WO2022070345A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022070345A1
WO2022070345A1 PCT/JP2020/037259 JP2020037259W WO2022070345A1 WO 2022070345 A1 WO2022070345 A1 WO 2022070345A1 JP 2020037259 W JP2020037259 W JP 2020037259W WO 2022070345 A1 WO2022070345 A1 WO 2022070345A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
dci
channels
transmission
Prior art date
Application number
PCT/JP2020/037259
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ジン ワン
ウェイチー スン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022553339A priority Critical patent/JPWO2022070345A5/ja
Priority to EP20956273.5A priority patent/EP4224903A1/en
Priority to CN202080105744.3A priority patent/CN116325850A/zh
Priority to PCT/JP2020/037259 priority patent/WO2022070345A1/ja
Publication of WO2022070345A1 publication Critical patent/WO2022070345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • a user terminal (terminal, user terminal, User Equipment (UE)) is a pseudo-colocation (Quasi-Co-Location (QCL)) information (QCL assumption / Transmission Configuration Indication (QCL assumption / Transmission Configuration Indication). Controlling transmission / reception processing based on TCI) state / spatial relationship) is being studied.
  • QCL Quad-Co-Location
  • the information about QCL is not clear. If the information about the QCL is not clear, it may lead to a decrease in communication quality, a decrease in throughput, and the like.
  • one of the purposes of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately determine information regarding the QCL.
  • the terminal receives the first TCI state information indicating a plurality of transmission setting instruction (TCI) states applicable to a plurality of types of channels, and the first TCI state among the plurality of TCI states and the first TCI state among the plurality of TCI states.
  • TCI transmission setting instruction
  • the receiving unit for receiving the downlink control information indicating the downlink control information, and the downlink control information and one of the one or more channels is smaller than the threshold value, the one or more. It has a control unit that applies the second TCI state to the channel of the above and applies the first TCI state to the signal after the one or more channels.
  • information regarding the QCL can be appropriately determined.
  • FIG. 1 is a diagram showing an example of a common beam for both DL and UL.
  • FIG. 2 is a diagram showing an example of a common beam for DL and a common beam for UL.
  • FIG. 3 is a diagram showing an example of use case 0.
  • FIG. 4 is a diagram showing an example of use case 1.
  • FIG. 5 is a diagram showing an example of use case 2.
  • FIG. 6 is a diagram showing an example of the timeline of Example 1.
  • FIG. 7 is a diagram showing an example of the timeline of Example 2.
  • 8A and 8B are diagrams showing an example of assumptions 1-1 and 1-2.
  • FIG. 9 is a diagram showing an example of Aspect 1-2-1.
  • FIG. 10 is a diagram showing an example of Aspect 1-2-2.
  • FIG. 11 is a diagram showing an example of a case where the time offset between the DCI and the PDSCH scheduled thereby is smaller than the threshold value.
  • FIG. 12 is a diagram showing an example of Aspect 2-2.
  • 13A and 13B are views showing an example of aspects 2-3.
  • 14A and 14B are diagrams showing an example of the unified TCI state pool in aspect 2-4.
  • FIG. 15 is a diagram showing an example of the timeline in the aspect 2-4.
  • 16A and 16B are views showing an example of modification 1 of aspect 2-4.
  • FIG. 17 is a diagram showing an example of Modification 2 of Aspect 2-4. It is a figure which shows an example.
  • FIG. 18 is a diagram showing an example of aspect 3-1.
  • FIG. 19 is a diagram showing an example of Aspect 3-2.
  • FIG. 20 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 21 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • FIG. 22 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 23 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • reception processing for example, reception, demapping, demodulation, etc.
  • transmission processing e.g., at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • QCL Quality of Service
  • the TCI state may be set in the UE per channel or per signal.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (may be referred to as QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, -QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and average delay, -QCL type D (QCL-D): Spatial reception parameter.
  • QCL-A Doppler shift, Doppler spread, average delay and delay spread
  • -QCL type B QCL type B
  • QCL type C QCL type C
  • QCL-D Spatial reception parameter.
  • the UE assumes that one control resource set (Control Resource Set (CORESET)) has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. It may be called a QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • the UE may determine at least one of the transmit beam (Tx beam) and receive beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal for the channel (Reference Signal (RS))) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the RS of the QCL type X in the TCI state may mean an RS having a relationship between a certain channel / signal (DMRS) and the QCL type X, and this RS is called the QCL source of the QCL type X in the TCI state. You may.
  • DMRS channel / signal
  • the path loss PL b, f, c (q d ) [dB] in the transmission power control of PUSCH, PUCCH, and SRS is a reference signal (RS,) for the downlink BWP associated with the active UL BWP b of the carrier f of the serving cell c.
  • RS reference signal
  • the path loss reference RS, path loss (PL) -RS, index q d , RS used for path loss calculation, and RS resource used for path loss calculation may be read as each other.
  • calculations, estimates, measurements, and tracks may be read interchangeably.
  • the path loss measurement based on L1-RSRP may be applied. Even if the upper layer filter RSRP is used for path loss measurement and L1-RSRP is used for path loss measurement before the upper layer filter RSRP is applied at the available timing after MAC CE for path loss RS update. good. At the available timing after the MAC CE for updating the path loss RS, the upper layer filter RSRP may be used for the path loss measurement, and the upper layer filter RSRP of the previous path loss RS may be used before that timing. .. Rel. Similar to the operation of 15, the upper layer filter RSRP is used for the path loss measurement, and the UE may track all the path loss RS candidates set by the RRC.
  • the maximum number of path loss RSs that can be set by the RRC may depend on the UE capability. When the maximum number of path loss RSs that can be set by RRC is X, path loss RS candidates of X or less may be set by RRC, and path loss RS may be selected by MAC CE from the set path loss RS candidates.
  • the maximum number of path loss RSs that can be set by RRC may be 4, 8, 16, 64, or the like.
  • the upper layer filter RSRP, the filtered RSRP, and the layer 3 filter RSRP may be read as each other.
  • DL DCI (PDSCH) is set both when the TCI information in DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in DCI is not set.
  • TCI-PresentInDCI TCI information in DCI
  • Non-cross-carrier scheduling if the time offset between the receipt of the scheduled DCI) and the corresponding PDSCH (PDSCH scheduled by the DCI) is less than the threshold (timeDurationForQCL) (applicable condition, first condition).
  • the TCI state (default TCI state) of the PDSCH may be the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of the CC (of the specific UL signal). Otherwise, the PDSCH TCI state (default TCI state) may be the TCI state of the PDSCH's lowest TCI state ID in the active DL BWP of the scheduled CC.
  • an individual MAC CE of a MAC CE for activation / deactivation related to PUCCH space and a MAC CE for activation / deactivation related to SRS space is required.
  • the PUSCH spatial relationship follows the SRS spatial relationship.
  • At least one of the MAC CE for activation / deactivation related to PUCCH space and the MAC CE for activation / deactivation related to SRS space may not be used.
  • both the spatial relationship for PUCCH and PL-RS are not set in FR2 (applicable condition, second condition), the spatial relationship for PUCCH and the default assumption of PL-RS (default spatial relationship and default PL-RS). Is applied. If, in FR2, both the spatial relationship for SRS (SRS resource for SRS or SRS resource corresponding to SRI in DCI format 0_1 for scheduling PUSCH) and PL-RS are not set (applicable condition, second condition). Spatial relations and PL-RS default assumptions (default spatial relations and default PL-RS) are applied to PUSCH and SRS scheduled by DCI format 0_1.
  • the default spatial relationship and default PL-RS are based on the TCI state or QCL assumption of the CORESET having the lowest CORESET ID in the active DL BWP. There may be. If CORESET is not set in the active DL BWP on the CC, the default spatial relationship and the default PL-RS may be the active TCI state with the lowest ID of the PDSCH in the active DL BWP.
  • the spatial relationship of the PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource having the lowest PUCCH resource ID among the active spatial relationships of the PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationships on all SCells, even if the PUCCHs are not transmitted on the SCells.
  • the application condition of the default spatial relationship for SRS / default PL-RS may include that the default beam path loss enablement information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) is effectively set.
  • the application condition of the default spatial relationship / default PL-RS for PUCCH may include that the default beam path loss enablement information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) is effectively set.
  • the default spatial relationship / default PL-RS application condition for PUSCH scheduled by DCI format 0_0 is that the default beam path loss enablement information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) is effectively set. May include that.
  • the above thresholds are the QCL time duration, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI”, “Threshold-Sched-Offset”, and schedule. It may be called an offset threshold value, a scheduling offset threshold value, or the like.
  • UL and DL channels can be controlled by a common framework.
  • the unified TCI framework is Rel. Rather than defining the TCI state or spatial relationship for each channel as in 15, a common beam may be indicated and applied to all UL and DL channels, or a common beam for UL may be applied to UL. It may be applied to all channels and a common beam for DL may be applied to all channels of DL.
  • the UE may assume the same TCI state (joint TCI state, joint TCI state pool, joint common TCI state pool) for UL and DL.
  • RRC sets a plurality of TCI states (joint common TCI state pool) for both DL and UL.
  • Each of the plurality of TCI states may be SSB, CSI-RS, or SRS.
  • MAC CE may activate a part of a plurality of set TCI states.
  • the DCI may indicate at least one of the activated TCI states.
  • UL and DL default beams may be aligned by beam management based on MAC CE (MAC CE level beam instruction).
  • the default TCI state of PDSCH may be updated to match the default UL beam (spatial relationship).
  • the common beam / unified TCI state may be indicated from the same TCI state pool (joint common TCI state pool) for both UL and DL by beam management (DCI level beam instruction) based on DCI.
  • M TCI states may be activated by MAC CE.
  • UL / DL DCI may select one from M active TCI states.
  • the selected TCI state may be applied to both UL and DL channels / RS.
  • the UE has different TCI states for UL and DL (separate TCI state, separate TCI state pool, UL separate TCI state pool and DL separate TCI state pool, separate common TCI state pool, UL common TCI state pool and DL common. TCI state pool) may be assumed.
  • the RRC may set a plurality of TCI states (pools) for each of the UL and DL channels.
  • MAC CE may select (activate) one or more (for example, a plurality) TCI states (sets) for each of UL and DL channels. MAC CE may activate two sets of TCI states.
