WO2022085179A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022085179A1
WO2022085179A1 PCT/JP2020/039909 JP2020039909W WO2022085179A1 WO 2022085179 A1 WO2022085179 A1 WO 2022085179A1 JP 2020039909 W JP2020039909 W JP 2020039909W WO 2022085179 A1 WO2022085179 A1 WO 2022085179A1
Authority
WO
WIPO (PCT)
Prior art keywords
trs
dmrs
transmission
trp
resource
Prior art date
Application number
PCT/JP2020/039909
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022556348A priority Critical patent/JPWO2022085179A5/ja
Priority to CN202080108070.2A priority patent/CN116636274A/zh
Priority to PCT/JP2020/039909 priority patent/WO2022085179A1/ja
Priority to EP20958728.6A priority patent/EP4236526A1/en
Publication of WO2022085179A1 publication Critical patent/WO2022085179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • transmission points eg, Remote RadioHead (RRH)
  • RRH Remote RadioHead
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately receive downlink signals from a plurality of transmission points.
  • a terminal includes a receiving unit that receives a first upper layer parameter indicating a resource of a first tracking reference signal (TRS) and a second upper layer parameter indicating a resource of a second TRS, and the above-mentioned terminal. Based on the first TRS and the second TRS, the control unit controls at least one reception of the physical downlink control channel and the physical downlink shared channel, and the pseudo-collocation relationship between the first TRS and the second TRS is , Does not include Doppler shift.
  • TRS tracking reference signal
  • downlink signals from a plurality of transmission points can be appropriately received.
  • FIG. 1A and 1B are diagrams showing an example of communication between a mobile body and a transmission point (for example, RRH).
  • 2A to 2C are diagrams showing an example of schemes 0 to 2 relating to SFN.
  • 3A and 3B are diagrams showing an example of the first embodiment.
  • 4A and 4B are diagrams showing an example of the second embodiment.
  • FIG. 5 is a diagram showing an example of Aspect 3-2. 6A and 6B are views showing an example of aspect 3-3.
  • FIG. 7 is a diagram showing an example of the TCI state according to the fourth embodiment.
  • 8A and 8B are diagrams showing an example of the default TCI state according to the fourth embodiment.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • FIG. 11 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, demodulation, etc.
  • transmission processing e.g., at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • QCL Quality of Service
  • the TCI state may be set in the UE per channel or per signal.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (may be referred to as QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, -QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and average delay, -QCL type D (QCL-D): Spatial reception parameter.
  • QCL-A Doppler shift, Doppler spread, average delay and delay spread
  • -QCL type B QCL type B
  • QCL type C QCL type C
  • QCL-D Spatial reception parameter.
  • the UE assumes that one control resource set (Control Resource Set (CORESET)) has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. It may be called a QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • the UE may determine at least one of the transmit beam (Tx beam) and receive beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal for the channel (Reference Signal (RS))) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the RS of the QCL type X in the TCI state may mean an RS having a relationship between a certain channel / signal (DMRS) and the QCL type X, and this RS is called the QCL source of the QCL type X in the TCI state. You may.
  • DMRS channel / signal
  • the QCL type A RS may always be set for the PDCCH and PDSCH, and the QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving one shot of DMRS, QCL type A RS is used to improve the channel estimation accuracy.
  • the QCL type D RS is used to determine the received beam when receiving a DMRS.
  • TRS1-1, 1-2, 1-3, 1-4 are transmitted, and TRS1-1 is notified as QCL type C / D RS according to the TCI status of PDSCH.
  • the UE can use the information obtained from the result of the past periodic reception / measurement of TRS1-1 for the reception / channel estimation of the DMRS for PDSCH.
  • the QCL source of the PDSCH is TRS1-1
  • the QCL target is the DMRS for PDSCH.
  • DL DCI (PDSCH) is set both when the TCI information in DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in DCI is not set.
  • TCI-PresentInDCI TCI information in DCI
  • Non-cross-carrier scheduling if the time offset between the receipt of the scheduled DCI) and the corresponding PDSCH (PDSCH scheduled by the DCI) is less than the threshold (timeDurationForQCL) (applicable condition, first condition).
  • the TCI state (default TCI state) of the PDSCH may be the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of the CC (of the specific UL signal). Otherwise, the PDSCH TCI state (default TCI state) may be the TCI state of the PDSCH's lowest TCI state ID in the active DL BWP of the scheduled CC.
  • an individual MAC CE of a MAC CE for activation / deactivation related to PUCCH space and a MAC CE for activation / deactivation related to SRS space is required.
  • the PUSCH spatial relationship follows the SRS spatial relationship.
  • At least one of the MAC CE for activation / deactivation related to PUCCH space and the MAC CE for activation / deactivation related to SRS space may not be used.
  • both the spatial relationship for PUCCH and PL-RS are not set in FR2 (applicable condition, second condition), the spatial relationship for PUCCH and the default assumption of PL-RS (default spatial relationship and default PL-RS). Is applied. If, in FR2, both the spatial relationship for SRS (SRS resource for SRS or SRS resource corresponding to SRI in DCI format 0_1 for scheduling PUSCH) and PL-RS are not set (applicable condition, second condition). Spatial relations and PL-RS default assumptions (default spatial relations and default PL-RS) are applied to PUSCH and SRS scheduled by DCI format 0_1.
  • the default spatial relationship and default PL-RS are based on the TCI state or QCL assumption of the CORESET having the lowest CORESET ID in the active DL BWP. There may be. If CORESET is not set in the active DL BWP on the CC, the default spatial relationship and the default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
  • the spatial relationship of the PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource having the lowest PUCCH resource ID among the active spatial relationships of the PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationships on all SCells, even if the PUCCHs are not transmitted on the SCells.
  • the application condition of the default spatial relationship for SRS / default PL-RS may include that the default beam path loss enablement information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) is effectively set.
  • the application condition of the default spatial relationship / default PL-RS for PUCCH may include that the default beam path loss enablement information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) is effectively set.
  • the default spatial relationship / default PL-RS application condition for PUSCH scheduled by DCI format 0_0 is that the default beam path loss enablement information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) is effectively set. May include that.
  • the above thresholds are the time duration for QCL, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", “Threshold-Sched-Offset”, and schedule. It may be called an offset threshold value, a scheduling offset threshold value, or the like.
  • the offset between the DL DCI reception and the corresponding PDSCH is less than the threshold timeDurationForQCL, and at least one TCI state set for the scheduled PDSCH serving cell comprises a "QCL type D" and If the UE is set with two default TCI enable parameters (enableTwoDefaultTCIStates-r16) and at least one TCI code point indicates two TCI states, the UE will have two DMRS ports for the serving cell PDSCH or PDSCH transmission occasion. Assume that RS and QCL (quasi co-located) with respect to the QCL parameters associated with the two TCI states corresponding to the lowest code point of the TCI code points containing different TCI states. 2 The default TCI enablement parameter is Rel. Of the two default TCI states for PDSCH when at least one TCI code point is mapped to the two TCI states. 16 Indicates that the operation is enabled.
  • Multi TRP In the NR, one or more transmission / reception points (Transmission / Reception Point (TRP)) (multi-TRP (multi TRP (MTRP))) are used for the UE using one or more panels (multi-panel). It is being considered to perform DL transmission. It is also being considered that the UE performs UL transmission to one or more TRPs using one or more panels.
  • TRP Transmission / Reception Point
  • MTRP multi TRP
  • the plurality of TRPs may correspond to the same cell identifier (cell Identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • the multi-TRP (for example, TRP # 1 and # 2) may be connected by an ideal / non-ideal backhaul, and information, data, etc. may be exchanged.
  • Different code words Code Word (CW)
  • CW Code Word
  • Different layers may be transmitted from each TRP of the multi-TRP.
  • NJT non-coherent joint transmission
  • TRP # 1 modulation-maps the first codeword, layer-maps it, and transmits the first PDSCH to the first number of layers (eg, the second layer) using the first precoding.
  • TRP # 2 modulates and maps the second codeword, layer-maps the second number of layers (for example, two layers), and transmits the second PDSCH using the second precoding.
  • the plurality of PDSCHs (multi-PDSCHs) to be NCJT may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of the time and frequency resources.
  • first PDSCH and second PDSCH may be assumed to be not quasi-co-located in a pseudo-collocation (Quasi-Co-Location (QCL)) relationship.
  • the reception of the multi-PDSCH may be read as the simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (based on single master mode, single DCI).
  • Multi TRP single-DCI based multi-TRP.
  • Multiple PDSCHs from the multi-TRP may be scheduled using multiple DCIs (multi-DCI, multi-PDCCH (multiple PDCCH)), respectively (multi-master mode, multi-DCI based multi-). TRP)).
