WO2021229760A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2021229760A1
WO2021229760A1 PCT/JP2020/019306 JP2020019306W WO2021229760A1 WO 2021229760 A1 WO2021229760 A1 WO 2021229760A1 JP 2020019306 W JP2020019306 W JP 2020019306W WO 2021229760 A1 WO2021229760 A1 WO 2021229760A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
tci
default
tci state
transmission
Prior art date
Application number
PCT/JP2020/019306
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
シャオツェン グオ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/019306 priority Critical patent/WO2021229760A1/ja
Priority to US17/998,421 priority patent/US20230209569A1/en
Priority to JP2022522443A priority patent/JP7487297B2/ja
Priority to CN202080102846.XA priority patent/CN115812318A/zh
Publication of WO2021229760A1 publication Critical patent/WO2021229760A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • UE User Equipment
  • DL downlink
  • A-CSI-RS aperiodic channel state information reference signal
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station for appropriately measuring A-CSI-RS.
  • the terminal is for a physical downlink shared channel when there is no downlink signal having the indicated TCI state in the same symbol as the aperiodic channel state information reference signal (A-CSI-RS).
  • A-CSI-RS aperiodic channel state information reference signal
  • TCI transmission control instruction
  • a receiver that receives the A-CSI-RS, capability information, and a physical downlink control channel for triggering the A-CSI-RS. It has a control unit that uses one of the two default TCI states for the measurement of the A-CSI-RS based on at least one of the above.
  • A-CSI-RS can be appropriately measured.
  • FIG. 1 is a diagram showing an example of UE operation according to the first embodiment.
  • FIG. 2 is a diagram showing an example of UE operation according to the second embodiment.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 4 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 5 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, demodulation, etc.
  • transmission processing e.g., at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • QCL Quality of Service
  • the TCI state may be set in the UE per channel or per signal.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (may be referred to as QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, -QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and average delay, -QCL type D (QCL-D): Spatial reception parameter.
  • QCL-A Doppler shift, Doppler spread, average delay and delay spread
  • -QCL type B QCL type B
  • QCL type C QCL type C
  • QCL-D Spatial reception parameter.
  • the UE assumes that one control resource set (Control Resource Set (CORESET)) has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. It may be called a QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • the UE may determine at least one of the transmit beam (Tx beam) and receive beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal for the channel (Reference Signal (RS))) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a reference signal for measurement (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the RS of the QCL type X in the TCI state may mean an RS having a relationship between a certain channel / signal (DMRS) and the QCL type X, and this RS is called the QCL source of the QCL type X in the TCI state. You may.
  • DMRS channel / signal
  • the path loss PL b, f, c (q d ) [dB] in the transmission power control of PUSCH, PUCCH, and SRS is a reference signal (RS,) for the downlink BWP associated with the active UL BWP b of the carrier f of the serving cell c. using the index q d pathloss reference RS (PathlossReferenceRS)) is computed by the UE.
  • the path loss reference RS, path loss (PL) -RS, index q d , RS used for path loss calculation, and RS resource used for path loss calculation may be read as each other.
  • calculations, estimates, measurements, tracks may be read interchangeably.
  • the path loss measurement based on L1-RSRP may be applied. Even if the upper layer filter RSRP is used for path loss measurement and L1-RSRP is used for path loss measurement before the upper layer filter RSRP is applied at the available timing after MAC CE for path loss RS update. good. At the available timing after the MAC CE for updating the path loss RS, the upper layer filter RSRP may be used for the path loss measurement, and the upper layer filter RSRP of the previous path loss RS may be used before that timing. .. Rel. Similar to the operation of 15, the upper layer filter RSRP is used for the path loss measurement, and the UE may track all the path loss RS candidates set by the RRC.
  • the maximum number of path loss RSs that can be set by the RRC may depend on the UE capability. When the maximum number of path loss RSs that can be set by RRC is X, path loss RS candidates of X or less may be set by RRC, and path loss RS may be selected by MAC CE from the set path loss RS candidates.
  • the maximum number of path loss RSs that can be set by RRC may be 4, 8, 16, 64, or the like.
  • the upper layer filter RSRP, the filtered RSRP, and the layer 3 filter RSRP may be read as each other.
  • DL DCI (PDSCH) is set both when the TCI information in DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in DCI is not set.
  • TCI-PresentInDCI TCI information in DCI
  • Non-cross-carrier scheduling if the time offset between the receipt of the scheduled DCI) and the corresponding PDSCH (PDSCH scheduled by the DCI) is less than the threshold (timeDurationForQCL) (applicable condition, first condition).
  • the TCI state (default TCI state) of the PDSCH may be the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of the CC (of the specific UL signal). Otherwise, the PDSCH TCI state (default TCI state) may be the TCI state of the PDSCH's lowest TCI state ID in the active DL BWP of the scheduled CC.
  • an individual MAC CE of a MAC CE for activation / deactivation related to PUCCH space and a MAC CE for activation / deactivation related to SRS space is required.
  • the PUSCH spatial relationship follows the SRS spatial relationship.
  • At least one of the MAC CE for activation / deactivation related to PUCCH space and the MAC CE for activation / deactivation related to SRS space may not be used.
  • both the spatial relationship for PUCCH and PL-RS are not set in FR2 (applicable condition, second condition), the spatial relationship for PUCCH and the default assumption of PL-RS (default spatial relationship and default PL-RS). Is applied. If both the spatial relationship and PL-RS for SRS (SRS resource for SRS or SRS resource corresponding to SRI in DCI format 0_1 for scheduling PUSCH) are not set in FR2 (applicable condition, second condition). Spatial relationships and PL-RS default assumptions (default spatial relationships and default PL-RS) apply to PUSCH and SRS scheduled by DCI format 0_1.
  • the default spatial relationship and default PL-RS may be the TCI state or QCL assumption of the CORESET with the lowest CORESET ID in the active DL BWP. .. If CORESET is not set in the active DL BWP on the CC, the default spatial relationship and the default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
  • the spatial relationship of the PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource having the lowest PUCCH resource ID among the active spatial relationships of the PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationships on all SCells, even if the PUCCHs are not transmitted on the SCells.
  • the above thresholds are the QCL time duration, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI”, “Threshold-Sched-Offset”, and schedule. It may be called an offset threshold value, a scheduling offset threshold value, or the like.
  • the UE may set one or more TCI states on the serving cell. The UE completes the switching of the active TCI state within the delay time.
  • the target TCI state is known when the updated TCI state (target TCI state) is applied (how long the delay time is). , Measured). If the target TCI is unknown, the UE may apply the target TCI state after the time it takes for the target TCI to become known.
  • the target TCI state is known. -The relevant L1-RSRP measurement for the L1-RSRP measurement during the period (TCI switching period) from the last transmission of the RS resource used for the L1-RSRP measurement report to the target TCI state to the completion of the active TCI state switching.
  • the RS resource is an RS in the target TCI state or an RS QCLed to the target TCI state.
  • the TCI state switching command is received within 1280 ms from the last transmission of the RS resource for beam reporting or measurement.
  • the UE sent at least one L1-RSRP report for the target TCI state prior to the TCI state switch command.
  • the target TCI state is in a detectable state.
  • the SSB associated with the target TCI state is in a detectable state.
  • the signal-to-noise ratio (SNR) of the target TCI state is -3 dB or more.
  • the target TCI state is unknown.
  • the UE receives slot n + T HARQ + (3ms + TO k * (T first-SSB + T SSB) in response to receiving a PDSCH carrying a MAC CE activation command in slot n. -proc )) It is possible to receive a PDCCH having a target TCI state of a serving cell in which a TCI state switch occurs before the / NR slot length.
  • the UE can receive PDCCH with the old (pre-update) TCI state up to slot n + T HARQ + (3ms + TO k * (T first-SSB)) / NR slot length.
  • T HARQ is the time between DL data transmission and acknowledgment.
  • T first-SSB is the time from the decoding of the MAC CE command by the UE to the first SSC transmission.
  • T SSB-proc is 2ms.
  • TO k is 1 if the target TCI state is not in the active TCI state list for PDSCH, and 0 otherwise.
  • the UE upon receiving a PDSCH carrying a MAC CE activation command in slot n, the UE will receive slot n + T HARQ + (3ms + T L1-RSRP + TO uk * (T first). -SSB + T SSB-proc )) / It is possible to receive a PDCCH having a target TCI state of a serving cell in which a TCI state switch occurs before the slot length.
  • the UE can receive PDCCH having an old (pre-update) TCI state up to slot n + T HARQ + (3ms + T L1-RSRP + TO uk * (T first-SSB)) / NR slot length.
  • T L1-RSRP is the time for L1-RSRP measurement for improving the received beam.
  • TO uk is 1 for CSI-RS-based L1-RSRP measurements and 0 for SSB-based L1-RSRP measurements when the TCI state switch includes QCL type D. Also, TO uk is 1 when the TCI state switch includes other QCL types.
  • TCI state switch includes only QCL type A, QCL type B, or QCL type C
  • T L1-RSRP_Measurement_Period_SSB 0
  • T L1-RSRP_Measurement_Period_CSI-RS 0 in FR2 with respect to SSB in FR2.
  • the T first-SSB is the time from the L1-RSRP measurement to the first SSB measurement.
