスなどの情報を含んでもよい。
 UEは、RRCシグナリング及びMAC CEの少なくとも一方によって設定、アクティベートなどされたTCIセットから、DCI(例えば、DCIフォーマット1_1)の特定のフィールドに基づいて1つのTCIセットを決定してもよい。当該DCIは、PDSCHの繰り返しを指示するDCIに該当してもよい。なお、特定のフィールドは、繰り返しに適用するTCIを識別するためのフィールドであってもよく、TCIフィールド、TCIセットフィールドなどと呼ばれてもよい。
 TCIフィールドのビット数は、設定されたTCIセット又はアクティベートされるTCIセットの候補数(又は最大数)に応じて変動してもよい。
 図2A及び2Bは、TCIフィールドとTCIセットの対応関係の一例を示す図である。本例では、DCIに含まれるTCIフィールドの値(コードポイントと呼ばれてもよい)と、対応するTCIセットと、が示されている。本例では、3ビットのTCIフィールドの例が示されている。
 図2Aは、RRCによってTCIセット0-7が設定されるケースの対応関係を示し、図2Bは、MAC CEによってTCIセット0-7がアクティベートされるケースの対応関係を示す。
 TCIフィールドの値に応じて異なるTCIセットが指定されている。例えば、図2Aにおいて、TCIフィールドの値=000、001及び010には、それぞれRRCによって設定されたTCIセット0、1及び2が関連付けられている。
 なお、UEは、図1のようにTCIセットを設定されてもよいし、TCIセットを介さずに、直接図2Aに示すTCIフィールドのコードポイントに対応する1つ又は複数のTCIを設定又は指定されてもよい。
 各TCIセットに含まれる(対応する)TCI状態の最大数は、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力に基づいてもよいし、仕様によって予め定められてもよい。
 UEは、DCIに含まれる複数のTCIフィールドによって、それぞれ別々のTCIを指定されてもよい。例えば、DCIに2つのTCIフィールド(TCIフィールド1、2)が含まれる場合、UEは、TCIフィールド1が示すTCI1と、TCIフィールド2が示すTCI2と、が1つのTCIセットを構成する(PDSCHの繰り返しに適用される)と想定してもよい。
[各送信機会へのTCI状態のマッピング]
 UEは、PDSCHの時間ドメインの繰り返し回数と異なる(例えば、より小さい、より大きい)TCI状態の数を示すDCIを受信することを予期しなくてもよい。この場合、UEは、K回の繰り返しのうちのn番目の送信機会(n=1、2、…、K)は、DCIによって示されるn番目のTCI状態に関連すると想定してもよい。
 言い換えると、UEは、繰り返し回数と同じTCI状態の数を示すDCIを受信すると想定してもよい。このような構成によれば、UE処理を簡単化できる。
 図3は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが予期しない場合の一例を示す図である。図3の下部には、DCIに含まれるTCIフィールドの値(コードポイント)とTCI(TCIセット)との対応関係の一例が示されている。各コードポイントは、図1で示したTCIセットに対応する1つ又は複数のTCI状態に対応している。
 図3の上部は、DCIと当該DCIによってスケジュールされるPDSCH繰り返しの一例を示している。本例では、繰り返しが時間的に間隔を空けて(離散的に)行われる例を示すが、繰り返しは連続した時間リソースを用いて行われてもよい。以降の図面でも同様である。
 1つのDCIによって示されるTCI状態の数をY(言い換えると、Yは、DCIに対応するTCIセットを構成するTCI状態の数)とおくと、図3の左上に示すように、UEは、K=4、Y=4(コードポイント=111)のDCIを受信し得る。この場合、UEは、n番目の繰り返し(nth PDSCH)は対応するTCIセットのn番目のTCI状態であると決定してもよい。例えば、UEは、1番目の繰り返し(1st PDSCH)は対応するTCIセットの1番目のTCI状態(TCI#1)であると決定してもよい。
 一方、図3の右上に示すように、UEは、K=4、Y=3(コードポイント=110)のDCIを受信することを予期しなくてもよい。仮にそのようなDCIを受信したUEは、当該DCIがスケジュールするPDSCH繰り返しの受信を行わなくてもよい(スキップしてもよい)。
 なお、繰り返し数Kは、上述したように、DCIによって指示されてもよいし、上位レイヤシグナリングによって設定されてもよい。つまり、本開示において、K=X(X>0)のDCI(K=Xを示すDCI)は、Kを通知するDCIを意味してもよいし、上位レイヤシグナリングによって設定されたKの繰り返しが適用されるPDSCHをスケジュールするDCIを意味してもよい。
 図4は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが予期しない場合の別の一例を示す図である。DCIに対応するK、Y、TCIコードポイントなどの値が異なる以外は図3と同様であるため、重複した説明は繰り返さない。
 図4の左上に示すように、UEは、K=2、Y=2(例えば、コードポイント=001)のDCIを受信し得る。この場合、UEは、n番目の繰り返し(nth PDSCH)は対応するTCIセットのn番目のTCI状態であると決定してもよい。例えば、UEは、1番目の繰り返し(1st PDSCH)は対応するTCIセットの1番目のTCI状態(TCI#1)であると決定してもよい。
 一方、図4の右上に示すように、UEは、K=2、Y=3(コードポイント=110)のDCIを受信することを予期しなくてもよい。仮にそのようなDCIを受信したUEは、当該DCIがスケジュールするPDSCH繰り返しの受信を行わなくてもよい(スキップしてもよい)。
