WO2022054236A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022054236A1
WO2022054236A1 PCT/JP2020/034509 JP2020034509W WO2022054236A1 WO 2022054236 A1 WO2022054236 A1 WO 2022054236A1 JP 2020034509 W JP2020034509 W JP 2020034509W WO 2022054236 A1 WO2022054236 A1 WO 2022054236A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
qcl
pdcch
pdsch
transmission
Prior art date
Application number
PCT/JP2020/034509
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022547328A priority Critical patent/JPWO2022054236A5/ja
Priority to PCT/JP2020/034509 priority patent/WO2022054236A1/ja
Priority to EP20953301.7A priority patent/EP4213568A1/en
Priority to CN202080107029.3A priority patent/CN116391425A/zh
Publication of WO2022054236A1 publication Critical patent/WO2022054236A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP) (multi-TRP) will use one or more panels (multi-panel) to make a terminal (multi-panel). It is being considered to perform DL transmission (for example, PDSCH transmission) to user terminal and User Equipment (UE).
  • TRP Transmission / Reception Point
  • UE User Equipment
  • repeated transmission is applied to a predetermined channel (for example, PDCCH).
  • PDCCH a predetermined channel
  • the terminal includes a receiving unit that receives a physically shared channel scheduled by a plurality of downlink control channels assigned to different time domains, a specific downlink control channel among the plurality of downlink control channels, and the said.
  • a control unit that determines at least one of the pseudo-colocation (QCL) and transmission configuration index (TCI) states corresponding to the physically shared channel based on the time offset with the physically shared channel and a certain threshold value. It is characterized by having.
  • communication can be appropriately performed even when repeated transmission is applied to DL channels transmitted from one or more TRPs.
  • FIGS. 1A-1D are diagrams showing an example of a multi-TRP scenario.
  • FIG. 2 is a diagram showing an example of a case where PDSCH is scheduled by repeating PDCCH.
  • 3A and 3B are diagrams showing an example of PDCCH repetitive transmission control in the first aspect.
  • FIG. 4 is a diagram showing an example of PDCCH repetitive transmission control in the second aspect.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, etc.
  • reception processing for example, reception, demapping, etc.
  • transmission setting instruction state Transmission Configuration Indication state
  • Controlling demodulation (at least one of decoding) and transmission processing eg, at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • QCL Quality of Service
  • the TCI state may be set in the UE per channel or per signal.
  • QCL Quality of Service
  • QCL assumptions may be read interchangeably.
  • the TCI state of DL may be read as the spatial relationship of UL, the TCI state of UL, and the like.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (may be referred to as QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, -QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and average delay, -QCL type D (QCL-D): Spatial reception parameter.
  • QCL-A Doppler shift, Doppler spread, average delay and delay spread
  • -QCL type B QCL type B
  • QCL type C QCL type C
  • QCL-D Spatial reception parameter.
  • the UE may assume that a given control resource set (Control Resource Set (CORESET)) has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. , QCL assumption (QCL assumption) may be called.
  • CORESET Control Resource Set
  • QCL assumption QCL assumption
  • the UE may determine at least one of the transmit beam (Tx beam) and receive beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal for the channel (Reference Signal (RS))) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of Channel (PUSCH)) and uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the information element of the TCI state (“TCI-state IE” of RRC) set by the upper layer signaling may include one or more QCL information (“QCL-Info”).
  • the QCL information may include at least one of information related to the RS related to the QCL (RS-related information) and information indicating the QCL type (QCL type information).
  • RS-related information includes RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), cell index where RS is located, and RS position. It may include information such as an index of the Bandwidth Part (BWP) to be used.
  • BWP Bandwidth Part
  • both the RS of the QCL type A and the RS of the QCL type D, or only the RS of the QCL type A can be set for the UE.
  • TRS When TRS is set as RS of QCL type A, it is assumed that the same TRS is periodically transmitted over a long period of time, unlike the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)). Will be done.
  • DMRS DeModulation Reference Signal
  • the UE can measure the TRS and calculate the average delay, delay spread, and so on.
  • a UE in which the TRS is set as the RS of the QCL type A in the TCI state of the DMRS of the PDCCH or PDSCH has the same parameters (average delay, delay spread, etc.) of the DMRS of the PDCCH or PDSCH and the QCL type A of the TRS. Since it can be assumed that there is, it is possible to obtain the type A parameters (average delay, delay spread, etc.) of the DMRS of the PDCCH or PDSCH from the measurement result of the TRS.
  • the UE can perform more accurate channel estimation by using the measurement result of the TRS.
  • a UE in which a QCL type D RS is set can determine a UE reception beam (spatial domain reception filter, UE spatial domain reception filter) using the QCL type D RS.
  • the RS of the QCL type X in the TCI state may mean an RS having a relationship between a certain channel / signal (DMRS) and the QCL type X, and this RS is called the QCL source of the QCL type X in the TCI state. You may.
  • DMRS channel / signal
  • TCI state of PDCCH Information about the QCL between the PDCCH (or DMRS antenna port associated with the PDCCH) and an RS may be referred to as the TCI state for the PDCCH or the like.
  • the UE may determine the TCI state for the UE-specific PDCCH (or CORESET corresponding to the PDCCH) based on the upper layer signaling. For example, for each UE, one or more (K) TCI states may be set by RRC signaling for each CORESET.
  • the UE may activate one of the plurality of TCI states set by RRC signaling for each CORESET by MAC CE.
  • the MAC CE may be referred to as a TCI state indicating MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) for UE-specific PDCCH.
  • the UE may monitor the CORESET based on the active TCI state corresponding to the CORESET.
  • TCI state of PDSCH Information about the QCL between the PDSCH (or DMRS antenna port associated with the PDSCH) and a DL-RS may be referred to as the TCI state for the PDSCH or the like.
  • the UE may notify (set) M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling.
  • the number M of TCI states set in the UE may be limited by at least one of the UE capability and the QCL type.
  • the DCI used for scheduling the PDSCH may include a field indicating the TCI state for the PDSCH (for example, it may be referred to as a TCI field, a TCI state field, or the like).
  • the DCI may be used for scheduling the PDSCH of one cell, and may be referred to as, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1-1-1 and the like.
  • Whether or not the TCI field is included in the DCI may be controlled by the information notified from the base station to the UE.
  • the information may be information indicating whether or not a TCI field exists in DCI (present or present) (for example, TCI existence information, TCI existence information in DCI, upper layer parameter TCI-PresentInDCI).
  • the information may be set in the UE, for example, by higher layer signaling.
  • TCI states When more than 8 types of TCI states are set in the UE, 8 or less types of TCI states may be activated (or specified) using MAC CE.
  • the MAC CE may be referred to as a UE-specific PDSCH TCI state activation / deactivation MAC CE (TCI States Activation / Deactivation for UE-specific PDSCH MAC CE).
  • TCI States Activation / Deactivation for UE-specific PDSCH MAC CE The value of the TCI field in DCI may indicate one of the TCI states activated by MAC CE.
  • the UE When the UE sets the TCI existence information set to "enabled” for the CCOREET that schedules the PDSCH (CORESET used for the PDCCH transmission that schedules the PDSCH), the UE is set to the TCI field. It may be assumed that it exists in the DCI format 1-11 of the PDCCH transmitted on the CORESET.
  • a higher layer parameter eg tci-PresentInDCI
  • a field for specifying the TCI state eg TCI field
  • the time offset is greater than or equal to the threshold (eg timeDurationForQCL).
  • a predetermined (eg, 3 bits) DCI field eg, TCI field
  • the DCI field is one of up to eight active TCI states of the PDSCH (one).
  • the TCI state may be indicated.
  • the predetermined DCI format may be, for example, DCI format 1_1 or 1_2.
  • the UE When the time offset between the received DCI (or PDCCH) and the corresponding PDSCH is greater than or equal to the threshold value, the UE performs the PDSCH DMRS port with the reference signal (RS) and QCL in the TCI state indicated by the DCI. It may be assumed that.
  • the time offset corresponds to the period between the reception of DL DCI (or PDCCH) and the reception of the corresponding PDSCH.
  • the threshold to be compared with the time offset (eg, timeDurationForQCL) may be based on the UE capability reported to determine the PDSCH antenna port QCL.
  • the time offset may refer to the period between the last symbol of the PDCCH (or DCI / CORESET) and the first symbol of the PDSCH in the time domain.
  • thresholds are QCL time duration, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", “Threshold-Sched-Offset”. , Time offset threshold, schedule offset threshold, scheduling offset threshold, and the like.
  • the QCL time length may be based on the UE capability, for example, the delay required for PDCCH decoding and beam switching.
  • the QCL time length may be the minimum time required for the UE to receive the PDCCH and apply the spatial QCL information received in the DCI for PDSCH processing.
  • the QCL time length may be expressed by the number of symbols for each subcarrier interval, or may be expressed by time (for example, ⁇ s).
  • the QCL time length information may be reported from the UE to the base station as UE capability information, or may be set in the UE by the base station using higher layer signaling.
  • ⁇ Case 1> Regardless of whether tci-PresentInDCI is enabled, if the time offset is less than the threshold, the UE does not (cannot apply) the TCI state specified in DCI to receive the corresponding PDSCH. That is, the UE does not switch (cannot switch) the TCI state of the PDSCH based on DCI. In this case, the UE may apply the default TCI state.
  • the default TCI state may be the TCI state corresponding to the lowest CORESET ID in the latest watch slot.
  • the UE will serve cells, independent of the tci-PresentInDCI and tci-PresentInDCI-ForFormat1_2 configurations in RRC connection mode.
  • the DM-RS ports of the PDSCH are RSs and QCLs for the QCL parameters used for the QCL indication of the PDCCH of a particular CORESET.
  • the particular CORESET relates to a monitored search space with the lowest controlResourceSetId in the latest slot in one or more CORESETs monitored by the UE within the active BWP of the serving cell.
  • the condition of "in the latest slot" (in the latest monitoring slot) may be omitted.
  • the UE assumes that the default TCI state is the TCI state of the scheduling COREST (the same as the TCI state) and applies the TCI state to the PDSCH (eg, corresponding to the PDSCH). (Assuming QCL / TCI) may be used.
  • Multi TRP In NR, it is considered that one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP) perform DL transmission to the UE using one or more panels (multi-panel). Has been done. It is also being considered that the UE performs UL transmission to one or more TRPs.
  • TRP Transmission / Reception Point
  • the plurality of TRPs may correspond to the same cell identifier (cell Identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • FIG. 1A-1D is a diagram showing an example of a multi-TRP scenario. In these examples, it is assumed that each TRP is capable of transmitting four different beams, but is not limited to this.
  • FIG. 1A shows an example of a case (which may be called single mode, single TRP, etc.) in which only one TRP (TRP1 in this example) of the multi-TRPs transmits to the UE.
  • the TRP1 transmits both a control signal (PDCCH) and a data signal (PDSCH) to the UE.
  • PDCH control signal
  • PDSCH data signal
  • FIG. 1B shows a case where only one TRP (TRP1 in this example) of the multi-TRPs transmits a control signal to the UE, and the multi-TRP transmits a data signal (may be called a single master mode). An example is shown.
  • the UE receives each PDSCH transmitted from the multi-TRP based on one downlink control information (Downlink Control Information (DCI)).