  • PDSCH transport block (TB) or codeword (CW) repetition (repetition) across multi-TRP.
  • URLLC schemes URLLC schemes, eg, schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexing
  • FDM frequency division multiplexing
  • RV redundant version
  • the RV may be the same or different for the multi-TRP.
  • the multi-PDSCH from the multi-TRP is time division multiplexing (TDM).
  • TDM time division multiplexing
  • the multi-PDSCH from the multi-TRP is transmitted in one slot.
  • the multi-PDSCH from the multi-TRP is transmitted in different slots.
  • one control resource set (CORESET) in the PDCCH setting information (PDCCH-Config) may correspond to one TRP.
  • HST HST
  • the large antenna transmits outside / inside the tunnel.
  • the transmission power of the large antenna is about 1 to 5 W.
  • the transmission power of the small antenna is about 250 mW.
  • a plurality of small antennas (transmission / reception points) having the same cell ID and a distance of 300 m form a single frequency network (SFN). All small antennas in the SFN transmit the same signal at the same time on the same PRB. It is assumed that the terminal sends and receives to one base station. In reality, multiple transmission / reception points transmit the same DL signal. When moving at high speed, transmission / reception points in units of several kilometers form one cell. Handover is performed when straddling cells. This makes it possible to reduce the frequency of handover.
  • NR In NR, it is transmitted from a transmission point (for example, RRH) in order to communicate with a terminal (hereinafter, also referred to as UE) included in a moving body (HST (high speed train)) such as a train moving at high speed. It is assumed that a beam will be used.
  • HST high speed train
  • Existing systems eg, Rel.15 support transmitting a unidirectional beam from the RRH to communicate with the mobile (see FIG. 1A).
  • FIG. 1A shows a case where RRHs are installed along a moving path (or a moving direction, a traveling direction, a traveling path) of a moving body, and a beam is formed from each RRH on the traveling direction side of the moving body.
  • the RRH forming a unidirectional beam may be referred to as a uni-directional RRH (uni-directional RRH).
  • the moving body receives a negative Doppler shift ( -fD ) from each RRH.
  • the beam may be formed on the side opposite to the traveling direction, and the beam may be formed on the traveling direction of the moving body. Beams may be formed in any direction regardless of.
  • a plurality of (for example, two or more) beams are transmitted from the RRH.
  • a beam is formed in both the traveling direction of the moving body and the direction opposite to the traveling direction (see FIG. 1B).
  • FIG. 1B shows a case where RRHs are installed along the movement path of the moving body and beams are formed from each RRH on both the traveling direction side and the opposite direction side of the traveling direction of the moving body.
  • the RRH forming a beam in a plurality of directions may be referred to as a bi-directional RRH (bi-directional RRH).
  • the power is higher from the signal that the mobile body has undergone a negative Doppler shift in the middle of the two RRHs. It switches to a signal that has undergone a positive Doppler shift.
  • the maximum change width of the Doppler shift that needs to be corrected is the change from ⁇ f D to + f D , which is twice as large as that in the case of unidirectional RRH.
  • the tracking reference signal (TRS), DMRS and PDSCH are commonly transmitted (using resources of the same time / frequency) to the two TRPs (RRH) (normal SFN, transparent). (Transparent) SFN).
  • the TRS is transmitted uniquely to the TRP (using resources at different times / frequencies depending on the TRP).
  • TRP # 1 transmits TRS1
  • TRP # 2 transmits TRS2.
  • TRS and DMRS are transmitted uniquely to TRP.
  • TRP # 1 transmits TRS1 and DMRS1
  • TRP # 2 transmits TRS2 and DMRS2.
  • Schemes 1 and 2 can suppress sudden changes in the Doppler shift as compared with Scheme 0, and can appropriately estimate / guarantee the Doppler shift. Since the DMRS of Scheme 2 is higher than the DMRS of Scheme 1, the maximum throughput of Scheme 2 is lower than that of Scheme 1.
  • the present inventors have conceived a method of appropriately receiving RS from a plurality of transmission points.
  • a / B / C and “at least one of A, B and C” may be read interchangeably.
  • the cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, and band may be read as each other.
  • the index, the ID, the indicator, and the resource ID may be read as each other.
  • support, control, controllable, working, working may be read interchangeably.
  • configuration, activate, update, indicate, enable, specify, and select may be read as each other.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IE), and RRC messages may be read interchangeably.
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • MAC CE and activation / deactivation commands may be read interchangeably.
  • Domain receive filter, UE spatial domain receive filter, UE receive beam, DL beam, DL receive beam, DL precoding, DL precoder, DL-RS, TCI state / QCL assumed QCL type D RS, TCI state / QCL assumed QCL type A RS, spatial relationship, spatial domain transmission filter, UE spatial domain transmission filter, UE transmission beam, UL beam, UL transmission beam, UL precoding, UL precoder, PL-RS may be read as each other.
  • the QCL type X-RS, the DL-RS associated with the QCL type X, the DL-RS having the QCL type X, the source of the DL-RS, the SSB, the CSI-RS, and the SRS may be read as each other. good.
  • a panel an Uplink (UL) transmission entity, a TRP, a spatial relationship, a control resource set (COntrol REsource SET (CORESET)), a PDSCH, a code word, a base station, and an antenna port of a certain signal (for example, a reference signal for demodulation).
  • DMRS Demo Division Reference Signal
  • antenna port group of a certain signal for example, DMRS port group
  • group for multiplexing for example, Code Division Multiplexing (CDM) group, reference signal group,
  • the CORESET group the CORESET pool, the CW, the redundant version (redundancy version (RV)), and the layers (MIMO layer, transmission layer, spatial layer
  • the panel Identifier (ID) and the panel may be read as each other.
  • TRP ID and TRP may be read as each other.
  • one of the two TCI states associated with one code point in the TRP, transmit point, panel, DMRS port group, CORESET pool, and TCI field may be read interchangeably.
  • single TRP, single TRP system, single TRP transmission, and single PDSCH may be read as each other.
  • multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be read as each other.
  • single DCI, single PDCCH, single DCI-based multi-TRP, and activation of two TCI states on at least one TCI code point may be read interchangeably.
  • no CORESETPoolIndex value of 1 being set for any CORESET, and no code point in the TCI field being mapped to two TCI states may be read as mutually exclusive. ..
  • a multi-TRP a channel using a multi-TRP, a channel using a plurality of TCI states / spatial relationships, a multi-TRP being enabled by RRC / DCI, and a plurality of TCI states / spatial relationships being enabled by RRC / DCI.
  • At least one of the multi-TRP based on the single DCI and the multi-TRP based on the multi-DCI may be read as each other.
  • setting a CORESET pool index (CORESETPoolIndex) value of 1 for a multi-TRP and CORESET based on a multi-DCI may be read as interchangeable with each other.
  • the mapping of at least one code point of a single DCI-based multi-TRP, TCI field to two TCI states may be read interchangeably.
  • CSI-RS In the present disclosure, CSI-RS, NZP-CSI-RS, periodic (P) -CSI-RS, P-TRS, semi-persistent (SP) -CSI-RS, aperiodic (A) -CSI-RS, TRS, tracking.
  • CSI-RS for, CSI-RS with TRS information (upper layer parameter trs-Info), NZP CSI-RS resource in NZP CSI-RS resource set with TRS information, multiple NZP-CSI-RS with the same antenna port
  • the NZP-CSI-RS resources in the NZP-CSI-RS resource set consisting of resources may be read interchangeably.
  • the CSI-RS resource, the CSI-RS resource set, the CSI-RS resource group, and the information element (IE) may be read as each other.
  • DMRS Downlink Reference Signal
  • DMRS port Downlink Reference Signal
  • antenna port may be read as each other.
  • Scheme 1 / Scheme 2 When Scheme 1 / Scheme 2 is set by the upper layer parameter, it may be specified that the UE is assumed to receive a plurality of TRP-specific TRS.
  • the UE in which Scheme 1 / Scheme 2 is set may estimate / correct the Doppler shift using the TRS corresponding to each TRP, and may receive PDCCH / PDSCH using the estimation / correction result.
  • At least one specific TRS is set by the upper layer parameter. If so, it may be specified that the UE receives a plurality of TRP-specific TRSs and assumes that the Doppler shift is estimated / guaranteed.
  • An upper layer parameter (first upper layer parameter, NZP-CSI-RS resource set) indicating a resource of 15/16 TRS and an upper layer parameter (second upper layer parameter, for example, NZP-CSI) indicating a resource of a specific TRS. -RS resource set) and may be set (may be received).
  • the upper layer parameter indicating the resource of the specific TRS is Rel.