  • T first-SSB is the time to the first SSC transmission after the MAC CE command has been decoded by the UE.
  • the SSB is a QCL type A or a QCL type C.
  • the timing for switching to the target TCI state may be the timing at which T L1-RSRP is added to the timing for switching to the target TCI state when the target TCI state is known.
  • Multi TRP In the NR, one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP (multi TRP (MTRP))) are used for the UE by using one or more panels (multi-panel). It is being considered to perform DL transmission. Further, it is considered that the UE performs UL transmission to one or a plurality of TRPs by using one or a plurality of panels.
  • TRP Transmission / Reception Point
  • MTRP multi TRP
  • UE performs UL transmission to one or a plurality of TRPs by using one or a plurality of panels.
  • the plurality of TRPs may correspond to the same cell identifier (cell Identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • the multi-TRP (for example, TRP # 1 and # 2) may be connected by an ideal / non-ideal backhaul, and information, data, etc. may be exchanged.
  • Different code words Code Word (CW)
  • CW Code Word
  • Different layers may be transmitted from each TRP of the multi-TRP.
  • NJT non-coherent joint transmission
  • TRP # 1 modulation-maps the first codeword, layer-maps it, and transmits the first PDSCH to the first number of layers (eg, the second layer) using the first precoding.
  • TRP # 2 modulates and maps the second codeword, layer-maps the second number of layers (for example, two layers), and transmits the second PDSCH using the second precoding.
  • the plurality of PDSCHs (multi-PDSCHs) to be NCJT may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of the time and frequency resources.
  • first PDSCH and second PDSCH may be assumed to be not quasi-co-located in a pseudo-collocation (Quasi-Co-Location (QCL)) relationship.
  • the reception of the multi-PDSCH may be read as the simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • Multiple PDSCHs from the multi-TRP may be scheduled using one DCI (single DCI, single PDCCH) (single master mode).
  • a plurality of PDSCHs from a multi-TRP may be scheduled using a plurality of DCIs (multi-DCI, multi-PDCCH (multiple PDCCH)), respectively (multi-master mode).
  • one control resource set (CORESET) in the PDCCH setting information (PDCCH-Config) may correspond to one TRP.
  • the UE measures the channel state using the reference signal (or the resource for the reference signal) and feeds back (reports) the channel state information (CSI) to the network (for example, the base station). )do.
  • the UE is a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), a synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel (SS / PBCH)) block, a synchronization signal (Synchronization Signal (SS)).
  • CSI-RS Channel State Information Reference Signal
  • SS Physical Broadcast Channel
  • SS Synchronization Signal
  • DMRS DeModulation Reference Signal
  • CSI-RS resources include non-zero power (Non Zero Power (NZP)) CSI-RS resources, zero power (Zero Power (ZP)) CSI-RS resources, and CSI Interference Measurement (CSI-IM) resources. At least one may be included.
  • NZP Non Zero Power
  • ZP Zero Power
  • ZP Zero Power
  • CSI-IM CSI Interference Measurement
  • the resource for measuring the signal component for CSI may be referred to as a signal measurement resource (Signal Measurement Resource (SMR)) or a channel measurement resource (Channel Measurement Resource (CMR)).
  • SMR Signal Measurement Resource
  • CMR Channel Measurement Resource
  • SMR may include, for example, NZP CSI-RS resources for channel measurement, SSB, and the like.
  • the resource for measuring the interference component for CSI may be referred to as an interference measurement resource (IMR).
  • the IMR may include, for example, at least one of the NZP CSI-RS resource, SSB, ZP CSI-RS resource and CSI-IM resource for interference measurement.
  • the SS / PBCH block is a block containing a synchronization signal (for example, a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS))) and a PBCH (and a corresponding DMRS), and is an SS. It may be called a block (SSB) or the like.
  • a synchronization signal for example, a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS))
  • SSS Secondary Synchronization Signal
  • SSB block
  • the CSI includes a channel quality indicator (Channel Quality Indicator (CQI)), a precoding matrix indicator (Precoding Matrix Indicator (PMI)), a CSI-RS resource indicator (CSI-RS Resource Indicator (CRI)), and SS.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • SS / PBCH block resource indicator (SS / PBCH Block Resource Indicator (SSBRI)), layer indicator (Layer Indicator (LI)), rank indicator (Rank Indicator (RI)), L1-RSRP (reference signal reception in layer 1)
  • SSBRI SS / PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI rank indicator
  • L1-RSRP reference signal reception in layer 1
  • Even if at least one of power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), etc. is included. good.
  • CSI may have multiple parts.
  • CSI part 1 may include information with a relatively small number of bits (eg, RI).
  • the CSI part 2 may include information having a relatively large number of bits (for example, CQI), such as information determined based on the CSI part 1.
  • CSI may also be classified into several CSI types.
  • the information type, size, etc. to be reported may differ depending on the CSI type.
  • the CSI type set for communication using a single beam also called type I CSI, CSI for a single beam, etc.
  • the CSI set for communication using a multi-beam also called type I CSI, CSI for a single beam, etc.
  • a type also called a type II CSI, a multi-beam CSI, etc.
  • the usage of the CSI type is not limited to this.
  • CSI feedback methods include periodic CSI (Periodic CSI (P-CSI)) reporting, aperiodic CSI (Aperiodic CSI (A-CSI, AP-CSI)) reporting, and semi-persistent CSI (Semi-). Persistent CSI (SP-CSI)) reports are being considered.
  • the UE may be notified of CSI measurement setting information using higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the CSI measurement setting information may be set using, for example, the RRC information element "CSI-MeasConfig".
  • the CSI measurement setting information may include CSI resource setting information (RRC information element "CSI-ResourceConfig"), CSI report setting information (RRC information element "CSI-ReportConfig”), and the like.
  • the CSI resource configuration information relates to the resource for CSI measurement
  • the CSI reporting configuration information relates to how the UE performs CSI reporting.
  • the RRC information element (or RRC parameter) related to CSI report setting and CSI resource setting will be described.
  • CSI report setting information (“CSI-ReportConfig”) includes resource information for channel measurement (“resourcesForChannelMeasurement”).
  • the CSI report setting information includes resource information for interference measurement (for example, NZP CSI-RS resource information for interference measurement (“nzp-CSI-RS-ResourcesForInterference”)) and CSI-IM resource information for interference measurement (“csi-IM”). -ResourcesForInterference "), etc.) may also be included. These resource information correspond to the ID (Identifier) (“CSI-ResourceConfigId”) of the CSI resource setting information.
  • the ID of the CSI resource setting information corresponding to each resource information may be one or a plurality of the same value, or may be different values. ..
  • the CSI resource setting information (“CSI-ResourceConfig”) may include a CSI resource setting information ID, CSI-RS resource set list information (“csi-RS-ResourceSetList”), a resource type (“resourceType”), and the like.
  • the CSI-RS resource set list includes NZP CSI-RS and SSB information for measurement (“nzp-CSI-RS-SSB”) and CSI-IM resource set list information (“csi-IM-ResourceSetList”). , At least one of them may be included.
  • the resource type represents the behavior of the time domain of this resource setting, and can be set to "aperiodic", “semi-persistent", or “periodic”.
  • the corresponding CSI-RS may be referred to as A-CSI-RS (AP-CSI-RS), SP-CSI-RS, P-CSI-RS.
  • the channel measurement resource may be used for calculation of, for example, CQI, PMI, L1-RSRP, and the like. Further, the resource for interference measurement may be used for calculation of L1-SINR, L1-SNR, L1-RSRQ, and other indicators related to interference.
  • the triggering state is initiated using the CSI request field in the DCI.
  • the UE For each A-CSI-RS resource in one CSI-RS set associated with each CSI triggering state, the UE forces the A-CSI-RS resource associated with that CSI triggering state.
  • the QCL RS source and QCL type QCL settings are instructed through higher layer signaling of the QCL information (qcl-Info), which includes a list of references to the TCI-State for. If one state referenced in the list is set to refer to one RS associated with "QCL type D", that RS is an SS located in the same or different CC / DL BWP. It may be a / PBCH block or a CSI-RS resource located within the same or different CC / DL BWP and configured as a periodic or semi-persistent.
  • qcl-Info QCL information
  • the UE may follow the following procedures a-1 and a-2.
  • the DL signal (other DL signal) is a PDSCH having an offset equal to or higher than the timedurationForQCL for QCL, and the beam switching timing threshold reported by the UE is one of ⁇ 14,28,48 ⁇ .
  • P-CSI-RS periodic CSI-RS
  • SP-CSI-RS semi-persistent CSI-RS
  • the UE may follow the following procedure b-1.
  • the UE is expected to apply the QCL assumptions in the TCI state indicated for the A-CSI-RS resource in the CSI triggering state indicated by the CSI triggering field (CSI request field) in the DCI. (Is expected).
  • the UE In a single DCI-based multi-TRP system, if the scheduling offset of the A-CSI-RS is less than the threshold (eg, beamSwitch Timing threshold, beamSwitchTiming), the UE will also follow steps A-1 and A-2 below. Good things are being considered.
  • the threshold eg, beamSwitch Timing threshold, beamSwitchTiming
  • the UE applies the QCL type D of the TCI state (one or two TCI states) of the DL signal to the buffering of the A-CSI-RS symbol.