  • DCI Downlink Control Information
  • FIG. 1C shows an example of a case (which may be called a master-slave mode) in which each of the multi-TRPs transmits a part of a control signal to the UE and the multi-TRP transmits a data signal.
  • Part 1 of the control signal (DCI) may be transmitted in TRP1
  • part 2 of the control signal (DCI) may be transmitted in TRP2.
  • Part 2 of the control signal may depend on Part 1.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCI parts.
  • FIG. 1D shows an example of a case (which may be called a multi-master mode) in which each of the multi-TRPs transmits a separate control signal to the UE and the multi-TRP transmits a data signal.
  • a first control signal (DCI) may be transmitted in TRP1 and a second control signal (DCI) may be transmitted in TRP2.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
  • the DCI is a single DCI (S-DCI, single). It may be called PDCCH).
  • S-DCI single DCI
  • PDCCH PDCCH
  • M-DCI multiple PDCCH (multiple PDCCH)
  • Non-Coherent Joint Transmission is being studied as a form of multi-TRP transmission.
  • TRP1 modulation-maps the first codeword, layer-maps it, and transmits the first PDSCH to the first number of layers (for example, two layers) using the first precoding.
  • TRP2 modulates and maps the second codeword, layer-maps the second codeword, and transmits the second PDSCH to the second number of layers (for example, the second layer) by using the second precoding.
  • the plurality of PDSCHs (multi-PDSCHs) to be NCJT may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of the time and frequency resources.
  • first PDSCH and second PDSCH may be assumed to be not quasi-co-located in a pseudo-collocation (Quasi-Co-Location (QCL)) relationship.
  • the reception of the multi-PDSCH may be read as the simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • PDSCH transport block (TB) or codeword (CW) repetition (repetition) across multi-TRP.
  • URLLC schemes URLLC schemes, eg, schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexing
  • FDM frequency division multiplexing
  • RV redundant version
  • the RV may be the same or different for the multi-TRP.
  • the multi-PDSCH from the multi-TRP is time division multiplexing (TDM).
  • TDM time division multiplexing
  • the multi-PDSCH from the multi-TRP is transmitted within one slot.
  • the multi-PDSCH from the multi-TRP is transmitted in different slots.
  • NCJT using multi-TRP / panel may use high rank.
  • Single DCI single PDCCH, eg, FIG. 1B
  • multi-DCI multi-PDCCH, eg, multi-PDCCH, eg
  • the maximum number of TRPs may be 2 for both single DCI and multi DCI.
  • TCI Expansion of TCI is being considered for single PDCCH design (mainly for ideal backhaul).
  • Each TCI code point in the DCI may correspond to one or two TCI states.
  • the TCI field size is Rel. It may be the same as that of 15.
  • PDCCH repetition PDCCH (or DCI) transmitted from one or more TRPs.
  • PDCCH PDCCH
  • DCI DCI transmitted from one or more TRPs.
  • a plurality of PDCCHs (or DCIs) transmitted from one or more TRPs to schedule or send / receive one or more signals / channels.
  • PDCCH / DCI to which repeated transmission is applied may be referred to as multi-PDCCH / multi-DCI.
  • the repeated transmission of PDCCH may be read as repeated PDCCH, multiple transmissions of PDCCH, multiple PDCCH transmissions, or multiple PDCCH transmissions.
  • the multi-PDCCH / multi-DCI may be transmitted from different TRPs.
  • the multi-PDCCH / DCI may be multiplexed by time division multiplexing (TDM) / frequency division multiplexing (FDM) / spatial multiplexing (SDM).
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • SDM spatial multiplexing
  • the one or more physical shared channels may be, for example, the same (or one) physical shared channel, or a plurality of physical shared channels scheduled in the same time domain.
  • how to control the QCL / TCI corresponding to the physically shared channel (for example, PDSCH) scheduled by the plurality of PDCCHs (or DCIs) transmitted in different time domains becomes a problem.
  • the question is how the UE determines the time offset between multiple PDCCHs (or DCIs) transmitted in different time domains and shared channels (eg, PDSCHs) scheduled by the multiple PDCCHs. (See Fig. 2).
  • FIG. 2 shows an example in which PDCCHs are repeatedly transmitted (or arranged) in slots # n to # n + 1, and PDSCHs are scheduled in slot # n + 2 by a plurality of PDCCHs.
  • the PDCCH (or control resource set) arranged in each slot may be arranged in the entire time domain (for example, all symbols) in the slot, or may be arranged in a part of the time domain (for example, continuous or discontinuous). It may be placed in the symbol of the part).
  • the problem is how the UE determines the time offset between the PDSCH and the PDCCH / DCI that schedules the PDSCH.
  • the PDCCH / DCI does not contain information about the TCI state (eg, the TCI field)
  • the present inventors have examined how the UE determines the QCL / TCI corresponding to the physically shared channel when the physical shared channel is scheduled using a plurality of PDCCH / DCIs. I came up with an embodiment.
  • a / B may be read as at least one of A and B
  • a / B / C may be read as at least one of A, B and C.
  • TCI / QCL may be read as TCI state / QCL assumption.
  • PDCCH repetition (or a plurality of PDCCHs) is transmitted in different slots (inter-slot PDCCH repetition)
  • PDCCH transmission is not limited to slot units.
  • PDCCH repetition (or multiple PDCCH) is transmitted in the same slot (intra-slot PDCCH repetition), when transmitted in mini-slot / sub-slot units, or when transmitted in predetermined symbol units. This disclosure is applicable.
  • the time offset between the reception of PDCCH (or DCI) and the corresponding PDCCH may be determined based on the specific PDCCH. That is, the UE selects a specific PDCCH (or DCI) from a plurality of PDCCHs (or DCIs), and the time offset between the specific PDCCH and the corresponding PDSCH is equal to or higher than a certain threshold value (for example, timeDurationForQCL). You may judge whether or not it is.
  • a certain threshold value for example, timeDurationForQCL
  • the specific PDCCH (or DCI) may be at least one of the following options 1-1 to 1-5.
  • the specific PDCCH used to determine the time offset may be determined based on the transmission timing / transmission order in the time domain of each PDCCH.
  • the PDCCH (for example, 1st PDCCH) transmitted first in the time domain may be a specific PDCCH (see FIG. 3A).
  • FIG. 3A shows an example in which PDCCH # 1 and # 2 are repeatedly transmitted in slots # n to # n + 1, and PDSCH is scheduled in slot # n + 2 by PDCCH # 1 and # 2, respectively.
  • FIG. 3A shows a case where the number of repetitions of PDCCH is 2, but the number of repetitions of PDCCH is not limited to this and may be 3 or more.
  • the UE may compare the time offset between the 1st PDCCH (PDCCH # 1 in FIG. 3A) and the PDSCH (between the 1st PDCCH and the PDSCH) and a certain threshold value (for example, timeDurationForQCL).
  • a certain threshold value for example, timeDurationForQCL
  • the UE assumes that the PDSCH scheduled by multiple PDCCH / DCI corresponds to the predetermined default QCL / TCI. May be good.
  • the predetermined default QCL / TCI may be defined in the specifications, or may be set from the base station to the UE by using higher layer signaling or the like.
  • a certain threshold value (for example, timeDurationForQCL) may be set from the base station to the UE by higher layer signaling or the like, or may be determined based on the UE capability reported by the UE.
  • the UE assumes that the TCI (or QCL corresponding to TCI) specified by DCI corresponds to the PDSCH scheduled by multiple PDCCH / DCI. May be (Case 1). If the DCI is not notified of the TCI (or the DCI does not contain a TCI field), the UE may assume that the PDSCHs scheduled on multiple PDCCHs / DCIs correspond to a given default QCL / TCI (case). 2).
  • the predetermined default QCL / TCI in Case 2 may be different from the predetermined default QCL / TCI applied when the time offset is smaller than a certain threshold.
  • the predetermined default QCL / TCI in Case 2 may be determined based on the CORESET / transmission parameters corresponding to the predetermined PDCCH / DCI.
  • the specific PDCCH may be the last PDCCH transmitted in the time domain (eg, last PDCCH) (see FIG. 3B).
  • the UE may compare the time offset between the last PDCCH (PDCCH # 2 in FIG. 3B) and the PDSCH with the threshold value.
  • the particular PDCCH used to determine the time offset may be determined based on the TCI state (eg, TCI state index / TCI ID) to which each PDCCH corresponds.
  • the PDCCH (PDCCH with lowest TCI state ID) corresponding to the TCI state having the lowest index may be a specific PDCCH.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the TCI state with the lowest index to a certain threshold (eg, timeDurationForQCL).
  • the UE may assume that the PDSCHs scheduled on multiple PDCCHs / DCIs correspond to a given default QCL / TCI. good.
  • the UE corresponds to the TCI (or TCI) specified by the DCI in the PDSCH scheduled by multiple PDCCH / DCIs.
  • QCL may be assumed to correspond (Case 1). If the DCI is not notified of the TCI (or the DCI does not contain a TCI field), the UE may assume that the PDSCHs scheduled on multiple PDCCHs / DCIs correspond to a given default QCL / TCI (case). 2).
  • the specific PDCCH may be a PDCCH (PDCCH with highest TCI state ID) corresponding to the TCI state having the highest index.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the TCI state with the highest index to a certain threshold.
  • the particular PDCCH used to determine the time offset may be determined based on the TRP (eg, TRP index / TRP ID) to which each PDCCH corresponds.
  • the TRP index / TRP ID may be read as the CORESET pool index / CORESET Pool ID.
  • the PDCCH (PDCCH with lowest TRP ID) corresponding to the TRP having the lowest index may be a specific PDCCH.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the TRP with the lowest index to a certain threshold (eg, timeDurationForQCL).
  • the UE may assume that a predetermined default QCL / TCI corresponds to the PDSCH scheduled by multiple PDCCHs / DCIs. ..
  • the UE corresponds to the TCI (or TCI) specified by the DCI in the PDSCH scheduled by multiple PDCCH / DCIs. It may be assumed that the QCL) corresponds (Case 1). If the DCI is not notified of the TCI (or the DCI does not contain a TCI field), the UE may assume that the PDSCHs scheduled on multiple PDCCHs / DCIs correspond to a given default QCL / TCI (case). 2).
  • the specific PDCCH may be a PDCCH (PDCCH with highest TRP ID) corresponding to the TRP having the highest index.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the TRP with the highest index to a certain threshold.
  • the particular PDCCH used to determine the time offset may be determined based on the control resource set (eg, CORESET index / CORESET ID) to which each PDCCH corresponds.
  • the PDCCH (PDCCH with lowest CORESET ID) corresponding to CORESET having the lowest index may be a specific PDCCH.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the lowest index CORESET with a threshold (eg, timeDurationForQCL).
  • the UE may assume that a predetermined default QCL / TCI corresponds to the PDSCH scheduled by multiple PDCCHs / DCIs. ..
  • the UE corresponds to the TCI (or TCI) specified by the DCI in the PDSCH scheduled by multiple PDCCHs / DCIs. It may be assumed that the QCL) corresponds (Case 1). If the DCI is not notified of the TCI (or the DCI does not contain a TCI field), the UE may assume that the PDSCHs scheduled on multiple PDCCHs / DCIs correspond to a given default QCL / TCI (case). 2).