  • the parameters may be different from those of the 15/16 NZP-CSI-RS resource set, and Rel. It may be an NZP-CSI-RS resource set containing parameters different from the parameters of 15/16.
  • the fact that the RSs are not the same and that the QCL relationship (QCL relationship, QCL type) between the existing TRS and the specific TRS does not include the Doppler shift may be read as each other.
  • a new QCL type (eg, QCL type E) may be specified for TRP-specific TRS / specific TRS notification.
  • the QCL type E relationship may be that the Doppler shifts are different and the receive space domain filters are equal.
  • the existing TRS may be transmitted from a plurality of TRPs in common (using resources of the same time / frequency from a plurality of TRPs) (may be shared by a plurality of TRPs).
  • the particular TRS may be transmitted uniquely to the TRP (from one TRP using resources at different times / frequencies than the other TRPs) (not necessarily shared by multiple TRPs).
  • TRS1-1 to 1-4 are transmitted as existing TRS, and TRS2-1 to 2-4 are transmitted as specific TRS.
  • TRS1-1 and TRS2-1 may have a QCL type E relationship.
  • a specific TRS may be set for each TRP.
  • the specific TRS may be transmitted from the corresponding TRP.
  • TRPs # 1 and # 2 are TRPs before and after HST.
  • TRS1-1 to 1-4 are transmitted as existing TRSs (TRP # 1 and TRP # 2)
  • TRS2-1 to 2-4 are transmitted as specific TRSs for TRP # 1
  • TRS3- as specific TRSs for TRP # 2. 1 to 3-4 are transmitted.
  • TRS1-1 and TRS2-1 may have a QCL type E relationship.
  • TRS2-1 and TRS3-1 may be in a QCL type E relationship.
  • TRS1-1 and TRS3-1 may have a QCL type E relationship.
  • TRS1-1 to 1-4 may be transmitted from TRP # 1 and # 2.
  • TRS2-1 to 2-4 may be transmitted from TRP # 1.
  • TRS3-1 to 3-4 may be transmitted from TRP # 2.
  • the time / frequency resource of TRP1-1 and the time / frequency resource of TRP2-1 may be different from each other.
  • the time / frequency resource of TRP2-1 and the time / frequency resource of TRP3-1 may be different from each other.
  • the time / frequency resource of TRP1-1 and the time / frequency resource of TRP3-1 may be different from each other.
  • An existing QCL type (eg, QCL type C / D) may be used for TRP-specific TRS / specific TRS notification.
  • a QCL type C relationship may indicate that the Doppler shifts are equal, and a QCL type D relationship may indicate that the receive space domain filters are equal.
  • TRS1-1 and 2-1 may have a QCL type D relationship instead of a QCL type C relationship.
  • TRS2-1 and 3-1 may have a QCL type D relationship instead of a QCL type C relationship.
  • TRS1-1 and 3-1 may have a QCL type D relationship instead of a QCL type C relationship.
  • the UE can appropriately receive the TRS for each TRP.
  • ⁇ Second embodiment> Scheme 1 and Scheme 2 have better performance than transparent SFN because the TRP-specific TRS improves the accuracy of Doppler shift estimation.
  • Rel. 15 Consider backward compatibility from TRS.
  • the network (NW, for example, a base station) is Rel.
  • Rel. Supports 15 UEs and has a transparent SFN.
  • 15 Send TRS. If Rel.
  • the TRP-specific TRS after 17 is Rel. 15 If not shared with the TRS, the TRP-specific TRS increases the overhead of the TRS.
  • M QCLs may be supported for a plurality of TRPs having a non-transparent SFN (non-SFN).
  • the TRS may follow any of the following aspects 2-1 and 2-2.
  • TRP # 1 transmits TRS1 and TRP # 2 transmits TRS2 (TRP-specific TRS).
  • TRS of TRP-specific / non-transparent SFN may be transmitted and one TRS of transparent SFN may be transmitted. This one TRS is referred to as Rel. 15 May be shared with the UE. A total of M TRSs may be transmitted.
  • TRP # 1 and TRP # 2 transmit TRS1 (transparent SFN), and TRP # 2 further transmits TRS2 (TRP-specific TRS).
  • TRS1 is Rel. Since it is transmitted by 15 SFNs, Rel. 15/16 Can be shared with TRS for UE.
  • UEs that support this aspect use TRS1 and 2 to estimate / correct Doppler shifts.
  • the UE can appropriately receive the TRS for each TRP.
  • the UE in which the scheme 2 is set may estimate / correct the Doppler shift using the TRS and DMRS corresponding to each TRP, and may receive the PDCCH / PDSCH using the estimation / correction result.
  • the setting method of Scheme 2 may follow any of the following aspects 3-1 to 3-3.
  • Scheme 2 may be explicitly set by higher layer parameters.
  • a specific DMRS (additional DMRS, TRP specific DMRS, DMRS for specific TRP, additional DMRS resource, extended DMRS, second DMRS, new DMRS) may be set.
  • a specific DMRS for PDSCH may be set in the PDSCH setting (PDSCH-Config, DMRS-DownlinkConfig, dmrs-AdditionalPosition).
  • a specific DMRS for PDCCH may be set in the PDCCH setting (PDCCH-Config).
  • a TRP-specific DMRS is received, a Doppler shift is not maintained (not identical) between an existing (Rel. 15/16) DMRS and a specific DMRS, and a specific QCL type between the existing DMRS and the specific DMRS.
  • the fact that the RSs are not the same and that the QCL relationship (QCL relationship, QCL type) between the existing DMRS and the specific DMRS does not include the Doppler shift may be read as each other.
  • the symbol number (index, position) for the specific DMRS may be explicitly set.
  • the specific DMRS may be set for the symbols # 6 and # 9.
  • the symbol number may be an index from the first symbol of the scheduled PDSCH or may be an index from the first symbol of the slot.
  • the symbol number of the specific DMRS does not have to be explicitly set. For example, Rel.
  • the additional DMRS of 3 symbols is set according to 15, the front-loaded DMRS of the symbol # 0 and the additional DMRS of the symbols # 3, # 6, and # 9 are arranged.
  • the UE is referred to as Rel.
  • Additional DMRS for symbol # 3 may be set according to 15. In this case, the UE assumes a preceding DMRS of symbol # 0 and an additional DMRS of symbol # 3, and further assumes a specific DMRS of symbols # 6 and # 9, and the Doppler shift of symbols # 6 and # 9 is the symbol #.
  • These DMRSs may be received on the assumption that they are different from the Doppler shifts of 0 and # 3.
  • the UE may assume that the Doppler shift of the DMRS peculiar to the second TRP is different from the Doppler shift of the DMRS peculiar to the first TRP.
  • TRP-specific DMRS TRP-specific DMRS
  • the first half of the plurality of symbols may be the DMRS peculiar to the first TRP
  • the latter half of the plurality of symbols may be the second TRP. It may be a unique DMRS.
  • the UE may assume a specific DMRS with the same number of symbols as the set DMRS.
  • the UE has a number of symbols that is twice the number of symbols of the set DMRS.
  • the arrangement of the preceding DMRS / additional DMRS and the specific DMRS may be determined according to the DMRS arrangement of 15/16.
  • ⁇ Aspect 3-3 >> Rel.
  • the DMRS of a plurality of symbols set according to 15/16 it may be set / instructed that the Doppler shift of a specific symbol is different from the Doppler shift of another symbol.
  • the fact that the Doppler shift of a specific symbol is different from the Doppler shift of other symbols may be set for the PDSCH DMRS in the PDSCH setting, or may be set for the PDCCH DMRS in the PDCCH setting. It may be dynamically set / instructed by the combination of the upper layer and the scheduling DCI that the Doppler shift of a specific symbol is different from the Doppler shift of another symbol for the DMRS for PDSCH.
  • Rel It may be set / instructed that the Doppler shift differs between the 15 predecessor DMRSs and the additional DMRSs.
  • the DMRS multiplex capacity is increased by applying the double symbol DMRS and applying the time domain orthogonal cover code (OCC).
  • OCC time domain orthogonal cover code
  • the predecessor DMRS which is a double symbol DMRS, is mapped to two consecutive symbols.
  • the number of additional DMRSs is 0 or 1, and the additional DMRSs are also mapped to two consecutive symbols. If the Doppler shift (channel) is different within the scope of the time domain OCC, the orthogonality of the time domain OCC is broken, and the time domain OCC cannot appropriately multiplex the DMRS (increase the number of DMRS ports).
  • the time domain OCC may not be applied to the double symbol DMRS, and a specific OCC (eg, [for example, [ +1 and +1]) may only be applied.
  • the DMRS of the first symbol of the double symbol DMRS may be usually called DMRS (first DMRS), and the DMRS of the second symbol may be called a specific DMRS (second DMRS).