  • the UE can measure CSI on the A-CSI-RS as in the following steps A-1-2-1 and 2-1-2-2.
  • the DL signal (the other DL signal) refers to a PDSCH scheduled with two TCI states
  • the UE is buffered with the QCL type D of the first TCI state of the DL signal.
  • -CSI-RS is used to measure CSI.
  • the UE uses the buffered A-CSI-RS to measure the CSI.
  • the UE applies the QCL type D of the PDSCH default TCI state (one or two TCI states) to the buffering of the A-CSI-RS symbol.
  • the default TCI state of the PDSCH is the two TCI states corresponding to the lowest code point of the TCI code points containing the two different TCI states.
  • the UE receives CSI-RS1 using TCI state 1 and receives CSI-RS1 using TCI state 2.
  • the UE buffers (stores in memory) the two received signals.
  • the UE can measure CSI on the A-CSI-RS as in either Option 1 or Option 2 below.
  • the UE uses an A-CSI-RS buffered with a QCL type D in the first TCI state to measure the CSI.
  • the UE may not buffer the A-CSI-RS with a QCL type D in the second TCI state.
  • the UE was buffered with a QCL type D of the same TCI state as the indicated TCI state.
  • A-CSI-RS is used to measure CSI. If the indicated TCI state of the A-CSI-RS is not the same as either of the two default TCI states, the UE is buffered with the QCL type D of the first default TCI state. Is used for the measurement of CSI.
  • the UE always uses the first TCI state, so that the UE operation is easy.
  • Option 2 complicates UE operation, but allows the UE to choose one of two buffered received signals.
  • the present inventors have conceived a method for determining the default TCI used for A-CSI-RS measurement.
  • a / B and “at least one of A and B” may be read as each other.
  • a panel an Uplink (UL) transmission entity, a TRP, a spatial relationship, a control resource set (COntrol REsource SET (CORESET)), a PDSCH, a code word, a base station, and an antenna port of a certain signal (for example, a reference signal for demodulation).
  • DMRS Demo Division Reference Signal
  • antenna port group of a certain signal for example, DMRS port group
  • group for multiplexing for example, Code Division Multiplexing (CDM) group, reference signal group,
  • the CORESET group the CORESET pool, the CW, the redundant version (redundancy version (RV)), and the layers (MIMO layer, transmission layer, spatial layer
  • the panel Identifier (ID) and the panel may be read as each other.
  • TRP ID and TRP may be read as each other.
  • indexes, IDs, indicators, resource IDs, etc. may be read as each other.
  • cell, CC, carrier, BWP, active DL BWP, active UL BWP, and band may be read as each other.
  • the RRC parameter, the upper layer parameter, the RRC information element (IE), and the RRC message may be read as each other.
  • D RS of QCL type D in TCI state, RS of QCL type D assumed in TCI state or QCL, RS of QCL type A assumed in TCI state or QCL may be read as each other.
  • the QCL type X-RS, the DL-RS associated with the QCL type X, the DL-RS having the QCL type X, the source of the DL-RS, the SSB, and the CSI-RS may be read as each other.
  • a UE in which a plurality of TRPs are set may be a TRP corresponding to DCI, a PDSCH scheduled by DCI, or a TRP corresponding to UL transmission (PUCCH, PUSCH, SRS, etc.) based on at least one of the following. At least one of may be determined. -The value of a predetermined field (eg, a field that specifies TRP, an antenna port field, PRI) included in the DCI. -DMRS corresponding to the scheduled PDSCH / PUSCH (for example, the DMRS series, resource, CDM group, DMRS port, DMRS port group, antenna port group, etc.).
  • a predetermined field eg, a field that specifies TRP, an antenna port field, PRI
  • the DMRS corresponding to the PDCCH to which the DCI was transmitted (eg, the DMRS sequence, resource, CDM group, DMRS port, DMRS port group, etc.).
  • -CORESET that received DCI (for example, the CORESET pool ID of the CORESET, the ID of the CORESET, the scramble ID (may be read as a series ID), a resource, etc.).
  • -RS RS related group, etc.) used for TCI status, QCL assumption, spatial relation information, etc.
  • the single PDCCH may be referred to as a first scheduling type (eg, scheduling type A (or type 1)) PDCCH (DCI).
  • the multi-PDCCH may be referred to as a PDCCH (DCI) of a second scheduling type (for example, scheduling type B (or type 2)).
  • single PDCCH may be assumed to be supported when the multi-TRP utilizes an ideal backhaul.
  • Multi-PDCCH may be assumed to be supported when multi-TRPs utilize a non-ideal backhaul.
  • the ideal backhaul may be referred to as DMRS port group type 1, reference signal-related group type 1, antenna port group type 1, CORESET pool type 1, or the like.
  • the non-ideal backhaul may be referred to as DMRS port group type 2, reference signal related group type 2, antenna port group type 2, CORESET pool type 2, and the like. The names are not limited to these.
  • the multi-TRP, the multi-TRP system, the multi-TRP transmission, and the multi-PDSCH may be read as each other.
  • single DCI, single PDCCH, multi-TRP system based on single DCI, activating two TCI states on at least one TCI code point may be read interchangeably.
  • activation, update, instructions, and settings may be read interchangeably.
  • a scheduling offset between the A-CSI-RS scheduling offset, the last symbol of the PDCCH carrying the triggering DCI, and the first symbol of the A-CSI-RS, the PDCCH carrying the triggering DCI A-CSI-RS in the non-zero power CSI-RS (NZP-CSI-RS) resource set (NZP-CSI-RSResourceSet) set without the last symbol and TRS information (upper layer parameter trs-Info)
  • NZP-CSI-RS non-zero power CSI-RS
  • NZP-CSI-RSResourceSet set without the last symbol
  • TRS information upper layer parameter trs-Info
  • the threshold value, the beamswitchTiming threshold value, and the beamswitching timing threshold value reported by the UE may be read as each other.
  • the UE may report a specific UE capability (capability, UE capability information, capability information) indicating that it supports option 2.
  • the UE may follow at least one of the following steps 1-1 and 1-2.
  • the UE may measure the CSI on the A-CSI-RS after buffering in step A-2-1 and completing the DCI decryption, as in option 2. good.
  • the UE When a UE reports a particular UE capability, it buffers two received signals using two default TCI states, determines one of the two default TCI states, and receives buffered using the determined TCI state. The signal may be used for the measurement of A-CSI-RS.
  • the UE may measure CSI on the A-CSI-RS as in option 1.
  • the UE may use the A-CSI-RS buffered with the QCL type D of the first TCI state of the two default TCI states for PDSCH to measure the CSI.
  • the UE may use the A-CSI-RS buffered with the QCL type D of the second TCI state of the two default TCI states for the PDSCH to measure the CSI.
  • the condition of a multi-TRP system based on a single DCI may be that the UE activates two TCI states on at least one TCI code point.
  • FIG. 1 shows an example of UE operation based on a specific UE capability. If the UE reports a specific UE capability (S110: Y), the UE follows option 2 (S120). If the UE has not reported a specific UE capability (S110: N), the UE follows any of steps 1-2-a to 1-2-c (S130).
  • the UE can appropriately determine the TCI state according to the UE capability.
  • the UE applies the QCL type D of the PDSCH default TCI state (two default TCI states) to the buffering of the A-CSI-RS symbol.
  • the default TCI state of the PDSCH is the two TCI states corresponding to the lowest code point of the TCI code points containing the two different TCI states.
  • the UE receives CSI-RS1 using TCI state 1 and receives CSI-RS1 using TCI state 2.
  • the UE buffers (stores in memory) the two received signals.
  • the UE may follow the following procedure 2-1 or 2-2.
  • the UE selects one of the two buffered received signals (TCI state) based on a specific field (DCI field) in the triggering DCI of the A-CSI-RS, and sets the selected received signal to A-. Used for CSI-RS measurement.
  • the DCI that triggers A-CSI-RS may include a TCI field.
  • the specific field may be a TCI field.
  • the specific field may be a field other than the TCI field.
  • the specific field may be a field that triggers A-CSI-RS and A-CSI reporting (eg, a CSI request field), or a field that triggers ZP-CSI-RS (eg, ZP CSI-RS trigger). It may be a field).
  • the UE may determine one of the two received signals based on the value of a particular bit in a particular field.
  • the value 0 of the specific bit may correspond to the first TCI state, and the value 1 of the specific bit may correspond to the second TCI state.
  • the value 1 of the specific bit may correspond to the first TCI state, and the value 0 of the specific bit may correspond to the second TCI state.
  • the specific bit may be any of the following bits a to c. [[Bit a]] The first bit of a specific field. [[Bit b]] The second bit of the specific field. [[Bit c]] The last bit of a specific field. For example, if the size of the specific field is 3 bits, the specific bit is the third 3 bits of the specific field.
  • the UE selects one of the two received signals based on the value of the implicit indication and uses the selected received signal for the measurement of A-CSI-RS.
  • An implied value of 0 may correspond to the first TCI state and an implied value of 1 may correspond to the second TCI state.
  • An implied value of 1 may correspond to the first TCI state and an implied value of 0 may correspond to the second TCI state.
  • the value of the implicit instruction may be any of the following implicit instruction values a to c.