  • the DL DCI may select (instruct) one or more (for example, one) TCI states. This TCI state may be applied to one or more DL channels.
  • the DL channel may be PDCCH / PDSCH / CSI-RS.
  • the UE is Rel.
  • the operation of the TCI state of 16 (TCI framework) may be used to determine the TCI state of each channel / RS of the DL.
  • UL DCI may select (instruct) one or more (for example, one) TCI states. This TCI state may be applied to one or more UL channels.
  • the UL channel may be PUSCH / SRS / PUCCH.
  • the UL of the panel # 1 receives the MPE problem, and the UE uses the panel # 2 for the UL.
  • the distance between the UE and TRP (cell, base station) # 1 is longer than the distance between the UE and TRP # 2.
  • the L1-RSRP of the panel # 1 is higher than the L1-RSRP of the panel # 2
  • the UL transmission power of the panel # 2 is higher than the UL transmission power of the panel # 1.
  • the UE uses panel # 1 for DL from TRP # 1 and panel # 2 for UL to TRP # 2.
  • the L1-RSRP of the panel # 1 is higher than the L1-RSRP of the panel # 2, and the UL load of the panel # 2 is lower than the UL load of the panel # 1.
  • the UE uses panel # 1 for DL from TRP # 1 and panel # 2 for UL to TRP # 2.
  • HST high speed train
  • the common beam may be different.
  • the UE may be provided with a multi-panel for FR2.
  • the common beam for each UE panel may be different.
  • the DCI level beam instruction (beam instruction based on DCI) of the common beam / unified TCI state framework is more promising than the MAC CE level beam instruction (beam instruction based on MAC CE).
  • the default beam enables MAC CE level indication of the common beam / unified TCI state framework. At present, DCI cannot switch the common beam.
  • the common beam is updated by DCI and the common beam is applied to PDCCH, i.e. if DCI updates the beam of PDCCH, the following issues should be considered.
  • the common beam It is preferable to update the common beam after the UE sends DCI feedback instructing the update of the common beam. Due to the impact on the specifications, it is preferable that the timeline for updating the common beam is defined and the common beam is updated after the UE sends feedback. If the DCI instructing the update of the common beam is a DL assignment, the feedback may be a PDSCH ACK or NACK transmission. If the DCI indicating the update of the common beam is a UL grant, the feedback may be a PUSCH transmission.
  • the problem is how the beam / TCI state of PDSCH / PUCCH / PUSCH is indicated before the update of the common beam.
  • Example 1 In the example of FIG. 6, a common active TCI state pool (list) containing TCI states # 0 to # 7 is set / activated by RRC / MAC CE.
  • the TCI states # 0 to # 7 are associated with the values 000 to 111 of the TCI field, respectively.
  • the UE receives a DCI (DL assignment) indicating TCI # 2 in the common active TCI status pool.
  • the UE then receives the PDSCH scheduled by its DCI. After that, the UE transmits HARQ-ACK information for the PDSCH in the PUCCH.
  • the common beam is then updated to TCI # 2 and applied to all channels.
  • the problem is which beam is used in PDSCH / PUCCH.
  • Example 2 In the example of FIG. 7, a common active TCI state pool (list) similar to that of FIG. 6 is set / activated by RRC / MAC CE.
  • the UE receives a DCI (UL grant) indicating TCI # 2 in the common active TCI state pool.
  • the UE then sends a PUSCH scheduled by its DCI.
  • the common beam is then updated to TCI # 2 and applied to all channels.
  • the problem is which beam is used in PUSCH.
  • the present inventors have conceived a method for instructing the TCI state.
  • a / B / C and “at least one of A, B and C” may be read interchangeably.
  • cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, and band may be read as each other.
  • the index, the ID, the indicator, and the resource ID may be read as each other.
  • support, control, controllable, working, working may be read interchangeably.
  • configuration, activate, update, indicate, enable, specify, and select may be read as each other.
  • MAC CE and activation / deactivation commands may be read interchangeably.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IE), and RRC messages may be read interchangeably.
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • Domain receive filter, UE spatial domain receive filter, UE receive beam, DL beam, DL receive beam, DL precoding, DL precoder, DL-RS, TCI state / QCL assumed QCL type D RS, TCI state / QCL assumed QCL type A RS, spatial relationship, spatial domain transmission filter, UE spatial domain transmission filter, UE transmission beam, UL beam, UL transmission beam, UL precoding, UL precoder, PL-RS may be read as each other.
  • the QCL type X-RS, the DL-RS associated with the QCL type X, the DL-RS having the QCL type X, the source of the DL-RS, the SSB, the CSI-RS, and the SRS may be read as each other. good.
  • the DL DCI, the DCI that schedules the DL channel (PDSCH), and the DCI format 1_x (x 0, 1, 2, 7) may be read as each other.
  • HARQ-ACK information, ACK, and NACK may be read as each other.
  • one of the link direction, the downlink (DL), the uplink (UL), UL and the DL may be read as each other.
  • pools, sets, groups, lists may be read interchangeably.
  • the common beam, the unified TCI state, the beam applicable to DL and UL, the beam applied to a plurality of (multiple types) channels / RS, and PL-RS may be read as each other.
  • a plurality of TCI states set by RRC a plurality of TCI states activated by MAC CE, a pool, a TCI state pool, an active TCI state pool, a common TCI state pool, a joint TCI state pool, and a separate TCI state pool. , May be read as each other.
  • the following at least one embodiment may be applied to at least one of the following cases 1 to 3.
  • the beam assumptions may be any of the following assumptions 1-1 to 1-3.
  • the beam assumption is the lowest or highest TCI state ID of the set common TCI pool.
  • the 15/16 rule is used for beam assumptions.
  • the beam assumption may be an SSB / CSI-RS QCL assumption associated with the latest PRACH.
  • 15/16 beam management is additionally used for beam assumptions.
  • the beam assumption is Rel. It may be the setting of 15/16 / the indicated TCI state / spatial relationship.
  • assumption 1-1 is used.
  • the beam assumption is the lowest TCI state ID of the set common TCI pool.
  • the beam assumptions may be any of the following assumptions 2-0 to 2-3.
  • the beam assumption is the active TCI state corresponding to the lowest or highest code point in the TCI field of DCI.
  • the beam assumption is the lowest or highest active TCI state ID of the set common TCI pool.
  • the 15/16 rule is used for beam assumptions.
  • the beam assumption may be an SSB / CSI-RS QCL assumption associated with the latest PRACH.
  • 15/16 beam management is additionally used for beam assumptions.
  • the beam assumption is Rel. It may be the setting of 15/16 / the indicated TCI state / spatial relationship.
  • assumption 2-1 is used.
  • the beam assumption is the lowest TCI state ID of the activated common TCI pool.
  • MAC CE / RRC activates multiple TCI states (pools), DCI selects one unified TCI state, and after Timing A or Timing A, multiple or all.
  • the selected DCI may be applied to the UL / DL channel / RS.
  • At least one beam assumption of the UL / DL DCI-triggered SRS instructing the update of the common beam may be any of the following embodiments 1-1 and 1-2.
  • the immediately preceding common beam may be in the TCI state applied to the DCI (PDCCH) instructing the update of the common beam, or in the TCI state applied to the channel (PDSCH / PUCCH / PUSCH) before the DCI. There may be.
  • the DCI field indicating the common beam may also be used to indicate the beam of PDSCH / PUCCH / PUSCH.
  • the UE receives DCI and PDSCH and transmits PUCCH as in FIG.
  • the beam used for PDSCH reception and PUCCH transmission may be TCI # 2.
  • a DCI field different from the DCI field indicating the common beam may be used to indicate the beam of PDSCH / PUCCH / PUSCH.
  • the UE receives DCI and transmits PUSCH as in FIG. 7.
  • the beam used for PUSCH transmission may be different from TCI # 2 and may be directed by a different TCI field than the field pointing to the common beam.
  • the first embodiment may be applied when the time offset between the DCI indicating the unified TCI state and the channel (PDSCH / PUSCH) scheduled by the DCI is equal to or greater than the threshold value.
  • the UE and the base station can use an appropriate beam from the DCI indicating the common beam to the update of the common beam.
  • the problem is that the UE should buffer the received signal by using a certain QCL assumption / TCI state. This is Rel. This is the reason why the PDSCH default QCL assumption was supported in 15.
  • Rel As with 15, if the time offset between the DCI and the PDSCH scheduled thereby is less than the threshold, it is being considered to use the PDSCH's default QCL assumptions to buffer the received signal.
  • the offset threshold from DCI to PDSCH / DCI to PUSCH is Rel. It may be the timeDurationForQCL for QCL at 15, the new UE capability parameter reported by the UE, or the new RRC parameter set by the base station.
  • the beam assumption is the default QCL assumption.
  • the default QCL assumption is Rel.
  • the definition may be 15/16, and Rel. It may be the default beam redefined after 17.
  • the default beams of all UL / DLs may be combined.
  • the default beam may be a QCL type DRS with a minimum CORESET ID.
  • the immediately preceding (before update) common beam is used for at least one beam assumption of receiving the PDSCH, transmitting HARQ-ACK information on the PUCCH / PUSCH, and transmitting the PUSCH.
  • the immediately preceding common beam may be in the TCI state applied to the DCI (PDCCH) instructing the update of the common beam, or in the TCI state applied to the channel (PDSCH / PUCCH / PUSCH) before the DCI. There may be.
  • the UE receives DCI and PDSCH and transmits PUCCH as in FIG.
  • the time offset between DCI and PDSCH is less than the threshold.
  • the immediately preceding (before updating) common beam (common beam designated by the immediately preceding DCI) is TCI # 1.
  • DCI instructs to update the common beam to TCI # 2.
  • the UE uses TCI # 1 for PDSCH reception and PUCCH transmission.
  • the beam assumption is the default TCI state selected by the common (joint) / separate TCI state pool for the unified TCI state framework.
  • the default TCI state may follow the rules.
  • the rule may be the lowest or highest TCI state ID in the active TCI state pool.
  • the default TCI state may be set by the upper layer.
  • a default TCI state index for each active TCI state pool may be set by the upper layer.
  • RRC sets a unified TCI state pool for UL and DL
  • MAC CE activates TCI # 0 to TCI # 5 of the unified TCI state pool.
  • DCI instructs to update the common beam to TCI # 2.