 なお、UEは、PDSCHの時間ドメインの繰り返し回数と異なるTCI状態の数を示すDCIを受信することを許容してもよい。この場合、UEは、TCI状態とPDSCH送信機会との間の統一的なマッピングルールを用いて各送信機会に対応するTCI状態を判断してもよい。例えば、UEは、K回の繰り返しのうちのn番目の送信機会(n=1、2、…、K)は、DCIによって示されるY個のTCI状態のうち、mod(n-1,Y)+1番目のTCI状態に関連すると想定してもよい。
 なお、mod(A、B)はAをBで割った余り(モジュロ演算)に該当してもよい。
 このような構成によれば、TCI状態の指示を柔軟に行うことができる。
 図5は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合の一例を示す図である。DCIに対応するK、Y、TCIコードポイントなどの値が異なる以外は図3と同様であるため、重複した説明は繰り返さない。
 図5の上部に示すように、UEは、K=4、Y=2(例えば、コードポイント=001)のDCIを受信し得る。この場合、UEは、n番目の繰り返し(nth PDSCH)は対応するTCIセットのmod(n-1,Y)+1番目のTCI状態であると決定してもよい。
 例えば、UEは、1番目の繰り返し(1st PDSCH)は対応するTCIセットのmod(1-1,2)+1(=1)番目のTCI状態(TCI#1)であると決定してもよい。この例では、1、2、3、4番目の繰り返しは、それぞれTCI#1、#2、#1、#2に対応する。このように、TCIコードポイントに対応するTCIセットのサイズ(TCIセットに含まれるTCIの数)が、繰り返し回数よりも小さい場合には、UEは、TCIセットのTCIの少なくとも1つを複数の送信機会に適用してもよい。
 図6は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合の別の一例を示す図である。DCIに対応するK、Y、TCIコードポイントなどの値が異なる以外は図3と同様であるため、重複した説明は繰り返さない。
 繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合でも、UEは、図6に示すような、繰り返し回数と同じTCI状態の数を示すDCIを受信してもよい。図6の上部に示すように、UEは、K=4、Y=4(例えば、コードポイント=111)のDCIを受信し得る。この場合、UEは、n番目の繰り返し(nth PDSCH)は対応するTCIセットのmod(n-1,Y)+1番目のTCI状態であると決定してもよい。この例では、1、2、3、4番目の繰り返しは、それぞれTCI#1、#2、#3、#4に対応する。
 図7は、繰り返し回数と異なるTCI状態の数を示すDCIを受信することをUEが許容する場合のさらに別の一例を示す図である。DCIに対応するK、Y、TCIコードポイントなどの値が異なる以外は図3と同様であるため、重複した説明は繰り返さない。
 図7の上部に示すように、UEは、K=2、Y=4(例えば、コードポイント=111)のDCIを受信し得る。この場合、UEは、n番目の繰り返し(nth PDSCH)は対応するTCIセットのmod(n-1,Y)+1番目のTCI状態であると決定してもよい。この例では、1、2番目の繰り返しは、それぞれTCI#1、#2に対応する。このように、TCIコードポイントに対応するTCIセットのサイズ(TCIセットに含まれるTCIの数)が、繰り返し回数よりも大きい場合には、UEは、TCIセットの一部のみをPDSCHの繰り返しに適用してもよい。
 なお、n番目の送信機会とY個のTCI状態とのマッピングは、これまでの例に限定されない。例えば、UEは、K回の繰り返しのうちのn番目の送信機会(n=1、2、…、K)は、DCIによって示されるY個のTCI状態のうち、Y-(mod(n-1,Y)+1)+1番目のTCI状態に関連すると想定してもよい。この場合、例えば図7においては、1、2番目の繰り返しは、それぞれTCI#4、#3に対応する。
[各送信機会へのRVのマッピング]
<<第1のマッピング>>
 PDSCHの繰り返しについては、特定のRVシーケンスのみがサポートされてもよい。当該特定のRVシーケンスは、互いに異なるRVインデックスを含む(同じRVインデックスを含まない)RVシーケンス(例えば、RVシーケンス{#0、#2、#3、#1})であってもよい。
 なお、本開示において、RVシーケンスは、1つ又は複数のRVインデックスから構成されてもよい。
 UEは、PDSCHの繰り返しをスケジュールするDCI内の所定フィールド(例えば、RVフィールド)の値に基づいて、n番目の繰り返しに対応するRV(RVインデックス、RV値などと読み替えられてもよい)を決定してもよい。なお、本開示においては、n番目の繰り返しはn-1番目の繰り返しと互いに読み替えられてもよい(例えば、1番目の繰り返しは、0番目の繰り返しと表現されてもよい)。
 UEは、2ビットのRVフィールドに基づいて、1番目の繰り返しに適用するRVインデックスを決定してもよい。例えば、RVフィールドの値が“00”、“01”、“10”、“11”であることは、それぞれ1番目の繰り返しのRVインデックスが‘0’、‘1’、‘2’、‘3’であることに対応してもよい。
 図8は、各送信機会に対するRVのマッピングの一例を示す図である。図8の表の一番左の列は、RVフィールドによって示されるRVインデックス(rvid)を示す。UEは、この値に応じて、n番目の繰り返し(送信機会)に適用されるRVインデックスを判断してもよい。
 例えば、UEは、RVフィールドによって示されるrvidが0の場合、n mod 4(mod(n,4)と等価)=0、1、2、3が、それぞれrvid=0、2、3、1に対応すると判断してもよい。
 つまり、UEは、RVシーケンス{#0、#2、#3、#1}について、RVフィールドによって示されたRVを開始位置として、繰り返しごとに1つ右のRVを適用してもよい。
<<第2のマッピング>>
 PDSCHの繰り返しについては、1より多いRVシーケンスがサポートされてもよい。当該1より多いRVシーケンスは、例えば、RVシーケンス{#0、#2、#3、#1}、{#0、#3、#0、#3}、{#0、#0、#0、#0}などを含んでもよい。