  • the UE selects one of the two buffered received signals (TCI state) based on the PDCCH carrying the A-CSI-RS triggering DCI and measures the selected received signal on the A-CSI-RS. It may be used for.
  • the UE may select one of the two buffered received signals (TCI state) based on the resources of the A-CSI-RS and use the selected received signal for the measurement of the A-CSI-RS. ..
  • [[Implicit indication value a]] A value based on the CCE index of the PDCCH carrying the triggering DCI of the A-CSI-RS.
  • the CCE index may be a starting CCE index.
  • the implied readings may be based on the CCE index and aggregation level of the PDCCH carrying the triggering DCI of the A-CSI-RS.
  • the implied indicated value may be the result of modd 2 operations on the value obtained by dividing the CCE index by the aggregation level. For example, if the value of the CCE index divided by the aggregation level is even, the implied indicated value is 0, and if the value of the CCE index divided by the aggregation level is odd, the implied indicated value is 1. May be good.
  • [[Implicit indication value b]] A value based on the frequency domain resource of A-CSI-RS (eg, frequency resource index).
  • the frequency resource index may be the index of the lowest or highest PRB / PRG of the frequency domain resource of A-CSI-RS.
  • the implied reading may be the result of modding 2 on the frequency resource index. For example, if the frequency resource index is even, the implicit indication may be 0, and if the frequency resource index is odd, the implicit indication may be 1.
  • the time resource index may be the index of the minimum or maximum symbol / subslot / slot / subframe / frame of the time domain resource of A-CSI-RS.
  • the implicit indication value may be the result of modding 2 on the time resource index. For example, if the time resource index is even, the implied indicator may be 0, and if the time resource index is odd, the implied indicator may be 1.
  • FIG. 2 shows an example of UE operation when the scheduling offset of A-CSI-RS is smaller than the beam switch timing threshold value in a multi-TRP system based on a single DCI.
  • the UE follows procedures A-1-1 and A-1-2 (. S220). If there is no other DL signal with the indicated TCI state in the same symbol as the A-CSI-RS (S210: N), the UE will cause the UE to set the PDSCH default TCI state QCL type D to A-. Apply to buffering the CSI-RS symbol, determine one of the two buffered received signals according to steps B-1 or B-2, and use the determined received signal for A-CSI-RS measurements. Used (S230).
  • the specific UE capability may be shown to support the UE operation (procedure 2-1 or 2-2) of the second embodiment.
  • step A-2-2 If the UE reports a particular UE capability, in step A-2-2, after buffering and completion of DCI decoding, the UE will be on the A-CSI-RS, as in the UE operation of the second embodiment.
  • CSI may be measured in.
  • one of the two default TCI states for PDSCH can be appropriately determined, and the A-CSI-RS received using the determined TCI state can be used for the measurement. can.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 4 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmitter / receiver 120 will have two default transmissions for the physical downlink shared channel.
  • the A-CSI-RS may be transmitted using at least one of the control instruction (TCI) states.
  • the control unit 110 determines one of the two default TCI states based on at least one of the capability information and the physical downlink control channel for triggering the A-CSI-RS. , The A-CSI-RS report measured using the one default TCI state may be obtained.
  • FIG. 5 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission path interface 240.
  • the transmitter / receiver 220 has two default transmissions for the physical downlink shared channel.
  • the A-CSI-RS may be received using the control instruction (TCI) state.
  • TCI control instruction
  • the control unit 210 sets one of the two default TCI states to the A default TCI state based on at least one of the capability information and the physical downlink control channel for triggering the A-CSI-RS.
  • -It may be used for the measurement of CSI-RS.
  • control unit 210 determines the one default TCI state from the two default TCI states and uses the one default TCI state to buffer the A-CSI-RS. It may be used for measurement (first embodiment, procedure 1-1).
  • control unit 210 uses the A-CSI-RS buffered with the first default TCI state of the two default TCI states for measurement, or the A- The scheduling offset of CSI-RS may be greater than or equal to the threshold (first embodiment, procedure 1-2).
  • the control unit 210 may determine the default TCI state based on at least one of the physical downlink control channel and the resource of the A-CSI-RS (second embodiment).
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), transmission / reception antenna 130 (230), and the like may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology is, for example, subcarrier interval (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the mini slot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) on the website.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態を用いて、前記A-CSI-RSを受信する受信部と、能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて、前記2つのデフォルトTCI状態の1つのデフォルトTCI状態を前記A-CSI-RSの測定に用いる制御部と、を有する。本開示の一態様によれば、A-CSI-RSを適切に測定できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報に基づいて、送受信処理を制御することが検討されている。また、複数の送信ポイントが下りリンク(DL)信号を送信することが検討されている。
 しかしながら、複数の送信ポイントからのDL信号を受信する場合において、非周期的チャネル状態情報参照信号(A-CSI-RS)の測定方法が明らかでない。A-CSI-RSが適切に測定されなければ、スループットの低下など、システム性能が低下するおそれがある。