  • the UE receives the DCI and PDSCH and transmits the PUCCH as in FIG. The time offset between DCI and PDSCH is less than the threshold.
  • the UE uses TCI # 0 corresponding to the lowest TCI state ID among the active TCI states for PDSCH reception and PUCCH transmission.
  • Both the MAC CE level common TCI state pool and the DCI level common TCI state pool may be set and the MAC CE level TCI state pool may be used.
  • the unified TCI state pool # 1 for DCI level indication is set by RRC, and TCI # 0 to TCI # 5 in the unified TCI state pool # 1 are activated by MAC CE.
  • RRC sets a unified TCI state pool # 2 for MAC CE level indication, and MAC CE activates TCI # 3 in the unified TCI state pool # 1.
  • the UE receives DCI and PDSCH and transmits PUCCH as in FIG. The time offset between DCI and PDSCH is less than the threshold. DCI instructs to update the common beam to TCI # 2.
  • the UE uses the activated TCI # 3 in the unified TCI status pool # 2 for MAC CE level instruction for PDSCH reception and PUCCH transmission.
  • the unified TCI state pool # 2 for MAC CE level indication is used for the instruction of the default QCL assumption for PDSCH.
  • the UE uses the TCI state activated by MAC CE from the common TCI state pool for MAC CE level instruction for PDCCH reception, and the TCI state activated / indicated by MAC CE / DCI from the common TCI state pool for DCI level instruction to PDSCH. It may be used for reception. Since DCI does not update the beam of DCI, there is no problem by changing the TCI state of PDCCH by PDCCH. The PDCCH beam and the PDSCH beam may not be common.
  • the unified TCI state pool # 1 for DCI level indication is set by RRC, and TCI # 0 to TCI # 5 in the unified TCI state pool # 1 are activated by MAC CE.
  • the unified TCI state pool # 2 for MAC CE level instruction is set by RRC, and TCI # 3 in the unified TCI state pool # 1 is activated by MAC CE.
  • DCI instructs to update the common beam to TCI # 2.
  • the UE uses the indicated TCI # 2 in the unified TCI state pool # 1 for DCI level indication for PDSCH / PUCCH / CSI-RS / PUSCH / SRS.
  • the UE uses the activated TCI # 3 in the unified TCI status pool # 2 for MAC CE level instruction for PDCCH reception.
  • the UE uses the TCI state activated by MAC CE from the common TCI state pool for MAC CE level instruction for PDCCH reception, and the TCI state activated / indicated by MAC CE / DCI from the common TCI state pool for DCI level instruction to PDSCH. It may be used for reception. Since DCI does not update the beam of DCI, there is no problem by changing the TCI state of PDCCH by PDCCH. The PDCCH beam and the PDSCH beam may not be common.
  • a common TCI state pool may be used for MAC CE level indication and DCI level indication.
  • the TCI state indicated by the DCI level beam indication may be applied in addition to PDCCH.
  • the TCI state of the PDCCH may be selected according to the rules from the TCI states activated by the MAC CE level beam instruction. For example, the rule may be the lowest or highest TCI state ID.
  • the unified TCI state pool (joint TCI state pool) is set by RRC, and TCI # 0 to TCI # 5 in the unified TCI state pool are activated by MAC CE.
  • DCI instructs to update the common beam to TCI # 2.
  • the UE uses the indicated TCI # 2 for PDSCH / PUCCH / CSI-RS / PUSCH / SRS.
  • the UE uses TCI # 0 corresponding to the lowest TCI state ID among the TCI states activated by MAC CE for PDCCH reception.
  • the overhead of the upper layer can be reduced as compared with the modification 1 of the aspect 2-4.
  • the UE can appropriately determine the beam even when the time offset is smaller than the threshold value.
  • the base station may send DCI for beam switching.
  • the base station may schedule a dummy PDSCH / PUSCH for switching the common beam.
  • a new DCI may be used to give a common beam indication even without PDSCH / PUSCH.
  • This DCI may have a redundancy check (CRC) scrambled by a new RNTI radio network temporary identifier (RNTI).
  • CRC redundancy check
  • RNTI radio network temporary identifier
  • Special values of some special fields in the DCI format may be used to give a common beam indication even without PDSCH / PUSCH.
  • the DCI for common beam indication may follow at least one of the following aspects 3-0 to 3-3.
  • a new DCI format may be used to indicate the TCI state in the common TCI state pool.
  • the new DCI format may be UE-specific DCI or group common PDCCH.
  • a group common DCI one instruction may be applied to all UEs in a group. Multiple instructions may be applied to each of the multiple UEs in the group.
  • the new DCI format does not have to schedule PDSCH / PUSCH.
  • the size of the new DCI format may be smaller than the size of the existing DCI formats 0_1, 0_2.1_1, 1_2.
  • the new DCI format may be an extension with a new DCI field based on the existing DCI format.
  • the new DCI field may be a TCI common instruction. If the new DCI field TCI common instruction is 1, the UE may follow only the TCI state instruction (TCI field) in the new DCI format and ignore the other DCI fields. If the new field TCI common indication is 0, the UE may follow all DCI fields in the new DCI format (no new RNTI may be required, as in aspect 3-3 below). Whether or not a new DCI field exists may be set by RRC signaling.
  • a new RNTI for updating the common TCI state without PDSCH / PUSCH scheduling may be defined and set in the UE.
  • the new RNTI may be an X-RNTI (special RNTI) or an RNTI other than the existing RNTI.
  • the existing RNTI may include at least one of C-RNTI, CS-RNTI, and MCS-C-RNTI.
  • the new RNTI is a UE operation based on a UE-specific DCI (special DCI) used for indicating (updating) a common TCI state (common beam) and not used for PDSCH / PUSCH scheduling, and a UE used for PDSCH / PUSCH scheduling. It may be used to distinguish it from the intrinsic DCI (usually DCI).
  • special DCI used for indicating (updating) a common TCI state (common beam) and not used for PDSCH / PUSCH scheduling
  • a UE used for PDSCH / PUSCH scheduling may be used to distinguish it from the intrinsic DCI (usually DCI).
  • a DCI (UE-specific DCI) having a cyclic redundancy check (CRC) scrambled by X-RNTI may be called a special DCI. Having a CRC scrambled by an existing RNTI (UE-specific DCI) may usually be referred to as DCI.
  • the UE-specific DCI may be a new DCI format or a DCI format 0_1.
  • the UE may follow at least one of the following steps 1 to 3.
  • the UE may follow the TCI fields in the special DCI and ignore the other fields in the special DCI for updating the common TCI state.
  • the size of the TCI field in the special DCI may be the same as the size of the TCI field in the normal DCI.
  • the number of bits (size) of the TCI field in the special DCI may be larger than the number of bits of the TCI field in the normal DCI.
  • the UE may follow the TCI field within the special DCI. The UE may ignore other fields in the special DCI.
  • the special DCI may include a new DCI field to indicate the update of the common TCI state.
  • the new DCI field may be a different field depending on the type of UL and DL or channel / RS. Whether or not a new DCI field exists may be set by RRC signaling.
  • the number of bits (size) of the special DCI may be the same as the number of bits of the normal DCI.
  • the size of the special DCI may be the same as the size of the normal DCI.
  • the size of the TCI field in the special DCI may be larger than the size of the TCI field in the normal DCI.
  • the UE may interpret a field other than the TCI field (for example, scheduling of PUSCH) in the normal DCI.
  • the UE may ignore fields other than the TCI field in the special DCI.
  • the UE may receive a UE-specific DCI with a CRC scrambled by an existing (Rel. 15/16) RNTI.
  • the existing RNTI may be at least one of C-RNTI, CS-RNTI, and MCS-C-RNTI. No new RNTI may be required.
  • the UE will use the DCI as a DCI (Special DCI) that is used to update the common TCI state and not used for PDSCH / PUSCH scheduling. You may consider it. If not, the UE may consider the DCI as the DCI (usually DCI) used for PDSCH / PUSCH scheduling.
  • the specific DCI format may be at least one of DCI formats 0_1, 0_1, 1_1, 1_2, and 2_3.
  • -The value of the frequency domain resource allocation field is set to all 0s or all 1.
  • -The value of the time domain resource allocation field is set to all 0s or all 1.
  • -The value of the frequency hopping flag field is set to all 0s or all 1.
  • -The value of the modulation and coding scheme (MCS) field is set to all 0s or all 1.
  • NDI new data indicator
  • -The value of the redundant version field is set to all 0s or all 1.
  • -The value of the HARQ process number field is set to all 0s or all 1.
  • -The value of the downlink assignment indicator (DAI) field is set to all 0s or all 1.
  • -The value of the transmit power control (TPC) command field for PUSCH is set to all 0s or all 1.
  • -The value of the SRS resource indicator field is set to all 0s or all 1.
  • -The values of the precoding information and the number of layers fields are set to all 0s or all 1.
  • -The value of the antenna port field is set to all 0s or all 1.
  • -The value of the CSI request field is set to all 0s or all 1.
  • a combination of different values may be specified for different cases.
  • At least one of one or more DCI fields (special DCI field), or a DCI field set by a higher layer may indicate that this DCI is a special DCI.
  • the UE may follow at least one of the following steps 1 to 3.
  • the UE may follow the TCI fields in the special DCI and ignore the other fields in the special DCI for updating the common TCI state.
  • the size of the TCI field in the special DCI may be the same as the size of the TCI field in the normal DCI.
  • the number of bits (size) of the TCI field in the special DCI may be larger than the number of bits of the TCI field in the normal DCI.
  • the UE may follow the TCI field within the special DCI. The UE may ignore other fields in the special DCI.
  • the special DCI may include a new DCI field to indicate the update of the common TCI state.
  • the new DCI field may be a different field depending on the type of UL and DL or channel / RS.
  • the number of bits (size) of the special DCI may be the same as the number of bits of the normal DCI.
  • each of the special DCI and the normal DCI may include a special DCI field, a TCI field, and another field.
  • the size of the special DCI may usually be the same as the size of the DCI.
  • the special DCI field in the special DCI indicates a special value, and the special DCI field in the normal DCI does not have to indicate a special value.
  • the size of the TCI field in the special DCI may be larger than the size of the SRS request field in the normal DCI.
  • the UE may interpret a field other than the TCI field (for example, scheduling of PUSCH) in the normal DCI.