  • the specific PDCCH may be a PDCCH (PDCCH with highest CORESET ID) corresponding to CORESET having the highest index.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to CORESET with the highest index to a certain threshold.
  • the particular PDCCH used to determine the time offset may be determined based on the frequency domain to which each PDCCH corresponds (eg, control channel element index / CCE index).
  • Option 1-5 may be applied when multiple PDCCH / DCIs are transmitted in different time domains and different frequency domains (TDM + FDM).
  • the PDCCH (PDCCH with lowest CCE index) corresponding to the CCE having the lowest index may be a specific PDCCH.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the CCE with the lowest index to a certain threshold (eg, timeDurationForQCL).
  • the UE may assume that a predetermined default QCL / TCI corresponds to the PDSCH scheduled by multiple PDCCHs / DCIs. ..
  • the UE corresponds to the TCI (or TCI) specified by the DCI in the PDSCH scheduled by multiple PDCCHs / DCIs. It may be assumed that the QCL) corresponds (Case 1). If the DCI is not notified of the TCI (or the DCI does not contain a TCI field), the UE may assume that the PDSCHs scheduled on multiple PDCCHs / DCIs correspond to a given default QCL / TCI (case). 2).
  • the specific PDCCH may be a PDCCH (PDCCH with highest CCE index) corresponding to CCE having the highest index.
  • the UE may compare the time offset between PDCCH and PDSCH corresponding to the CCE with the highest index to a certain threshold.
  • the UE when the PDCCH is scheduled by the repeatedly transmitted PDCCH / DCI (or multi-PDCCH / DCI), the UE can be used between the PDCCH and the PDCCH based on a specific PDCCH / DCI among a plurality of PDCCH / DCIs.
  • the time offset may be determined. This makes it possible to appropriately receive the PDSCH even when the PDSCH is scheduled using a plurality of PDCCHs / DCIs transmitted in different time domains.
  • At least one of Options 1-1 to Option 1-5 has a TCI / QCL (or default TCI / QCL) for the PDSCH of Rel. It may be applied when following the operation of 16 or later (for example, Rel.16 or Re.17). Rel.
  • the operation (R17 behavior) of 17 may be a case where the QCL / default QCL for the PDSCH follows the set / activated / instructed unified TCI state (for example, unified TCI state).
  • the default TCI / QCL may be, for example, the default TCI / QCL applied / assumed when the time offset is greater than or equal to a certain threshold and the DCI does not notify the TCI (or the DCI does not contain the TCI field). good.
  • the TCI / QCL described below may be applied to the default QCL / TCI in Case 2 of the first aspect.
  • the TCI status is not notified by DCI (or the TCI field is not included in DCI) in the case where the time offset between a specific PDCCH and PDSCH is equal to or more than a certain threshold value.
  • a certain threshold value may be determined based on the capability information reported by the UE (for example, UE capability).
  • the UE in order to determine the PDSCH antenna port pseudo-collocation (eg, PDSCH antenna port quasi co-location), the UE has a TCI state / QCL assumption for the PDSCH that corresponds to the CORESET used for PDCCH transmission. It may be assumed that it is the same as the QCL.
  • the UE when a different CORESET is used for the repeated transmission of the PDCCH (for example, a plurality of PDCCHs transmitted in different time domains), the UE corresponds to which CORESET TCI / QCL corresponds to the PDSCH TCI / QCL. You need to decide / decide whether to do it.
  • the method of determining the TCI / QCL applied / corresponding to the PDSCH will be described below.
  • ⁇ PDSCH transmission in single TRP> It is assumed that PDCCH repetitions (for example, a plurality of PDCCHs transmitted in different time domains) are transmitted in a plurality of CORESETs, respectively. By repeating the PDCCH, the PDSCH transmission transmitted from the single TRP may be scheduled.
  • the PDSCH transmission (S-TRP PDSCH Tx) in a single TRP is set / activated / instructed to be a PDSCH transmission or PDSCH repetition provided (or used) with a single TCI / QCL (single TCI / QCL). It may mean that. In this case, the PDSCH transmission / PDSCH repetition including the multiple TCI / QCL may not be effectively set by the upper layer / MAC CE / DCI.
  • the UE will have a TCI / QCL corresponding to the PDSCH. It may be assumed that it is the same as TCI / QCL for CORESET (see FIG. 4).
  • FIG. 4 shows an example in which PDCCH # 1 and # 2 are repeatedly transmitted in slots # n to # n + 1, and PDSCH is scheduled in slot # n + 2 by PDCCH # 1 and # 2, respectively.
  • FIG. 4 shows a case where the number of repetitions of PDCCH is 2, but the number of repetitions of PDCCH is not limited to this and may be 3 or more. Further, here, the case where PDCCH # 1 is used as a reference for determining the time offset is shown, but the present invention is not limited to this.
  • the UE has a time offset between the 1st PDCCH (PDCCH # 1 in FIG. 4) and the PDSCH above a certain threshold value (for example, timeDurationForQCL), and the DCI (for example, DCI # 1 / DCI # 2) contains information about the TCI. If not, it may be assumed that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for a particular CORESET.
  • a certain threshold value for example, timeDurationForQCL
  • the specific CORESET may be at least one of the following options 2-1 to 2-5.
  • the particular CORESET may be determined based on the CORESET index / CORESET ID, which is used for each PDCCH iteration (or each PDCCH transmission).
  • the CORESET (CORESET with lowest CORESET ID) having the lowest index may be a specific CORESET.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for the CORESET with the lowest index.
  • the specific CORESET may be a CORESET (CORESET with highest CORESET ID) having the highest index among a plurality of CORESETs used for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for the CORESET with the highest index.
  • the particular CORESET may be determined based on the TRP index / TRP ID corresponding to each PDCCH iteration (or each PDCCH transmission).
  • the TRP index / TRP ID may be read as the CORESET pool index / CORESET Pool ID.
  • the CORESET (CORESET with lowest TRP ID) corresponding to the TRP having the lowest index may be a specific CORESET.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for CORESET corresponding to the TRP having the lowest index.
  • the specific CORESET may be a CORESET (CORESET with highest TRP ID) corresponding to the TRP having the highest index among the plurality of CORESETs used for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for CORESET corresponding to the TRP having the highest index.
  • the particular CORESET may be determined based on the TCI status index / TCI status ID corresponding to each PDCCH iteration (or each PDCCH transmission).
  • the CORESET (CORESET with lowest TCI state ID) corresponding to the TCI state having the lowest index may be a specific CORESET.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for CORESET corresponding to the TCI state with the lowest index.
  • the specific CORESET may be a CORESET (CORESET with highest TCI state ID) corresponding to the TCI state having the highest index among the plurality of TCIs used for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for CORESET corresponding to the TCI state with the highest index.
  • the particular CORESET may be determined based on the transmission order in the transmission timing / time domain of the CORESET corresponding to each PDCCH iteration (or each PDCCH transmission).
  • the CORESET corresponding to the PDCCH (for example, 1st PDCCH) transmitted first may be a specific CORESET.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for CORESET corresponding to the first PDCCH in the time domain.
  • the specific CORESET may be a CORESET corresponding to the PDCCH (for example, the last PDCCH) transmitted last among the plurality of CORESETs used for repeating the PDCCH.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for CORESET corresponding to the last PDCCH in the time domain.
  • the particular CORESET may be determined based on the frequency domain of the CORESET (eg, control channel element index / CCE index) corresponding to each PDCCH iteration (or each PDCCH transmission).
  • the CORESET (CORESET with lowest CCE index) corresponding to the CCE having the lowest index may be a specific CORESET.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for the CORESET corresponding to the CCE having the lowest index.
  • the specific CORESET may be a CORESET (CORESET with highest CCE index) corresponding to the CCE having the highest index among the plurality of CORESETs used for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for the CORESET corresponding to the CCE having the highest index.
  • ⁇ PDSCH transmission in multi-TRP> It is assumed that PDCCH repetitions (for example, a plurality of PDCCHs transmitted in different time domains) are transmitted in a plurality of CORESETs, respectively. By repeating the PDCCH, PDSCH transmission transmitted from the multi-TRP may be scheduled.
  • the PDSCH transmission (M-TRP PDSCH Tx) in the multi-TRP includes (or uses) multiple TCIs / QCLs (multiple TCIs / QCLs), and the PDSCH transmission or PDSCH repetition is the upper layer / MAC CE /. It may mean that it is effectively set by DCI. In this case, a PDSCH transmission or PDSCH repeat with a plurality of TCIs / QCLs may be set / activated / instructed.
  • the UE will have multiple TCIs / QCLs corresponding to the PDSCH. It may be assumed that it is the same as the TCI / QCL for a plurality of CORESETs used for each PDCCH transmission.
  • the association (or mapping) between multiple TCI states (eg, multiple default TCI states) and multiple PDSCH iterations is when multiple TCI states are set / activated / specified for the PDSCH. It may be the same.
  • the TCI / QCI of a PDSCH scheduled in a PDCCH may be associated with the TCI / QCL corresponding to the PDCCH (or CORESET corresponding to the PDCCH).
  • the UE will have multiple TCIs / QCLs corresponding to the PDSCH. May be assumed to be the same as the TCI / QCL for a particular CORESET.
  • the specific CORESET may be determined based on at least one of the above options 2-1 to 2-5. For example, it may be determined in the same manner as PDSCH transmission in a single TRP.
  • the communication can be performed even when the PDCCH repetition is applied. It can be controlled appropriately.
  • the case where the time offset between PDCCH / DCI and PDSCH is equal to or higher than a certain threshold value and TCI is not notified by DCI (or DCI does not include the TCI field) is taken as an example.
  • the cases to which the above-mentioned aspect is applicable are not limited to this.
  • the second aspect may be applied or is applicable to cases where the information about the TCI specified by the DCI (eg, the TCI field) is not available.
  • the case may be defined in the specification.
  • the default TCI / QCL may be, for example, the default TCI / QCL applied / assumed when the time offset is greater than or equal to a certain threshold and the DCI does not notify the TCI (or the DCI does not contain the TCI field). good.
  • the TCI / QCL described below may be applied to the default QCL / TCI in Case 2 of the first aspect.
  • the TCI status is not notified by DCI (or the TCI field is not included in DCI) in the case where the time offset between a specific PDCCH and PDSCH is equal to or more than a certain threshold value.
  • a certain threshold value may be determined based on the capability information reported by the UE (for example, UE capability).
  • the UE in order to determine the PDSCH antenna port pseudo-collocation (eg, PDSCH antenna port quasi co-location), the UE has a TCI state / QCL assumption for the PDSCH that corresponds to the CORESET used for PDCCH transmission. It may be assumed that it is the same as the QCL.
  • the UE when one CORESET (or a common CORESET) is used for the repeated transmission of the PDCCH (for example, a plurality of PDCCHs transmitted in different time domains), the UE corresponds to the TCI / QCL of the PDCCH. It is necessary to determine / determine the predetermined TCI / QCL (for example, the default TCI / QCL) to be performed. The method of determining the predetermined TCI / QCL applied / corresponding to the PDSCH will be described below.