 そこで、本開示は、A-CSI-RSを適切に測定する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態を用いて、前記A-CSI-RSを受信する受信部と、能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて、前記2つのデフォルトTCI状態の1つのデフォルトTCI状態を前記A-CSI-RSの測定に用いる制御部と、を有する。
 本開示の一態様によれば、A-CSI-RSを適切に測定できる。
図1は、第1の実施形態に係るUE動作の一例を示す図である。 図2は、第2の実施形態に係るUE動作の一例を示す図である。 図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図4は、一実施形態に係る基地局の構成の一例を示す図である。 図5は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図6は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(パスロスRS)
 PUSCH、PUCCH、SRSのそれぞれの送信電力制御におけるパスロスPLb,f,c(q)[dB]は、サービングセルcのキャリアfのアクティブUL BWP bに関連付けられる下りBWP用の参照信号(RS、パスロス参照RS(PathlossReferenceRS))のインデックスqを用いてUEによって計算される。本開示において、パスロス参照RS、pathloss(PL)-RS、インデックスq、パスロス計算に用いられるRS、パスロス計算に用いられるRSリソース、は互いに読み替えられてもよい。本開示において、計算、推定、測定、追跡(track)、は互いに読み替えられてもよい。
 パスロスRSがMAC CEによって更新される場合、パスロス測定のための、上位レイヤフィルタRSRP(higher layer filtered RSRP)の既存の機構を変更するか否かが検討されている。
 パスロスRSがMAC CEによって更新される場合、L1-RSRPに基づくパスロス測定が適用されてもよい。パスロスRSの更新のためのMAC CEの後の利用可能なタイミングにおいて、上位レイヤフィルタRSRPがパスロス測定に用いられ、上位レイヤフィルタRSRPが適用される前にL1-RSRPがパスロス測定に用いられてもよい。パスロスRSの更新のためのMAC CEの後の利用可能なタイミングにおいて、上位レイヤフィルタRSRPがパスロス測定に用いられ、そのタイミングの前にその前のパスロスRSの上位レイヤフィルタRSRPが用いられてもよい。Rel.15の動作と同様に、上位レイヤフィルタRSRPがパスロス測定に用いられ、UEは、RRCによって設定された全てのパスロスRS候補を追跡(track)してもよい。RRCによって設定可能なパスロスRSの最大数はUE能力に依存してもよい。RRCによって設定可能なパスロスRSの最大数がXである場合、X以下のパスロスRS候補がRRCによって設定され、設定されたパスロスRS候補の中からMAC CEによってパスロスRSが選択されてもよい。RRCによって設定可能なパスロスRSの最大数は4、8、16、64などであってもよい。
 本開示において、上位レイヤフィルタRSRP、フィルタされたRSRP、レイヤ3フィルタRSRP(layer 3 filtered RSRP)、は互いに読み替えられてもよい。
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、PDSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。
 もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。
 もしそのCC上のアクティブDL BWP内にCORESETが設定される場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしそのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。
 上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
(DL受信ビーム管理)
 UEは、サービングセル上に1以上のTCI状態を設定されてもよい。UEは、遅延時間内にアクティブTCI状態の切り替え(switching)を完了する。アクティブTCI状態がMAC CEによって更新される場合、更新されたTCI状態(ターゲットTCI状態)がいつから適用されるか(遅延時間がどのような長さを有するか)は、ターゲットTCI状態が既知(known、測定済み)であるか否かに依存する。ターゲットTCIが未知(unknown、未測定)である場合、UEは、ターゲットTCIが既知になる時間の後に、ターゲットTCI状態を適用してもよい。
 もし次の複数のTCI状態用既知条件(known conditions for TCI state、TCI状態が既知と見なされるための条件)が満たされる場合、ターゲットTCI状態は既知である。
・ターゲットTCI状態に対するL1-RSRP測定報告に用いられるRSリソースの最後の送信から、アクティブTCI状態切り替えの完了までの、期間(TCI切り替え期間、TCI switching period)中において、L1-RSRP測定用の当該RSリソースは、ターゲットTCI状態内のRS、又はターゲットTCI状態にQCLされたRSである。
・TCI切り替え期間中において、TCI状態切り替えコマンドが、ビームの報告又は測定のための当該RSリソースの最後の送信から、1280ms以内に受信される。
・TCI切り替え期間中において、TCI状態切り替えコマンドの前に、UEが、ターゲットTCI状態に対する少なくとも1つのL1-RSRP報告を送信した。
・TCI切り替え期間中において、ターゲットTCI状態が検出可能状態(detectable)にある。
・TCI切り替え期間中において、ターゲットTCI状態に関連付けられたSSBが検出可能な状態にある。
・TCI切り替え期間中において、ターゲットTCI状態のsignal-to-noise ratio(SNR)が-3dB以上である。
 複数のTCI状態用既知条件が満たされない場合、ターゲットTCI状態は未知である。
 もしターゲットTCI状態が既知である場合、UEは、スロットnにおけるMAC CEアクティベーションコマンドを運ぶPDSCHの受信に応じて、スロットn+THARQ+(3ms+TOk*(Tfirst-SSB+TSSB-proc))/NRスロット長の以前にTCI状態切り替えが起こるサービングセルの、ターゲットTCI状態を有するPDCCHを受信することができる。UEは、スロットn+THARQ+(3ms+TOk*(Tfirst-SSB))/NRスロット長まで、古い(更新前の)TCI状態を有するPDCCHを受信することができる。
 ここで、THARQは、DLデータ送信と肯定応答(acknowledgement)の間の時間である。Tfirst-SSBは、MAC CEコマンドがUEによって復号されてから、最初のSSC送信までの時間である。TSSB-procは、2msである。TOkは、ターゲットTCI状態がPDSCH用のアクティブTCI状態リストにない場合に1であり、そうでない場合に0である。
 もしターゲットTCI状態が未知である場合、スロットnにおけるMAC CEアクティベーションコマンドを運ぶPDSCHの受信に応じて、UEは、スロットn+THARQ+(3ms+TL1-RSRP+TOuk*(Tfirst-SSB+TSSB-proc))/NRスロット長の以前にTCI状態切り替えが起こるサービングセルの、ターゲットTCI状態を有するPDCCHを受信することができる。UEは、スロットn+THARQ+(3ms+TL1-RSRP+TOuk*(Tfirst-SSB))/NRスロット長まで古い(更新前の)TCI状態を有するPDCCHを受信することができる。
 ここで、TL1-RSRPは、受信ビームの改善のためのL1-RSRP測定用の時間である。SSBに対するTL1-RSRPは、M=1、TReport=0とする場合のSSBに基づくL1-RSRP測定期間TL1-RSRP_Measurement_Period_SSBである。CSI-RSに対するTL1-RSRPは、周期的CSI-RSと、リソースセット内のリソース数が少なくともMaxNumberRxBeamに等しい場合の非周期的CSI-RSとに対してM=1、TReport=0とする場合のCSI-RSに基づくL1-RSRP測定期間TL1-RSRP_Measurement_Period_CSI-RSである。TOukは、CSI-RSベースのL1-RSRP測定に対して1であり、TCI状態切り替えがQCLタイプDを含む場合のSSBベースのL1-RSRP測定に対して0である。また、TOukは、TCI状態切り替えが他のQCLタイプを含む場合に1である。TCI状態切り替えがQCLタイプA、QCLタイプB、又はQCLタイプCのみを含む場合、FR2におけるSSBに対し、TL1-RSRP_Measurement_Period_SSB=0であり、FR2におけるTL1-RSRP_Measurement_Period_CSI-RS=0である。TCI状態切り替えがQCLタイプDを含む場合、Tfirst-SSBは、L1-RSRP測定後の最初のSSB測定までの時間である。他のALCタイプに対し、Tfirst-SSBは、MAC CEコマンドがUEによって復号された後の最初のSSC送信までの時間である。ターゲットTCI状態に対して、SSBはQCLタイプA又はQCLタイプCである。
 もしターゲットTCI状態が未知である場合のターゲットTCI状態への切り替えタイミングは、ターゲットTCI状態が既知である場合のターゲットTCI状態への切り替えタイミングにTL1-RSRPを追加したタイミングであってもよい。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
(CSI)
 NRにおいては、UEは、参照信号(又は当該参照信号用のリソース)を用いてチャネル状態を測定し、チャネル状態情報(Channel State Information(CSI))をネットワーク(例えば、基地局)にフィードバック(報告)する。
 UEは、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))などの少なくとも1つを用いて、チャネル状態を測定してもよい。
 CSI-RSリソースは、ノンゼロパワー(Non Zero Power(NZP))CSI-RSリソース、ゼロパワー(Zero Power(ZP))CSI-RSリソース及びCSI干渉測定(CSI Interference Measurement(CSI-IM))リソースの少なくとも1つを含んでもよい。
 CSIのための信号成分を測定するためのリソースは、信号測定リソース(Signal Measurement Resource(SMR))、チャネル測定リソース(Channel Measurement Resource(CMR))と呼ばれてもよい。SMR(CMR)は、例えば、チャネル測定のためのNZP CSI-RSリソース、SSBなどを含んでもよい。
 CSIのための干渉成分を測定するためのリソースは、干渉測定リソース(Interference Measurement Resource(IMR))と呼ばれてもよい。IMRは、例えば、干渉測定のためのNZP CSI-RSリソース、SSB、ZP CSI-RSリソース及びCSI-IMリソースの少なくとも1つを含んでもよい。
 SS/PBCHブロックは、同期信号(例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS)))及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。
 なお、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも1つを含んでもよい。
 CSIは、複数のパートを有してもよい。CSIパート1は、相対的にビット数の少ない情報(例えば、RI)を含んでもよい。CSIパート2は、CSIパート1に基づいて定まる情報などの、相対的にビット数の多い情報(例えば、CQI)を含んでもよい。
 また、CSIは、いくつかのCSIタイプに分類されてもよい。CSIタイプによって、報告(レポート)する情報種別、サイズなどが異なってもよい。例えば、シングルビームを利用した通信を行うために設定されるCSIタイプ(タイプ1(type I) CSI、シングルビーム用CSIなどとも呼ぶ)と、マルチビームを利用した通信を行うために設定されるCSIタイプ(タイプ2(type II) CSI、マルチビーム用CSIなどとも呼ぶ)と、が規定されてもよい。CSIタイプの利用用途はこれに限られない。