  • the DMRS type 1 double symbol DMRS is mapped to symbols # 0 and # 1, and the additional DMRS is mapped to symbols # 9 and # 10.
  • Symbols # 1 and # 10 correspond to TRP # 1 (transmitted from TRP # 1)
  • symbols # 0 and # 9 correspond to TRP # 2 (transmitted from TRP # 2).
  • the Doppler shifts of symbols # 1 and # 10 are different from the Doppler shifts of symbols # 0 and # 9.
  • the DMRS type 2 double symbol DMRS is mapped to symbols # 0 and # 1, and the additional DMRS is mapped to symbols # 9 and # 10.
  • Symbols # 1 and # 10 correspond to TRP # 1 (transmitted from TRP # 1)
  • symbols # 0 and # 9 correspond to TRP # 2 (transmitted from TRP # 2).
  • the Doppler shifts of symbols # 1 and # 10 are different from the Doppler shifts of symbols # 0 and # 9.
  • the UE may assume that the Doppler shift of the DMRS peculiar to the second TRP is different from the Doppler shift of the DMRS peculiar to the first TRP.
  • TRP-specific DMRS TRP-specific DMRS
  • the odd-numbered (first, third, ...) Symbol may be the first TRP-specific DMRS.
  • the even-numbered (second, fourth, ...) Symbol may be the DMRS specific to the second TRP.
  • the number of DMRS ports when the Doppler shift is different between the first symbol and the second symbol of the double symbol DMRS is Rel. It may be less than the number of DMRS ports on 15/16 (may be halved from the number of DMRS ports on Rel. 15/16).
  • the maximum number of DMRS ports is 8 for DMRS type 1 and the maximum number of DMRS ports is 12 for DMRS type 2. If the time domain OCC is not applied, the maximum number of DMRS ports may be 4 for DMRS type 1 and 6 for DMRS type 2.
  • the UE can appropriately receive the DMRS.
  • the UE assumes multiple QCLs for one DMRS port on the PDSCH / PDCCH.
  • RRC / MAC CE may set / indicate multiple TCI states for one CORESET for PDCCH.
  • Two PDCCHs may correspond to two TCI states (two TRPs) respectively.
  • the same DCI may be transmitted by two PDCCHs.
  • the UE may receive two PDCCHs using two TCI states (QCL) or one PDCCH using one TCI state (QCL).
  • the UE at time t1 assumes a TCI state 1 for RRH # 1 and a TCI state 2 for RRH # 2 for a DMRS port of a certain CORESET / PDSCH.
  • One MAC CE may set / instruct one TCI state.
  • TCI states may be set / instructed for one PDSCH by RRC / MAC CE / DCI.
  • Two PDSCHs may correspond to two TCI states (two TRPs) respectively.
  • the same DL data (transport block, code block group) may be transmitted by two PDSCHs.
  • the UE may receive two PDSCHs using two TCI states (QCLs) or one PDSCH using one TCI state (QCL).
  • the UE may generate one HARQ-ACK information (bit, HARQ-ACK codebook) for two PDSCHs and transmit the HARQ-ACK information.
  • a plurality of TCI states may be set for one PDSCH by using the method of indicating the TCI state in the multi-TRP based on 16 single DCIs.
  • PDSCH enhanced TCI state activation / deactivation MAC CE (Enhanced TCI States Activation / Deactivation for UE-specific PDSCH MAC CE) activates one or two TCI states per code point in the TCI field in DCI. And one code point may be indicated by the TCI field in DCI.
  • TCI existence parameter (TCI-PresentInDCI) in DCI is not set, or if the time offset (scheduling offset) from DCI to PDSCH is less than or equal to the threshold value, the UE will perform Rel. Similar to 16, in the TCI DCI field, the lowest code point (TCI code point) with two active TCI states may be assumed as the PDSCH TCI state (default TCI state, two default TCI states).
  • a plurality of TCI states are set by RRC, and the TCI states for each code point in the TCI field are activated by MAC CE (for example, Enhanced TCI States Activation / Deactivation for UE-specific PDSCH MAC CE).
  • DCI schedules PDSCH1 from TRP1 and PDSCH from TRP2. If the time offset between DCI and PDSCH1 and 2 is less than the threshold (timeDurationForQCL), the UE has two active TCI states (T0) for the lowest code point (001) of the TCI code points with two active TCI states. And T1) are used for receiving PDSCH1 and 2, respectively.
  • the UE may assume that multiple TCI states are activated at at least one code point in the TCI's DCI field.
  • the UE can appropriately determine the TCI state of PDCCH / PDSCH.
  • UE capability corresponding to at least one function (feature) in the first to fourth embodiments may be defined. If the UE reports this UE capability, the UE may perform the corresponding function. If the UE reports this UE capability and the upper layer parameters corresponding to this function are set, the UE may perform the corresponding function. Upper layer parameters (RRC information elements) corresponding to this function may be specified. If this higher layer parameter is set, the UE may perform the corresponding function.
  • the UE capability may indicate whether the UE supports this feature.
  • the UE capability may indicate whether or not it supports HST.
  • the UE capability may indicate whether or not it supports Scheme 1/2.
  • the UE capability may indicate the maximum number of QCLs set for the same DMRS port.
  • the maximum number of QCLs set for the same DMRS port may be two. In the specification, the maximum number of QCLs set for the same DMRS port may be greater than 2.
  • scheme 1 and scheme 2 are specified in the specifications, and scheme 1 or scheme 2 may be instructed / switched by the upper layer.
  • the UE can realize the above functions while maintaining compatibility with existing specifications.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request).
  • Uplink Control Information including at least one of SR)
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 10 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit a first upper layer parameter indicating a resource of the first tracking reference signal (TRS) and a second upper layer parameter indicating a resource of the second TRS.
  • the control unit 110 may control at least one transmission of the first TRS and the second TRS.
  • the pseudo-collocation relationship between the first TRS and the second TRS may not include Doppler shift.
  • FIG. 11 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output a baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the transmission / reception unit 220 indicates a first upper layer parameter indicating a resource of the first tracking reference signal (TRS) (existing TRS, TRS peculiar to the first TRP) and a resource of the second TRS (specific TRS, TRS peculiar to the second TRP).
  • the second upper layer parameter may be received.
  • the control unit 210 has a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) based on the first TRS and the second TRS (for example, the estimation result of the channel / Doppler shift based on the first TRS and the second TRS). ) May be controlled.
  • the pseudo-collocation relationship (QCL relationship, QCL type) between the first TRS and the second TRS may not include a Doppler shift.
  • the first upper layer parameter indicates the release 15 non-zero power channel state information reference signal (NZP-CSI-RS) resource set
  • the second upper layer parameter is the release 15 NZP-CSI-RS resource set. It may have different parameters (first and second embodiments).
  • the transmission / reception unit 220 includes a first demodulation reference signal (DMRS) (existing DMRS, DMRS specific to the first TRP) for the physical downlink shared channel and a second DMRS (specific DMRS, second TRP) for the physical downlink shared channel.
  • DMRS demodulation reference signal
  • second DMRS specific DMRS, second TRP
  • Unique DMRS and may be received.
  • the pseudo-collocation relationship between the first DMRS and the second DMRS may not include Doppler shift (third embodiment).
  • the transmission / reception unit 220 receives a setting or instruction of a plurality of transmission setting instruction (TCI) states for any one of one DMRS port, one control resource set, and the physical downlink shared channel.