 UEは、PDSCHの繰り返しのために、1より多いRVシーケンスの少なくとも1つを、上位レイヤシグナリングによって設定されてもよい。例えば、UEは、2ビットのRVフィールドに基づいて、設定されたRVシーケンスから、1番目の繰り返しに適用するRVインデックスを決定してもよい。UEは、1番目の繰り返しに適用するRVインデックスに基づいて、第1のマッピングで上述したように、n番目の繰り返し(送信機会)に適用されるRVインデックスを判断してもよい。
 第2のマッピングは、DCIのRVフィールドをどのように構成するかによって、以下の3つに大別されてもよい:
 (マッピング2-1)RVフィールドのビット数が固定、
 (マッピング2-2)RVフィールドのビット数が可変、
 (マッピング2-3)RVフィールドを含まない。
<<マッピング2-1>>
 DCIのRVフィールドのサイズ(ビット数)は、UEに設定されるRVシーケンスに関わらず固定のビット数(例えば、2ビット)であってもよい。ここで、1番目の繰り返しに適用され得るRVインデックスの数が、当該固定のビット数で表現できる値の数未満であれば、RVフィールドの取り得る値の数は上記1番目の繰り返しに適用され得るRVインデックスの数に制限されると想定されてもよい。
 設定されたRVシーケンスが、互いに異なるRVインデックスを含む(同じRVインデックスを含まない)RVシーケンス(例えば、{#0、#2、#3、#1})である場合、第1のマッピングで上述した、図8のような関係に基づいて、UEは各繰り返しに適用されるRVインデックスを判断してもよい。
 図9A及び9Bは、マッピング2-1における各送信機会に対するRVのマッピングの一例を示す図である。表の見方は、図8と同じであるため、重複する説明は繰り返さない。
 マッピング2-1において、設定されたRVシーケンスが、一部に同じRVインデックスを含むRVシーケンス(例えば、{#0、#3、#0、#3})である場合、図9Aのような関係に基づいて、UEは各繰り返しに適用されるRVインデックスを判断してもよい。
 また、マッピング2-1において、設定されたRVシーケンスが、全て同じRVインデックスから構成されるRVシーケンス(例えば、{#0、#0、#0、#0})である場合、図9Bのような関係に基づいて、UEは各繰り返しに適用されるRVインデックスを判断してもよい。
 図9A及び9Bでは、設定されたRVシーケンスに含まれるRVインデックスに対応するRVフィールド以外(図9AではRVフィールドによって示されるRVインデックス=1及び2、図9Bでは当該RVインデックス=1-3)は、予約(”Reserved”)と記載されている。このため、UEは、予約に該当するRVフィールドの値を指示されることはないと想定してもよい。この場合、RVフィールドの取り得る値が制限されるため、UEの処理負荷の低減が期待できる。また、UEは、RVフィールドの一部を仮想巡回冗長検査(Virtual Cyclic Redundancy Check(V-CRC))ビットとして扱ってもよく、これによりDCIの受信性能の向上が期待できる。
 図10A-10Cは、繰り返しに適用するRVの一例を示す図である。本例では、UEは、PDSCHの繰り返しのためのRVシーケンス{#0、#2、#3、#1}を設定されたと想定する。
 図10Aでは、UEは、K=8及びrvid=0を示すDCIを受信する。この場合、UEは、図8のマッピングに基づいて、1-8番目の繰り返しが、それぞれrvid=0、2、3、1、0、2、3、1に対応すると判断してもよい。
 図10Bでは、UEは、まず、K=4及びrvid=0を示すDCIを受信する。この場合、UEは、図8のマッピングに基づいて、1-4番目の繰り返しが、それぞれrvid=0、2、3、1に対応すると判断してもよい。図10Bでは、UEは、次に、K=4及びrvid=2を示すDCIを受信する。この場合、UEは、図8のマッピングに基づいて、1-4番目の繰り返しが、それぞれrvid=2、3、1、0に対応すると判断してもよい。
 図10Cでは、UEは、まず、K=2及びrvid=0を示すDCIを受信する。この場合、UEは、図8のマッピングに基づいて、1-2番目の繰り返しが、それぞれrvid=0、2に対応すると判断してもよい。図10Cでは、UEは、次に、K=2及びrvid=3を示すDCIを受信する。この場合、UEは、図8のマッピングに基づいて、1-2番目の繰り返しが、それぞれrvid=3、1に対応すると判断してもよい。
<<マッピング2-2>>
 DCIのRVフィールドのサイズ(ビット数)は、UEに設定されるRVシーケンスに応じて可変のビット数(例えば、0-2ビット)であってもよい。
 例えば、RVシーケンス{#0、#2、#3、#1}を設定されたUEは、DCIのRVフィールドが2ビットであると想定してもよい。
 一部に同じRVインデックスを含むRVシーケンス(例えば、{#0、#3、#0、#3})を設定されたUEは、DCIのRVフィールドが1ビットであると想定してもよい。
 全て同じRVインデックスから構成されるRVシーケンス(例えば、{#0、#0、#0、#0})を設定されたUEは、DCIのRVフィールドが0ビットであると想定してもよい。
 マッピング2-2においては、UEにRVシーケンスが明示的に設定されてもよいし、RVシーケンスが設定される代わりにRVフィールドのビット数が設定されてもよい。後者の場合、UEは、設定されたRVフィールドのビット数に応じて、特定のRVシーケンスが設定されたと想定してもよい(例えば、上述のRVシーケンスのセットからRVフィールドサイズを想定する例の逆)。
 マッピング2-2において、設定されたRVシーケンスが、互いに異なるRVインデックスを含むRVシーケンス(例えば、{#0、#2、#3、#1})である場合、第1のマッピングで上述した、図8のような関係に基づいて、UEは各繰り返しに適用されるRVインデックスを判断してもよい。
 図11A及び11Bは、マッピング2-2における各送信機会に対するRVのマッピングの一例を示す図である。表の見方は、図8と同じであるため、重複する説明は繰り返さない。