 CSIのフィードバック方法としては、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI、AP-CSI))報告、セミパーシステントなCSI(Semi-Persistent CSI(SP-CSI))報告などが検討されている。
 UEは、CSI測定設定情報を、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて通知されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 CSI測定設定情報は、例えば、RRC情報要素「CSI-MeasConfig」を用いて設定されてもよい。CSI測定設定情報は、CSIリソース設定情報(RRC情報要素「CSI-ResourceConfig」)、CSI報告設定情報(RRC情報要素「CSI-ReportConfig」)などを含んでもよい。CSIリソース設定情報は、CSI測定のためのリソースに関連し、CSI報告設定情報は、どのようにUEがCSI報告を実施するかに関連する。
 CSI報告設定及びCSIリソース設定に関するRRC情報要素(又はRRCパラメータ)について説明する。
 CSI報告設定情報(「CSI-ReportConfig」)は、チャネル測定用リソース情報(「resourcesForChannelMeasurement」)を含む。また、CSI報告設定情報は、干渉測定用リソース情報(例えば、干渉測定用NZP CSI-RSリソース情報(「nzp-CSI-RS-ResourcesForInterference」)、干渉測定用CSI-IMリソース情報(「csi-IM-ResourcesForInterference」)など)も含んでもよい。これらのリソース情報は、CSIリソース設定情報のID(Identifier)(「CSI-ResourceConfigId」)に対応している。
 なお、各リソース情報に対応するCSIリソース設定情報のID(CSIリソース設定IDと呼ばれてもよい)は、1つ又は複数が同じ値であってもよいし、それぞれ異なる値であってもよい。
 CSIリソース設定情報(「CSI-ResourceConfig」)は、CSIリソース設定情報ID、CSI-RSリソースセットリスト情報(「csi-RS-ResourceSetList」)、リソースタイプ(「resourceType」)などを含んでもよい。CSI-RSリソースセットリストは、測定のためのNZP CSI-RS及びSSBの情報(「nzp-CSI-RS-SSB」)と、CSI-IMリソースセットリスト情報(「csi-IM-ResourceSetList」)と、の少なくとも一方を含んでもよい。
 リソースタイプは、このリソース設定の時間ドメインのふるまい(behavior)を表し、「非周期的」、「セミパーシステント」、「周期的」が設定され得る。例えば、それぞれに対応するCSI-RSは、A-CSI-RS(AP-CSI-RS)、SP-CSI-RS、P-CSI-RSと呼ばれてもよい。
 なお、チャネル測定用リソースは、例えば、CQI、PMI、L1-RSRPなどの算出に用いられてもよい。また、干渉測定用リソースは、L1-SINR、L1-SNR、L1-RSRQ、その他の干渉に関する指標の算出に用いられてもよい。
(A-CSI-RS報告/A-CSI-RS)
 トリガリング状態は、DCI内のCSIリクエストフィールドを用いて開始される。
 各CSIトリガリング状態(CSI triggering state)に関連付けられた1つのCSI-RSセット内の各A-CSI-RSリソースに対し、UEは、そのCSIトリガリング状態に関連付けられたA-CSI-RSリソース用のTCI状態(TCI-State)への参照のリストを含むQCL情報(qcl-Info)の上位レイヤシグナリングを通じて、QCL RSソース及びQCLタイプのQCL設定を指示される。もしそのリスト内において参照される1つの状態が、「QCLタイプD」に関連付けられた1つのRSへの参照を設定される場合、そのRSは、同じ又は異なるCC/ DL BWP内に位置するSS/PBCHブロック、又は、同じ又は異なるCC/ DL BWP内に位置し、周期的又はセミパーシステントとして設定されるCSI-RSリソースであってもよい。
 もし次の条件a-1が満たされる場合、UEは、次の手順a-1及びa-2に従ってもよい。
[条件a-1]
 トリガリングDCI(A-CSI-RSをトリガするDCI)を運ぶPDCCHの最後のシンボルと、TRS情報(上位レイヤパラメータtrs-Info)を伴わずに設定されたノンゼロパワーCSI-RS(NZP-CSI-RS)リソースセット(NZP-CSI-RSResourceSet)内のA-CSI-RSの最初のシンボルと、の間のスケジューリングオフセットに対し、もしUEによって報告されたビームスイッチングタイミング閾値(beamSwitchTiming)が{14,28,48}の1つである場合においてスケジューリングオフセットが報告された閾値より小さい、又は、報告された閾値が{224,336}の1つである場合においてスケジューリングオフセットが48より小さい。
[手順a-1]
 もしそのCSI-RSと同じシンボル内に、1つの指示されたTCI状態(an indicated TCI state)を有する任意の他のDL信号がある場合、UEは、そのA-CSI-RSを受信する場合にも、DL信号のQCL想定を適用する。そのDL信号(他のDL信号)は、QCL用時間閾値(timeDurationForQCL)以上のオフセットを有するPDSCHと、UEによって報告されたビームスイッチングタイミング閾値が{14,28,48}の1つである場合の、ビームスイッチングタイミング閾値以上のオフセットを持ってスケジュールされたA-CSI-RSと、UEによって報告されたビームスイッチングタイミング閾値が{224,336}の1つである場合の、48以上のオフセットを持ってスケジュールされたA-CSI-RSと、周期的(periodic)CSI-RS(P-CSI-RS)と、セミパーシステントCSI-RS(SP-CSI-RS)と、を指す(refers to)。
[手順a-2]
 そうでない場合において、UEは、そのA-CSI-RSを受信する場合、そのサービングセルのアクティブBWP内の、1つ以上のCORESETがモニタされる最後のスロットにおいて、モニタされたサーチスペースに関連付けられ最低CORESET ID(the lowest controlResourceSetId)を有するCORESETに用いられるQCL想定を適用する。
 もし次の条件b-1が満たされる場合、UEは、次の手順b-1に従ってもよい。
[条件b-1]
 トリガリングDCI(A-CSI-RSをトリガするDCI)を運ぶPDCCHの最後のシンボルと、そのA-CSI-RSの最初のシンボルと、の間のスケジューリングオフセットに対し、もしUEによって報告されたビームスイッチングタイミング閾値(beamSwitchTiming)が{14,28,48}の1つである場合においてスケジューリングオフセットが報告された閾値以上である、又は、報告された閾値が{224,336}の1つである場合においてスケジューリングオフセットが48以上である。
[手順b-1]
 UEは、DCI内のCSIトリガリングフィールド(CSIリクエストフィールド)によって指示されるCSIトリガリング状態内のA-CSI-RSリソースに対して指示されたTCI状態内のQCL想定を適用する、と想定される(is expected)。
 シングルDCIに基づくマルチTRPシステムにおいて、A-CSI-RSのスケジューリングオフセットが、閾値(例えば、ビームスイッチタイミング閾値、beamSwitchTiming)よりも小さい場合、UEは、次の手順A-1及びA-2に従ってもよいことが検討されている。
[手順A-1]
 もしA-CSI-RSと同じシンボル内において指示されたTCI状態を有する任意の他のDL信号がある場合、UEは、次の手順A-1-1及びA-1-2に従ってもよい。
[[手順A-1-1]]
 UEは、そのDL信号のTCI状態(1つ又は2つのTCI状態)のQCLタイプDを、A-CSI-RSのシンボルのバッファリングに適用する。
[[手順A-1-2]]
 バッファリングとDCI復号の完了との後、UEは、次の手順A-1-2-1及び2-1-2-2のように、A-CSI-RS上においてCSIを測定できる。
[[[手順A-1-2-1]]]
 そのDL信号(他のDL信号)が、2つのTCI状態を用いてスケジュールされるPDSCHを参照する場合、UEは、そのDL信号の1番目のTCI状態のQCLタイプDを用いてバッファされたA-CSI-RSを、CSIの測定に用いる。
[[[手順A-1-2-2]]]
 そのDL信号(他のDL信号)が、1つのTCI状態を指示される場合、UEは、バッファされたA-CSI-RSを、CSIの測定に用いる。
[手順A-2]
 もしA-CSI-RSと同じシンボル内において指示されたTCI状態を有する他のDL信号がない場合、UEは、次の手順A-2-1に従ってもよい。
[[手順A-2-1]]
 UEは、PDSCHのデフォルトTCI状態(1つ又は2つのTCI状態)のQCLタイプDを、A-CSI-RSのシンボルのバッファリングに適用する。PDSCHのデフォルトTCI状態は、2つの異なるTCI状態を含むTCIコードポイントのうち、最低コードポイントに対応する2つのTCI状態である。
 例えば、UEは、TCI状態1を用いてCSI-RS1を受信し、TCI状態2を用いてCSI-RS1を受信する。UEは、2つの受信信号をバッファする(メモリに記憶する)。
[[手順A-2-2]]
 バッファリングとDCI復号の完了との後、UEは、次のオプション1及びオプション2のいずれかのように、A-CSI-RS上においてCSIを測定できる。
[[[オプション1]]]
 UEは、1番目のTCI状態のQCLタイプDを用いてバッファされたA-CSI-RSを、CSIの測定に用いる。UEは、2番目のTCI状態のQCLタイプDを用いてA-CSI-RSをバッファしなくてもよい。
[[[オプション2]]]
 もしA-CSI-RSの指示されたTCI状態が、2つのデフォルトTCI状態の1つと同じである場合、UEは、その指示されたTCI状態と同じTCI状態のQCLタイプDを用いてバッファされたA-CSI-RSを、CSIの測定に用いる。もしA-CSI-RSの指示されたTCI状態が、2つのデフォルトTCI状態のいずれとも同じでない場合、UEは、1番目のデフォルトTCI状態のQCLタイプDを用いてバッファされたA-CSI-RSを、CSIの測定に用いる。
 オプション1によれば、UEは常に1番目のTCI状態を用いるため、UE動作が簡単である。オプション2によれば、UE動作は複雑になるが、UEは2つのバッファされた受信信号の1つを選ぶことができる。
 しかしながら、シングルDCIに基づくマルチTRPシステムにおいて、A-CSI-RSのスケジューリングオフセットが閾値よりも小さい場合、UEは、2つのデフォルトTCI状態のいずれをA-CSI-RSの測定に用いるかが明らかでない。
 そこで、本発明者らは、A-CSI-RS測定に用いるデフォルトTCIの決定方法を着想した。
 本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。
 本開示において、パネル、Uplink(UL)送信エンティティ、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、CORESETプール、CW、冗長バージョン(redundancy version(RV))、レイヤ(MIMOレイヤ、送信レイヤ、空間レイヤ)、は、互いに読み替えられてもよい。また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。本開示において、TRP IDとTRPは、互いに読み替えられてもよい。
 本開示において、インデックス、ID、インディケーター、リソースIDなどは、互いに読み替えられてもよい。
 本開示において、セル、CC、キャリア、BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、RRCパラメータ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 本開示において、ビーム、TCI状態、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態のQCLタイプD、TCI状態のQCLタイプDのRS、TCI状態又はQCL想定のQCLタイプDのRS、TCI状態又はQCL想定のQCLタイプAのRS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、は互いに読み替えられてもよい。