  • TCI transmission setting instruction
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology is, for example, subcarrier interval (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, integer, fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
  • UMB Ultra-WideBand
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” such as resolution, selection, selection, establishment, and comparison. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、第1トラッキング参照信号(TRS)のリソースを示す第1上位レイヤパラメータと、第2TRSのリソースを示す第2上位レイヤパラメータと、を受信する受信部と、前記第1TRS及び第2TRSに基づいて、物理下りリンク制御チャネル及び物理下りリンク共有チャネルの少なくとも1つの受信を制御する制御部と、を有し、前記第1TRS及び前記第2TRSの間の疑似コロケーション関係は、ドップラーシフトを含まない。本開示の一態様によれば、複数の送信ポイントからの下りリンク信号を適切に受信できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、高速に移動する移動体(例えば、電車など)における無線通信を実現するために移動体の経路に配置された送信ポイント(例えば、Remote Radio Head(RRH))から送信されるビームを利用することが想定される。
 しかしながら、端末が、複数の送信ポイントから送信される下りリンク信号をどのように受信するかについて十分検討されていない。このような動作が明らかでなければ、スループットの低下などを招くおそれがある。
 そこで、本開示は、複数の送信ポイントからの下りリンク信号を適切に受信する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、第1トラッキング参照信号(TRS)のリソースを示す第1上位レイヤパラメータと、第2TRSのリソースを示す第2上位レイヤパラメータと、を受信する受信部と、前記第1TRS及び第2TRSに基づいて、物理下りリンク制御チャネル及び物理下りリンク共有チャネルの少なくとも1つの受信を制御する制御部と、を有し、前記第1TRS及び前記第2TRSの間の疑似コロケーション関係は、ドップラーシフトを含まない。
 本開示の一態様によれば、複数の送信ポイントからの下りリンク信号を適切に受信できる。
図1A及び1Bは、移動体と送信ポイント(例えば、RRH)との通信の一例を示す図である。 図2Aから2Cは、SFNに関するスキーム0から2の一例を示す図である。 図3A及び3Bは、第1の実施形態の一例を示す図である。 図4A及び4Bは、第2の実施形態の一例を示す図である。 図5は、態様3-2の一例を示す図である。 図6A及び6Bは、態様3-3の一例を示す図である。 図7は、第4の実施形態に係るTCI状態の一例を示す図である。 図8A及び8Bは、第4の実施形態に係るデフォルトTCI状態の一例を示す図である。 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図10は、一実施形態に係る基地局の構成の一例を示す図である。 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、PDSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。
 もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。
 もしそのCC上のアクティブDL BWP内にCORESETが設定される場合(適用条件)、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしそのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。
 SRS用デフォルト空間関係/デフォルトPL-RSの適用条件は、SRS用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForSRS)が有効にセットされることを含んでもよい。PUCCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、PUCCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUCCH)が有効にセットされることを含んでもよい。DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUSCH0_0)が有効にセットされることを含んでもよい。
 上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
 DL DCIの受信と、それに対応するPDSCHと、の間のオフセットが閾値timeDurationForQCLより小さく、且つスケジュールされたPDSCHのサービングセルに対して設定された少なくとも1つのTCI状態が「QCLタイプD」を含み、且つUEが2デフォルトTCI有効化パラメータ(enableTwoDefaultTCIStates-r16)を設定され、且つ少なくとも1つのTCIコードポイントが2つのTCI状態を示す場合、UEは、サービングセルのPDSCH又はPDSCH送信オケージョンのDMRSポートが、2つの異なるTCI状態を含むTCIコードポイントのうちの最低コードポイントに対応する2つのTCI状態に関連付けられたQCLパラメータに関するRSとQCLされる(quasi co-located)と想定する。2デフォルトTCI有効化パラメータは、少なくとも1つのTCIコードポイントが2つのTCI状態にマップされる場合のPDSCH用の2つのデフォルトTCI状態のRel.16動作が有効化されることを示す。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。
(HST)
 LTEにおいて、HSTのトンネルにおける配置が難しい。ラージアンテナはトンネル外/内への送信を行う。例えば、ラージアンテナの送信電力は1から5W程度である。ハンドオーバのために、UEがトンネルに入る前にトンネル外に送信することが重要である。例えば、スモールアンテナの送信電力は250mW程度である。同じセルIDを有し300mの距離を有する複数のスモールアンテナ(送受信ポイント)はsingle frequency network(SFN)を形成する。SFN内の全てのスモールアンテナは、同じPRB上の同じ時間において同じ信号を送信する。端末は1つの基地局に対して送受信すると想定する。実際は複数の送受信ポイントが同一のDL信号を送信する。高速移動時には、数kmの単位の送受信ポイントが1つのセルを形成する。セルを跨ぐ場合にハンドオーバが行われる。これによって、ハンドオーバ頻度を低減することができる。
 NRでは、高速に移動する電車等の移動体(HST(high speed train))に含まれる端末(以下、UEとも記す)との通信を行うために、送信ポイント(例えば、RRH)から送信されるビームを利用することが想定される。既存システム(例えば、Rel.15)では、RRHから一方向のビームを送信して移動体との通信を行うことがサポートされている(図1A参照)。
 図1Aでは、移動体の移動経路(又は、移動方向、進行方向、走行経路)に沿ってRRHが設置され、各RRHから移動体の進行方向側にビームが形成される場合を示している。一方向のビームを形成するRRHは、ユニディレクショナルRRH(uni-directional RRH)と呼ばれてもよい。図1Aに示す例では、移動体は各RRHからマイナスのドップラーシフト(-f)を受ける。
 なお、ここでは、移動体の進行方向側にビームが形成される場合を示しているが、これに限られず進行方向と逆方向側にビームが形成されてもよいし、移動体の進行方向とは無関係にあらゆる方向にビームが形成されてもよい。
 Rel.16以降では、RRHから複数(例えば、2以上)のビームが送信されることも想定される。例えば、移動体の進行方向と当該進行方向と逆方向の両方に対してビームを形成することが想定される(図1B参照)。
 図1Bでは、移動体の移動経路に沿ってRRHが設置され、各RRHから移動体の進行方向側と進行方向の逆方向側の両方にビームが形成される場合を示している。複数方向(例えば、2方向)のビームを形成するRRHは、バイディレクショナルRRH(bi-directional RRH)と呼ばれてもよい。
 図1Bの例において、2つのRRH(ここでは、RRH#1とRRH#2)がSFNを用いる場合、移動体が2つのRRHの中間において、マイナスのドップラーシフトを受けた信号から、電力が高くなるプラスのドップラーシフトを受けた信号に切り替わる。この場合、補正が必要となる最大のドップラーシフトの変化幅は、-fから+fへの変化となり、ユニディレクショナルRRHの場合と比較して2倍となる。
 ここで、以下のスキーム0からスキーム2を比較する。図2Aのスキーム0においては、tracking reference signal(TRS)とDMRSとPDSCHとが2つのTRP(RRH)に共通に(同じ時間/周波数のリソースを用いて)送信される(通常のSFN、透過的(transparent)SFN)。図2Bのスキーム1においては、TRSがTRP固有に(TRPによって異なる時間/周波数のリソースを用いて)送信される。この例では、TRP#1からTRS1が送信され、TRP#2からTRS2が送信される。図2Cのスキーム2においては、TRSとDMRSとがTRP固有に送信される。この例では、TRP#1からTRS1及びDMRS1が送信され、TRP#2からTRS2及びDMRS2が送信される。スキーム1及び2は、スキーム0に比べて、ドップラーシフトの急変を抑え、ドップラーシフトを適切に推定/保証することができる。スキーム2のDMRSはスキーム1のDMRSよりも増加することから、スキーム2の最大スループットはスキーム1より低下する。
 しかしながら、複数のQCL/TCI状態を有しSFNでない送信スキームと区別するための、スキーム1/2の指示方法が明らかでない。
