WO2020248309A1 - 原位纳-微球提高原油采收率的矿场应用方法 - Google Patents

原位纳-微球提高原油采收率的矿场应用方法 Download PDF

Info

Publication number
WO2020248309A1
WO2020248309A1 PCT/CN2019/094594 CN2019094594W WO2020248309A1 WO 2020248309 A1 WO2020248309 A1 WO 2020248309A1 CN 2019094594 W CN2019094594 W CN 2019094594W WO 2020248309 A1 WO2020248309 A1 WO 2020248309A1
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
type
macromolecules
nano
situ
Prior art date
Application number
PCT/CN2019/094594
Other languages
English (en)
French (fr)
Inventor
蒲万芬
刘锐
金发扬
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to US16/764,580 priority Critical patent/US11118102B2/en
Publication of WO2020248309A1 publication Critical patent/WO2020248309A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Definitions

  • the invention relates to the application of in-situ nano-microspheres in oil reservoirs, in particular to a field application method for in-situ nano-microspheres to improve oil recovery, and belongs to the technical fields of colloid and interface chemistry, oilfield chemistry and oilfield exploitation.
  • the reservoir developed by water flooding has low water flooding sweep coefficient, severe water channeling in high-permeability zones, high water content of produced fluid, low water flooding recovery degree, and deep profile control and flooding technology drives high water cut An important technology for stabilizing oil and water in heterogeneous reservoirs.
  • the control and flooding systems commonly used at home and abroad include foam, weak gel, gel dispersion, colloidal dispersion, pre-crosslinked particles and microspheres (Li Shujuan, Zhang Beiming, Li Donglin. The mechanism of fluid flow steering in deep reservoirs in China and Application status[J]. China Petroleum & Petrochemical, 2017(06):8-9).
  • the surfactant aqueous solution and gas are injected into the formation in a certain proportion.
  • the weak gel is cross-linked with low-concentration polymers such as phenolic and organic chromium to form a weakly cross-linked polymer with a formation viscosity of thousands to tens of thousands of mPa ⁇ s (Zhang Bo, Dai Caili, Zhao Juan, etc.
  • the cross-linking agent (especially the high-valent metal ion cross-linking agent) )
  • the pollution to the environment is large, and the post-processing cost of the produced liquid is high.
  • Pre-crosslinked particles are dispersed particles formed by polymerization and crosslinking on the ground, and then granulated, dried and crushed.
  • the ground is crushed into a scale that satisfies the injection (Imqam,A.,Wang,Z.,Bai,B.Preformed-Particle-GelTransport Through HeterogeneousVoid-Space Conduits.SPEJournal,2017,1437-1447);
  • the linked particles are easy to absorb water and settle in the injected water, which affects the injectability and deep spread of the pre-crosslinked particles.
  • Polymer microspheres are polymer circular dispersions with particle diameters ranging from tens of nanometers to hundreds of micrometers. They have a high degree of modifiability, excellent permeability and fluidity. Therefore, the deep control and flooding technology of polymer microspheres is popular in China. Wide attention from foreign researchers. Polymer microspheres are nano-microsphere dispersions prepared indoors. Inverse emulsion polymerization is the most classic preparation method.
  • the method of using amphiphilic macromolecule hybrid nanomaterials can also prepare functional nano-microspheres (Choi S K, Son H A, Kim H T, et al. Nanofluid enhanced oil recovery using hydrophobically associative polymer-coated silica nanoparticles [J].Energy&Fuels,2017,31(8):7777-7782), which requires a multi-step method or a controlled activity method for preparation, which requires strict synthesis conditions and high cost.
  • the polymer microspheres have a large specific surface area. During the pumping process, the liquid absorbed in the near-well zone is easy to aggregate and settle, and the effective concentration of the polymer microspheres also affects its deep control performance.
  • the purpose of the present invention is to provide a mine field application method for in-situ nano-microspheres to improve oil recovery.
  • In-situ nano-microspheres are two water-soluble base fluids that quickly form a spherical dispersion with controllable scale in situ. This method is reliable in principle, cheap and easy to obtain raw materials, and has outstanding economic benefits. It can promote liquid flow diversion, improve the liquid absorption capacity in low-permeability areas, realize effective regulation in high-permeability areas, and drive the efficient development of water drive reservoirs. Industrial application prospects.