 本開示において、複数のTRPを設定されたUEは、次の少なくとも1つに基づいて、DCIに対応するTRP、DCIがスケジュールするPDSCH又はUL送信(PUCCH、PUSCH、SRSなど)に対応するTRPなどの少なくとも1つを判断してもよい。
・DCIに含まれる所定のフィールド(例えば、TRPを指定するフィールド、アンテナポートフィールド、PRI)の値。
・スケジュールされるPDSCH/PUSCHに対応するDMRS(例えば、当該DMRSの系列、リソース、CDMグループ、DMRSポート、DMRSポートグループ、アンテナポートグループなど)。
・DCIが送信されたPDCCHに対応するDMRS(例えば、当該DMRSの系列、リソース、CDMグループ、DMRSポート、DMRSポートグループなど)。
・DCIを受信したCORESET(例えば、当該CORESETのCORESETプールID、当該CORESETのID、スクランブルID(系列IDで読み替えられてもよい)、リソースなど)。
・TCI状態、QCL想定、空間関係情報などに用いられるRS(RS関連(related)グループなど)。
 本開示において、シングルPDCCH(DCI)は、第1のスケジューリングタイプ(例えば、スケジューリングタイプA(又はタイプ1))のPDCCH(DCI)と呼ばれてもよい。また、マルチPDCCH(DCI)は、第2のスケジューリングタイプ(例えば、スケジューリングタイプB(又はタイプ2))のPDCCH(DCI)と呼ばれてもよい。
 本開示において、シングルPDCCHは、マルチTRPが理想的バックホール(ideal backhaul)を利用する場合にサポートされると想定されてもよい。マルチPDCCHは、マルチTRP間が非理想的バックホール(non-ideal backhaul)を利用する場合にサポートされると想定されてもよい。
 なお、理想的バックホールは、DMRSポートグループタイプ1、参照信号関連グループタイプ1、アンテナポートグループタイプ1、CORESETプールタイプ1、などと呼ばれてもよい。非理想的バックホールは、DMRSポートグループタイプ2、参照信号関連グループタイプ2、アンテナポートグループタイプ2、CORESETプールタイプ2、などと呼ばれてもよい。名前はこれらに限られない。
 本開示において、マルチTRP,マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、アクティベート、更新、指示、設定、は互いに読み替えられてもよい。
 本開示において、A-CSI-RSのスケジューリングオフセット、トリガリングDCIを運ぶPDCCHの最後のシンボルと、そのA-CSI-RSの最初のシンボルと、の間のスケジューリングオフセット、トリガリングDCIを運ぶPDCCHの最後のシンボルと、TRS情報(上位レイヤパラメータtrs-Info)を伴わずに設定されたノンゼロパワーCSI-RS(NZP-CSI-RS)リソースセット(NZP-CSI-RSResourceSet)内のA-CSI-RSの最初のシンボルと、の間のスケジューリングオフセット、は互いに読み替えられてもよい。
 本開示において、閾値、ビームスイッチングタイミング閾値(beamSwitchTiming)、UEによって報告されたビームスイッチングタイミング閾値、は互いに読み替えられてもよい。
 本開示において、他のDL信号、既知の(known)他のDL信号、TCI状態用既知条件が満たされる他のDL信号、は互いに読み替えられてもよい。
(無線通信方法)
 シングルDCIに基づくマルチTRPシステム(マルチTRP送信)において、A-CSI-RSのスケジューリングオフセットが、ビームスイッチタイミング閾値(beamSwitchTiming)よりも小さい場合、UEは、前述の手順A-1及びA-2に従ってもよい。
<第1の実施形態>
 UEは、オプション2をサポートすることを示す特定UE能力(capability、UE能力情報、能力情報)を報告してもよい。
 UEは、次の手順1-1及び1-2の少なくとも1つに従ってもよい。
[手順1-1]
 UEが特定UE能力を報告する場合、手順A-2-1のバッファリングとDCI復号の完了との後、UEは、オプション2のように、A-CSI-RS上においてCSIを測定してもよい。UEが特定UE能力を報告する場合、2つのデフォルトTCI状態を用いて2つの受信信号をバッファし、2つのデフォルトTCI状態の1つを決定し、決定されたTCI状態を用いてバッファされた受信信号をA-CSI-RSの測定に用いてもよい。
[手順1-2]
 UEが特定UE能力を報告しない場合、UEは、次の手順1-2-aから1-2-cのいずれかに従ってもよい。
[[手順1-2-a]]
 手順A-2-1のバッファリングとDCI復号の完了との後、UEは、オプション1のように、A-CSI-RS上においてCSIを測定してもよい。UEは、PDSCH用の2つのデフォルトTCI状態のうち、1番目のTCI状態のQCLタイプDを用いてバッファされたA-CSI-RSを、CSIの測定に用いてもよい。UEは、PDSCH用の2つのデフォルトTCI状態のうち、2番目のTCI状態のQCLタイプDを用いてバッファされたA-CSI-RSを、CSIの測定に用いてもよい。
[[手順1-2-b]]
 もしシングルDCIに基づくマルチTRPシステムの条件が満たされる場合、UEは、閾値(例えば、ビームスイッチタイミング閾値、beamSwitchTiming)よりも小さいスケジューリングオフセットを有するA-CSI-RSを受信することを想定しない。シングルDCIに基づくマルチTRPシステムの条件は、UEが、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされることであってもよい。
[[手順1-2-c]]
 もしシングルDCIに基づくマルチTRPシステムの条件が満たされ、且つA-CSI-RSと同じシンボル上に他のDL信号がない場合、UEは、閾値(例えば、ビームスイッチタイミング閾値、beamSwitchTiming)よりも小さいスケジューリングオフセットを有するA-CSI-RSを受信することを想定しない。
 図1は、特定UE能力に基づくUE動作の一例を示す。UEが特定UE能力を報告した場合(S110:Y)、UEは、オプション2に従う(S120)。UEが特定UE能力を報告していない場合(S110:N)、UEは、手順1-2-aから1-2-cのいずれかに従う(S130)。
 以上の第1の実施形態によれば、UEは、UE能力に応じて適切にTCI状態を決定できる。
<第2の実施形態>
 手順A-2-1において、UEは、PDSCHのデフォルトTCI状態(2つのデフォルトTCI状態)のQCLタイプDを、A-CSI-RSのシンボルのバッファリングに適用する。PDSCHのデフォルトTCI状態は、2つの異なるTCI状態を含むTCIコードポイントのうち、最低コードポイントに対応する2つのTCI状態である。
 例えば、UEは、TCI状態1を用いてCSI-RS1を受信し、TCI状態2を用いてCSI-RS1を受信する。UEは、2つの受信信号をバッファする(メモリに記憶する)。
 UEは、次の手順2-1又は2-2に従ってもよい。
[手順2-1]
 UEは、A-CSI-RSのトリガリングDCI内の特定フィールド(DCIフィールド)に基づいて、2つのバッファされた受信信号(TCI状態)の1つを選択し、選択された受信信号をA-CSI-RSの測定に用いる。
 A-CSI-RSをトリガするDCIが、TCIフィールドを含んでもよい。この場合、特定フィールドはTCIフィールドであってもよい。
 特定フィールドは、TCIフィールド以外のフィールドであってもよい。例えば、特定フィールドはA-CSI-RS及びA-CSI報告をトリガするフィールド(例えば、CSIリクエストフィールド)であってもよいし、ZP-CSI-RSをトリガするフィールド(例えば、ZP CSI-RSトリガフィールド)であってもよい。
 UEは、特定フィールド内の特定ビットの値に基づいて、2つの受信信号の1つを決定してもよい。特定ビットの値0が1番目のTCI状態に対応し、特定ビットの値1が2番目のTCI状態に対応してもよい。特定ビットの値1が1番目のTCI状態に対応し、特定ビットの値0が2番目のTCI状態に対応してもよい。
 特定ビットは、次のビットaからcのいずれかであってもよい。
[[ビットa]]特定フィールドの1番目のビット。
[[ビットb]]特定フィールドの2番目のビット。
[[ビットc]]特定フィールドの最後のビット。例えば、特定フィールドのサイズが3ビットである場合、特定ビットは、特定フィールドの3番目の3ビットである。
[手順2-2]
 UEは、暗示的(implicit)指示の値に基づいて、2つの受信信号の1つを選択し、選択された受信信号をA-CSI-RSの測定に用いる。暗示的指示の値0が1番目のTCI状態に対応し、暗示的指示の値1が2番目のTCI状態に対応してもよい。暗示的指示の値1が1番目のTCI状態に対応し、暗示的指示の値0が2番目のTCI状態に対応してもよい。
 暗示的指示の値は、次の暗示的指示値aからcのいずれかであってもよい。UEは、A-CSI-RSのトリガリングDCIを運ぶPDCCHに基づいて、2つのバッファされた受信信号(TCI状態)の1つを選択し、選択された受信信号をA-CSI-RSの測定に用いてもよい。UEは、A-CSI-RSのリソースに基づいて、2つのバッファされた受信信号(TCI状態)の1つを選択し、選択された受信信号をA-CSI-RSの測定に用いてもよい。
[[暗示的指示値a]]
 A-CSI-RSのトリガリングDCIを運ぶPDCCHのCCEインデックスに基づく値。CCEインデックスは、開始(starting)CCEインデックスであってもよい。暗示的指示値は、A-CSI-RSのトリガリングDCIを運ぶPDCCHのCCEインデックス及びアグリゲーションレベルに基づく値であってもよい。暗示的指示値は、CCEインデックスをアグリゲーションレベルで除算した値に対するmod 2の演算結果であってもよい。例えば、CCEインデックスをアグリゲーションレベルで除算した値が偶数である場合、暗示的指示値が0であり、CCEインデックスをアグリゲーションレベルで除算した値が奇数である場合、暗示的指示値が1であってもよい。
[[暗示的指示値b]]
 A-CSI-RSの周波数ドメインリソース(例えば、周波数リソースインデックス)に基づく値。周波数リソースインデックスは、A-CSI-RSの周波数ドメインリソース最低又は最高のPRB/PRGのインデックスであってもよい。暗示的指示値は、周波数リソースインデックスに対するmod 2の演算結果であってもよい。例えば、周波数リソースインデックスが偶数である場合、暗示的指示値が0であり、周波数リソースインデックスが奇数である場合、暗示的指示値が1であってもよい。
[[暗示的指示値c]]
 A-CSI-RSの時間ドメインリソース(例えば、時間リソースインデックス)に基づく値。時間リソースインデックスは、A-CSI-RSの時間ドメインリソースの最小又は最大のシンボル/サブスロット/スロット/サブフレーム/フレームのインデックスであってもよい。暗示的指示値は、時間リソースインデックスに対するmod 2の演算結果であってもよい。例えば、時間リソースインデックスが偶数である場合、暗示的指示値が0であり、時間リソースインデックスが奇数である場合、暗示的指示値が1であってもよい。
 図2は、シングルDCIに基づくマルチTRPシステムにおいて、A-CSI-RSのスケジューリングオフセットが、ビームスイッチタイミング閾値よりも小さい場合のUE動作の一例を示す。もしA-CSI-RSと同じシンボル内において指示されたTCI状態を有する任意の他のDL信号がある場合(S210:Y)、UEは、手順A-1-1及びA-1-2に従う(S220)。もしA-CSI-RSと同じシンボル内において指示されたTCI状態を有する他のDL信号がない場合(S210:N)、UEは、UEは、PDSCHのデフォルトTCI状態のQCLタイプDを、A-CSI-RSのシンボルのバッファリングに適用し、手順B-1又はB-2に従って、バッファされた2つの受信信号の1つを決定し、決定された受信信号をA-CSI-RSの測定に用いる(S230)。
 第1の実施形態において、特定UE能力は、第2の実施形態のUE動作(手順2-1又は2-2)をサポートすることを示してもよい。
 UEが特定UE能力を報告する場合、手順A-2-2において、バッファリングとDCI復号の完了との後、UEは、第2の実施形態のUE動作のように、A-CSI-RS上においてCSIを測定してもよい。