 そこで、本発明者らは、複数の送信ポイントからのRSを適切に受信する方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、MAC CE、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、UL TCI状態、統一(unified)TCI状態、統一ビーム、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。
 本開示において、パネル、Uplink(UL)送信エンティティ、TRP、空間関係、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、CORESETプール、CW、冗長バージョン(redundancy version(RV))、レイヤ(MIMOレイヤ、送信レイヤ、空間レイヤ)、は、互いに読み替えられてもよい。また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。本開示において、TRP IDとTRPは、互いに読み替えられてもよい。
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチTRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。
 本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。
 本開示において、CSI-RS、NZP-CSI-RS、periodic(P)-CSI-RS、P-TRS、semi-persistent(SP)-CSI-RS、aperiodic(A)-CSI-RS、TRS、トラッキング用CSI-RS、TRS情報(上位レイヤパラメータtrs-Info)を有するCSI-RS、TRS情報を有するNZP CSI-RSリソースセット内のNZP CSI-RSリソース、同じアンテナポートの複数のNZP-CSI-RSリソースから成るNZP-CSI-RSリソースセット内のNZP-CSI-RSリソース、は互いに読み替えられてもよい。本開示において、CSI-RSリソース、CSI-RSリソースセット、CSI-RSリソースグループ、情報要素(IE)、は互いに読み替えられてもよい。
 本開示において、DMRS、DMRSポート、アンテナポート、は互いに読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 スキーム1及びスキーム2の両方が仕様に規定されてもよい。
 上位レイヤパラメータによってスキーム1/スキーム2が設定された場合、UEが、複数のTRP固有(TRP-specific)TRSを受信すると想定すること、が規定されてもよい。
 スキーム1/スキーム2を設定されたUEは、各TRPに対応するTRSを用いてドップラーシフトの推定/補正を行い、推定/補正の結果を用いてPDCCH/PDSCHを受信してもよい。
 上位レイヤパラメータによって少なくとも1つの特定TRS(追加(additional)TRS、拡張TRS、第2TRS、新規TRS)又は特定TRSリソース(追加TRSリソース、追加TRSリソースセット、追加NZP-CSI-RSリソースセット)が設定された場合、UEが、複数のTRP固有TRSを受信し、ドップラーシフトの推定/保証すると想定すること、が規定されてもよい。
 UEは、Rel.15/16のTRSのリソースを示す上位レイヤパラメータ(第1上位レイヤパラメータ、NZP-CSI-RSリソースセット)と、特定TRSのリソースを示す上位レイヤパラメータ(第2上位レイヤパラメータ、例えば、NZP-CSI-RSリソースセット)と、を設定されてもよい(受信してもよい)。特定TRSのリソースを示す上位レイヤパラメータは、Rel.15/16のNZP-CSI-RSリソースセットと異なるパラメータであってもよいし、Rel.15/16のパラメータと異なるパラメータを含むNZP-CSI-RSリソースセットであってもよい。
 本開示において、TRP固有TRSを受信すること、既存(Rel.15/16)TRS及び特定TRSの間においてドップラーシフトが保持されない(同一でない)こと、既存TRS及び特定TRSの間において特定QCLタイプのRSが同一でないこと、既存TRS及び特定TRSの間のQCL関係(QCL relationship、QCLタイプ)がドップラーシフトを含まないこと、は互いに読み替えられてもよい。
 TRP固有TRS/特定TRSの通知のために、新規QCLタイプ(例えば、QCLタイプE)が規定されてもよい。QCLタイプEの関係は、ドップラーシフトが異なり、受信空間ドメインフィルタが等しいことであってもよい。
 既存TRSは、複数のTRPから共通に(複数のTRPから同じ時間/周波数のリソースを用いて)送信されてもよい(複数のTRPに共有されてもよい)。特定TRSは、TRP固有に(1つのTRPから、他のTRPと異なる時間/周波数のリソースを用いて)送信されてもよい(複数のTRPに共有されなくてもよい)。
 図3Aの例において、既存TRSとしてTRS1-1から1-4が送信され、特定TRSとしてTRS2-1から2-4が送信される。TRS1-1及びTRS2-1がQCLタイプEの関係であってもよい。
 TRP毎に特定TRSが設定されてもよい。特定TRSは、対応するTRPから送信されてもよい。
 図3Bの例において、TRP#1及び#2がHSTの前後のTRPである。既存TRS(TRP#1及びTRP#2)としてTRS1-1から1-4が送信され、TRP#1に対する特定TRSとしてTRS2-1から2-4が送信され、TRP#2に対する特定TRSとしてTRS3-1から3-4が送信される。TRS1-1及びTRS2-1がQCLタイプEの関係であってもよい。TRS2-1及びTRS3-1がQCLタイプEの関係であってもよい。TRS1-1及びTRS3-1がQCLタイプEの関係であってもよい。
 TRS1-1から1-4は、TRP#1及び#2から送信されてもよい。TRS2-1から2-4は、TRP#1から送信されてもよい。TRS3-1から3-4は、TRP#2から送信されてもよい。TRP1-1の時間/周波数のリソースとTRP2-1の時間/周波数のリソースが互いに異なってもよい。TRP2-1の時間/周波数のリソースとTRP3-1の時間/周波数のリソースが互いに異なってもよい。TRP1-1の時間/周波数のリソースとTRP3-1の時間/周波数のリソースが互いに異なってもよい。
 TRP固有TRS/特定TRSの通知のために、既存QCLタイプ(例えば、QCLタイプC/D)が用いられてもよい。QCLタイプCの関係は、ドップラーシフトが等しいことを示し、QCLタイプDの関係は、受信空間ドメインフィルタが等しいことを示してもよい。図3Bの例において、TRS1-1及び2-1がQCLタイプCの関係でなく、QCLタイプDの関係であってもよい。TRS2-1及び3-1がQCLタイプCの関係でなく、QCLタイプDの関係であってもよい。TRS1-1及び3-1がQCLタイプCの関係でなく、QCLタイプDの関係であってもよい。
 以上の第1の実施形態によれば、UEは、TRP毎のTRSを適切に受信できる。
<第2の実施形態>
 TRP固有TRSがドップラーシフトの推定の精度を向上させるため、スキーム1及びスキーム2は、透過的SFNより優れた性能を有する。ここで、Rel.15 TRSからの後方互換性を検討する。ネットワーク(NW、例えば基地局)はRel.15 UEをサポートし、透過的SFNを有するRel.15 TRSを送信する。もしRel.17以降におけるTRP固有TRSがRel.15 TRSと共有されないと、TRP固有TRSによってTRSのオーバーヘッドが増大する。
 非透過的SFN(非SFN)を有する複数のTRPに対してM個のQCL(TRP毎のQCL)がサポートされてもよい。この場合、TRSは、以下の態様2-1及び2-2のいずれかに従ってもよい。
《態様2-1》
 TRP固有/非透過的SFNの、M個のTRSが送信されてもよい。Rel.15をサポートするために、透過的SFNのTRSが追加されてもよい。全体でM+1個のTRSが送信されてもよい。図4Aの例において、TRP#1はTRS1を送信し、TRP#2はTRS2を送信する(TRP固有TRS)。
《態様2-2》
 TRP固有/非透過的SFNの、M-1個のTRSが送信され、透過的SFNの1個のTRSが送信されてもよい。この1個のTRSは、Rel.15 UEと共有されてもよい。全体でM個のTRSが送信されてもよい。図4Bの例において、TRP#1及びTRP#2はTRS1を送信し(透過的SFN)、TRP#2は更にTRS2を送信する(TRP固有TRS)。TRS1はRel.15のSFNによって送信されるため、Rel.15/16 UE用TRSと共通化できる。この態様をサポートするUEは、TRS1及び2を用いて、ドップラーシフトを推定/補正する。
 以上の第2の実施形態によれば、UEは、TRP毎のTRSを適切に受信できる。
<第3の実施形態>
 スキーム2を設定されたUEは、各TRPに対応するTRS及びDMRSを用いてドップラーシフトの推定/補正を行い、推定/補正の結果を用いてPDCCH/PDSCHを受信してもよい。
 スキーム2の設定方法は、以下の態様3-1から3-3のいずれかに従ってもよい。
《態様3-1》
 スキーム2が上位レイヤパラメータによって明示的に設定されてもよい。
《態様3-2》
 第1の実施形態の特定TRSと同様、特定DMRS(追加(additional)DMRS、TRP固有DMRS、特定TRP用DMRS、追加DMRSリソース、拡張DMRS、第2DMRS、新規DMRS)が設定されてもよい。PDSCH設定(PDSCH-Config、DMRS-DownlinkConfig、dmrs-AdditionalPosition)内においてPDSCH用特定DMRSが設定されてもよい。PDCCH設定(PDCCH-Config)内においてPDCCH用特定DMRSが設定されてもよい。
 本開示において、TRP固有DMRSを受信すること、既存(Rel.15/16)DMRS及び特定DMRSの間においてドップラーシフトが保持されない(同一でない)こと、既存DMRS及び特定DMRSの間において特定QCLタイプのRSが同一でないこと、既存DMRS及び特定DMRSの間のQCL関係(QCL relationship、QCLタイプ)がドップラーシフトを含まないこと、は互いに読み替えられてもよい。
 特定DMRSのためのシンボル番号(インデックス、位置)が明示的に設定されてもよい。図5の例において、シンボル#6、#9に特定DMRSが設定されてもよい。シンボル番号はスケジュールされたPDSCHの先頭シンボルからのインデックスであってもよいし、スロットの先頭シンボルからのインデックスであってもよい。
 特定DMRSのシンボル番号は明示的に設定されなくてもよい。例えば、Rel.15に従って3シンボルの追加(additional)DMRSが設定された場合、シンボル#0の先行(front-loaded)DMRSとシンボル#3、#6、#9の追加DMRSとが配置される。この態様のDMRSが、この4シンボルに配置される場合、UEは、Rel.15に従ってシンボル#3の追加DMRSを設定されてもよい。この場合、UEは、シンボル#0の先行DMRSとシンボル#3の追加DMRSとを想定し、更にシンボル#6、#9の特定DMRSを想定し、シンボル#6、#9のドップラーシフトがシンボル#0、#3のドップラーシフトと異なると想定し、これらのDMRS(先行DMRS、追加DMRS、特定DMRS)を受信してもよい。