 マッピング2-2において、設定されたRVシーケンスが、一部に同じRVインデックスを含むRVシーケンス(例えば、{#0、#3、#0、#3})である場合、図11Aのような関係に基づいて、UEは各繰り返しに適用されるRVインデックスを判断してもよい。
 また、マッピング2-2において、設定されたRVシーケンスが、全て同じRVインデックスから構成されるRVシーケンス(例えば、{#0、#0、#0、#0})である場合、図11Bのような関係に基づいて、UEは各繰り返しに適用されるRVインデックスを判断してもよい。
 図11A及び11Bは、図9A及び9Bの「予約」に対応する行を除いて構成されている。なお、図11Aについては、図9AではDCIによってrvid=3が指示される場合のRVシーケンス({#3、#0、#3、#0})が、DCIによってrvid=1が指示される場合に適用される。
 図11Bについては、UEは、RVフィールドが含まれないDCIを受信した場合、当該DCIによってrvid=0が示されたと想定してもよい。
 図12A-12Cは、繰り返しに適用するRVの一例を示す図である。本例では、UEは、PDSCHの繰り返しのためのRVシーケンス{#0、#3、#0、#3}を設定されたと想定する。
 図12Aでは、UEは、K=8及びrvid=0を示すDCIを受信する。この場合、UEは、図11Aのマッピングに基づいて、1-8番目の繰り返しが、それぞれrvid=0、3、0、3、0、3、0、3に対応すると判断してもよい。
 図12Bでは、UEは、まず、K=4及びrvid=0を示すDCIを受信する。この場合、UEは、図11Aのマッピングに基づいて、1-4番目の繰り返しが、それぞれrvid=0、3、0、3に対応すると判断してもよい。図12Bでは、UEは、次に、K=4及びrvid=1を示すDCIを受信する。この場合、UEは、図11Aのマッピングに基づいて、1-4番目の繰り返しが、それぞれrvid=3、0、3、0に対応すると判断してもよい。
 図12Cでは、UEは、まず、K=2及びrvid=0を示すDCIを受信する。この場合、UEは、図11Aのマッピングに基づいて、1-2番目の繰り返しが、それぞれrvid=0、3に対応すると判断してもよい。図12Cでは、UEは、次に、K=2及びrvid=1を示すDCIを受信する。この場合、UEは、図11Aのマッピングに基づいて、1-2番目の繰り返しが、それぞれrvid=3、0に対応すると判断してもよい。
<<マッピング2-3>>
 マッピング2-3においては、繰り返しをスケジュールするDCIは、RVフィールドを含まない。UEは、他のフィールド(例えば、TCIフィールド)に基づいて繰り返しに適用するRVシーケンスを決定してもよい。
 マッピング2-3は、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間のスケジューリングオフセット(言い換えると、時間オフセット)が閾値未満であるケースにおいて、利用されると想定されてもよい。Rel-15 NRでは、当該ケースのTCIフィールドは無視される(デフォルトのQuasi-Co-Location(QCL)想定がPDSCHに適用される)ためである。
 なお、本開示において、繰り返しPDSCHについてのスケジューリングオフセットは、DCIと、当該DCIに対応する特定のPDSCH送信機会(例えば、最初又は最後の繰り返しの送信機会)とのオフセットを意味してもよい。
 当該閾値は、QCL用時間長、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、RRCパラメータ「timeDurationForQCL」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。当該閾値は、上位レイヤシグナリングによって設定されてもよい。
 UEは、他のフィールド(例えば、TCIフィールド)の先頭又は最後のxビット(x>0)を、マッピング2-1、2-2などで上述したRVフィールドとして利用してもよい。ここで、xは所定数のビット(例えば、2ビット)に固定されてもよいし、上位レイヤシグナリングによって設定(例えば、0-2ビットのいずれか)されてもよい。
 なお、UEは、上記スケジューリングオフセットが閾値以上であるケースにおいては、PDSCHの繰り返しが行われないと想定してもよい。言い換えると、UEは、上記スケジューリングオフセットが閾値未満であるケースにのみ、PDSCHの繰り返しが行われると想定してもよい。当該PDSCHの繰り返しには、第2の実施形態で後述するような特定のTCIセットが用いられてもよいし、固定のTCI状態が用いられてもよい。
 なお、他のマッピング(例えば、上述の第1のマッピング、後述する第3のマッピング)についても、RVフィールドの代わりに又はRVフィールドに加えて、他のフィールド(例えば、TCIフィールド)に基づいて、繰り返しに適用するRVシーケンスを決定してもよい。
<<第3のマッピング>>
 PDSCHの繰り返しについては、1より多いRVシーケンスがサポートされてもよい。当該1より多いRVシーケンスは、例えば、RVシーケンス{#0、#2、#3、#1}、{#0、#3、#0、#3}、{#0、#0、#0、#0}などを含んでもよい。
 UEは、PDSCHの繰り返しのために、1より多いRVシーケンスを、上位レイヤシグナリングによって設定されてもよい。UEは、例えば2ビットのRVフィールドに基づいて、設定されたRVシーケンスから、繰り返しに適用するRVシーケンスを決定してもよい。なお、設定されたRVシーケンスの数に応じて、DCIに含まれるRVフィールドのビット数は変動してもよい。
 UEは、決定したRVシーケンスのn番目のRVインデックスをn番目の繰り返し(送信機会)に適用してもよい。例えば、決定したRVシーケンスのサイズ(RVシーケンスに含まれるRVインデックスの数)をZとおくと、UEは、n番目の繰り返しには、決定したRVシーケンスのmod(n-1,Z)+1番目のRVを用いると決定してもよい。なお、例えばZは4であってもよい。