  • the UE may ignore fields other than the TCI field in the special DCI.
  • a new RRC signaling (upper layer parameter) is set to indicate whether the UE-specific DCI is not used for PDSCH / PUSCH scheduling (without DL data / UL data) and for updating the common TCI state. May be good.
  • At least one of aspects 3-0 to 3-2 may be applied.
  • the UE may receive / detect the special DCI only if this upper layer parameter is set.
  • the special DCI may only update the common TCI state without scheduling PDSCH / PUSCH. Otherwise, the UE will send Rel. The operation of 15/16 may be performed. In other words, the UE may receive / detect DCI (usually DCI) for updating the common TCI state and scheduling PDSCH / PUSCH.
  • the UE can appropriately receive the special DCI.
  • UE capability corresponding to at least one function (feature) in the first to third embodiments may be defined. If the UE reports this UE capability, the UE may perform the corresponding function. If the UE reports this UE capability and the upper layer parameters corresponding to this function are set, the UE may perform the corresponding function. Upper layer parameters (RRC information elements) corresponding to this function may be specified. If this higher layer parameter is set, the UE may perform the corresponding function.
  • the UE capability may indicate whether the UE supports this feature.
  • the UE capability may indicate the maximum number of TCI states (in the pool) in which the UE is set by the RRC. This number may be reported for all of UL and DL, or separately for each of UL and DL.
  • the UE capability may indicate the maximum number of active TCI states supported by the UE. This number may be reported for all of UL and DL, or separately for each of UL and DL.
  • the UE capability may indicate whether the UE supports different active TCI state pools for UL and DL.
  • the UE capability may indicate whether the UE supports the default QCL assumption.
  • the UE capability may indicate whether the UE supports the PDSCH / PUSCH scheduling time offset to be less than the threshold.
  • the UE capability determines whether the UE supports a UE-specific DCI (special DCI) that is not used for PDSCH / PUSCH scheduling (without DL data / UL data) and is used to indicate (update) the common TCI state. May indicate.
  • special DCI special DCI
  • the UE can realize the above functions while maintaining compatibility with existing specifications.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 20 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request).
  • Uplink Control Information including at least one of SR)
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 21 is a diagram showing an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transform may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmission / reception unit 120 may transmit TCI status information indicating a plurality of transmission setting instruction (TCI) statuses applicable to a plurality of types of channels.
  • TCI transmission setting instruction
  • the control unit 110 determines the first TCI state applied to the signal after the one or more channels, determines the second TCI state applied to the one or more channels, and indicates the downlink control indicating the first TCI state. You may control the transmission of information.
  • the transmission / reception unit 120 transmits first TCI state information indicating a plurality of transmission setting instruction (TCI) states applicable to a plurality of types of channels, and the first TCI state among the plurality of TCI states and one or more channels. Downlink control information indicating the resource may be transmitted.
  • TCI transmission setting instruction
  • the control unit 110 applies the second TCI state to the one or more channels and applies the second TCI state to the one or more channels.
  • the first TCI state may be applied to the later signal.
  • the transmission / reception unit 120 may transmit TCI status information indicating a plurality of transmission setting instruction (TCI) statuses applicable to a plurality of types of channels.
  • the control unit 110 may control the transmission of downlink control information that indicates one of the plurality of TCI states and does not schedule channels.
  • FIG. 22 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output a baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the transmission / reception unit 220 receives TCI status information (common TCI status pool set / instructed by RRC / MAC CE) indicating a plurality of transmission setting instruction (TCI) states applicable to a plurality of types of channels (UL / DL). However, downlink control information indicating resources (scheduling) of one or more channels (PDSCH / PUCCH / PUSCH) may be received.
  • the control unit 210 determines the first TCI state applied to the signal (channel / RS) after the one or more channels (update timing) based on the TCI state information and the downlink control information, and determines the first TCI state.
  • the second TCI state applied to the above channels may be determined.
  • Each of the first TCI state and the second TCI state is indicated by the downlink control information, and may be one of the plurality of TCI states.
  • the first TCI state is indicated by the first field in the downlink control information, and may be one of the plurality of TCI states.
  • the second TCI state may be indicated by a second field in the downlink control information.
  • the first TCI state may be one of the plurality of TCI states, which is indicated by the downlink control information.
  • the second TCI state may be indicated by downlink control information prior to the downlink control information.
  • the transmission / reception unit 220 provides first TCI status information (common TCI status pool set / instructed by RRC / MAC CE) indicating a plurality of transmission setting instruction (TCI) states applicable to a plurality of types of channels (UL / DL).
  • the downlink control information indicating the first TCI state among the plurality of TCI states and the resource (scheduling) of one or more channels (PDSCH / PUCCH / PUSCH) may be received.
  • the control unit 210 applies the second TCI state to the one or more channels, and the control unit 210 applies the second TCI state to the one or more channels (the one or more channels).
  • the first TCI state may be applied to the signal (channel / RS) after the update timing).
  • the second TCI state may be indicated by downlink control information prior to the downlink control information.
  • the second TCI state may be one TCI state that satisfies the condition among the plurality of TCI states.