  • the present invention adopts the following technical solutions.
  • the mine field application method of the in-situ nano-microspheres is to pump a type A water-soluble macromolecular base fluid in the formation first, and then pump a certain amount of isolation fluid (the isolation fluid slug can be designed according to the actual situation of the mine ), and then pump into the B-type water-soluble macromolecule base fluid.
  • the A and B macromolecules are mixed (contact), driven by the extremely strong hydrogen bond effect, the A and B macromolecules are assembled, and they are quickly constructed in situ to form a nano -Micro-scale spherical dispersion.
  • Nano-microspheres have a certain fluidity control ability and excellent liquid flow steering performance, significantly improve the fluid absorption profile of the heterogeneous layer, realize deep intelligent control and displacement, and greatly improve the oil recovery.
  • a and B macromolecular solutions with a mass concentration of 0.1 to 5.0% with on-site injected water (the concentration of A and B macromolecule solutions on site should be considered for the diffusion and diffusion of A and B macromolecules in the formation. Dispersion effect).
  • a and B type macromolecules produce extremely strong supramolecular hydrogen bonding effect during the contact process of the formation.
  • the hydrogen bonds drive the rapid in-situ construction and formation of nano-microspheres, thereby promoting liquid flow diversion and improving high water-cut oil fields. Recovery factor.
  • the spacer liquid is injected water.
  • step (4) after the type B macromolecule solution is injected, a certain amount of injected water slug is injected to replace it.
  • the treatment distance of the in-situ nano-microspheres in the formation can be adjusted by the size of the isolation liquid slug, so as to realize the in-situ nano-microspheres in the deep part of the reservoir.
  • the properties of the formation oil reservoir are as follows: the temperature is up to 120°C, and the salinity of water is up to 20 ⁇ 10 4 mg/L.
  • the size (particle size) of nano-microspheres is controlled by the type and molecular weight of type A macromolecules and the type of type B macromolecules. According to the heterogeneity and permeability of the reservoir, the corresponding type A macromolecules and Molecular weight and B-type macromolecules can achieve in-situ nano-microsphere scale control.
  • the type A macromolecule is a linear water-soluble polymer with an ethyl ether or propyl ether structure.
  • the type A macromolecules are polypropylene glycol, fatty alcohol polyoxyethylene ether, methallyl alcohol polyoxyethylene ether, and allyl alcohol polyoxyethylene ether.
  • the molecular structural formula of the polypropylene glycol is:
  • the type B macromolecules are water-soluble polymers with polyhydroxyl or polyphenol-based structures.
  • the type B macromolecules are carboxymethyl- ⁇ -cyclodextrin, tannin extract, and tea polyphenols.
  • the molecular structural formula of the tannin extract is:
  • the molecular structural formula of the tea polyphenols is:
  • the fluidity regulator is one of amylose, chitosan hydrochloride, xanthan gum and carboxymethyl cellulose.
  • the oxygen scavenger is thiourea.
  • the said monodisperse nano-microspheres involve 4 types of A macromolecules, 3 types of B macromolecules, A macromolecules and B macromolecules intermolecular assembly, so there are 12 kinds of monodisperse nano-microspheres Molecular structure, the present invention aims to give an exemplary structure.
  • R1 is —(CH 2 CH 2 CH 2 O) a H.
  • R3 is —(CH 2 CH 2 O) b (CH 2 ) d CH 3 .
  • the type A macromolecule is preferably 0.5%, and the type B macromolecule is preferably 0.5%.
  • the fluidity regulator is preferably 0.05%, and the oxygen scavenger is preferably 0.01%.
  • the mechanism of in-situ construction of nano-microspheres is as follows: 1A and B macromolecules are coordination macromolecules that are hydrogen-bonded to each other and have a strong hydrogen bonding effect; 2A certain amount of fluidity adjustment is added to the solution of type A macromolecules The fluidity of the A macromolecule solution is smaller than that of the B macromolecule solution, ensuring that the A and B macromolecules are fully and effectively mixed (contact) in the formation; 3The A and B macromolecules are in contact with each other in the aqueous solution. In the process, A and B have a strong supramolecular hydrogen bond effect, and the hydrogen bond drives the assembly of A and B, and quickly forms nano-microspheres.