 UEは、第2TRP固有のDMRSのドップラーシフトが第1TRP固有のDMRSのドップラーシフトと異なると想定してもよい。特定DMRS(TRP固有DMRS)を用いることが設定され、複数のシンボルのDMRSが設定された場合、複数のシンボルの前半が第1TRP固有のDMRSであってもよく、複数のシンボルの後半が第2TRP固有のDMRSであってもよい。
 Rel.15/16の先行DMRS/追加DMRSが設定された場合、UEは、設定されたDMRSと同じシンボル数の特定DMRSを想定してもよい。Rel.15/16の先行DMRS/追加DMRSが設定された場合、UEは、設定されたDMRSのシンボル数の2倍のシンボル数を有するRel.15/16のDMRS配置に従って、先行DMRS/追加DMRSと、特定DMRSの配置を決定してもよい。
《態様3-3》
 Rel.15/16に従って設定された複数のシンボルのDMRSのうち、特定シンボルのドップラーシフトが他のシンボルのドップラーシフトと異なることが設定/指示されてもよい。
 特定シンボルのドップラーシフトが他のシンボルのドップラーシフトと異なることが、PDSCH設定内においてPDSCH用DMRSに対して設定されてもよいし、PDCCH設定内においてPDCCH用DMRSに対して設定されてもよい。PDSCH用DMRSに対し、特定シンボルのドップラーシフトが他のシンボルのドップラーシフトと異なることが、上位レイヤとスケジューリングDCIの組み合わせによって動的に設定/指示されてもよい。
 Rel.15の先行DMRSと追加DMRSの間において、ドップラーシフトが異なることが、設定/指示されてもよい。
 Rel.15においては、ダブルシンボルDMRSを適用し、時間ドメインorthogonal cover code(OCC)を適用することによって、DMRS多重容量を増加させる。ダブルシンボルDMRSである先行DMRSは、2つの連続シンボルにマップされる。追加DMRS数は0又は1であり、追加DMRSも2つの連続シンボルにマップされる。時間ドメインOCCの適用範囲内においてドップラーシフト(チャネル)が異なると、時間ドメインOCCの直交性が崩れるため、時間ドメインOCCによってDMRSを適切に多重する(DMRSポート数を増加させる)ことができなくなる。
 そこで、ダブルシンボルDMRSの1番目のシンボルと2番目のシンボルの間においてドップラーシフトが異なる場合、そのダブルシンボルDMRSに対して時間ドメインOCCが適用されなくてもよいし、特定のOCC(例えば、[+1,+1])のみが適用されてもよい。ダブルシンボルDMRSの1番目のシンボルのDMRSが通常DMRS(第1DMRS)と呼ばれ、2番目のシンボルのDMRSが特定DMRS(第2DMRS)と呼ばれてもよい。
 図6Aの例において、DMRSタイプ1(configuration type 1)のダブルシンボルDMRSがシンボル#0、#1にマップされ、追加DMRSがシンボル#9、#10にマップされる。シンボル#1及び#10はTRP#1に対応し(TRP#1から送信され)、シンボル#0及び#9はTRP#2に対応する(TRP#2から送信される)。シンボル#1及び#10のドップラーシフトは、シンボル#0及び#9のドップラーシフトと異なる。
 図6Bの例において、DMRSタイプ2(configuration type 2)のダブルシンボルDMRSがシンボル#0、#1にマップされ、追加DMRSがシンボル#9、#10にマップされる。シンボル#1及び#10はTRP#1に対応し(TRP#1から送信され)、シンボル#0及び#9はTRP#2に対応する(TRP#2から送信される)。シンボル#1及び#10のドップラーシフトは、シンボル#0及び#9のドップラーシフトと異なる。
 UEは、第2TRP固有のDMRSのドップラーシフトが第1TRP固有のDMRSのドップラーシフトと異なると想定してもよい。特定DMRS(TRP固有DMRS)を用いることが設定され、複数のシンボルのDMRSが設定された場合、奇数番目(1番目、3番目、…)のシンボルが第1TRP固有のDMRSであってもよく、偶数番目(2番目、4番目、…)のシンボルが第2TRP固有のDMRSであってもよい。
 ダブルシンボルDMRSの1番目のシンボルと2番目のシンボルの間においてドップラーシフトが異なる場合のDMRSポート数は、Rel.15/16のDMRSポート数よりも少なくてもよい(Rel.15/16のDMRSポート数から半減してもよい)。
 Rel.15/16の時間ドメインOCCが適用される場合、DMRSタイプ1ならばDMRSポートの最大数は8であり、DMRSタイプ2ならばDMRSポートの最大数は12である。時間ドメインOCCが適用されない場合、DMRSタイプ1ならばDMRSポートの最大数は4であってもよく、DMRSタイプ2ならばDMRSポートの最大数は6であってもよい。
 以上の第3の実施形態によれば、UEは、DMRSを適切に受信できる。
<第4の実施形態>
 スキーム1/2において、UEは、PDSCH/PDCCHの1つのDMRSポートに対して複数のQCLを想定する。
 RRC/MAC CEによって、PDCCHのために、1つのCORESETに対して複数のTCI状態が設定/指示されてもよい。
 2つのPDCCHが2つのTCI状態(2つのTRP)にそれぞれ対応してもよい。2つのPDCCHによって同じDCIが送信されてもよい。この場合、UEは、2つのTCI状態(QCL)を用いて2つのPDCCHを受信してもよいし、1つのTCI状態(QCL)を用いて1つのPDCCHを受信してもよい。
 図7の例において、時刻t1におけるUEは、あるCORESET/PDSCHのDMRSポートに対して、RRH#1用のTCI状態1と、RRH#2用のTCI状態2と、を想定する。
 1つのMAC CEが1つのTCI状態を設定/指示してもよい。各MAC CEがフラグを有してもよい。例えば、フラグ=0を有するMAC CEがPDCCHのTCI状態#1を指示し、フラグ=1を有するMAC CEがPDCCHのTCI状態#2を指示する場合、UEは、TCI状態#1及び#2の両方を想定してPDCCHを受信してもよい。その後、フラグ=0を有するMAC CEがPDCCHのTCI状態#3を指示する場合、UEは、フラグの同一の値に対応するTCI状態を更新することによって、TCI状態#3及び#2の両方を想定してPDCCHを受信してもよい。PDCCH TCI状態指示用のMAC CE内の特定ビット(フィールド)が、フラグの各値に対応するTCI状態の解除(リリース)を指示してもよい。特定ビットは、リザーブドビット(R)であってもよい。
 RRC/MAC CE/DCIによって、1つのPDSCHに対して複数のTCI状態が設定/指示されてもよい。
 2つのPDSCHが2つのTCI状態(2つのTRP)にそれぞれ対応してもよい。2つのPDSCHによって同じDLデータ(トランスポートブロック、コードブロックグループ)が送信されてもよい。この場合、UEは、2つのTCI状態(QCL)を用いて2つのPDSCHを受信してもよいし、1つのTCI状態(QCL)を用いて1つのPDSCHを受信してもよい。UEは、2つのPDSCHに対して1つのHARQ-ACK情報(ビット、HARQ-ACKコードブック)を生成し、そのHARQ-ACK情報を送信してもよい。
 Rel.16のシングルDCIに基づくマルチTRPにおけるTCI状態の指示方法を用いて、1つのPDSCHに対して複数のTCI状態が設定されてもよい。
 Rel.16のPDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)によって、DCI内のTCIフィールドのコードポイント当たり1つ又は2つのTCI状態がアクティベートされ、DCI内のTCIフィールドによって1うtのコードポイントが指示されてもよい。
 もしDCI内TCI存在パラメータ(TCI-PresentInDCI)が設定されない場合、又はDCIからPDSCHまでの時間オフセット(スケジューリングオフセット)が閾値以下である場合、UEは、Rel.16と同様、TCIのDCIフィールドにおいて、2つのアクティブTCI状態を有する最低のコードポイント(TCIコードポイント)を、PDSCHのTCI状態(デフォルトTCI状態、2つのデフォルトTCI状態)として想定してもよい。
 図8Aの例において、RRCによって複数のTCI状態が設定され、MAC CE(例えば、Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)によってTCIフィールドの各コードポイントに対するTCI状態がアクティベートされる。図8Bの例において、DCIは、TRP1からのPDSCH1と、TRP2からのPDSCHと、をスケジュールする。DCIとPDSCH1及び2との間の時間オフセットが閾値(timeDurationForQCL)より小さい場合、UEは、2つのアクティブTCI状態を有するTCIコードポイントのうち、最低コードポイント(001)に対する2つのアクティブTCI状態(T0及びT1)を、PDSCH1及び2の受信にそれぞれ用いる。
 スキーム2を動作させるために、UEは、TCIのDCIフィールドにおけるの少なくとも1つのコードポイントにおいて、複数のTCI状態がアクティベートされると想定してもよい。
 以上の第4の実施形態によれば、UEは、PDCCH/PDSCHのTCI状態を適切に決定できる。
<他の実施形態>
 第1から第4の実施形態における少なくとも1つの機能(特徴、feature)に対応するUE能力(capability)が規定されてもよい。UEがこのUE能力を報告した場合、UEは、対応する機能を行ってもよい。UEがこのUE能力を報告し、且つこの機能に対応する上位レイヤパラメータを設定された場合、UEは、対応する機能を行ってもよい。この機能に対応する上位レイヤパラメータ(RRC情報要素)が規定されてもよい。この上位レイヤパラメータが設定された場合、UEは、対応する機能を行ってもよい。
 UE能力は、UEがこの機能をサポートするか否かを示してもよい。
 UE能力は、HSTをサポートするか否かを示してもよい。
 UE能力は、スキーム1/2をサポートするか否かを示してもよい。
 UE能力は、同一DMRSポートに対して設定されるQCLの最大数を示してもよい。
 第1から第4の実施形態の少なくとも1つにおいて、同一DMRSポートに対して設定されるQCLの最大数が2であってもよい。仕様において、同一DMRSポートに対して設定されるQCLの最大数が2より多くてもよい。
 スキーム1及びスキーム2の両方が仕様に規定され、上位レイヤによってスキーム1又はスキーム2の指示/切り替えが行われてもよい。