  • the transmission / reception unit 220 may receive the medium access control (MAC) control element (CE) indicating the second TCI state.
  • MAC medium access control
  • CE control element
  • the transmission / reception unit 220 receives TCI status information (common TCI status pool set / instructed by RRC / MAC CE) indicating a plurality of transmission setting instruction (TCI) states applicable to a plurality of types of channels (UL / DL). Then, the downlink control information may be received. The control unit 210 determines one of the plurality of TCI states based on the downlink control information, and the downlink control information may not be used for channel (PDSCH / PUSCH) scheduling.
  • TCI status information common TCI status pool set / instructed by RRC / MAC CE
  • TCI transmission setting instruction
  • Whether or not to use the downlink control information for the scheduling may be determined based on at least one of the wireless network temporary identifier used for the downlink control information and the value of the field in the downlink control information. good.
  • the control unit may ignore fields other than the TCI state in the downlink control information.
  • the size of the TCI state field in the downlink control information not used for the scheduling may be larger than the size of the TCI state field in the downlink control information used for the scheduling.
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 23 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the mini slot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots, and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a portion or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a fraction)
  • Future Radio Access FAA
  • RAT New -Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • LTE 802.11 Wi-Fi®
  • LTE 802.16 WiMAX®
  • LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios.
  • UMB Ultra Mobile Broadband
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” such as resolution, selection, selection, establishment, and comparison. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報を受信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネルのリソースと、を示す下りリンク制御情報を受信する受信部と、前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネルの後の信号に前記第1TCI状態を適用する制御部と、を有する。本開示の一態様によれば、QCLに関する情報を適切に決定できる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。
 しかしながら、QCLに関する情報が明らかでないケースがある。QCLに関する情報が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。
 そこで、本開示は、QCLに関する情報を適切に決定する端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報を受信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネルのリソースと、を示す下りリンク制御情報を受信する受信部と、前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネルの後の信号に前記第1TCI状態を適用する制御部と、を有する。
 本開示の一態様によれば、QCLに関する情報を適切に決定できる。
図1は、DL及びULの両方用の共通ビームの一例を示す図である。 図2は、DL用の共通ビーム及びUL用の共通ビームの一例を示す図である。 図3は、ユースケース0の一例を示す図である。 図4は、ユースケース1の一例を示す図である。 図5は、ユースケース2の一例を示す図である。 図6は、例1のタイムラインの一例を示す図である。 図7は、例2のタイムラインの一例を示す図である。 図8A及び8Bは、想定1-1及び1-2の一例を示す図である。 図9は、態様1-2-1の一例を示す図である。 図10は、態様1-2-2の一例を示す図である。 図11は、DCIとそれによってスケジュールされるPDSCHとの間の時間オフセットが閾値より小さい場合の一例を示す図である。 図12は、態様2-2の一例を示す図である。 図13A及び13Bは、態様2-3の一例を示す図である。 図14A及び14Bは、態様2-4における統一TCI状態プールの一例を示す図である。 図15は、態様2-4におけるタイムラインの一例を示す図である。 図16A及び16Bは、態様2-4の変形例1の一例を示す図である。 図17は、態様2-4の変形例2の一例を示す図である。の一例を示す図である。 図18は、態様3-1の一例を示す図である。 図19は、態様3-2の一例を示す図である。 図20は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図21は、一実施形態に係る基地局の構成の一例を示す図である。 図22は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図23は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(パスロスRS)
 PUSCH、PUCCH、SRSのそれぞれの送信電力制御におけるパスロスPLb,f,c(q)[dB]は、サービングセルcのキャリアfのアクティブUL BWP bに関連付けられる下りBWP用の参照信号(RS、パスロス参照RS(PathlossReferenceRS))のインデックスqを用いてUEによって計算される。本開示において、パスロス参照RS、pathloss(PL)-RS、インデックスq、パスロス計算に用いられるRS、パスロス計算に用いられるRSリソース、は互いに読み替えられてもよい。本開示において、計算、推定、測定、追跡(track)、は互いに読み替えられてもよい。
 パスロスRSがMAC CEによって更新される場合、パスロス測定のための、上位レイヤフィルタRSRP(higher layer filtered RSRP)の既存の機構を変更するか否かが検討されている。
 パスロスRSがMAC CEによって更新される場合、L1-RSRPに基づくパスロス測定が適用されてもよい。パスロスRSの更新のためのMAC CEの後の利用可能なタイミングにおいて、上位レイヤフィルタRSRPがパスロス測定に用いられ、上位レイヤフィルタRSRPが適用される前にL1-RSRPがパスロス測定に用いられてもよい。パスロスRSの更新のためのMAC CEの後の利用可能なタイミングにおいて、上位レイヤフィルタRSRPがパスロス測定に用いられ、そのタイミングの前にその前のパスロスRSの上位レイヤフィルタRSRPが用いられてもよい。Rel.15の動作と同様に、上位レイヤフィルタRSRPがパスロス測定に用いられ、UEは、RRCによって設定された全てのパスロスRS候補を追跡(track)してもよい。RRCによって設定可能なパスロスRSの最大数はUE能力に依存してもよい。RRCによって設定可能なパスロスRSの最大数がXである場合、X以下のパスロスRS候補がRRCによって設定され、設定されたパスロスRS候補の中からMAC CEによってパスロスRSが選択されてもよい。RRCによって設定可能なパスロスRSの最大数は4、8、16、64などであってもよい。
 本開示において、上位レイヤフィルタRSRP、フィルタされたRSRP、レイヤ3フィルタRSRP(layer 3 filtered RSRP)、は互いに読み替えられてもよい。
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、PDSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。
 もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。
 もしそのCC上のアクティブDL BWP内にCORESETが設定される場合(適用条件)、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしそのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。
 SRS用デフォルト空間関係/デフォルトPL-RSの適用条件は、SRS用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForSRS)が有効にセットされることを含んでもよい。PUCCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、PUCCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUCCH)が有効にセットされることを含んでもよい。DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUSCH0_0)が有効にセットされることを含んでもよい。
 上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネル毎に規定するのではなく、共通ビームを指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCI状態プール、ジョイント共通TCI状態プール)を想定してもよい。
 図1の例において、RRCは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCI状態プール)を設定する。複数のTCI状態のそれぞれは、SSB、CSI-RS、又はSRSであってもよい。MAC CEは、設定された複数のTCI状態の一部をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の少なくとも1つを指示してもよい。
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCI状態プール(ジョイント共通TCI状態プール)から共通ビーム/統一TCI状態が指示されてもよい。M(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、M個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。
 UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCI状態プール、ULセパレートTCI状態プール及びDLセパレートTCI状態プール、セパレート共通TCI状態プール、UL共通TCI状態プール及びDL共通TCI状態プール)を想定してもよい。
 図2の例において、RRC(パラメータ、情報要素)は、UL及びDLチャネルのそれぞれに対して複数のTCI状態(プール)を設定してもよい。
 MAC CEは、UL及びDLチャネルのそれぞれに対して1以上(例えば、複数)のTCI状態(セット)を選択(アクティベート)してもよい。MAC CEは、TCI状態の2つのセットをアクティベートしてもよい。
 DL DCIは、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。このTCI状態は、1以上のDLチャネルに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。
 UL DCIは、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。このTCI状態は、1以上のULチャネルに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。
 セパレート共通TCI状態プールのユースケースとして、次のユースケース0、1、2が検討されている。
[ユースケース0]
 UEは、最大許容曝露(Maximum Permitted Exposure(MPE))に起因する異なるULビームを用いる。
 図3の例において、パネル#1のULがMPE問題を受け、UEは、ULにパネル#2を用いる。
[ユースケース1]
 UEは、UL信号強度に起因する異なるULビームを用いる。
 図4の例において、UE及びTRP(セル、基地局)#1の間の距離は、UE及びTRP#2の間の距離より長い。ここで、パネル#1のL1-RSRPはパネル#2のL1-RSRPよりも高く、パネル#2のUL送信電力はパネル#1のUL送信電力より高い。UEは、TRP#1からのDLにパネル#1を用い、TRP#2へのULにパネル#2を用いる。