  • the in-situ nano-microsphere intelligent control and drive mechanism is as follows: 1 A certain amount of fluidity regulator is added to the type A macromolecular solution to make the fluidity of the type A macromolecular solution smaller than that of the type B macromolecule solution, ensuring that A, Type B macromolecules are fully and effectively mixed (contact) in the formation; 2Affected by the heterogeneity of the formation, the solutions of type A and B macromolecules preferentially enter the hyperpermeable area, so the nano-microspheres are mainly in the original hyperpermeability zone.
  • the present invention has the following beneficial effects:
  • Class A macromolecules are cheap and rich in raw materials, and Class B macromolecules are natural organic polymers with rich sources, low prices, and environmental protection;
  • a and B macromolecules are directly dissolved in mineralized water, and the dissolution time is less than 30 minutes, with good injectability, and can stay in the deep part of the reservoir;
  • the present invention is suitable for oil reservoirs with a temperature of up to 120°C and water salinity up to 20 ⁇ 10 4 mg/L, covering a wide range of oil reservoirs.
  • Figure 1 is a microscopic view of in-situ nano-microspheres.
  • Figure 2 is a microscopic view of in-situ nano-microspheres after aging.
  • Figure 3 shows the formation of in-situ nano-microspheres in porous media and the effect diagram of enhancing oil recovery.
  • In-situ nano-microsphere mine field use method use on-site injection water to add the A and B macromolecules with a mass concentration of 0.5%, and add a fluidity regulator with a mass concentration of 0.05%, 0.01% to the A macromolecule solution
  • Add oxygen scavenger with a mass concentration of 0.01% to the B macromolecular solution stir for 15-30 minutes to ensure full dissolution; first, inject a macromolecular solution of 0.1 to 0.5 times the pore volume (PV) into the formation; Secondly, 0.02-0.05 times the pore volume (PV) of the spacer solution (injected water) is injected; finally, 0.1-0.5 times the pore volume (PV) of the type B macromolecule solution is injected.
  • the A and B macromolecules produce extremely strong supramolecular hydrogen bond effects during the contact process of the formation, and quickly form nano-microspheres in situ.
  • Example 1 Particle size distribution of in-situ nano-microspheres
  • the particle size of the nano-microspheres is uniformly dispersed, with a median particle size of 200nm-50 ⁇ m.
  • the optical microscopic morphology of 3* nano-microspheres constructed by 3#-1 and 3#-2 is shown in Figure 1, with a median diameter of about 500 nm.
  • the in-situ nano-microspheres still maintain a stable spherical structure, showing long-term stability in the reservoir temperature and salinity environment.
  • the microscopic morphology of 3* in-situ nano-microspheres aged at 80°C for 90 days is shown in Figure 2.
  • In-situ nano-microspheres expand slowly during the aging process, and the spherical structure is relatively regular, reflecting temperature and salt resistance.
  • the expanded in-situ nano-microspheres have an average particle size of about 10 ⁇ m and exhibit aggregation behavior.
  • the turning pressure of in-situ nano-microspheres is closely related to the particle size, indicating that in-situ nano-microspheres of different particle sizes can be selected according to the permeability and heterogeneity of the high-permeability area of the reservoir in field applications.
  • the in-situ nano-microspheres repeatedly passed through 5 layers of 100-mesh screens three times, and the turning pressure was basically the same, indicating that the in-situ nano-microspheres have superior shear resistance, which can effectively control the high permeability area and promote the direction of liquid flow. , Enlarge the follow-up fluid sweep coefficient and improve the development effect.
  • the in-situ nano-microspheres form nano-microspheres at the moment of mixing in the porous media, intelligently block and control the high permeability area during the migration process, increase the seepage resistance, promote the subsequent fluid injection into the low permeability area, and expand the fluid's sweep coefficient.
  • the in-situ nano-microspheres increase the oil recovery rate by 8.2%; maintain the core temperature and pressure state, continue water flooding after 7 days of aging, the displacement pressure is significantly higher than the subsequent water flooding pressure It proves that the in-situ nano-microspheres expand during the aging process of the porous media, and the ability to control and drive is further enhanced, the core is re-oiled, and the water is flooded to 98% water content.