  • ⁇ PDSCH transmission in single TRP> It is assumed that PDCCH repetitions (for example, a plurality of PDCCHs transmitted in different time domains) are transmitted in one CORESET. By repeating the PDCCH, the PDSCH transmission transmitted from the single TRP may be scheduled.
  • the UE will determine that the TCI / QCL corresponding to the PDSCH will have a predetermined TCI. It may be assumed that it is the same as / QCL.
  • the predetermined TCI / QCL may be at least one of the following options 3-1 to 3-5.
  • the predetermined TCI / QCL may be determined based on the CORESET index / CORESET ID set for the PDCCH iteration (or each PDCCH transmission).
  • CORESET may be read as at least one of search space and monitoring occasion.
  • the TCI / QCL corresponding to the CORESET having the lowest index may be a predetermined TCI / QCL (QCL with lowest CORESET ID).
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for the CORESET with the lowest index.
  • the predetermined TCI / QCL may be a TCI / QCL corresponding to the CORESET (QCL with highest CORESET ID) having the highest index among the CORESETs set for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL for the CORESET with the highest index.
  • the TCL / QCL corresponding to one CORESET used for PDCCH repeated transmission may correspond to the predetermined TCI / QCL.
  • the predetermined TCI / QCL may be determined based on the TRP index / TRP ID corresponding to each PDCCH repeat (or each PDCCH transmission).
  • the TRP index / TRP ID may be read as the CORESET pool index / CORESET Pool ID.
  • the TCI / QCL (QCL with lowest TRP ID) corresponding to the TRP having the lowest index may be a predetermined TCI / QCL.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the TRP having the lowest index.
  • the predetermined TCI / QCL may be a TCI / QCL (QCL with highest TRP ID) corresponding to the TRP having the highest index among the plurality of CORESETs used for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the TRP having the highest index.
  • the predetermined TCI / QCL may be determined based on the TCI state index / TCI state ID corresponding to each PDCCH repeat (or each PDCCH transmission).
  • the TCI / QCL (QCL with lowest TCI state ID) corresponding to the TCI state having the lowest index may be a predetermined TCI / QCL.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the TCI state with the lowest index.
  • the predetermined TCI / QCL may be a TCI / QCL (QCL with highest TCI state ID) corresponding to the TCI state having the highest index among the plurality of TCI states used for PDCCH repetition.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the TCI state with the highest index.
  • the predetermined TCI / QCL may be determined based on the transmission order in the transmission timing / time domain of the PDCCH repetition (or each PDCCH transmission).
  • the TCI / QCL corresponding to the PDCCH (for example, the 1st PDCCH) transmitted first among the plurality of PDCCHs may be a predetermined TCI / QCL.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the first PDCCH in the time domain.
  • the TCI / QCL corresponding to the PDCCH (for example, the last PDCCH) transmitted last may be the predetermined TCI / QCL.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the last PDCCH in the time domain.
  • the predetermined TCI / QCL may be determined based on the frequency domain (eg, control channel element index / CCE index) of the PDCCH repeat (or each PDCCH transmission).
  • the TCI / QCL (QCL with lowest CCE index) corresponding to the CCE having the lowest index may be a predetermined TCI / QCL.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the CCE having the lowest index.
  • the predetermined TCI / QCL may be a TCI / QCL (QCL with highest CCE index) corresponding to the CCE having the highest index.
  • the UE may assume that the TCI / QCL corresponding to the PDSCH is the same as the TCI / QCL corresponding to the CCE having the highest index.
  • ⁇ PDSCH transmission in multi-TRP> It is assumed that PDCCH repetitions (for example, a plurality of PDCCHs transmitted in different time domains) are transmitted in one CORESET. By repeating the PDCCH, PDSCH transmission transmitted from the multi-TRP may be scheduled.
  • the UE will have multiple TCIs / QCLs corresponding to the PDSCH. It may be assumed that it is the same as one or more TCI / QCL corresponding to one CORESET used for each PDCCH transmission.
  • the association (or mapping) between one or more TCI states (eg, multiple default TCI states) and multiple PDSCH iterations is when multiple TCI states are set / activated / specified for the PDSCH. May be the same as.
  • the TCI / QCI of a PDSCH scheduled in a PDCCH may be associated with the TCI / QCL corresponding to the PDCCH (or CORESET corresponding to the PDCCH).
  • the UE will have multiple TCIs / QCLs corresponding to the PDSCH.
  • the predetermined TCI / QCL may be determined based on at least one of the above options 3-1 to 3-5. For example, it may be determined in the same manner as PDSCH transmission in a single TRP.
  • the communication is appropriately controlled even when the PDCCH repetition is applied. Can be done.
  • the case where the time offset between PDCCH / DCI and PDSCH is equal to or higher than a certain threshold value and TCI is not notified by DCI (or DCI does not include the TCI field) is taken as an example.
  • the cases to which the above-mentioned aspect is applicable are not limited to this.
  • the third aspect may be applied or the third aspect may be applied in cases where the information about the TCI specified by the DCI (eg, the TCI field) is not available.
  • the case may be defined in the specification.
  • UE capability information may be supported whether or not the UE can assume the default TCI / QCL of the PDSCH as the TCI / QCL of the CORESET used for PDCCH transmission.
  • UE capability information is supported whether the UE can assume the default TCI / QCL of the PDSCH as the TCL / QCL of the CORESET used for PDCCH transmission. May be done.
  • the UE controls to apply at least one of the first to third aspects when reporting the corresponding UE capability information or when a predetermined higher layer parameter is set / activated / instructed. You may.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit a shared channel scheduled by using a plurality of downlink control channels assigned to different time domains.
  • the transmission / reception unit 120 performs pseudo-collocation (QCL) and transmission configuration corresponding to the physical shared channel based on the time offset between the specific downlink control channel and the physically shared channel among the plurality of downlink control channels and a certain threshold value. At least one of the index (TCI) states may be controlled.
  • QCL pseudo-collocation
  • TCI index
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission path interface 240.
  • the transmission / reception unit 220 may receive a physical shared channel scheduled by a plurality of downlink control channels assigned to different time domains.
  • the control unit 210 determines the pseudo-collocation (QCL) and transmission configuration corresponding to the physical shared channel based on the time offset between the specific downlink control channel and the physically shared channel among the plurality of downlink control channels and a certain threshold value. At least one of the index (TCI) states may be determined.
  • QCL pseudo-collocation
  • TCI index