 図13A及び13Bは、第3のマッピングにおける各送信機会に対するRVのマッピングの一例を示す図である。本例は、図8と類似しているが、表の右部分がRVシーケンスを示す点が異なる。
 図13Aは、4つのRVシーケンス(第1-第4のRVシーケンス)を設定される場合であり、図13Bは、3つのRVシーケンス(第1-第3のRVシーケンス)を設定される場合である。図13Bのように、設定されるRVシーケンスの数が4未満の場合、利用されないRVフィールドの値は、予約に該当してもよい。
 図14A-14Cは、繰り返しに適用するRVの一例を示す図である。本例では、UEは、第1のRVシーケンスとして{#0、#2、#3、#1}、第2のRVシーケンスとして{#0、#3、#0、#3}、第3のRVシーケンスとして{#0、#0、#0、#0}を設定されたと想定する。
 図14Aでは、UEは、K=8及びrvid=0を示すDCIを受信する。この場合、UEは、例えば図13Aのマッピングと第1のRVシーケンスに基づいて、1-8番目の繰り返しが、それぞれrvid=0、2、3、1、0、2、3、1に対応すると判断してもよい。
 図14Bでは、UEは、まず、K=4及びrvid=0を示すDCIを受信する。この場合、UEは、図13Aのマッピングと第1のRVシーケンスに基づいて、1-4番目の繰り返しが、それぞれrvid=0、2、3、1に対応すると判断してもよい。図14Bでは、UEは、次に、K=4及びrvid=1を示すDCIを受信する。この場合、UEは、図13Aのマッピングと第2のRVシーケンスに基づいて、1-4番目の繰り返しが、それぞれrvid=0、3、0、3に対応すると判断してもよい。
 図14Cでは、UEは、まず、K=2及びrvid=0を示すDCIを受信する。この場合、UEは、図13Aのマッピングと第1のRVシーケンスに基づいて、1-2番目の繰り返しが、それぞれrvid=0、2に対応すると判断してもよい。図14Cでは、UEは、次に、K=2及びrvid=1を示すDCIを受信する。この場合、UEは、図13Aのマッピングと第3のRVシーケンスに基づいて、1-2番目の繰り返しが、それぞれrvid=0、0に対応すると判断してもよい。
 以上説明した第1の実施形態によれば、PDSCHの繰り返しに関するTCIとRVを、DCIのそれぞれ別のフィールドに基づいて適切に決定できる。
<第2の実施形態>
 第2の実施形態においては、PDSCHの繰り返しに関して、TCI状態とRVシーケンスとを、DCIの1つのフィールドに基づいてジョイントで(まとめて)指示されてもよい。当該1つのフィールドは、TCI-RVフィールド、ジョイントフィールドなどと呼ばれてもよい。PDSCHの繰り返し(送信機会)及びTCI状態のマッピング関係と、PDSCHの繰り返し及びRVシーケンスのマッピング関係と、は同じルールが定義されてもよい。
[PDSCHの繰り返しのためのTCI、RV]
 第2の実施形態においては、UEは、各繰り返し単位に適用する1つ又は複数のTCIと、RVシーケンスと、の組み合わせ(以下、TCI-RVセットなどとも呼ぶ)を、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されてもよい。
 ここで、1つ又は複数のTCIは、TCIセットのインデックスと関連付けて設定されてもよいし、RVシーケンスは、RVシーケンスのインデックスと関連付けて設定されてもよい。
 TCI-RVセットは、TCIセットのインデックス、RVセットのインデックス、TCIインデックス、RVインデックスなどの少なくとも1つに関連付けて設定されてもよい。TCI-RVセットは、TCI-RVセットを識別するためのTCI-RVセットインデックスに関連付けて設定されてもよい。
 なお、RRCシグナリングによって設定されたTCI-RVセットのうち1つ又は複数のTCI-RVセットが、MACシグナリング(例えば、MAC CE)によってアクティベートされてもよい。
 当該MAC CEは、例えば、アクティベートする1つ以上のTCI-RVインデックスなどの情報を含んでもよい。
 UEは、RRCシグナリング及びMAC CEの少なくとも一方によって設定、アクティベートなどされたTCI-RVセットから、DCI(例えば、DCIフォーマット1_1)の特定のフィールドに基づいて1つのTCI-RVセットを決定してもよい。当該DCIは、PDSCHの繰り返しを指示するDCIに該当してもよい。なお、特定のフィールドは、繰り返しに適用するTCI-RVセットを識別するためのフィールドであってもよく、TCI-RVセットフィールドなどと呼ばれてもよい。
 TCI-RVセットフィールドのビット数は、設定されたTCI-RVセット又はアクティベートされるTCI-RVセットの候補数(又は最大数)に応じて変動してもよい。
 図15は、TCI-RVセットフィールドとTCI-RVセットの対応関係の一例を示す図である。本例では、DCIに含まれるTCI-RVセットフィールドの値(ジョイントコードポイントと呼ばれてもよい)と、対応するTCI(TCIセット)と、対応するRVシーケンスと、が示されている。本例では、3ビットのTCI-RVセットフィールドの例が示されている。コードポイントの値はTCI-RVセットインデックスに対応してもよい。
 例えば、ジョイントコードポイント=000のDCIを受信したUEは、繰り返しPDSCHに適用するTCI状態が{#0、#1、#2、#3}であり、RVシーケンスが{#0、#0、#0、#0}と判断してもよい。
 UEは、DCIによって指示されたジョイントコードポイントに対応する1又は複数のTCI状態の数(例えば、TCIセットに含まれるTCIインデックスの数)をZ1とおくと、UEは、n番目の繰り返しには、対応する1又は複数のTCIのうち、mod(n-1,Z1)+1番目のTCIを適用すると決定してもよい。なお、例えばZ1は4であってもよい。