[ユースケース2]
 UEは、ULロードバランスに起因する異なるULビームを用いる。
 図5の例において、パネル#1のL1-RSRPはパネル#2のL1-RSRPよりも高く、パネル#2のUL負荷はパネル#1のUL負荷よりも低い。UEは、TRP#1からのDLにパネル#1を用い、TRP#2へのULにパネル#2を用いる。
 異なる要件を有するより多くのシナリオが検討されると考えられる。例えば、マルチTRP送信、高速鉄道(high speed train(HST))送信、UEが2つのセルに接続する可能性がある期間におけるセル間(inter-cell)モビリティ、などにおいて、各TRP、セル、に対する共通ビームは、異なってもよい。
 この場合、UEは、FR2用のマルチパネルを備えてもよい。この場合、各UEパネルに対する共通ビームが異なってもよい。
 共通ビーム/統一TCI状態フレームワークのDCIレベルビーム指示(DCIに基づくビーム指示)は、MAC CEレベルビーム指示(MAC CEに基づくビーム指示)よりも有望である。Rel.16デフォルトビームは、共通ビーム/統一TCI状態フレームワークのMAC CEレベル指示を可能にしている。現状においてDCIは、共通ビームを切り替えられない。
 もし共通ビームがDCIによって更新され且つその共通ビームがPDCCHに適用される場合、すなわちDCIがPDCCHのビームを更新する場合、次の問題が検討されるべきである。
 共通ビームを指示するDCIの受信が失敗した場合、UEと基地局の間において共通ビームの齟齬がある。
 UEが共通ビームの更新を指示するDCIのフィードバックを送った後に、共通ビームを更新することが好ましい。仕様への影響から、共通ビームの更新のタイムラインが定義され、UEがフィードバックを送った後に共通ビームが更新されることが好ましい。もし共通ビームの更新を指示するDCIがDLアサインメントである場合、フィードバックは、PDSCHのACK又はNACKの送信であってもよい。もし共通ビームの更新を指示するDCIがULグラントである場合、フィードバックは、PUSCH送信であってもよい。
 次の例1及び例2のようなタイムラインにおいて、共通ビームの更新前において、PDSCH/PUCCH/PUSCHのビーム/TCI状態がどのように指示されるかが問題となる。
[例1]
 図6の例において、TCI状態#0から#7を含む共通アクティブTCI状態プール(リスト)が、RRC/MAC CEによって設定/アクティベートされる。TCI状態#0から#7は、TCIフィールドの値000から111にそれぞれ関連付けられる。
 UEは、共通アクティブTCI状態プールの中のTCI#2を指示するDCI(DLアサインメント)を受信する。その後、UEは、そのDCIによってスケジュールされたPDSCHを受信する。その後、UEは、そのPDSCHに対するHARQ-ACK情報をPUCCHにおいて送信する。その後、共通ビームはTCI#2に更新され、全てのチャネルに適用される。
 ここでは、PDSCH/PUCCHにおいて、どのビームが用いられるかが問題となる。
[例2]
 図7の例において、図6と同様の共通アクティブTCI状態プール(リスト)が、RRC/MAC CEによって設定/アクティベートされる。
 UEは、共通アクティブTCI状態プールの中のTCI#2を指示するDCI(ULグラント)を受信する。その後、UEは、そのDCIによってスケジュールされたPUSCHを送信する。その後、共通ビームはTCI#2に更新され、全てのチャネルに適用される。
 ここでは、PUSCHにおいて、どのビームが用いられるかが問題となる。
 共通ビームの更新前において、PDSCH/PUCCH/PUSCHのビーム/TCI状態が明らかでなければ、通信品質の劣化、スループットの劣化などを招くおそれがある。
 そこで、本発明者らは、TCI状態の指示方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。
 本開示において、MAC CE、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、UL TCI状態、統一(unified)TCI状態、統一ビーム、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。
 UL DCI、ULチャネル(PUSCH)をスケジュールするDCI、DCIフォーマット0_x(x=0,1,2,…)、は互いに読み替えられてもよい。DL DCI、DLチャネル(PDSCH)をスケジュールするDCI、DCIフォーマット1_x(x=0,1,2,…)、は互いに読み替えられてもよい。
 本開示において、HARQ-ACK情報、ACK、NACK、は互いに読み替えられてもよい。
 本開示において、リンク方向、下りリンク(DL)、上りリンク(UL)、UL及びDLの一方、は互いに読み替えられてもよい。
 本開示において、プール、セット、グループ、リスト、は互いに読み替えられてもよい。
 本開示において、共通ビーム、統一TCI状態、DL及びULに適用可能なビーム、複数(複数種類)のチャネル/RSに適用されるビーム、PL-RS、は互いに読み替えられてもよい。
 本開示において、RRCによって設定された複数のTCI状態、MAC CEによってアクティベートされた複数のTCI状態、プール、TCI状態プール、アクティブTCI状態プール、共通TCI状態プール、ジョイントTCI状態プール、セパレートTCI状態プール、は互いに読み替えられてもよい。
(無線通信方法)
 以下の少なくとも1つの実施形態は、次のケース1から3の少なくとも1つに適用されてもよい。
[ケース1]
 共通ビームのRRC設定の後、且つMAC CEアクティベーションの前において、ビーム想定は、次の想定1-1から1-3のいずれかであってもよい。
[[想定1-1]]ビーム想定は、設定された共通TCIプールの最低又は最高のTCI状態IDである。
[[想定1-2]]Rel.15/16のルールがビーム想定に用いられる。ビーム想定は、最新のPRACHに関連付けられたSSB/CSI-RSのQCL想定であってもよい。
[[想定1-3]]Rel.15/16のビーム管理が追加でビーム想定に用いられる。ビーム想定は、Rel.15/16の設定/指示されたTCI状態/空間関係であってもよい。
 図8Aの例では想定1-1が用いられる。ビーム想定は、設定された共通TCIプールの最低TCI状態IDである。
[ケース2]
 共通プールのMAC CEアクティベーションの後、且つDCI指示の前において、ビーム想定は、次の想定2-0から2-3のいずれかであってもよい。
[[想定2-0]]ビーム想定は、DCIのTCIフィールドの最低又は最高のコードポイントに対応するアクティブTCI状態である。
[[想定2-1]]ビーム想定は、設定された共通TCIプールの最低又は最高のアクティブTCI状態IDである。
[[想定2-2]]Rel.15/16のルールがビーム想定に用いられる。ビーム想定は、最新のPRACHに関連付けられたSSB/CSI-RSのQCL想定であってもよい。
[[想定2-3]]Rel.15/16のビーム管理が追加でビーム想定に用いられる。ビーム想定は、Rel.15/16の設定/指示されたTCI状態/空間関係であってもよい。
 図8Bの例では想定2-1が用いられる。ビーム想定は、アクティベートされた共通TCIプールの最低TCI状態IDである。
[ケース3]
 DCIが共通ビームを既に指示し、別のDCIが共通ビームの変更を指示する。別のDCIの後、且つビーム変更時間の前において、ビーム想定は第1の実施形態に従ってもよい。
<第1の実施形態>
 共通ビーム/統一TCI状態フレームワークにおいて、MAC CE/RRCによって複数のTCI状態(プール)がアクティベートされ、DCIによって1つの統一TCI状態が選択され、タイミングA又はタイミングAの後において、複数又は全てのUL/DLのチャネル/RSに選択されたDCIが適用されてもよい。
 PDSCHと、PDSCHの共通ビームの更新を指示するDL DCIによってスケジュール/トリガされるPDSCHのHARQ-ACK情報を運ぶPUCCH/PUSCHと、共通ビームの更新を指示するUL DCIによってスケジュール/トリガされるPUSCHと、共通ビームの更新を指示するUL/DL DCIによってトリガされるSRSと、の少なくとも1つのビーム想定は、次の態様1-1及び1-2のいずれかであってもよい。
《態様1-1》
 直前(更新前)の共通ビーム。直前の共通ビームは、共通ビームの更新を指示するDCI(PDCCH)に適用されるTCI状態であってもよいし、そのDCIの前のチャネル(PDSCH/PUCCH/PUSCH)に適用されるTCI状態であってもよい。
《態様1-2》
 共通ビームの更新を指示するDCIによって指示されたビーム。このDCIは次の態様1-2-1及び1-2-2のいずれかに従ってもよい。
[態様1-2-1]
 共通ビームを指示するDCIフィールドは、PDSCH/PUCCH/PUSCHのビームの指示にも用いられてもよい。図9の例において、UEは、図6と同様、DCI、PDSCHを受信し、PUCCHを送信する。PDSCH受信及びPUCCH送信に用いられるビームは、TCI#2であってもよい。
[態様1-2-2]
 共通ビームを指示するDCIフィールドと異なるDCIフィールドが、PDSCH/PUCCH/PUSCHのビームの指示に用いられてもよい。図10の例において、UEは、図7と同様、DCIを受信し、PUSCHを送信する。PUSCH送信に用いられるビームは、TCI#2と異なってもよく、共通ビームを指示するフィールドと異なるTCIフィールドによって指示されてもよい。
 第1の実施形態は、統一TCI状態を指示するDCIと、そのDCIによってスケジュールされるチャネル(PDSCH/PUSCH)との間の時間オフセットが閾値以上である場合に適用されてもよい。
 以上の第1の実施形態によれば、UE及び基地局は、共通ビームを指示するDCIから、その共通ビームの更新までに、適切なビームを用いることができる。
<第2の実施形態>
 態様1-2が用いられる場合、DCIによってスケジュールされるPDSCHのTCI状態は、そのDCIによって指示される。
 DCI復号前において、UEは、あるQCL想定/TCI状態を用いることによって受信信号をバッファするべきであることが問題となる。これは、Rel.15においてPDSCHのデフォルトQCL想定がサポートされた理由である。
 そこで、図11の例のように、Rel.15と同様、DCIとそれによってスケジュールされるPDSCHとの間の時間オフセットが閾値より小さい場合、受信信号をバッファするためにPDSCHのデフォルトQCL想定を用いることが検討されている。
 最低IDを有するCORESETのTCI状態が最適ではない可能性がある。統一TCI状態フレームワークの定義のために、よりよい手段を検討する。
 DCIからPDSCHまで/DCIからPUSCHまでのオフセットの閾値は、Rel.15におけるQCL用時間長(timeDurationForQCL)であってもよいし、UEによって報告される新規UE能力パラメータであってもよいし、基地局によって設定される新規RRCパラメータであってもよい。
 もしDL DCIとPDSCHの間の時間オフセット、又はUL DCIとPUSCHの間の時間オフセットが、閾値より小さい場合、PDSCHと、PUCCH/PUSCH上のHARQ-ACK情報と、PUSCHと、の少なくとも1つのビーム想定は、次の態様2-1から2-4、態様2-4の変形例1及び2、の少なくとも1つに従ってもよい。
《態様2-1》
 ビーム想定は、デフォルトQCL想定である。デフォルトQCL想定はRel.15/16の定義であってもよいし、Rel.17以降に再定義されるデフォルトビームであってもよい。全てのUL/DLのデフォルトビームが合わせられてもよい。例えば、デフォルトビームは最低CORESET IDのQCLタイプD RSであってもよい。
《態様2-2》
 直前(更新前)の共通ビームは、PDSCHの受信と、PUCCH/PUSCH上のHARQ-ACK情報の送信と、PUSCHの送信と、の少なくとも1つのビーム想定に用いられる。直前の共通ビームは、共通ビームの更新を指示するDCI(PDCCH)に適用されるTCI状態であってもよいし、そのDCIの前のチャネル(PDSCH/PUCCH/PUSCH)に適用されるTCI状態であってもよい。
 図12の例において、UEは、図6と同様、DCI、PDSCHを受信し、PUCCHを送信する。DCIとPDSCHの間の時間オフセットは閾値より小さい。直前(更新前)の共通ビーム(直前のDCIによって指示された共通ビーム)は、TCI#1である。DCIは共通ビームをTCI#2へ更新することを指示する。UEはPDSCH受信及びPUCCH送信にTCI#1を用いる。
《態様2-3》
 ビーム想定は、統一TCI状態フレームワーク用の共通(ジョイント)/セパレートのTCI状態プールによって選択されるデフォルトTCI状態である。
 デフォルトTCI状態はルールに従ってもよい。ルールは、アクティブTCI状態プール内の最低又は最高のTCI状態IDであってもよい。
 デフォルトTCI状態は上位レイヤによって設定されてもよい。アクティブTCI状態プール毎のデフォルトTCI状態インデックスが上位レイヤによって設定されてもよい。
 図13Aの例において、RRCによってUL及びDLのための統一TCI状態プールが設定され、MAC CEによって統一TCI状態プールのうちのTCI#0からTCI#5がアクティベートされる。DCIは共通ビームをTCI#2へ更新することを指示する。図13Bの例において、UEは、図6と同様、DCI、PDSCHを受信し、PUCCHを送信する。DCIとPDSCHの間の時間オフセットは閾値より小さい。UEは、アクティブTCI状態のうち最低TCI状態IDに対応するTCI#0をPDSCH受信及びPUCCH送信に用いる。
《態様2-4》
 MAC CEレベル共通TCI状態プールと、DCIレベル共通TCI状態プールと、の両方が設定され、MAC CEレベルTCI状態プールが用いられてもよい。
 図14Aの例において、RRCによってDCIレベル指示用の統一TCI状態プール#1が設定され、MAC CEによって統一TCI状態プール#1のうちのTCI#0からTCI#5がアクティベートされる。さらに、図14Bの例において、RRCによってMAC CEレベル指示用の統一TCI状態プール#2が設定され、MAC CEによって統一TCI状態プール#1のうちのTCI#3がアクティベートされる。図15の例において、UEは、図6と同様、DCI、PDSCHを受信し、PUCCHを送信する。DCIとPDSCHの間の時間オフセットは閾値より小さい。DCIは共通ビームをTCI#2へ更新することを指示する。UEは、MAC CEレベル指示用の統一TCI状態プール#2のうち、アクティベートされたTCI#3を、PDSCH受信及びPUCCH送信に用いる。MAC CEレベル指示用の統一TCI状態プール#2は、PDSCH用のデフォルトQCL想定の指示に用いられる。
《態様2-4の変形例1》
 UEは、MAC CEレベル指示用共通TCI状態プールからMAC CEによってアクティベートされたTCI状態をPDCCH受信に用い、DCIレベル指示用共通TCI状態プールからMAC CE/DCIによってアクティベート/指示されたTCI状態をPDSCH受信に用いてもよい。DCIはDCIのビームを更新しないため、PDCCHのTCI状態をPDCCHによって変更することによる問題は生じない。PDCCHのビームとPDSCHのビームは共通にならない場合がある。