  • in-situ nano-microspheres after aging and expansion further improve oil recovery The rate is about 12.5%. After water flooding to 98% water cut, in-situ nano-microspheres can increase oil recovery by 20.7% and cumulative recovery by 60.9%.
  • the formation of in-situ nano-microspheres in porous media and the effect of enhancing oil recovery See Figure 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Colloid Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种原位纳-微球提高原油采收率的矿场应用方法,包括:(1)用现场注入水分别配制质量浓度为0.1~5.0%的A、B类大分子溶液;(2)将0.1~0.5倍孔隙体积的A类大分子溶液注入地层;(3)注入0.02~0.05倍孔隙体积的隔离液段塞;(4)注入0.1~0.5倍孔隙体积的B类大分子溶液;(5)A、B类大分子在地层的接触过程中,通过氢键驱动原位迅速构建形成纳-微球,促使液流转向,提高原油采收率,A类大分子为乙基醚或者丙基醚结构的直链水溶性聚合物,B类大分子为多羟基或者多酚基结构的水溶性聚合物。该方法能够提高低渗区域的吸液能力,实现高渗区域的有效调控。

Description

原位纳-微球提高原油采收率的矿场应用方法 技术领域
本发明涉及原位纳-微球在油藏的应用,特别是涉及原位纳-微球提高原油采收率的矿场应用方法,属胶体与界面化学、油田化学和油田开采技术领域。
背景技术
受地层非均质性的影响,注水开发的油藏水驱波及系数低,高渗条带水窜严重,产出液含水率高,水驱采出程度低,深部调驱技术是驱动高含水非均质油藏稳油控水的重要技术。国内外常用的调驱体系有泡沫、弱凝胶、冻胶分散体、胶态分散胶、预交联颗粒和微球(李淑娟,张倍铭,李东林.国内油层深部液流转向调驱机理及应用现状[J].中国石油石化,2017(06):8-9)。按一定比例将表面活性剂水溶液和气体注入地层,在多孔介质的持续剪切作用下,气体和表面活性剂水溶液生成泡沫。泡沫具有较好的流度控制能力,增加注入压力,改善吸液剖面。气液比是影响泡沫综合性能的重要因素,必须严格控制注气速度和注液速度以获得较佳性能的泡沫体系;另外,矿场用需要大排量、高压的注气设备,所占空间大,成本较高。弱凝胶以酚醛、有机铬等交联剂与低浓度的聚合物发生交联形成的地层粘度为几千~上万mPa·s的弱交联聚合物(张波,戴彩丽,赵娟,等.海上油田酚醛树脂冻胶调剖性能评价[J].油气地质与采收率,2010,5:42-45)。冻胶分散体和胶态分散胶在交联剂的作用下形成宏观尺度(冻胶分散体)和微-介观尺度(胶态分散胶)的分散胶体系,交联剂一般为醋酸铬和柠檬酸铝等。弱凝胶、冻胶分散体、胶态分散胶的共同特征是聚合物体系与交联剂在地层中经过几小时~几天的作用成胶,交联剂(特别是高价金属离子交联剂)对环境的污染大,采出液的后期处理成本高。预交联颗粒是在地面聚合-交联形成的本体凝胶,再经过造粒、烘干和粉碎加工而成的分散颗粒,具有稳定性高、耐高温高盐性能强等特点,但必须在地面粉碎成满足注入性的尺度(Imqam,A.,Wang,Z.,Bai,B.Preformed-Particle-Gel Transport Through Heterogeneous Void-Space Conduits.SPE Journal,2017,1437-1447);另外,预交联颗粒在注入水中易吸水沉降,从而影响预交联颗粒的注入性和深部传播性。