 UEは、DCIによって指示されたジョイントコードポイントに対応するRVシーケンスのサイズ(RVシーケンスに含まれるRVインデックスの数)をZ2とおくと、UEは、n番目の繰り返しには、対応するRVシーケンスの、mod(n-1,Z2)+1番目のRVを適用すると決定してもよい。なお、例えばZ2は4であってもよい。Z2はZ1と同じでもよいし、異なってもよい。
 図16A-16Cは、繰り返しに適用するTCI及びRVの一例を示す図である。本例では、UEは、図15のコードポイントとTCI-RVセットとの対応関係を設定されたと想定する。
 図16Aでは、UEは、K=8及びジョイントコードポイント=000を示すDCIを受信する。この場合、UEは、例えば図15のマッピングに基づいて、1-8番目の繰り返しが、それぞれ(TCI、rvid)=(0、0)、(1、0)、(2、0)、(3、0)、(0、0)、(1、0)、(2、0)、(3、0)に対応すると判断してもよい。
 図16Bでは、UEは、まず、K=4及びジョイントコードポイント=000を示すDCIを受信する。この場合、UEは、例えば図15のマッピングに基づいて、1-4番目の繰り返しが、それぞれ(TCI、rvid)=(0、0)、(1、0)、(2、0)、(3、0)に対応すると判断してもよい。図16Bでは、UEは、次に、K=4及びジョイントコードポイント=111を示すDCIを受信する。この場合、UEは、例えば図15のマッピングに基づいて、1-4番目の繰り返しが、それぞれ(TCI、rvid)=(0、0)、(0、2)、(0、3)、(0、1)に対応すると判断してもよい。
 図16Cでは、UEは、まず、K=2及びジョイントコードポイント=000を示すDCIを受信する。この場合、UEは、例えば図15のマッピングに基づいて、1-2番目の繰り返しが、それぞれ(TCI、rvid)=(0、0)、(1、0)に対応すると判断してもよい。図16Cでは、UEは、次に、K=2及びジョイントコードポイント=001を示すDCIを受信する。この場合、UEは、例えば図15のマッピングに基づいて、1-2番目の繰り返しが、それぞれ(TCI、rvid)=(0、0)、(1、3)に対応すると判断してもよい。
[スケジューリングオフセット]
 DCIの受信と、当該DCIに対応する繰り返しPDSCHと、の間のスケジューリングオフセットが閾値未満であるケースにおいて、UEは、各繰り返しに適用されるTCI状態は、デフォルトQCL想定(例えば、Rel-15 NRで規定される最新のスロットの最小のCORESET IDのQCL想定)に従うと想定してもよいし、当該DCIを受信するPDCCH(CORESET)と同じQCLであると想定してもよい。
 上記スケジューリングオフセットが上記閾値未満であるケースにおいて、UEは、各繰り返しに適用されるTCI状態は、上位レイヤシグナリングによって設定されたTCIセットのうち、特定のTCIセットに基づくと想定してもよい。
 当該特定のTCIセットは、特定のTCI-RVセット(又はTCIセット)インデックス(例えば、最大又は最小のTCI-RVセット(又はTCIセット)インデックス)に対応するTCIセットであってもよいし、特定のDCIコードポイント(例えば、000)に対応するTCIセットであってもよい。
 上記スケジューリングオフセットが上記閾値未満であるケースにおいて、UEは、繰り返しPDSCHに適用されるRVシーケンスは、仕様によって予め定められると想定してもよいし、上位レイヤシグナリングによって設定又はアクティベートされたRVシーケンスのうち、特定のRVシーケンスに基づくと想定してもよい。
 当該特定のRVシーケンスは、特定のTCI-RVセット(又はTCIセット)インデックス(例えば、最大又は最小のTCI-RVセット(又はTCIセット)インデックス)に対応するRVシーケンスであってもよいし、特定のDCIコードポイント(例えば、000)に対応するRVシーケンスであってもよい。
 例えば、上記スケジューリングオフセットが上記閾値未満であるケースにおいて、UEは、各繰り返しに適用されるTCI状態はデフォルトQCL想定に従い、RVは上記特定のRVシーケンスに従うと想定してもよい。
 なお、他の実施形態においても、上記スケジューリングオフセットが上記閾値未満であるケースにおいて、これらの少なくとも1つの想定が用いられてもよい。
 以上説明した第2の実施形態によれば、PDSCHの繰り返しに関するTCIとRVを、DCIの同じフィールドに基づいて適切に決定できる。
<その他の実施形態>
 なお、UEは、あるチャネル/信号の繰り返し数を明示的に設定、指示などされない場合であっても、当該チャネル/信号に適用するTCI状態の数(例えば、利用するTCIセットのサイズ)及びRVシーケンスの数の少なくとも一方に基づいて、当該チャネル/信号の繰り返し数を判断してもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図17は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図18は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、ユーザ端末20に対して、チャネル/信号(例えば、PDSCH)を繰り返し送信してもよい。制御部110は、当該繰り返し送信のための制御情報(RRCシグナリング、MAC CE、DCIなど)の生成、送信を制御してもよい。
(ユーザ端末)
 図19は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、制御部210は、繰り返し送信されるチャネル(例えば、PDSCH)について適用するTransmission Configuration Indication state(TCI状態)のセットを、当該チャネルをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))のフィールドに基づいて決定してもよい。当該フィールドは、TCI用のフィールド(TCIフィールド)であってもよいし、TCI及びRV用のジョイントフィールド(TCI-RVフィールド)であってもよい。