 図16Aの例において、RRCによってDCIレベル指示用の統一TCI状態プール#1が設定され、MAC CEによって統一TCI状態プール#1のうちのTCI#0からTCI#5がアクティベートされる。さらに図16Bの例において、RRCによってMAC CEレベル指示用の統一TCI状態プール#2が設定され、MAC CEによって統一TCI状態プール#1のうちのTCI#3がアクティベートされる。DCIは共通ビームをTCI#2へ更新することを指示する。UEは、DCIレベル指示用の統一TCI状態プール#1のうち、指示されたTCI#2を、PDSCH/PUCCH/CSI-RS/PUSCH/SRSに用いる。UEは、MAC CEレベル指示用の統一TCI状態プール#2のうち、アクティベートされたTCI#3を、PDCCH受信に用いる。
《態様2-4の変形例2》
 UEは、MAC CEレベル指示用共通TCI状態プールからMAC CEによってアクティベートされたTCI状態をPDCCH受信に用い、DCIレベル指示用共通TCI状態プールからMAC CE/DCIによってアクティベート/指示されたTCI状態をPDSCH受信に用いてもよい。DCIはDCIのビームを更新しないため、PDCCHのTCI状態をPDCCHによって変更することによる問題は生じない。PDCCHのビームとPDSCHのビームは共通にならない場合がある。
 MAC CEレベル指示とDCIレベル指示に共通のTCI状態プールが用いられてもよい。DCIレベルビーム指示によって指示されたTCI状態はPDCCH以外に適用されてもよい。PDCCHのTCI状態は、MAC CEレベルビーム指示によってアクティベートされたTCI状態の中からルールに従って選択されてもよい。例えば、ルールは、最低又は最高のTCI状態IDであってもよい。
 図17の例において、RRCによって統一TCI状態プール(ジョイントTCI状態プール)が設定され、MAC CEによって統一TCI状態プールのうちのTCI#0からTCI#5がアクティベートされる。DCIは共通ビームをTCI#2へ更新することを指示する。UEは、指示されたTCI#2を、PDSCH/PUCCH/CSI-RS/PUSCH/SRSに用いる。UEは、MAC CEによってアクティベートされたTCI状態のうち、最低TCI状態IDに対応するTCI#0を、PDCCH受信に用いる。
 態様2-4の変形例2によれば、態様2-4の変形例1よりも上位レイヤのオーバーヘッドを削減できる。
 以上の第2の実施形態によれば、時間オフセットが閾値より小さい場合であっても、UEは、ビームを適切に決定できる。
<第3の実施形態>
 もし送信されるPDSCHデータ(DLデータ)/PUSCHデータ(ULデータ)がない場合、基地局は、ビームの切り替えのためのDCIを送ってもよい。この場合、基地局は、共通ビームの切り替えのために、ダミーPDSCH/PUSCHをスケジュールしてもよい。
 PDSCH/PUSCHなしであっても共通ビーム指示を行うために、新規DCIが用いられてもよい。このDCIは、新規RNTIradio network temporary identifier(RNTI)によってスクランブルされるredundancy check(CRC)を有してもよい。
 PDSCH/PUSCHなしであっても共通ビーム指示を行うために、DCIフォーマット内の幾つかの特別フィールドの特別値が用いられてもよい。
 共通ビーム指示のためのDCIは、次の態様3-0から3-3の少なくとも1つに従ってもよい。
《態様3-0》
 共通TCI状態プール内のTCI状態を指示するために、新規DCIフォーマットが用いられてもよい。
 新規DCIフォーマットは、UE固有(UE-specific)DCIであってもよいし、グループ共通(group common)PDCCHであってもよい。グループ共通DCIにおいて、1つの指示がグループ内の全てのUEに適用されてもよい。複数の指示がグループ内の複数のUEにそれぞれ適用されてもよい。
 新規DCIフォーマットはPDSCH/PUSCHをスケジュールしなくてもよい。新規DCIフォーマットのサイズは、既存のDCIフォーマット0_1、0_2.1_1、1_2のサイズより小さくてもよい。
 新規DCIフォーマットは、既存のDCIフォーマットに基づき新規DCIフィールドを有する拡張であってもよい。例えば、新規DCIフィールドはTCI共通指示であってもよい。もし新規DCIフィールドTCI共通指示が1である場合、UEは、新規DCIフォーマットのうち、TCI状態指示(TCIフィールド)のみに従い、他のDCIフィールドを無視してもよい。もし新規フィールドTCI共通指示が0である場合、UEは、新規DCIフォーマット内の全てのDCIフィールドに従ってもよい(後述の態様3-3のように、新規RNTIが必要とされなくてもよい)。新規DCIフィールドが存在するか否かは、RRCシグナリングによって設定されてもよい。
《態様3-1》
 PDSCH/PUSCHスケジューリングを伴わない共通TCI状態の更新のための、新規RNTIが規定され、UEに設定されてもよい。新規RNTIは、X-RNTI(特別RNTI)であってもよいし、既存RNTI以外のRNTIであってもよい。既存RNTIは、C-RNTI、CS-RNTI、MCS-C-RNTIの少なくとも1つを含んでもよい。
 新規RNTIは、共通TCI状態(共通ビーム)の指示(更新)に用いられPDSCH/PUSCHのスケジューリングに用いられないUE固有DCI(特別DCI)に基づくUE動作と、PDSCH/PUSCHのスケジューリングに用いられるUE固有DCI(通常DCI)との、区別に用いられてもよい。
 X-RNTIによってスクランブルされたcyclic redundancy check(CRC)を有するDCI(UE固有DCI)が、特別DCIと呼ばれてもよい。既存RNTIによってスクランブルされたCRCを有する(UE固有DCI)が、通常DCIと呼ばれてもよい。UE固有DCIは、新規DCIフォーマットであってもよいし、DCIフォーマット0_1であってもよい。
 UEが特別DCIを受信/検出した場合、UEは、次の手順1から3の少なくとも1つに従ってもよい。
[手順1]
 UEは、共通TCI状態の更新のために、特別DCI内のTCIフィールドに従い、特別DCI内の他のフィールドを無視してもよい。特別DCI内のTCIフィールドのサイズは、通常DCI内のTCIフィールドのサイズと同じであってもよい。
[手順2]
 特別DCI内のTCIフィールドのビット数(サイズ)は、通常DCIにおけるTCIフィールドのビット数より多くてもよい。UEは、特別DCI内のTCIフィールドに従ってもよい。UEは、特別DCI内の他のフィールドを無視してもよい。
[手順3]
 特別DCIは、共通TCI状態の更新を指示するための新規DCIフィールドを含んでもよい。新規DCIフィールドは、UL及びDL又はチャネル/RSの種類によって異なるフィールドであってもよい。新規DCIフィールドが存在するか否かは、RRCシグナリングによって設定されてもよい。
 態様3-1において、特別DCIのビット数(サイズ)は、通常DCIのビット数と同じであってもよい。
 図18の例において、特別DCIのサイズは、通常DCIのサイズと同じであってもよい。手順2に従い、特別DCIにおけるTCIフィールドのサイズは、通常DCIにおけるTCIフィールドのサイズより大きくてもよい。UEは、通常DCIのうち、TCIフィールド以外のフィールド(例えば、PUSCHのスケジューリング)を解釈してもよい。UEは、特別DCIのうち、TCIフィールド以外のフィールドを無視してもよい。
《態様3-2》
 UEは、既存(Rel.15/16の)RNTIによってスクランブルされたCRCを有するUE固有DCIを受信してもよい。既存RNTIは、C-RNTI、CS-RNTI、MCS-C-RNTIの少なくとも1つであってもよい。新規RNTIが必要とされなくてもよい。当該DCIにおける幾つかの特別フィールドの幾つかの特別値が復号された場合、UEは、当該DCIを、共通TCI状態の更新に用いられPDSCH/PUSCHのスケジューリングに用いられないDCI(特別DCI)と見なしてもよい。そうでない場合、UEは、当該DCIを、PDSCH/PUSCHのスケジューリングに用いられるDCI(通常DCI)と見なしてもよい。
 特定DCIフォーマットにおいて、次の特別フィールドの特別値の少なくとも1つが、特別DCIの暗示的指示(確認、validation)として規定されてもよい。特定DCIフォーマットは、DCIフォーマット0_1、0_2、1_1、1_2、2_3の少なくとも1つであってもよい。
・周波数ドメインリソース割り当てフィールドの値が、オール0又はオール1にセットされる。
・時間ドメインリソース割り当てフィールドの値が、オール0又はオール1にセットされる。
・周波数ホッピングフラグフィールドの値が、オール0又はオール1にセットされる。
・変調符号化方式(modulation and coding scheme(MCS))フィールドの値が、オール0又はオール1にセットされる。
・新規データインジケータ(NDI)フィールドの値が、オール0又はオール1にセットされる。
・冗長(redundancy)バージョンフィールドの値が、オール0又はオール1にセットされる。
・HARQプロセス番号フィールドの値が、オール0又はオール1にセットされる。
・下りリンク割り当てインジケータ(DAI)フィールドの値が、オール0又はオール1にセットされる。
・PUSCH用送信電力制御(TPC)コマンドフィールドの値が、オール0又はオール1にセットされる。
・SRSリソースインジケータフィールドの値が、オール0又はオール1にセットされる。
・プリコーディング情報及びレイヤ数のフィールドの値が、オール0又はオール1にセットされる。
・アンテナポートフィールドの値が、オール0又はオール1にセットされる。
・CSIリクエストフィールドの値が、オール0又はオール1にセットされる。
 異なるケースに対して異なる値の組み合わせが規定されてもよい。
 態様3-2において、1以上のDCIフィールドの少なくとも1つ(特別DCIフィールド)、又は上位レイヤによって設定されたDCIフィールドが、このDCIが特別DCIであることを示してもよい。
 UEが特別DCIを受信/検出した場合、UEは、次の手順1から3の少なくとも1つに従ってもよい。
[手順1]
 UEは、共通TCI状態の更新のために、特別DCI内のTCIフィールドに従い、特別DCI内の他のフィールドを無視してもよい。特別DCI内のTCIフィールドのサイズは、通常DCI内のTCIフィールドのサイズと同じであってもよい。
[手順2]
 特別DCI内のTCIフィールドのビット数(サイズ)は、通常DCIにおけるTCIフィールドのビット数より多くてもよい。UEは、特別DCI内のTCIフィールドに従ってもよい。UEは、特別DCI内の他のフィールドを無視してもよい。
[手順3]
 特別DCIは、共通TCI状態の更新を指示するための新規DCIフィールドを含んでもよい。新規DCIフィールドは、UL及びDL又はチャネル/RSの種類によって異なるフィールドであってもよい。
 態様3-2において、特別DCIのビット数(サイズ)は、通常DCIのビット数と同じであってもよい。
 図19の例において、特別DCIと通常DCIのそれぞれが、特別DCIフィールドと、TCIフィールドと、他のフィールドと、を含んでもよい。特別DCIのサイズは、通常DCIのサイズと同じであってもよい。特別DCI内の特別DCIフィールドは、特別値を示し、通常DCI内の特別DCIフィールドは、特別値を示さなくてもよい。手順2に従い、特別DCI内のTCIフィールドのサイズは、通常DCI内のSRSリクエストフィールドのサイズより大きくてもよい。UEは、通常DCIのうち、TCIフィールド以外のフィールド(例えば、PUSCHのスケジューリング)を解釈してもよい。UEは、特別DCIのうち、TCIフィールド以外のフィールドを無視してもよい。
《態様3-3》
 UE固有DCIがPDSCH/PUSCHのスケジューリングに用いられず(DLデータ/ULデータを伴わず)且つ共通TCI状態の更新に用いられるか否かを示す新規RRCシグナリング(上位レイヤパラメータ)が、設定されてもよい。
 もし新規RRCシグナリングが設定された場合、態様3-0から3-2の少なくとも1つが適用されてもよい。
 もしこの上位レイヤパラメータが設定された場合のみにおいて、UEは、特別DCIを受信/検出してもよい。特別DCIは、PDSCH/PUSCHのスケジューリングを行わず、共通TCI状態の更新のみを行ってもよい。そうでない場合、UEは、Rel.15/16の動作を行ってもよい。言い換えれば、UEは、共通TCI状態の更新とPDSCH/PUSCHのスケジューリングとのためのDCI(通常DCI)を受信/検出してもよい。
 以上の第3の実施形態によれば、UEは、特別DCIを適切に受信できる。
<第4の実施形態>
 第1から第3の実施形態における少なくとも1つの機能(特徴、feature)に対応するUE能力(capability)が規定されてもよい。UEがこのUE能力を報告した場合、UEは、対応する機能を行ってもよい。UEがこのUE能力を報告し、且つこの機能に対応する上位レイヤパラメータを設定された場合、UEは、対応する機能を行ってもよい。この機能に対応する上位レイヤパラメータ(RRC情報要素)が規定されてもよい。この上位レイヤパラメータが設定された場合、UEは、対応する機能を行ってもよい。
 UE能力は、UEがこの機能をサポートするか否かを示してもよい。
 UE能力は、UEがRRCによって設定される(プール内の)TCI状態の最大数を示してもよい。この数は、UL及びDLの全てに対して報告されてもよいし、UL及びDLのそれぞれに対して別々に報告されてもよい。
 UE能力は、UEがサポートするアクティブTCI状態の最大数を示してもよい。この数は、UL及びDLの全てに対して報告されてもよいし、UL及びDLのそれぞれに対して別々に報告されてもよい。
 UE能力は、UEが、UL及びDLに対して異なるアクティブTCI状態プールをサポートするか否かを示してもよい。
 UE能力は、UEが、デフォルトQCL想定をサポートするか否かを示してもよい。UE能力は、UEが、PDSCH/PUSCHのスケジューリングの時間オフセットが閾値より小さいことをサポートするか否かを示してもよい。
 UE能力は、UEが、PDSCH/PUSCHのスケジューリングに用いられず(DLデータ/ULデータを伴わず)且つ共通TCI状態の指示(更新)に用いられるUE固有DCI(特別DCI)をサポートするか否かを示してもよい。
 以上の第4の実施形態によれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図20は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図21は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示すTCI状態情報を送信してもよい。制御部110は、前記1以上のチャネルの後の信号に適用される第1TCI状態を決定し、前記1以上のチャネルに適用される第2TCI状態を決定し、前記第1TCI状態を示す下りリンク制御情報の送信を制御してもよい。