聚合物微球是粒径在几十纳米到数百微米范围的聚合物圆形分散体,具有高度的可修饰性、优异的渗透性与流动性,因此聚合物微球深部调驱技术受到国内外学者的广泛关注。聚合物微球是室内制备的纳-微球分散体,反相乳液聚合法是最经典的制备方法,除聚合单体外,需要大量的乳化剂、油相和引发剂,制备条件比较苛刻;另外采用两亲大分子杂化纳米材料 的方法也可以制备功能性纳-微球(Choi S K,Son H A,Kim H T,et al.Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles[J].Energy&Fuels,2017,31(8):7777-7782),这需要多步法或者活性可控法制备,对合成条件要求严格,成本高。再者,聚合物微球具有大的比表面积在泵入的过程中,在近井地带吸液易聚集沉降,聚合物微球的有效浓度也影响其深部调控性能。
发明内容
本发明的目的在于提供原位纳-微球提高原油采收率的矿场应用方法,原位纳-微球是两种水溶性基液在地层中就地快速形成尺度可控的球形分散体,该方法原理可靠,原材料价廉易得,经济效益突出,能够促使液流转向,提高低渗区域的吸液能力,实现高渗区域的有效调控,驱动水驱油藏的高效开发,具有广阔的工业化应用前景。
为达到以上技术目的,本发明采用以下技术方案。
所述原位纳-微球的矿场应用方法,即在地层中首先泵入A类水溶性大分子基液,其次泵入一定量的隔离液(可根据矿场实际情况设计隔离液段塞),然后泵入B类水溶性大分子基液,A、B类大分子相互混合(接触)时,受极强氢键效应的驱动,A、B大分子发生组装,原位快速构建形成纳-微尺度球形分散体。纳-微球具有一定流度调控能力及优异的液流转向性能,显著改善非均质地层的吸液剖面,实现深部智能调驱,大幅度提高原油的采收率。
原位纳-微球提高原油采收率的矿场应用方法,依次包括以下步骤:
(1)用现场注入水分别配制质量浓度为0.1~5.0%的A、B类大分子溶液(现场配A、B类大分子溶液的浓度,需考虑A、B类大分子在地层的扩散、弥散效应),A类大分子溶液中加入质量浓度为0.05~0.1%的流度调节剂、0.002~0.05%的除氧剂;B类大分子溶液中加入质量浓度为0.002~0.05%的除氧剂;搅拌15min~30min,确保充分溶解;
(2)将0.1~0.5倍孔隙体积的A类大分子溶液注入地层;
(3)注入0.02~0.05倍孔隙体积的隔离液段塞;
(4)注入0.1~0.5倍孔隙体积的B类大分子溶液;
(5)A、B类大分子在地层的接触过程中产生极强的超分子氢键效应,通过氢键驱动原位迅速构建形成纳-微球,从而促使液流转向,提高高含水油田的采收率。
所述步骤(2)中,隔离液为注入水。
所述步骤(4)中,注入B类大分子溶液后,再注入一定量的注入水段塞顶替。
所述原位纳-微球在地层的处理距离可通过隔离液段塞大小调节,从而实现原位纳-微球在油藏的深部调驱。
所述原位纳-微球提高原油采收率的矿场应用方法,地层油藏的性质如下:温度最高达120℃,水的矿化度最高达20×10 4mg/L。
纳-微球的尺度(粒径)受A类大分子的类型和分子量及B类大分子的类型控制,根据油藏的非均质性和渗透率大小,可选择相应的A类大分子与分子量及B类大分子,即可实现原位纳-微球的尺度控制。
所述A类大分子为乙基醚或者丙基醚结构的直链水溶性聚合物。
所述A类大分子为聚丙二醇、脂肪醇聚氧乙烯醚、甲基烯丙醇聚氧乙烯醚、烯丙醇聚氧乙烯醚。
所述的聚丙二醇的分子结构式为:
Figure PCTCN2019094594-appb-000001
其中,x为聚合度。
所述的脂肪醇聚氧乙烯醚、甲基烯丙醇聚氧乙烯醚、烯丙醇聚氧乙烯醚的分子结构式为:
Figure PCTCN2019094594-appb-000002
其中R为烷基链—(CH 2) n CH 3(脂肪醇聚氧乙烯醚)、—CH=CHCH 3(甲基烯丙醇聚氧乙烯醚)或者—CH=CH 2(烯丙醇聚氧乙烯醚);n为聚合度。