  • the control unit 210 sets a specific downlink control channel as a transmission timing of the downlink control channel, a TCI status index corresponding to the downlink control channel, a control resource set pool index corresponding to the downlink control channel, and a control resource set corresponding to the downlink control channel. It may be determined based on the index and at least one of the frequency domains used for transmission of the downlink control channel.
  • At least one of the QCL and TCI states corresponding to a particular control resource set among the plurality of control resource sets may be assumed to be the same as at least one of the QCL and TCI states corresponding to the physically shared channel.
  • the control unit 210 May assume that at least one of the QCL and TCI states corresponding to a particular downlink control channel and at least one of the QCL and TCI states corresponding to the physically shared channel are the same.
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology is, for example, subcarrier interval (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the mini slot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTI shorter than normal TTI may be referred to as shortened TTI, short TTI, partial TTI (partial or fractional TTI), shortened subframe, short subframe, minislot, subslot, slot and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots, and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) on the website.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” such as resolution, selection, selection, establishment, and comparison. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Abstract

本開示の端末の一態様は、異なる時間領域に割当てられる複数の下り制御チャネルによりスケジュールされる物理共有チャネルを受信する受信部と、前記複数の下り制御チャネルのうち特定の下り制御チャネルと前記物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、前記物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを判断する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、端末(user terminal、User Equipment(UE))に対してDL送信(例えば、PDSCH送信)を行うことが検討されている。
 また、NRでは、所定のチャネル(例えば、PDCCH)に繰り返し送信を適用することが想定される。例えば、マルチパネル/TRPから繰り返し送信が適用される複数のPDCCHを利用してDL伝送/UL伝送のスケジュールを制御することが考えられる。
 しかしながら、これまでのNR仕様においては、1以上のTRPからの繰り返し送信をどのように制御するかについて検討が十分に行われていない。
 そこで、本開示は、1以上のTRPから送信されるDLチャネルに繰り返し送信が適用される場合であっても通信を適切に行うことができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、異なる時間領域に割当てられる複数の下り制御チャネルによりスケジュールされる物理共有チャネルを受信する受信部と、前記複数の下り制御チャネルのうち特定の下り制御チャネルと前記物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、前記物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを判断する制御部と、を有することを特徴とする。
 本開示の一態様によれば、1以上のTRPから送信されるDLチャネルに繰り返し送信が適用される場合であっても通信を適切に行うことができる。
図1A-図1Dは、マルチTRPシナリオの一例を示す図である。 図2は、PDCCH繰り返しによりPDSCHをスケジュールする場合の一例を示す図である。 図3A及び図3Bは、第1の態様におけるPDCCH繰り返し送信制御の一例を示す図である。 図4は、第2の態様におけるPDCCH繰り返し送信制御の一例を示す図である。 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図6は、一実施形態に係る基地局の構成の一例を示す図である。 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(以下、信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。TCI状態、QCL、QCL想定(assumption)は、互いに読み替えられてもよい。
 なお、本開示において、DLのTCI状態は、ULの空間関係、ULのTCI状態などと互いに読み替えられてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 所定の制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(DCI)であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
 Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。
 QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHの復調用参照信号(DeModulation Reference Signal(DMRS))と異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。
 PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。
 QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(PDCCHのTCI状態)
 PDCCH(又はPDCCHに関連するDMRSアンテナポート)と、あるRSとの、QCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
 UEは、UE固有のPDCCH(又は、PDCCHに対応するCORESET)のためのTCI状態を、上位レイヤシグナリングに基づいて判断してもよい。例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態がRRCシグナリングによって設定されてもよい。
 UEは、各CORESETに対し、RRCシグナリングによって設定された複数のTCI状態の1つを、MAC CEによってアクティベートされてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
(PDSCHのTCI状態)
 PDSCH(又はPDSCHに関連するDMRSアンテナポート)と、あるDL-RSとの、QCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
 UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定)されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
 PDSCHのスケジューリングに用いられるDCIは、当該PDSCH用のTCI状態を示すフィールド(例えば、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
 TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(例えば、TCI存在情報、DCI内TCI存在情報、上位レイヤパラメータTCI-PresentInDCI)であってもよい。当該情報は、例えば、上位レイヤシグナリングによってUEに設定されてもよい。
 8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティベート(又は指定)されてもよい。当該MAC CEは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と呼ばれてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティベートされたTCI状態の一つを示してもよい。
 UEが、PDSCHをスケジュールするCORESET(PDSCHをスケジュールするPDCCH送信に用いられるCORESET)に対して、「有効(enabled)」とセットされたTCI存在情報を設定される場合、UEは、TCIフィールドが、当該CORESET上で送信されるPDCCHのDCIフォーマット1_1内に存在すると想定してもよい。
 PDSCHのTCI状態の適用について、以下のような複数のケースが考えられる。
<ケース0>
 TCI状態を指定するためのフィールド(例えば、TCIフィールド)がDCIに存在するかを示す上位レイヤパラメータ(例えば、tci-PresentInDCI)が有効に設定され、時間オフセットが閾値(例えば、timeDurationForQCL)以上である場合を想定する。この場合、所定(例えば、3ビット)のDCIフィールド(例えば、TCIフィールド)が所定DCIフォーマット内に存在し、当該DCIフィールドがPDSCHの最大8つのアクティブなTCI状態のうちのいずれかの(1つの)TCI状態を示してもよい。所定DCIフォーマットは、例えば、DCIフォーマット1_1又は1_2であってもよい。
 UEは、受信したDCI(又は、PDCCH)と、対応するPDSCHと、の間の時間オフセットが閾値以上の場合、PDSCHのDMRSポートが、DCIで指示されたTCI状態における参照信号(RS)とQCLであると想定してもよい。
 時間オフセット(例えば、time offset)は、DL DCI(又は、PDCCH)の受信と対応するPDSCHの受信との間の期間に相当する。時間オフセットと比較する閾値(例えば、timeDurationForQCL)は、PDSCHアンテナポートQCLを決定するために報告されたUE能力(capability)に基づいていてもよい。時間オフセットは、時間領域において、PDCCH(又は、DCI/CORESET)の最終シンボルと、PDSCHの先頭シンボル間の期間を指してもよい。
 また、上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、時間オフセット閾値、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
 QCL用時間長は、UE能力に基づいてもよく、例えばPDCCHの復号及びビーム切り替えに掛かる遅延に基づいてもよい。QCL用時間長は、PDCCH受信と、PDSCH処理用のDCI内で受信される空間QCL情報の適用と、を行うためにUEに必要とされる最小時間であってもよい。QCL用時間長は、サブキャリア間隔毎にシンボル数で表されてもよいし、時間(例えば、μs)で表されてもよい。当該QCL用時間長の情報は、UEからUE能力情報として基地局に報告されてもよいし、基地局から上位レイヤシグナリングを用いてUEに設定されてもよい。
<ケース1>
 tci-PresentInDCIが有効かどうかに関わらず、時間オフセットが、閾値未満である場合、UEがDCIで指定されるTCI状態を対応するPDSCHの受信に適用しない(適用できない)。すなわち、UEは、DCIに基づくPDSCHのTCI状態の切り替えを行わない(切り替えることができない)。この場合、UEは、デフォルトのTCI状態を適用してもよい。当該デフォルトのTCI状態は、最新の監視スロットで最も低いCORESET IDに対応するTCI状態であってもよい。
 例えば、RRC接続モードでのtci-PresentInDCIおよびtci-PresentInDCI-ForFormat1_2の構成に依存せず、全てのTCIコードポイントが単一のTCI状態にマップされ、時間オフセットが閾値未満の場合、UEは、サービングセルのPDSCHのDM-RSポートが、特定のCORESETのPDCCHのQCL指示に使用されるQCLパラメータに関するRSとQCLであると想定する。当該特定のCORESETは、サービングセルのアクティブなBWP内でUEに監視されている1つ以上のCORESETにおいて、最新のスロット内の最も低いcontrolResourceSetIdを持つ監視されたサーチスペースに関連する。なお、本開示において「最新のスロット内」(最新の監視スロット内)という条件を省略してもよい。
<ケース2>
 tci-PresentInDCIが、RRCによって有効(enabled)になっていない場合、3ビットのDCIフィールド(TCIフィールド)がDCIフォーマット1_1(DL割り当て)に存在せず、当該DCIフィールドがPDSCHの最大8つのアクティブなTCI状態のうちいずれかの(1つの)TCI状態を示すことができない。この場合、UEは、デフォルトのTCI状態をPDSCHに適用する。
 例えば、tci-PresentInDCIが有効になっておらず(TCIフィールドが存在しないDCIフォーマットでPDSCHがスケジュールされ)、時間オフセットが閾値(timeDurationForQCL)以上である場合を想定する。この場合、UEは、デフォルトのTCI状態が、スケジューリングCORESET(使用されるCORESET)のTCI状態(当該TCI状態と同一)であると想定し、当該TCI状態をPDSCHに適用(例えば、PDSCHに対応するQCL/TCIと想定)してもよい。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 図1A-1Dは、マルチTRPシナリオの一例を示す図である。これらの例において、各TRPは4つの異なるビームを送信可能であると想定するが、これに限られない。
 図1Aは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して送信を行うケース(シングルモード、シングルTRPなどと呼ばれてもよい)の一例を示す。この場合、TRP1は、UEに制御信号(PDCCH)及びデータ信号(PDSCH)の両方を送信する。
 図1Bは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(シングルマスタモードと呼ばれてもよい)の一例を示す。UEは、1つの下り制御情報(Downlink Control Information(DCI))に基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Cは、マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)の一例を示す。TRP1では制御信号(DCI)のパート1が送信され、TRP2では制御信号(DCI)のパート2が送信されてもよい。制御信号のパート2はパート1に依存してもよい。UEは、これらのDCIのパートに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Dは、マルチTRPのそれぞれがUEに対して別々の制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(マルチマスタモードと呼ばれてもよい)の一例を示す。TRP1では第1の制御信号(DCI)が送信され、TRP2では第2の制御信号(DCI)が送信されてもよい。UEは、これらのDCIに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1BのようなマルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)を、1つのDCIを用いてスケジュールする場合、当該DCIは、シングルDCI(S-DCI、シングルPDCCH)と呼ばれてもよい。また、図1DのようなマルチTRPからの複数のPDSCHを、複数のDCIを用いてそれぞれスケジュールする場合、これらの複数のDCIは、マルチDCI(M-DCI、マルチPDCCH(multiple PDCCH))と呼ばれてもよい。
 マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が検討されている。
 NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 マルチTRP/パネルを用いるNCJTは、高ランクを用いる可能性がある。複数TRPの間の理想的(ideal)及び非理想的(non-ideal)のバックホール(backhaul)をサポートするために、シングルDCI(シングルPDCCH、例えば、図1B)及びマルチDCI(マルチPDCCH、例えば、図1D)の両方がサポートされてもよい。シングルDCI及びマルチDCIの両方に対し、TRPの最大数が2であってもよい。
 シングルPDCCH設計(主に理想バックホール用)に対し、TCIの拡張が検討されている。DCI内の各TCIコードポイントは1又は2のTCI状態に対応してもよい。TCIフィールドサイズはRel.15のものと同じであってもよい。
 ところで、Rel.17以降では、1以上のTRPから送信されるPDCCH(又は、DCI)に繰り返し送信(PDCCH repetition)が適用されることも想定される。例えば、1以上のTRPから送信される複数のPDCCH(又は、DCI)を利用して、1以上の信号/チャネルのスケジュール又は送受信指示を行うことが考えられる。
 繰り返し送信が適用されるPDCCH/DCIは、マルチPDCCH/マルチDCIと呼ばれてもよい。PDCCHの繰り返し送信は、PDCCH繰り返し、PDCCHの複数送信、マルチPDCCH送信又はマルチプルPDCCH送信と読み替えてもよい。
 マルチPDCCH/マルチDCIは、異なるTRPからそれぞれ送信されてもよい。当該マルチPDCCH/DCIは、時間多重(TDM)/周波数多重(FDM)/空間多重(SDM)により多重されてもよい。例えば、時間多重を利用してPDCCHの繰り返し(TDM PDCCH繰り返し)を行う場合、異なるTRPからそれぞれ送信されるPDCCHが異なる時間領域に割当てられる。
 当該マルチPDCCH/DCIを利用して、1以上の物理共有チャネルのスケジュールを行う場合を想定する。1以上の物理共有チャネルは、例えば、同じ(又は、1つの)物理共有チャネル、又は同じ時間領域にスケジュールされる複数の物理共有チャネルであってもよい。かかる場合、異なる時間領域で送信される複数のPDCCH(又は、DCI)によりスケジュールされる物理共有チャネル(例えば、PDSCH)に対応するQCL/TCIをどのように制御するかが問題となる。
 例えば、UEは、異なる時間領域で送信される複数のPDCCH(又は、DCI)と、当該複数のPDCCHによりスケジュールされる共有チャネル(例えば、PDSCH)間の時間オフセットをどのように判断するかが問題となる(図2参照)。
 図2は、スロット#n~#n+1においてそれぞれPDCCHが繰り返し送信(又は、配置)され、複数のPDCCHによりPDSCHがスロット#n+2にスケジュールされる場合の一例を示している。各スロットに配置されるPDCCH(又は、制御リソースセット)は、スロットにおける時間領域の全体(例えば、全シンボル)に配置されてもよいし、一部の時間領域(例えば、連続又は非連続の一部のシンボル)に配置されてもよい。
 この場合、UEは、PDSCHと、当該PDSCHをスケジュールするPDCCH/DCI間の時間オフセットをどのように判断するかが問題となる。
 あるいは、PDCCH/DCIにTCI状態に関する情報(例えば、TCIフィールド)が含まれない場合、UEは、PDSCHに対応するQCL/TCI(又は、PDSCHのアンテナポートの疑似コロケーション)をどのように判断するかが問題となる。
 本発明者等は、複数のPDCCH/DCIを利用して物理共有チャネルのスケジュールを行う場合に、UEが当該物理共有チャネルに対応するQCL/TCIの判断をどのように行うかを検討し、本実施の形態を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の各態様はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。
 また、本開示において、「A/B」は、A及びBの少なくとも一つ、「A/B/C」は、A、B及びCの少なくとも一つと読み替えられてもよい。
 また、以下の説明では、PDCCH/DCIによりPDSCHがスケジュールされる場合を例に挙げて説明するが、これに限られない。PDCCH/DCIによりPUSCHがスケジュールされる場合に適用されてもよい。以下の説明において、TCI/QCLは、TCI状態/QCL想定と読み替えられてもよい。
 以下の説明では、PDCCH繰り返し(又は、複数のPDCCH)が異なるスロットで送信される場合(inter-slot PDCCH repetition)を例に挙げて説明するが、PDCCHの送信はスロット単位に限られない。PDCCH繰り返し(又は、複数のPDCCH)が、同じスロット内で送信される場合(intra-slot PDCCH repetition)、ミニスロット/サブスロット単位で送信される場合、又は所定シンボル単位で送信される場合にも本開示は適用できる。
(第1の態様)
 第1の態様では、複数のPDCCH/DCIを利用してPDSCHがスケジュールされる場合に、PDCCH/DCIとPDSCH間の時間オフセットの決定方法の一例について説明する。
 異なる時間領域において送信されるPDCCH繰り返し(例えば、TDM PDCCH repetition)において、PDCCH(又は、DCI)の受信と、対応するPDSCHとの時間オフセットが、特定のPDCCHに基づいて決定されてもよい。つまり、UEは、複数のPDCCH(又は、DCI)の中から特定のPDCCH(又は、DCI)を選択し、当該特定のPDCCHと、対応するPDSCHとの時間オフセットがある閾値(例えば、timeDurationForQCL)以上であるか否かを判断してもよい。
 特定のPDCCH(又は、DCI)は、以下のオプション1-1~オプション1-5の少なくとも一つであってもよい。
<オプション1-1>
 時間オフセットの決定に利用される特定のPDCCHは、各PDCCHの送信タイミング/時間ドメインにおける送信順序に基づいて決定されてもよい。
 例えば、時間ドメインにおいて最初に送信されるPDCCH(例えば、1st PDCCH)が特定のPDCCHであってもよい(図3A参照)。図3Aは、スロット#n~#n+1においてそれぞれPDCCH#1、#2が繰り返し送信され、PDCCH#1、#2によりPDSCHがスロット#n+2にスケジュールされる場合の一例を示している。図3Aでは、PDCCHの繰り返し数が2の場合を示しているが、PDCCHの繰り返し数はこれに限られず3以上であってもよい。
 この場合、UEは、1st PDCCH(図3AにおけるPDCCH#1)とPDSCHとの間(1st PDCCH-PDSCH間)の時間オフセットと、ある閾値(例えば、timeDurationForQCL)と、を比較してもよい。
 1st PDCCH-PDSCH間の時間オフセットがある閾値より小さい(又は、ある閾値未満である)場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい。本開示において、所定のデフォルトQCL/TCIは、仕様で定義されてもよいし、上位レイヤシグナリング等を利用して基地局からUEに設定されてもよい。ある閾値(例えば、timeDurationForQCL)は、上位レイヤシグナリング等により基地局からUEに設定されてもよいし、UEが報告したUE能力に基づいて決定されてもよい。
 1st PDCCH-PDSCH間の時間オフセットがある閾値以上となる場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHにDCIで指定されるTCI(又は、TCIに対応するQCL)が対応すると想定してもよい(ケース1)。DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい(ケース2)。
 本開示において、ケース2における所定のデフォルトQCL/TCIは、時間オフセットがある閾値より小さい場合に適用される所定のデフォルトQCL/TCIと異なっていてもよい。例えば、ケース2における所定のデフォルトQCL/TCIは、所定のPDCCH/DCIに対応するCORESET/送信パラメータに基づいて決定されてもよい。
 あるいは、特定のPDCCHは、時間ドメインにおいて最後に送信されるPDCCH(例えば、last PDCCH)であってもよい(図3B参照)。この場合、UEは、last PDCCH(図3BにおけるPDCCH#2)-PDSCH間の時間オフセットと、閾値とを比較してもよい。
<オプション1-2>
 時間オフセットの決定に利用される特定のPDCCHは、各PDCCHが対応するTCI状態(例えば、TCI状態のインデックス/TCI ID)に基づいて決定されてもよい。
 例えば、インデックスが最も低いTCI状態に対応するPDCCH(PDCCH with lowest TCI state ID)が特定のPDCCHであってもよい。この場合、UEは、インデックスが最も低いTCI状態に対応するPDCCH-PDSCH間の時間オフセットと、ある閾値(例えば、timeDurationForQCL)とを比較してもよい。
 インデックスが最も低いTCI状態に対応するPDCCH-PDSCH間の時間オフセットがある閾値より小さい場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい。
 インデックスが最も低いTCI状態に対応するPDCCH-PDSCH間の時間オフセットがある閾値以上となる場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHにDCIで指定されるTCI(又は、TCIに対応するQCL)が対応すると想定してもよい(ケース1)。DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい(ケース2)。
 あるいは、特定のPDCCHは、インデックスが最も高いTCI状態に対応するPDCCH(PDCCH with highest TCI state ID)であってもよい。この場合、UEは、インデックスが最も高いTCI状態に対応するPDCCH-PDSCH間の時間オフセットと、ある閾値とを比較してもよい。
<オプション1-3>
 時間オフセットの決定に利用される特定のPDCCHは、各PDCCHが対応するTRP(例えば、TRPインデックス/TRP ID)に基づいて決定されてもよい。TRPインデックス/TRP IDは、CORESETプールインデックス/CORESET Pool IDに読み替えられてもよい。
 例えば、インデックスが最も低いTRPに対応するPDCCH(PDCCH with lowest TRP ID)が特定のPDCCHであってもよい。この場合、UEは、インデックスが最も低いTRPに対応するPDCCH-PDSCH間の時間オフセットと、ある閾値(例えば、timeDurationForQCL)とを比較してもよい。
 インデックスが最も低いTRPに対応するPDCCH-PDSCH間の時間オフセットがある閾値より小さい場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい。
 インデックスが最も低いTRPに対応するPDCCH-PDSCH間の時間オフセットがある閾値以上となる場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHにDCIで指定されるTCI(又は、TCIに対応するQCL)が対応すると想定してもよい(ケース1)。DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい(ケース2)。
 あるいは、特定のPDCCHは、インデックスが最も高いTRPに対応するPDCCH(PDCCH with highest TRP ID)であってもよい。この場合、UEは、インデックスが最も高いTRPに対応するPDCCH-PDSCH間の時間オフセットと、ある閾値とを比較してもよい。
<オプション1-4>
 時間オフセットの決定に利用される特定のPDCCHは、各PDCCHが対応する制御リソースセット(例えば、CORESETインデックス/CORESET ID)に基づいて決定されてもよい。
 例えば、インデックスが最も低いCORESETに対応するPDCCH(PDCCH with lowest CORESET ID)が特定のPDCCHであってもよい。この場合、UEは、インデックスが最も低いCORESETに対応するPDCCH-PDSCH間の時間オフセットと、ある閾値(例えば、timeDurationForQCL)とを比較してもよい。
 インデックスが最も低いCORESETに対応するPDCCH-PDSCH間の時間オフセットがある閾値より小さい場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい。
 インデックスが最も低いCORESETに対応するPDCCH-PDSCH間の時間オフセットがある閾値以上となる場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHにDCIで指定されるTCI(又は、TCIに対応するQCL)が対応すると想定してもよい(ケース1)。DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい(ケース2)。
 あるいは、特定のPDCCHは、インデックスが最も高いCORESETに対応するPDCCH(PDCCH with highest CORESET ID)であってもよい。この場合、UEは、インデックスが最も高いCORESETに対応するPDCCH-PDSCH間の時間オフセットと、ある閾値とを比較してもよい。
<オプション1-5>
 時間オフセットの決定に利用される特定のPDCCHは、各PDCCHが対応する周波数ドメイン(例えば、制御チャネル要素インデックス/CCE index)に基づいて決定されてもよい。オプション1-5は、複数のPDCCH/DCIが異なる時間ドメイン及び異なる周波数ドメイン(TDM+FDM)で送信される場合に適用されてもよい。
 例えば、インデックスが最も低いCCEに対応するPDCCH(PDCCH with lowest CCE index)が特定のPDCCHであってもよい。この場合、UEは、インデックスが最も低いCCEに対応するPDCCH-PDSCH間の時間オフセットと、ある閾値(例えば、timeDurationForQCL)とを比較してもよい。
 インデックスが最も低いCCEに対応するPDCCH-PDSCH間の時間オフセットがある閾値より小さい場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい。
 インデックスが最も低いCCEに対応するPDCCH-PDSCH間の時間オフセットがある閾値以上となる場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHにDCIで指定されるTCI(又は、TCIに対応するQCL)が対応すると想定してもよい(ケース1)。DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、複数のPDCCH/DCIでスケジュールされるPDSCHに所定のデフォルトQCL/TCIが対応すると想定してもよい(ケース2)。
 あるいは、特定のPDCCHは、インデックスが最も高いCCEに対応するPDCCH(PDCCH with highest CCE index)であってもよい。この場合、UEは、インデックスが最も高いCCEに対応するPDCCH-PDSCH間の時間オフセットと、ある閾値とを比較してもよい。
 このように、UEは、繰り返し送信されるPDCCH/DCI(又は、マルチPDCCH/DCI)によりPDSCHがスケジュールされる場合、複数のPDCCH/DCIのうち特定のPDCCH/DCIに基づいてPDCCH-PDSCH間の時間オフセットを判断してもよい。これにより、異なる時間領域で送信される複数のPDCCH/DCIを利用してPDSCHをスケジュールする場合であっても、PDSCHの受信を適切に行うことができる。
 なお、オプション1-1~オプション1-5の少なくとも一つは、PDSCHに対するTCI/QCL(又は、デフォルトTCI/QCL)がRel.16以降(例えば、Rel.16又はRe.17)の動作に従う場合に適用されてもよい。Rel.17の動作(R17 behavior)は、PDSCHに対するQCL/デフォルトQCLが、設定/アクティブ化/指示されたユニファイドTCI状態(例えば、unified TCI state)に従う場合であってもよい。
(第2の態様)