 送受信部220は、前記セットに基づいて前記チャネルを受信してもよい。当該チャネルの受信は、当該チャネルの受信処理(例えば、復号など)を含んでもよい。
 制御部210は、前記チャネルの繰り返し回数と異なるTCI状態の数を有する前記セットを指示する前記DCIを受信することを予期しなくてもよい。
 制御部210は、前記チャネルのn番目の送信機会が、前記セットが有するY個のTCI状態のうち、mod(n-1,Y)+1番目のTCI状態に関連すると想定してもよい。
 制御部210は、前記制御部は、前記DCIの受信と前記チャネルの受信(例えば、前記チャネルの1番目の繰り返しの受信)との間のスケジューリングオフセットが閾値(例えば、QCL用時間長)より小さい場合、前記フィールドに関わらず前記セットが特定のTCI状態のセットであると想定してもよい。
 また、制御部210は、繰り返し送信されるチャネル(例えば、PDSCH)について適用する冗長バージョン(Redundancy Version(RV))のシーケンスの各送信機会へのマッピングを、当該チャネルをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))のフィールドに基づいて判断してもよい。当該フィールドは、RV用のフィールド(RVフィールド)であってもよいし、TCI及びRV用のジョイントフィールド(TCI-RVフィールド)であってもよい。
 送受信部220は、前記マッピングに基づいて前記チャネルを受信してもよい。当該チャネルの受信は、当該チャネルの受信処理(例えば、復号など)を含んでもよい。
 制御部210は、前記DCIのフィールドのサイズを、当該ユーザ端末20に設定される前記シーケンスに基づいて判断してもよい。
 制御部210は、前記DCIの受信と前記チャネルの受信(例えば、前記チャネルの1番目の繰り返しの受信)との間のスケジューリングオフセットが閾値より小さい場合、前記DCIに含まれるTransmission Configuration Indication state(TCI状態)のためのフィールドに基づいて、前記マッピングを判断してもよい。
 制御部210は、前記DCIの受信と前記チャネルの受信との間のスケジューリングオフセットが閾値より小さい場合、前記フィールドに関わらず前記シーケンスが特定のRVのシーケンスであると想定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  繰り返し送信されるチャネルについて適用する冗長バージョン(Redundancy Version(RV))のシーケンスの各送信機会へのマッピングを、当該チャネルをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))のフィールドに基づいて判断する制御部と、
     前記マッピングに基づいて前記チャネルを受信する受信部と、を有することを特徴とする端末。
  2.  前記制御部は、前記DCIのフィールドのサイズを、当該端末に設定される前記シーケンスに基づいて判断することを特徴とする請求項1に記載の端末。
  3.  前記制御部は、前記DCIの受信と前記チャネルの受信との間のスケジューリングオフセットが閾値より小さい場合、前記DCIに含まれるTransmission Configuration Indication state(TCI状態)のためのフィールドに基づいて、前記マッピングを判断することを特徴とする請求項1又は請求項2に記載の端末。
  4.  前記制御部は、前記DCIの受信と前記チャネルの受信との間のスケジューリングオフセットが閾値より小さい場合、前記フィールドに関わらず前記シーケンスが特定のRVのシーケンスであると想定することを特徴とする請求項1又は請求項2に記載の端末。
  5.  繰り返し送信されるチャネルについて適用する冗長バージョン(Redundancy Version(RV))のシーケンスの各送信機会へのマッピングを、当該チャネルをスケジュールする下りリンク制御情報(Downlink Control Information(DCI))のフィールドに基づいて判断するステップと、
     前記マッピングに基づいて前記チャネルを受信するステップと、を有することを特徴とする端末の無線通信方法。
PCT/JP2019/023583 2019-06-13 2019-06-13 端末及び無線通信方法 WO2020250400A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19932292.6A EP3986047A1 (en) 2019-06-13 2019-06-13 Terminal and radio communication method
JP2021525525A JP7308942B2 (ja) 2019-06-13 2019-06-13 端末、無線通信方法、基地局及びシステム
US17/617,843 US20220248426A1 (en) 2019-06-13 2019-06-13 Terminal and radio communication method
PCT/JP2019/023583 WO2020250400A1 (ja) 2019-06-13 2019-06-13 端末及び無線通信方法
CN201980098886.9A CN114175791A (zh) 2019-06-13 2019-06-13 终端以及无线通信方法
AU2019450301A AU2019450301A1 (en) 2019-06-13 2019-06-13 Terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023583 WO2020250400A1 (ja) 2019-06-13 2019-06-13 端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020250400A1 true WO2020250400A1 (ja) 2020-12-17