所述B类大分子为多羟基或者多酚基结构的水溶性聚合物。
所述B类大分子为羧甲基-β-环糊精、栲胶、茶多酚。
所述的羧甲基-β-环糊精的分子结构式为:
Figure PCTCN2019094594-appb-000003
所述的栲胶的分子结构式为:
Figure PCTCN2019094594-appb-000004
所述的茶多酚的分子结构式为:
Figure PCTCN2019094594-appb-000005
所述的流度调节剂为直链淀粉、壳聚糖盐酸盐、黄原胶、羧甲基纤维素的一种。
所述的除氧剂为硫脲。
所述的单分散纳-微球涉及4类A类大分子,3类B类大分子,A类大分子和B类大分子发生分子间的组装,因此有12种单分散纳-微球的分子结构,本发明旨在给出示范结构。
①聚丙二醇与茶多酚构建的单分散纳-微球的结构为:
Figure PCTCN2019094594-appb-000006
其中,R1为—(CH 2CH 2CH 2O) a H。
②烯丙醇聚氧乙烯醚与羧甲基-β-环糊精构建的单分散纳-微球的结构为:
Figure PCTCN2019094594-appb-000007
其中,R2为—(CH 2CH 2O) b(CH 2) dCH=CH 2
③脂肪醇聚氧乙烯醚与栲胶构建的单分散纳-微球的结构为:
Figure PCTCN2019094594-appb-000008
其中,R3为—(CH 2CH 2O) b(CH 2) dCH 3
上述物质均为市售。
所述原位纳-微球提高原油采收率的矿场应用方法,步骤(1)中,以重量百分比计,所述A类大分子优选为0.5%,所述B类大分子优选为0.5%,所述流度调节剂优选为0.05%,所述除氧剂优选为0.01%。
纳-微球的原位构建机理为:①A、B类大分子是互为氢键耦合的配位大分子,具有极强的氢键效应;②A类大分子溶液中加入一定量的流度调节剂使A类大分子溶液的流度较B类大分子溶液的流度小,保证A、B类大分子在地层中充分有效混合(接触);③A、B类大分子在水溶液中相互接触的过程中,A与B发生极强的超分子氢键效应,氢键驱动A、B发生 组装,迅速形成纳-微球。
原位纳-微球的智能调驱机理为:①A类大分子溶液中加入一定量的流度调节剂使A类大分子溶液的流度较B类大分子溶液的流度小,保证A、B类大分子在地层中充分有效混合(接触);②受到地层非均质性的影响,A、B类大分子溶液均优先进入高渗区域,因此纳-微球主要在高渗条带原位形成,不存在对地层发生误堵;③原位纳-微球在地层的处理距离可通过隔离液段塞大小调节;④纳-微球在高渗条带的吸附及其在运移过程中对孔喉的封堵和调控,增加高渗区域的渗流阻力,从而促使后续流体进入低渗透区域,调控地层的吸液剖面,扩大流体的波及系数,从而实现高、低渗透区域的均衡驱替。
与现有技术相比,本发明具有以下有益效果:
(1)A类大分子价格低廉、原材料丰富,B类大分子为天然有机高分子,来源丰富、价格低廉,绿色环保;
(2)A、B类大分子直接用矿化水溶解,溶解时间小于30min,注入性好,能在油藏深部驻留;
(3)A、B类大分子的固含量大于90%,运输十分方便,配注不受矿场平台大小的限制,施工工艺简单;
(4)基于氢键耦合驱动A、B类大分子在地层中原位构建纳-微球,不需要任何引发剂、乳化剂和交联剂,没有任何副产物生成,原位纳-微球的生成效率高,绿色环保,节能减排的优势十分明显;
(5)单分散纳-微球的粒径可控性强;
(6)本发明适用于温度最高达120℃,水的矿化度最高达20×10 4mg/L的油藏,覆盖油藏的范围十分宽广。
附图说明
图1为原位纳-微球的微观图。
图2为原位纳-微球老化后的微观图。
图3为原位纳-微球在多孔介质中的形成及提高原油采收率效果图。
具体实施方式
下面根据附图和实例进一步说明本发明,以便于本技术领域的技术人员理解本发明。但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,均在保护之列。