 第2の態様では、複数のPDCCH/DCIでスケジュールされるPDSCHに適用/想定するデフォルトTCI/QCLの一例について説明する。ここでは、PDCCH繰り返し(例えば、異なる時間領域で送信される複数のPDCCH)に対して異なるCORESETが利用される場合を想定する。
 デフォルトTCI/QCLは、例えば、時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合に適用/想定されるデフォルトTCI/QCLであってもよい。例えば、以下で説明するTCI/QCLは、第1の態様のケース2におけるデフォルトQCL/TCIに適用されてもよい。
 特定のPDCCH-PDSCH間の時間オフセットがある閾値以上となるケースにおいて、DCIでTCI状態が通知されない(又は、DCIにTCIフィールドが含まれない)場合を想定する。ある閾値は、UEが報告した能力情報(例えば、UE capability)に基づいて決定されてもよい。この場合、PDSCHのアンテナポート疑似コロケーション(例えば、PDSCH antenna port quasi co-location)を決定するために、UEは、PDSCHに対するTCI状態/QCL想定が、PDCCH送信に利用されるCORESETに対応するTCI/QCLと同じであると想定してもよい。
 一方で、PDCCHの繰り返し送信(例えば、異なる時間領域で送信される複数のPDCCH)に対して異なるCORESETが利用される場合、UEは、どのCORESETのTCI/QCLが、PDSCHのTCI/QCLに対応するかを判断/決定する必要がある。以下に、PDSCHに適用/対応するTCI/QCLの決定方法について説明する。
<シングルTRPにおけるPDSCH送信>
 PDCCH繰り返し(例えば、異なる時間領域で送信される複数のPDCCH)が、複数のCORESETにおいてそれぞれ送信されるケースを想定する。当該PDCCHの繰り返しにより、シングルTRPから送信されるPDSCH送信がスケジュールされてもよい。
 本開示において、シングルTRPにおけるPDSCH送信(S-TRP PDSCH Tx)は、シングルTCI/QCL(single TCI/QCL)を具備(又は、利用)するPDSCH送信又はPDSCH繰り返しが設定/アクティブ化/指示されることを意味してもよい。この場合、マルチプルTCI/QCLを具備するPDSCH送信/PDSCH繰り返しは、上位レイヤ/MAC CE/DCIにより有効に設定されなくてもよい。
 PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、PDSCHに対応するTCI/QCLが、特定のCORESETに対するTCI/QCLと同じであると想定してもよい(図4参照)。
 図4は、スロット#n~#n+1においてそれぞれPDCCH#1、#2が繰り返し送信され、PDCCH#1、#2によりPDSCHがスロット#n+2にスケジュールされる場合の一例を示している。図4では、PDCCHの繰り返し数が2の場合を示しているが、PDCCHの繰り返し数はこれに限られず3以上であってもよい。また、ここでは、時間オフセットの決定に、PDCCH#1を基準とする場合を示しているがこれに限られない。
 UEは、1st PDCCH(図4におけるPDCCH#1)-PDSCH間の時間オフセットがある閾値(例えば、timeDurationForQCL)以上であり、DCI(例えば、DCI#1/DCI#2)にTCIに関する情報が含まれない場合、PDSCHに対応するTCI/QCLが、特定のCORESETに対するTCI/QCLと同じであると想定してもよい。
 特定のCORESETは、以下のオプション2-1~オプション2-5の少なくとも一つであってもよい。
[オプション2-1]
 特定のCORESETは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ利用されるCORESETインデックス/CORESET IDに基づいて決定されてもよい。
 例えば、PDCCH繰り返しに利用される複数のCORESETのうち、インデックスが最も低いCORESET(CORESET with lowest CORESET ID)が特定のCORESETであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いCORESET用のTCI/QCLと同じであると想定してもよい。
 あるいは、特定のCORESETは、PDCCH繰り返しに利用される複数のCORESETのうち、インデックスが最も高いCORESET(CORESET with highest CORESET ID)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いCORESET用のTCI/QCLと同じであると想定してもよい。
[オプション2-2]
 特定のCORESETは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ対応するTRPインデックス/TRP IDに基づいて決定されてもよい。TRPインデックス/TRP IDは、CORESETプールインデックス/CORESET Pool IDに読み替えられてもよい。
 例えば、PDCCH繰り返しに利用される複数のTRP(又は、CORESETプール)のうち、インデックスが最も低いTRPに対応するCORESET(CORESET with lowest TRP ID)が特定のCORESETであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いTRPに対応するCORESET用のTCI/QCLと同じであると想定してもよい。
 あるいは、特定のCORESETは、PDCCH繰り返しに利用される複数のCORESETのうち、インデックスが最も高いTRPに対応するCORESET(CORESET with highest TRP ID)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いTRPに対応するCORESET用のTCI/QCLと同じであると想定してもよい。
[オプション2-3]
 特定のCORESETは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ対応するTCI状態インデックス/TCI状態IDに基づいて決定されてもよい。
 例えば、PDCCH繰り返しに利用される複数のTCI状態のうち、インデックスが最も低いTCI状態に対応するCORESET(CORESET with lowest TCI state ID)が特定のCORESETであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いTCI状態に対応するCORESET用のTCI/QCLと同じであると想定してもよい。
 あるいは、特定のCORESETは、PDCCH繰り返しに利用される複数のTCIのうち、インデックスが最も高いTCI状態に対応するCORESET(CORESET with highest TCI state ID)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いTCI状態に対応するCORESET用のTCI/QCLと同じであると想定してもよい。
[オプション2-4]
 特定のCORESETは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ対応するCORESETの送信タイミング/時間ドメインにおける送信順序に基づいて決定されてもよい。
 例えば、PDCCH繰り返しに利用される複数のCORESETのうち、最初に送信されるPDCCH(例えば、1st PDCCH)に対応するCORESETが特定のCORESETであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、時間領域における最初のPDCCHに対応するCORESET用のTCI/QCLと同じであると想定してもよい。
 あるいは、特定のCORESETは、PDCCH繰り返しに利用される複数のCORESETのうち、最後に送信されるPDCCH(例えば、last PDCCH)に対応するCORESETであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、時間領域における最後のPDCCHに対応するCORESET用のTCI/QCLと同じであると想定してもよい。
[オプション2-5]
 特定のCORESETは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ対応するCORESETの周波数ドメイン(例えば、制御チャネル要素インデックス/CCE index)に基づいて決定されてもよい。
 例えば、PDCCH繰り返しに利用される複数のCORESETのうち、インデックスが最も低いCCEに対応するCORESET(CORESET with lowest CCE index)が特定のCORESETであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いCCEに対応するCORESET用のTCI/QCLと同じであると想定してもよい。
 あるいは、特定のCORESETは、PDCCH繰り返しに利用される複数のCORESETのうち、インデックスが最も高いCCEに対応するCORESET(CORESET with highest CCE index)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いCCEに対応するCORESET用のTCI/QCLと同じであると想定してもよい。
<マルチTRPにおけるPDSCH送信>
 PDCCH繰り返し(例えば、異なる時間領域で送信される複数のPDCCH)が、複数のCORESETにおいてそれぞれ送信されるケースを想定する。当該PDCCHの繰り返しにより、マルチTRPから送信されるPDSCH送信がスケジュールされてもよい。
 本開示において、マルチTRPにおけるPDSCH送信(M-TRP PDSCH Tx)は、複数のTCI/QCL(multiple TCIs/QCLs)を具備(又は、利用)するPDSCH送信又はPDSCH繰り返しが、上位レイヤ/MAC CE/DCIにより有効に設定されることを意味してもよい。この場合、複数のTCI/QCLを具備(又は、利用)するPDSCH送信又はPDSCH繰り返しが設定/アクティブ化/指示されてもよい。
 PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、PDSCHに対応する複数のTCI/QCLが、各PDCCH送信に利用された複数のCORESET用のTCI/QCLと同じであると想定してもよい。
 複数のTCI状態(例えば、複数のデフォルトTCI状態)と、複数のPDSCH繰り返しとの間の関連付け(又は、マッピング)は、PDSCHに対して複数のTCI状態が設定/アクティブ化/指定される場合と同じであってもよい。例えば、あるPDCCHでスケジュールされるPDSCHのTCI/QCIは、当該PDCCH(又は、PDCCHに対応するCORESET)に対応するTCI/QCLと関連付けられてもよい。
 あるいは、    PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、PDSCHに対応する複数のTCI/QCLが、特定のCORESETに対するTCI/QCLと同じであると想定してもよい。特定のCORESETは、上述のオプション2-1~オプション2-5の少なくとも一つに基づいて決定されてもよい。例えば、シングルTRPにおけるPDSCH送信と同様に決定されてもよい。
 このように、DCIでTCI状態に関する情報が通知されない場合であっても、特定のCORESETに対応するTCI/QCLをPDSCHの受信に利用することにより、PDCCH繰り返しを適用する場合であっても通信を適切に制御することができる。
 なお、上記説明では、PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合を例に挙げたが、第2の態様が適用可能なケースはこれに限られない。PDSCHに対応するTCI/QCLの決定において、DCIで指定されるTCIに関する情報(例えば、TCIフィールド)が利用できないケースに第2の態様が適用されてもよいし、第2の態様が適用可能なケースについて仕様で定義されてもよい。
(第3の態様)
 第3の態様では、複数のPDCCH/DCIでスケジュールされるPDSCHに適用/想定するデフォルトTCI/QCLの一例について説明する。ここでは、PDCCH繰り返し(例えば、異なる時間領域で送信される複数のPDCCH)に対して1つのCORESET(又は、共通のCORESET)が利用される場合を想定する。
 デフォルトTCI/QCLは、例えば、時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合に適用/想定されるデフォルトTCI/QCLであってもよい。例えば、以下で説明するTCI/QCLは、第1の態様のケース2におけるデフォルトQCL/TCIに適用されてもよい。
 特定のPDCCH-PDSCH間の時間オフセットがある閾値以上となるケースにおいて、DCIでTCI状態が通知されない(又は、DCIにTCIフィールドが含まれない)場合を想定する。ある閾値は、UEが報告した能力情報(例えば、UE capability)に基づいて決定されてもよい。この場合、PDSCHのアンテナポート疑似コロケーション(例えば、PDSCH antenna port quasi co-location)を決定するために、UEは、PDSCHに対するTCI状態/QCL想定が、PDCCH送信に利用されるCORESETに対応するTCI/QCLと同じであると想定してもよい。
 一方で、PDCCHの繰り返し送信(例えば、異なる時間領域で送信される複数のPDCCH)に対して1つCORESET(又は、共通のCORESET)が利用される場合、UEは、PDSCHのTCI/QCLに対応する所定TCI/QCL(例えば、デフォルトTCI/QCL)を判断/決定する必要がある。以下に、PDSCHに適用/対応する所定TCI/QCLの決定方法について説明する。
<シングルTRPにおけるPDSCH送信>
 PDCCH繰り返し(例えば、異なる時間領域で送信される複数のPDCCH)が、1つのCORESETにおいてそれぞれ送信されるケースを想定する。当該PDCCHの繰り返しにより、シングルTRPから送信されるPDSCH送信がスケジュールされてもよい。
 PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、PDSCHに対応するTCI/QCLが、所定TCI/QCLと同じであると想定してもよい。
 所定TCI/QCLは、以下のオプション3-1~オプション3-5の少なくとも一つであってもよい。
[オプション3-1]
 所定TCI/QCLは、PDCCH繰り返し(又は、各PDCCH送信)用に設定されるCORESETインデックス/CORESET IDに基づいて決定されてもよい。CORESETは、サーチスペース及びモニタリングオケージョンの少なくとも一つと読み替えられてもよい。
 例えば、PDCCH繰り返し用に設定されるCORESETのうち、インデックスが最も低いCORESETに対応するTCI/QCLが(QCL with lowest CORESET ID)所定TCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いCORESET用のTCI/QCLと同じであると想定してもよい。
 あるいは、所定TCI/QCLは、PDCCH繰り返し用に設定されるCORESETのうち、インデックスが最も高いCORESET(QCL with highest CORESET ID)に対応するTCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いCORESET用のTCI/QCLと同じであると想定してもよい。
 なお、PDCCH繰り返し送信に利用される1つのCORESETに対応するTCL/QCLが所定TCI/QCLに対応してもよい。
[オプション3-2]
 所定TCI/QCLは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ対応するTRPインデックス/TRP IDに基づいて決定されてもよい。TRPインデックス/TRP IDは、CORESETプールインデックス/CORESET Pool IDに読み替えられてもよい。
 例えば、PDCCH繰り返しに利用される複数のTRP(又は、CORESETプール)のうち、インデックスが最も低いTRPに対応するTCI/QCL(QCL with lowest TRP ID)が所定TCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いTRPに対応するTCI/QCLと同じであると想定してもよい。
 あるいは、所定TCI/QCLは、PDCCH繰り返しに利用される複数のCORESETのうち、インデックスが最も高いTRPに対応するTCI/QCL(QCL with highest TRP ID)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いTRPに対応するTCI/QCLと同じであると想定してもよい。
[オプション3-3]
 所定TCI/QCLは、PDCCH繰り返し(又は、各PDCCH送信)にそれぞれ対応するTCI状態インデックス/TCI状態IDに基づいて決定されてもよい。