 以上の第2の実施形態によれば、PDSCH用の2つのデフォルトTCI状態の1つを適切に決定でき、決定されたTCI状態を用いて受信されたA-CSI-RSを測定に用いることができる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図4は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、送受信部120は、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態の少なくとも1つを用いて、前記A-CSI-RSを送信してもよい。制御部110は、前記2つのデフォルトTCI状態の1つのデフォルトTCI状態が、能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて決定され、前記1つのデフォルトTCI状態を用いて測定される前記A-CSI-RSの報告を取得してもよい。
(ユーザ端末)
 図5は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、送受信部220は、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態を用いて、前記A-CSI-RSを受信してもよい。制御部210は、能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて、前記2つのデフォルトTCI状態の1つのデフォルトTCI状態を前記A-CSI-RSの測定に用いてもよい。
 前記能力情報が報告された場合、前記制御部210は、前記2つのデフォルトTCI状態から前記1つのデフォルトTCI状態を決定し、前記1つのデフォルトTCI状態を用いてバッファされたA-CSI-RSを測定に用いてもよい(第1の実施形態、手順1-1)。
 前記能力情報が報告されない場合、前記制御部210は、前記2つのデフォルトTCI状態のうち、1番目のデフォルトTCI状態を用いてバッファされたA-CSI-RSを測定に用いる、又は、前記A-CSI-RSのスケジューリングオフセットは、閾値以上であってもよい(第1の実施形態、手順1-2)。
 前記制御部210は、前記物理下りリンク制御チャネルと、前記A-CSI-RSのリソースと、の少なくとも1つに基づいて、前記デフォルトTCI状態を決定してもよい(第2の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図6は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態を用いて、前記A-CSI-RSを受信する受信部と、
     能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて、前記2つのデフォルトTCI状態の1つのデフォルトTCI状態を前記A-CSI-RSの測定に用いる制御部と、を有する端末。
  2.  前記能力情報が報告された場合、前記制御部は、前記2つのデフォルトTCI状態から前記1つのデフォルトTCI状態を決定し、前記1つのデフォルトTCI状態を用いてバッファされたA-CSI-RSを測定に用いる、請求項1に記載の端末。
  3.  前記能力情報が報告されない場合、前記制御部は、前記2つのデフォルトTCI状態のうち、1番目のデフォルトTCI状態を用いてバッファされたA-CSI-RSを測定に用いる、又は、前記A-CSI-RSのスケジューリングオフセットは、閾値以上である、請求項1に記載の端末。
  4.  前記制御部は、前記物理下りリンク制御チャネルと、前記A-CSI-RSのリソースと、の少なくとも1つに基づいて、前記デフォルトTCI状態を決定する、請求項1から請求項3のいずれかに記載の端末。
  5.  非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態を用いて、前記A-CSI-RSを受信するステップと、
     能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて、前記2つのデフォルトTCI状態の1つのデフォルトTCI状態を前記A-CSI-RSの測定に用いるステップと、を有する、端末の無線通信方法。
  6.  非周期的チャネル状態情報参照信号(A-CSI-RS)と同じシンボルにおいて、指示されたTCI状態を有する下りリンク信号がない場合、物理下りリンク共有チャネル用の2つのデフォルト送信制御指示(TCI)状態の少なくとも1つを用いて、前記A-CSI-RSを送信する送信部と、
     前記2つのデフォルトTCI状態の1つのデフォルトTCI状態が、能力情報と、前記A-CSI-RSのトリガリング用の物理下りリンク制御チャネルと、の少なくとも1つに基づいて決定され、前記1つのデフォルトTCI状態を用いて測定される前記A-CSI-RSの報告を取得する制御部と、を有する基地局。
PCT/JP2020/019306 2020-05-14 2020-05-14 端末、無線通信方法及び基地局 WO2021229760A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/019306 WO2021229760A1 (ja) 2020-05-14 2020-05-14 端末、無線通信方法及び基地局
US17/998,421 US20230209569A1 (en) 2020-05-14 2020-05-14 Terminal, radio communication method, and base station
JP2022522443A JP7487297B2 (ja) 2020-05-14 2020-05-14 端末、無線通信方法、基地局及びシステム
CN202080102846.XA CN115812318A (zh) 2020-05-14 2020-05-14 终端、无线通信方法以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019306 WO2021229760A1 (ja) 2020-05-14 2020-05-14 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2021229760A1 true WO2021229760A1 (ja) 2021-11-18

Family

ID=78525562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019306 WO2021229760A1 (ja) 2020-05-14 2020-05-14 端末、無線通信方法及び基地局

Country Status (4)

Country Link
US (1) US20230209569A1 (ja)
JP (1) JP7487297B2 (ja)
CN (1) CN115812318A (ja)
WO (1) WO2021229760A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220030480A1 (en) * 2020-07-24 2022-01-27 Asustek Computer Inc. Method and apparatus for mobility procedure in a wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090060A1 (ja) * 2018-10-31 2020-05-07 株式会社Nttドコモ ユーザ端末及び無線通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125590B2 (ja) * 2015-09-24 2017-05-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US11239893B2 (en) * 2018-01-24 2022-02-01 Qualcomm Incorporated Quasi co-location assumptions for aperiodic channel state information reference signal triggers
US11109223B2 (en) * 2018-06-05 2021-08-31 Qualcomm Incorporated Capability-based determination of a shared data channel TCI state
EP3809650A4 (en) * 2018-06-18 2022-03-02 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
WO2020053977A1 (ja) * 2018-09-11 2020-03-19 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2020065724A1 (ja) * 2018-09-25 2020-04-02 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111148239B (zh) * 2018-11-02 2022-09-27 展讯通信(上海)有限公司 默认tci的配置方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090060A1 (ja) * 2018-10-31 2020-05-07 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (OPPO): "Summary of email thread [100b-e-NR-eMIMO-multiTRP-03]", 3GPP DRAFT; R1-2002949, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 30 April 2020 (2020-04-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051879124 *
QUALCOMM INCORPORATED: "Multi-TRP Enhancements", 3GPP DRAFT; R1-2002551, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875665 *

Also Published As

Publication number Publication date
CN115812318A (zh) 2023-03-17
JPWO2021229760A1 (ja) 2021-11-18
US20230209569A1 (en) 2023-06-29
JP7487297B2 (ja) 2024-05-20

Similar Documents

Publication Publication Date Title
WO2020230217A1 (ja) ユーザ端末及び無線通信方法
WO2020230863A1 (ja) ユーザ端末及び無線通信方法
JPWO2020148903A1 (ja) ユーザ端末及び無線通信方法
WO2022097619A1 (ja) 端末、無線通信方法及び基地局
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2022054248A1 (ja) 端末、無線通信方法及び基地局
WO2020250399A1 (ja) 端末及び無線通信方法
WO2020230220A1 (ja) ユーザ端末及び無線通信方法
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
WO2021215379A1 (ja) 端末、無線通信方法及び基地局
WO2021229820A1 (ja) 端末、無線通信方法及び基地局
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
WO2022024301A1 (ja) 端末、無線通信方法及び基地局
WO2022024358A1 (ja) 端末、無線通信方法及び基地局
WO2020235456A1 (ja) ユーザ端末及び無線通信方法
WO2020250400A1 (ja) 端末及び無線通信方法
WO2021229760A1 (ja) 端末、無線通信方法及び基地局
WO2022039153A1 (ja) 端末、無線通信方法及び基地局
WO2021241211A1 (ja) 端末、無線通信方法及び基地局
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2022044261A1 (ja) 端末、無線通信方法及び基地局
WO2022049633A1 (ja) 端末、無線通信方法及び基地局
WO2022054236A1 (ja) 端末、無線通信方法及び基地局
WO2022038657A1 (ja) 端末、無線通信方法及び基地局
WO2022085179A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935824

Country of ref document: EP

Kind code of ref document: A1