Family

ID=73781379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023583 WO2020250400A1 (ja) 2019-06-13 2019-06-13 端末及び無線通信方法

Country Status (6)

Country Link
US (1) US20220248426A1 (ja)
EP (1) EP3986047A1 (ja)
JP (1) JP7308942B2 (ja)
CN (1) CN114175791A (ja)
AU (1) AU2019450301A1 (ja)
WO (1) WO2020250400A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11497021B2 (en) * 2019-11-04 2022-11-08 Samsung Electronics Co., Ltd. Method and apparatus for fast beam management
US11895681B2 (en) * 2020-08-18 2024-02-06 Samsung Electronics Co., Ltd. Method and apparatus for fast beam indication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022233A1 (en) * 2018-12-13 2022-01-20 Lg Electronics Inc. Operating methods of user equipment and base station in wireless communication system, and device supporting same
JP7223856B2 (ja) * 2019-01-04 2023-02-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 超高信頼性低遅延通信のための繰り返し

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
NTT DOCOMO; INC: "Enhancements on multi-TRP/panel transmission", 3GPP TSG RAN WG1 #97 R1-1906224, 13 May 2019 (2019-05-13), XP051727678, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_97/Docs/R1-1906224.zip> *

Also Published As

Publication number Publication date
CN114175791A (zh) 2022-03-11
JPWO2020250400A1 (ja) 2020-12-17
JP7308942B2 (ja) 2023-07-14
US20220248426A1 (en) 2022-08-04
EP3986047A1 (en) 2022-04-20
AU2019450301A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP7171926B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7293247B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020209282A1 (ja) ユーザ端末及び無線通信方法
JP7305763B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021038658A1 (ja) 端末及び無線通信方法
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
WO2022153395A1 (ja) 端末、無線通信方法及び基地局
WO2020261389A1 (ja) 端末及び無線通信方法
WO2020165998A1 (ja) ユーザ端末
JPWO2020065977A1 (ja) 端末、無線通信方法及びシステム
WO2020209342A1 (ja) ユーザ端末及び無線通信方法
JPWO2020144869A1 (ja) ユーザ端末及び無線通信方法
WO2021009916A1 (ja) 端末及び無線通信方法
WO2020217514A1 (ja) ユーザ端末及び無線通信方法
WO2020202517A1 (ja) ユーザ端末及び無線通信方法
WO2020225913A1 (ja) ユーザ端末及び無線通信方法
WO2022030011A1 (ja) 端末、無線通信方法及び基地局
JP7308942B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7330598B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020255395A1 (ja) 端末及び無線通信方法
WO2020183721A1 (ja) ユーザ端末及び無線通信方法
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2022014055A1 (ja) 端末、無線通信方法及び基地局
WO2021161396A1 (ja) 端末、無線通信方法及び基地局
WO2021229760A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019932292

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019932292

Country of ref document: EP

Effective date: 20220113

ENP Entry into the national phase

Ref document number: 2019450301

Country of ref document: AU

Date of ref document: 20190613

Kind code of ref document: A