 送受信部120は、複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報を送信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネルのリソースと、を示す下りリンク制御情報を送信してもよい。制御部110は、前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネルの後の信号に前記第1TCI状態を適用してもよい。
 送受信部120は、複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示すTCI状態情報を送信してもよい。制御部110は、前記複数のTCI状態の1つを指示し且つチャネルのスケジューリングを行わない下り制御情報の送信を制御してもよい。
(ユーザ端末)
 図22は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、複数種類のチャネル(UL/DL)に適用可能な複数の送信設定指示(TCI)状態を示すTCI状態情報(RRC/MAC CEによって設定/指示される共通TCI状態プール)を受信し、1以上のチャネル(PDSCH/PUCCH/PUSCH)のリソース(スケジューリング)を示す下りリンク制御情報を受信してもよい。制御部210は、前記TCI状態情報及び前記下りリンク制御情報に基づいて、前記1以上のチャネル(更新タイミング)の後の信号(チャネル/RS)に適用される第1TCI状態を決定し、前記1以上のチャネルに適用される第2TCI状態を決定してもよい。
 前記第1TCI状態及び前記第2TCI状態のそれぞれは、前記下りリンク制御情報によって指示され、前記複数のTCI状態のうちの1つのTCI状態であってもよい。
 前記第1TCI状態は、前記下りリンク制御情報内の第1フィールドによって指示され、前記複数のTCI状態のうちの1つのTCI状態であってもよい。前記第2TCI状態は、前記下りリンク制御情報内の第2フィールドによって指示されてもよい。
 前記第1TCI状態は、前記下りリンク制御情報によって指示され、前記複数のTCI状態のうちの1つのTCI状態であってもよい。前記第2TCI状態は、前記下りリンク制御情報よりも前の下りリンク制御情報によって指示されてもよい。
 送受信部220は、複数種類のチャネル(UL/DL)に適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報(RRC/MAC CEによって設定/指示される共通TCI状態プール)を受信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネル(PDSCH/PUCCH/PUSCH)のリソース(スケジューリング)をと、を示す下りリンク制御情報を受信してもよい。制御部210は、前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネル(更新タイミング)の後の信号(チャネル/RS)に前記第1TCI状態を適用してもよい。
 前記第2TCI状態は、前記下りリンク制御情報よりも前の下りリンク制御情報によって指示されてもよい。
 前記第2TCI状態は、前記複数のTCI状態のうち、条件を満たす1つのTCI状態であってもよい。
 送受信部220は、前記第2TCI状態を示すmedium access control(MAC) control element(CE)を受信してもよい。
 送受信部220は、複数種類のチャネル(UL/DL)に適用可能な複数の送信設定指示(TCI)状態を示すTCI状態情報(RRC/MAC CEによって設定/指示される共通TCI状態プール)を受信し、下りリンク制御情報を受信してもよい。制御部210は、前記下りリンク制御情報に基づいて前記複数のTCI状態の1つを決定し、前記下りリンク制御情報をチャネル(PDSCH/PUSCH)のスケジューリングに用いなくてもよい。
 前記下りリンク制御情報に用いられる無線ネットワーク一時識別子と前記下りリンク制御情報内のフィールドの値との少なくとも1つに基づいて、前記下りリンク制御情報を前記スケジューリングに用いるか否かを決定してもよい。
 前記下りリンク制御情報を前記スケジューリングに用いないと決定された場合、前記制御部は、前記下りリンク制御情報のうち、前記TCI状態以外のフィールドを無視してもよい。
 前記スケジューリングに用いられない下りリンク制御情報内の前記TCI状態のフィールドのサイズは、前記スケジューリングに用いられる下りリンク制御情報内の前記TCI状態のフィールドのサイズよりも大きくてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図23は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報を受信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネルのリソースと、を示す下りリンク制御情報を受信する受信部と、
     前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネルの後の信号に前記第1TCI状態を適用する制御部と、を有する端末。
  2.  前記第2TCI状態は、前記下りリンク制御情報よりも前の下りリンク制御情報によって指示される、請求項1に記載の端末。
  3.  前記第2TCI状態は、前記複数のTCI状態のうち、条件を満たす1つのTCI状態である、請求項1に記載の端末。
  4.  前記受信部は、前記第2TCI状態を示すmedium access control(MAC) control element(CE)を受信する、請求項1に記載の端末。
  5.  複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報を受信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネルのリソースと、を示す下りリンク制御情報を受信するステップと、
     前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネルの後の信号に前記第1TCI状態を適用するステップと、を有する、端末の無線通信方法。
  6.  複数種類のチャネルに適用可能な複数の送信設定指示(TCI)状態を示す第1TCI状態情報を送信し、前記複数のTCI状態のうちの第1TCI状態と、1以上のチャネルのリソースと、を示す下りリンク制御情報を送信する送信部と、
     前記下りリンク制御情報と前記1以上のチャネルの1つとの間の時間オフセットが閾値よりも小さい場合、前記1以上のチャネルに第2TCI状態を適用し、前記1以上のチャネルの後の信号に前記第1TCI状態を適用する制御部と、を有する基地局。
PCT/JP2020/037259 2020-09-30 2020-09-30 端末、無線通信方法及び基地局 WO2022070345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022553339A JPWO2022070345A5 (ja) 2020-09-30 端末、無線通信方法、基地局及びシステム
EP20956273.5A EP4224903A1 (en) 2020-09-30 2020-09-30 Terminal, radio communication method, and base station
CN202080105744.3A CN116325850A (zh) 2020-09-30 2020-09-30 终端、无线通信方法以及基站
PCT/JP2020/037259 WO2022070345A1 (ja) 2020-09-30 2020-09-30 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037259 WO2022070345A1 (ja) 2020-09-30 2020-09-30 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022070345A1 true WO2022070345A1 (ja) 2022-04-07

Family

ID=80950014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037259 WO2022070345A1 (ja) 2020-09-30 2020-09-30 端末、無線通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4224903A1 (ja)
CN (1) CN116325850A (ja)
WO (1) WO2022070345A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069968A1 (ja) * 2022-09-30 2024-04-04 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2024090900A1 (en) * 2022-10-26 2024-05-02 Samsung Electronics Co., Ltd. Method and apparatus for beam indication and association for control and data channels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259625A1 (en) * 2019-02-12 2020-08-13 Samsung Electronics Co., Ltd. Adapting a number of repetitions for a physical uplink control channel
US20200280940A1 (en) * 2018-08-09 2020-09-03 Lg Electronics Inc. Operation method of terminal and base station in wireless communication system supporting unlicensed band, and apparatus supporting same
US20200288479A1 (en) * 2017-11-15 2020-09-10 Idac Holdings, Inc. Beam management in a wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200288479A1 (en) * 2017-11-15 2020-09-10 Idac Holdings, Inc. Beam management in a wireless network
US20200280940A1 (en) * 2018-08-09 2020-09-03 Lg Electronics Inc. Operation method of terminal and base station in wireless communication system supporting unlicensed band, and apparatus supporting same
US20200259625A1 (en) * 2019-02-12 2020-08-13 Samsung Electronics Co., Ltd. Adapting a number of repetitions for a physical uplink control channel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2005454, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917478 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069968A1 (ja) * 2022-09-30 2024-04-04 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2024090900A1 (en) * 2022-10-26 2024-05-02 Samsung Electronics Co., Ltd. Method and apparatus for beam indication and association for control and data channels

Also Published As

Publication number Publication date
CN116325850A (zh) 2023-06-23
EP4224903A1 (en) 2023-08-09
JPWO2022070345A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2022070344A1 (ja) 端末、無線通信方法及び基地局
WO2022054248A1 (ja) 端末、無線通信方法及び基地局
WO2020183723A1 (ja) ユーザ端末及び無線通信方法
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2022070346A1 (ja) 端末、無線通信方法及び基地局
WO2020217408A1 (ja) ユーザ端末及び無線通信方法
WO2022079860A1 (ja) 端末、無線通信方法及び基地局
WO2022079902A1 (ja) 端末、無線通信方法及び基地局
WO2022079903A1 (ja) 端末、無線通信方法及び基地局
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
JPWO2020144818A1 (ja) ユーザ端末及び無線通信方法
WO2022102605A1 (ja) 端末、無線通信方法及び基地局
WO2022070345A1 (ja) 端末、無線通信方法及び基地局
WO2022070411A1 (ja) 端末、無線通信方法及び基地局
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
WO2022024357A1 (ja) 端末、無線通信方法及び基地局
WO2022024358A1 (ja) 端末、無線通信方法及び基地局
WO2022024301A1 (ja) 端末、無線通信方法及び基地局
WO2021229820A1 (ja) 端末、無線通信方法及び基地局
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2022059072A1 (ja) 端末、無線通信方法及び基地局
WO2022054247A1 (ja) 端末、無線通信方法及び基地局
WO2022044261A1 (ja) 端末、無線通信方法及び基地局
WO2022113284A1 (ja) 端末、無線通信方法及び基地局
WO2022009417A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020956273

Country of ref document: EP

Effective date: 20230502