 例えば、PDCCH繰り返しに利用される複数のTCI状態のうち、インデックスが最も低いTCI状態に対応するTCI/QCL(QCL with lowest TCI state ID)が所定TCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いTCI状態に対応するTCI/QCLと同じであると想定してもよい。
 あるいは、所定TCI/QCLは、PDCCH繰り返しに利用される複数のTCI状態のうち、インデックスが最も高いTCI状態に対応するTCI/QCL(QCL with highest TCI state ID)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いTCI状態に対応するTCI/QCLと同じであると想定してもよい。
[オプション3-4]
 所定TCI/QCLは、PDCCH繰り返し(又は、各PDCCH送信)の送信タイミング/時間ドメインにおける送信順序に基づいて決定されてもよい。
 例えば、複数のPDCCHのうち、最初に送信されるPDCCH(例えば、1st PDCCH)に対応するTCI/QCLが所定TCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、時間領域における最初のPDCCHに対応するTCI/QCLと同じであると想定してもよい。
 あるいは、所定TCI/QCLは、最後に送信されるPDCCH(例えば、last PDCCH)に対応するTCI/QCLが所定TCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、時間領域における最後のPDCCHに対応するTCI/QCLと同じであると想定してもよい。
[オプション3-5]
 所定TCI/QCLは、PDCCH繰り返し(又は、各PDCCH送信)の周波数ドメイン(例えば、制御チャネル要素インデックス/CCE index)に基づいて決定されてもよい。
 例えば、複数のPDCCHのうち、インデックスが最も低いCCEに対応するTCI/QCL(QCL with lowest CCE index)が所定TCI/QCLであってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も低いCCEに対応するTCI/QCLと同じであると想定してもよい。
 あるいは、所定TCI/QCLは、インデックスが最も高いCCEに対応するTCI/QCL(QCL with highest CCE index)であってもよい。この場合、UEは、PDSCHに対応するTCI/QCLが、インデックスが最も高いCCEに対応するTCI/QCLと同じであると想定してもよい。
<マルチTRPにおけるPDSCH送信>
 PDCCH繰り返し(例えば、異なる時間領域で送信される複数のPDCCH)が、1つのCORESETにおいてそれぞれ送信されるケースを想定する。当該PDCCHの繰り返しにより、マルチTRPから送信されるPDSCH送信がスケジュールされてもよい。
 PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、PDSCHに対応する複数のTCI/QCLが、各PDCCH送信に利用された1つのCORESETに対応する1以上のTCI/QCLと同じであると想定してもよい。
 1以上のTCI状態(例えば、複数のデフォルトTCI状態)と、複数のPDSCH繰り返しとの間の関連付け(又は、マッピング)は、PDSCHに対して複数のTCI状態が設定/アクティブ化/指定される場合と同じであってもよい。例えば、あるPDCCHでスケジュールされるPDSCHのTCI/QCIは、当該PDCCH(又は、PDCCHに対応するCORESET)に対応するTCI/QCLと関連付けられてもよい。
 あるいは、    PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合、UEは、PDSCHに対応する複数のTCI/QCLが、所定TCI/QCLと同じであると想定してもよい。所定TCI/QCLは、上述のオプション3-1~オプション3-5の少なくとも一つに基づいて決定されてもよい。例えば、シングルTRPにおけるPDSCH送信と同様に決定されてもよい。
 このように、DCIでTCI状態に関する情報が通知されない場合であっても、所定TCI/QCLをPDSCHの受信に利用することにより、PDCCH繰り返しを適用する場合であっても通信を適切に制御することができる。
 なお、上記説明では、PDCCH/DCI-PDSCH間の時間オフセットがある閾値以上であり、DCIでTCIが通知されない(又は、DCIにTCIフィールドが含まれない)場合を例に挙げたが、第3の態様が適用可能なケースはこれに限られない。PDSCHに対応するTCI/QCLの決定において、DCIで指定されるTCIに関する情報(例えば、TCIフィールド)が利用できないケースに第3の態様が適用されてもよいし、第3の態様が適用可能なケースについて仕様で定義されてもよい。
(第4の態様)
 第4の態様では、UE能力情報の一例について説明する。
 PDCCH繰り返しにおいて、UEが、PDSCHのデフォルトTCI/QCLを、PDCCH送信に利用されるCORESETのTCI/QCLとして想定できるか否かのUE能力情報がサポートされてもよい。
 複数のCORESET(例えば、異なるCORESET)を利用するPDCCH繰り返しにおいて、UEが、PDSCHのデフォルトTCI/QCLを、PDCCH送信に利用されるCORESETのTCL/QCLとして想定できるか否かのUE能力情報がサポートされてもよい。
 UEは、対応するUE能力情報を報告した場合、又は所定の上位レイヤパラメータが設定/アクティブ化/指示された場合に、第1の態様~第3の態様の少なくとも一つを適用するように制御してもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図6は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、異なる時間領域に割当てられる複数の下り制御チャネルを利用してスケジュールする理共有チャネルを送信してもよい。
 送受信部120は、複数の下り制御チャネルのうち特定の下り制御チャネルと物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを制御してもよい。
(ユーザ端末)
 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 送受信部220は、異なる時間領域に割当てられる複数の下り制御チャネルによりスケジュールされる物理共有チャネルを受信してもよい。
 制御部210は、複数の下り制御チャネルのうち特定の下り制御チャネルと物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを判断してもよい。
 制御部210は、特定の下り制御チャネルを、下り制御チャネルの送信タイミング、下り制御チャネルに対応するTCI状態インデックス、下り制御チャネルに対応する制御リソースセットプールインデックス、下り制御チャネルに対応する制御リソースセットインデックス、及び下り制御チャネルの送信に利用される周波数領域の少なくとも一つに基づいて決定してもよい。
 複数の下り制御チャネルが複数の制御リソースセットを利用してそれぞれ送信されるケースにおいて、時間オフセットが閾値以上であり、且つ特定の下り制御情報にTCI用フィールドが含まれない場合、制御部210は、複数の制御リソースセットのうち特定の制御リソースセットに対応するQCL及びTCI状態の少なくとも一つと、物理共有チャネルに対応するQCL及びTCI状態の少なくとも一つが同一であると想定してもよい。
 複数の下り制御チャネルが共通の制御リソースセットを利用してそれぞれ送信されるケースにおいて、時間オフセットが前記閾値以上であり、且つ特定の下り制御情報にTCI用フィールドが含まれない場合、制御部210は、特定の下り制御チャネルに対応するQCL及びTCI状態の少なくとも一つと、物理共有チャネルに対応するQCL及びTCI状態の少なくとも一つが同一であると想定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  異なる時間領域に割当てられる複数の下り制御チャネルによりスケジュールされる物理共有チャネルを受信する受信部と、
     前記複数の下り制御チャネルのうち特定の下り制御チャネルと前記物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、前記物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを判断する制御部と、を有することを特徴とする端末。
  2.  前記特定の下り制御チャネルは、下り制御チャネルの送信タイミング、下り制御チャネルに対応するTCI状態インデックス、下り制御チャネルに対応する制御リソースセットプールインデックス、下り制御チャネルに対応する制御リソースセットインデックス、及び下り制御チャネルの送信に利用される周波数領域の少なくとも一つに基づいて決定されることを特徴とする請求項1に記載の端末。
  3.  前記複数の下り制御チャネルが複数の制御リソースセットを利用してそれぞれ送信されるケースにおいて、前記時間オフセットが前記閾値以上であり、且つ前記特定の下り制御情報にTCI用フィールドが含まれない場合、前記制御部は、前記複数の制御リソースセットのうち特定の制御リソースセットに対応するQCL及びTCI状態の少なくとも一つと、前記物理共有チャネルに対応するQCL及びTCI状態の少なくとも一つが同一であると想定することを特徴とする請求項1又は請求項2に記載の端末。
  4.  前記複数の下り制御チャネルが共通の制御リソースセットを利用してそれぞれ送信されるケースにおいて、前記時間オフセットが前記閾値以上であり、且つ前記特定の下り制御情報にTCI用フィールドが含まれない場合、前記制御部は、前記特定の下り制御チャネルに対応するQCL及びTCI状態の少なくとも一つと、前記物理共有チャネルに対応するQCL及びTCI状態の少なくとも一つが同一であると想定することを特徴とする請求項1又は請求項2に記載の端末。
  5.  異なる時間領域に割当てられる複数の下り制御チャネルによりスケジュールされる物理共有チャネルを受信する工程と、
     前記複数の下り制御チャネルのうち特定の下り制御チャネルと前記物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、前記物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを判断する工程と、を有することを特徴とする無線通信方法。
  6.  異なる時間領域に割当てられる複数の下り制御チャネルを利用してスケジュールする理共有チャネルを送信する送信部と、
     前記複数の下り制御チャネルのうち特定の下り制御チャネルと前記物理共有チャネルとの時間オフセットと、ある閾値と、に基づいて、前記物理共有チャネルに対応する疑似コロケーション(QCL)及び送信コンフィグレーション指標(TCI)状態の少なくとも一つを制御する制御部と、を有することを特徴とする基地局。
PCT/JP2020/034509 2020-09-11 2020-09-11 端末、無線通信方法及び基地局 WO2022054236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022547328A JPWO2022054236A5 (ja) 2020-09-11 端末、無線通信方法、基地局及びシステム
PCT/JP2020/034509 WO2022054236A1 (ja) 2020-09-11 2020-09-11 端末、無線通信方法及び基地局
EP20953301.7A EP4213568A1 (en) 2020-09-11 2020-09-11 Terminal, wireless communication method, and base station
CN202080107029.3A CN116391425A (zh) 2020-09-11 2020-09-11 终端、无线通信方法以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034509 WO2022054236A1 (ja) 2020-09-11 2020-09-11 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022054236A1 true WO2022054236A1 (ja) 2022-03-17

Family

ID=80631446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034509 WO2022054236A1 (ja) 2020-09-11 2020-09-11 端末、無線通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4213568A1 (ja)
CN (1) CN116391425A (ja)
WO (1) WO2022054236A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050816A1 (zh) * 2022-09-09 2024-03-14 北京小米移动软件有限公司 Tci状态确定方法、装置、设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTR_AN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
APPLE INC.: "On Further MIMO Enhancement", 3GPP DRAFT; R1-2004234, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885989 *
MODERATOR (OPPO): "Text Proposal for TS 38.214 in [102-e-NR-eMIMO-05]", 3GPP DRAFT; R1-2007123, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 26 August 2020 (2020-08-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051922037 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050816A1 (zh) * 2022-09-09 2024-03-14 北京小米移动软件有限公司 Tci状态确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN116391425A (zh) 2023-07-04
EP4213568A1 (en) 2023-07-19
JPWO2022054236A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2021024494A1 (ja) 端末及び無線通信方法
WO2020230217A1 (ja) ユーザ端末及び無線通信方法
WO2020090059A1 (ja) ユーザ端末及び無線通信方法
JPWO2020148903A1 (ja) ユーザ端末及び無線通信方法
JPWO2020170449A1 (ja) 端末、無線通信方法、基地局及びシステム
WO2020209282A1 (ja) ユーザ端末及び無線通信方法
JPWO2020170444A1 (ja) ユーザ端末及び無線通信方法
WO2021090507A1 (ja) 端末及び無線通信方法
WO2021106169A1 (ja) 端末及び無線通信方法
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
JPWO2020144869A1 (ja) ユーザ端末及び無線通信方法
WO2022102605A1 (ja) 端末、無線通信方法及び基地局
JPWO2020170450A1 (ja) ユーザ端末及び無線通信方法
WO2021229820A1 (ja) 端末、無線通信方法及び基地局
WO2021106168A1 (ja) 端末及び無線通信方法
WO2021106092A1 (ja) 端末及び無線通信方法
JP7330598B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021090506A1 (ja) 端末及び無線通信方法
WO2021038659A1 (ja) 端末及び無線通信方法
WO2022054236A1 (ja) 端末、無線通信方法及び基地局
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2022044261A1 (ja) 端末、無線通信方法及び基地局
WO2022085179A1 (ja) 端末、無線通信方法及び基地局
WO2022113284A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020953301

Country of ref document: EP

Effective date: 20230411