 以上の実施形態によれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、第1トラッキング参照信号(TRS)のリソースを示す第1上位レイヤパラメータと、第2TRSのリソースを示す第2上位レイヤパラメータと、を送信してもよい。制御部110は、前記第1TRS及び第2TRSの少なくとも1つの送信を制御してもよい。前記第1TRS及び前記第2TRSの間の疑似コロケーション関係は、ドップラーシフトを含まなくてもよい。
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、第1トラッキング参照信号(TRS)(既存TRS、第1TRP固有のTRS)のリソースを示す第1上位レイヤパラメータと、第2TRS(特定TRS、第2TRP固有のTRS)のリソースを示す第2上位レイヤパラメータと、を受信してもよい。制御部210は、前記第1TRS及び第2TRS(例えば、前記第1TRS及び第2TRSに基づくチャネル/ドップラーシフトの推定結果)に基づいて、物理下りリンク制御チャネル(PDCCH)及び物理下りリンク共有チャネル(PDSCH)の少なくとも1つの受信を制御してもよい。前記第1TRS及び前記第2TRSの間の疑似コロケーション関係(QCL関係、QCLタイプ)は、ドップラーシフトを含まなくてもよい。
 前記第1上位レイヤパラメータは、リリース15のノンゼロパワーチャネル状態情報参照信号(NZP-CSI-RS)リソースセットを示し、前記第2上位レイヤパラメータは、前記リリース15のNZP-CSI-RSリソースセットと異なるパラメータであってもよい(第1、第2の実施形態)。
 前記送受信部220は、前記物理下りリンク共有チャネル用の第1復調参照信号(DMRS)(既存DMRS、第1TRP固有のDMRS)と、前記物理下りリンク共有チャネル用の第2DMRS(特定DMRS、第2TRP固有のDMRS)と、を受信してもよい。前記第1DMRS及び前記第2DMRSの間の疑似コロケーション関係は、ドップラーシフトを含まなくてもよい(第3の実施形態)。
 前記送受信部220は、1つのDMRSポートと、1つの制御リソースセットと、前記物理下りリンク共有チャネルと、のいずれかに対する、複数の送信設定指示(TCI)状態の設定又は指示を受信してもよい(第4の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  第1トラッキング参照信号(TRS)のリソースを示す第1上位レイヤパラメータと、第2TRSのリソースを示す第2上位レイヤパラメータと、を受信する受信部と、
     前記第1TRS及び第2TRSに基づいて、物理下りリンク制御チャネル及び物理下りリンク共有チャネルの少なくとも1つの受信を制御する制御部と、を有し、
     前記第1TRS及び前記第2TRSの間の疑似コロケーション関係は、ドップラーシフトを含まない、端末。
  2.  前記第1上位レイヤパラメータは、リリース15のノンゼロパワーチャネル状態情報参照信号(NZP-CSI-RS)リソースセットを示し、前記第2上位レイヤパラメータは、前記リリース15のNZP-CSI-RSリソースセットと異なるパラメータである、請求項1に記載の端末。
  3.  前記受信部は、前記物理下りリンク共有チャネル用の第1復調参照信号(DMRS)と、前記物理下りリンク共有チャネル用の第2DMRSと、を受信し、
     前記第1DMRS及び前記第2DMRSの間の疑似コロケーション関係は、ドップラーシフトを含まない、請求項1又は請求項2に記載の端末。
  4.  前記受信部は、1つのDMRSポートと、1つの制御リソースセットと、前記物理下りリンク共有チャネルと、のいずれかに対する、複数の送信設定指示(TCI)状態の設定又は指示を受信する、請求項1から請求項3のいずれかに記載の端末。
  5.  第1トラッキング参照信号(TRS)のリソースを示す第1上位レイヤパラメータと、第2TRSのリソースを示す第2上位レイヤパラメータと、を受信するステップと、
     前記第1TRS及び第2TRSに基づいて、物理下りリンク制御チャネル及び物理下りリンク共有チャネルの少なくとも1つの受信を制御するステップと、を有し、
     前記第1TRS及び前記第2TRSの間の疑似コロケーション関係は、ドップラーシフトを含まない、端末の無線通信方法。
  6.  第1トラッキング参照信号(TRS)のリソースを示す第1上位レイヤパラメータと、第2TRSのリソースを示す第2上位レイヤパラメータと、を送信する送信部と、
     前記第1TRS及び第2TRSの少なくとも1つの送信を制御する制御部と、を有し、
     前記第1TRS及び前記第2TRSの間の疑似コロケーション関係は、ドップラーシフトを含まない、基地局。
PCT/JP2020/039909 2020-10-23 2020-10-23 端末、無線通信方法及び基地局 WO2022085179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022556348A JPWO2022085179A5 (ja) 2020-10-23 端末、無線通信方法、基地局及びシステム
CN202080108070.2A CN116636274A (zh) 2020-10-23 2020-10-23 终端、无线通信方法以及基站
PCT/JP2020/039909 WO2022085179A1 (ja) 2020-10-23 2020-10-23 端末、無線通信方法及び基地局
EP20958728.6A EP4236526A1 (en) 2020-10-23 2020-10-23 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039909 WO2022085179A1 (ja) 2020-10-23 2020-10-23 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022085179A1 true WO2022085179A1 (ja) 2022-04-28

Family

ID=81290306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039909 WO2022085179A1 (ja) 2020-10-23 2020-10-23 端末、無線通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4236526A1 (ja)
CN (1) CN116636274A (ja)
WO (1) WO2022085179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004143A1 (ja) * 2022-06-30 2024-01-04 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 15)", 3GPP TS 38.214 V15.11.0, 1 September 2020 (2020-09-01), pages - 9, XP055936177, [retrieved on 20220628] *
CATT: "Discussion on enhancements on HST-SFN deployment", 3GPP DRAFT; R1-2005687, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917662 *
HUAWEI, HISILICON: "Enhancements on Multi-TRP for high speed train in Rel-17", 3GPP DRAFT; R1-2006394, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004143A1 (ja) * 2022-06-30 2024-01-04 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
CN116636274A (zh) 2023-08-22
JPWO2022085179A1 (ja) 2022-04-28
EP4236526A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2021024494A1 (ja) 端末及び無線通信方法
WO2020209282A1 (ja) ユーザ端末及び無線通信方法
WO2022137453A1 (ja) 端末、無線通信方法及び基地局
WO2022054248A1 (ja) 端末、無線通信方法及び基地局
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2021106169A1 (ja) 端末及び無線通信方法
WO2020230220A1 (ja) ユーザ端末及び無線通信方法
WO2021224965A1 (ja) 端末、無線通信方法及び基地局
WO2021186690A1 (ja) 端末、無線通信方法及び基地局
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
JPWO2020144818A1 (ja) ユーザ端末及び無線通信方法
WO2022102605A1 (ja) 端末、無線通信方法及び基地局
WO2022070345A1 (ja) 端末、無線通信方法及び基地局
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
WO2022024358A1 (ja) 端末、無線通信方法及び基地局
WO2022024357A1 (ja) 端末、無線通信方法及び基地局
WO2021229820A1 (ja) 端末、無線通信方法及び基地局
WO2021106168A1 (ja) 端末及び無線通信方法
WO2021106092A1 (ja) 端末及び無線通信方法
WO2020217517A1 (ja) ユーザ端末及び無線通信方法
WO2022085179A1 (ja) 端末、無線通信方法及び基地局
JP7487315B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2021241211A1 (ja) 端末、無線通信方法及び基地局
WO2022044261A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958728

Country of ref document: EP

Effective date: 20230523

WWE Wipo information: entry into national phase

Ref document number: 202080108070.2

Country of ref document: CN