原位纳-微球矿场使用方法:用现场注入水分别加入质量浓度为0.5%的A、B类大分子,A类大分子溶液中加入质量浓度为0.05%的流度调节剂,0.01%的除氧剂;B类大分子溶液中加入质量浓度0.01%的除氧剂,搅拌15min~30min,确保充分溶解;首先将0.1~0.5倍孔隙体积(PV)的A类大分子溶液注入地层;其次注入0.02~0.05倍孔隙体积(PV)的隔离液(注入水);最后注入0.1~0.5倍孔隙体积(PV)的B类大分子溶液。A、B类大分子在地层的接触过程中产生极强的超分子氢键效应,原位迅速形成纳-微球。
实施例1原位纳-微球的粒径分布
分别配制矿化度为0.1×10 4mg/L编号1#,5×10 4mg/L编号2#,10×10 4mg/L编号3#,20×10 4mg/L编号4#的矿化水(1#~4#中Ca 2+、Mg 2+浓度为总矿化度的5%),搅拌30min,加入质量浓度0.01%的硫脲,搅拌5min。取两份等体积的矿化水编号1#-1、1#-2,2#-1、2#-2,3#-1、3#-2,4#-1、4#-2,在1#-1中加入0.05%的羧甲基纤维素和0.5%脂肪醇聚氧乙烯醚、1#-2中加入0.5%羧甲基-β-环糊精,在2#-1中加入0.05%的壳聚糖盐酸盐和0.5%聚丙二醇、2#-2中加入0.5%茶多酚,在3#-1中加入0.05%直链淀粉和0.5%甲基烯丙醇聚氧乙烯醚、3#-2中加入0.5%栲胶,在4#-1中加入0.05%黄原胶和0.5%脂肪醇聚氧乙烯醚、4#-2中加入0.5%栲胶,搅拌20min;将1#-1、2#-1、3#-1、4#-1溶液按等体积比分别加入1#-2、2#-2、3#-2、4#-2大分子溶液中原位形成纳-微球编号1*、2*、3*、4*。纳-微球的粒径分散均匀,中值粒径200nm~50μm。3#-1与3#-2构建的3*纳-微球的光学显微形貌如图1所示,中值粒径500nm左右。
实施例2原位纳-微球的长期稳定性能
取实施例1中制备的原位纳-微球1*、2*、3*、4*分别放置在40℃、80℃、60℃、120℃,老化90d,光学显微镜观察老化后原位纳-微球的结构形貌,原位纳-微球仍然保持稳定的球形结构,在油藏温度和矿化度环境表现出长期稳定性能。3*的原位纳-微球在80℃,老化90d的微观形貌如图2所示,原位纳-微球在老化过程中缓慢膨胀,球形结构比较规整,体现耐温抗盐性能,膨胀的原位纳-微球平均粒径10μm左右,存在聚集行为。
实施例3原位纳-微球的液流转向性能
取实施例1中制备的原位纳-微球1*、2*、3*、4*,采用驱替装置以0.2ml/min的注入速度使原位纳-微球通过5层100目的筛网,由于原位纳-微球经过重叠后在筛网上堆积,当注入压力达到某一定值时,由于原位纳-微球具有良好的弹性,原位纳-微球开始通过多层筛网,此时对应的压力称为转向压力(如表1所示)。原位纳-微球的转向压力与粒径密切相关,表明在矿场应用中可根据油藏的高渗流区域渗透率大小和非均质性,选择不同粒径的原位纳- 微球。另外,原位纳-微球重复三次通过5层100目的筛网,转向压力基本一致,表明原位纳-微球具备超强的抗剪切性能,能有效调控高渗透区域,促使液流转向,扩大后续流体波及系数,提高开发效果。
表1 原位纳-微球的转向压力(实验温度80℃)
Figure PCTCN2019094594-appb-000009
实施例4原位纳-微球在多孔介质中的形成及提高原油采收率潜力
按照实施例1中方案分别配制4#-1、4#-2大分子溶液待用;人造一维短岩心1根(尺寸
Figure PCTCN2019094594-appb-000010
水测渗透率为740mD,平均孔隙度23.5%,原始含油饱和度67.3%;注入水矿化度20×10 4mg/L,其中Ca 2+、Mg 2+浓度为总矿化度的5%),实验温度90℃,原油黏度47.3mPa·s,固定驱替速度0.2mL/min。在水驱阶段,受不利的水油流度比的影响,水驱采出程度低,含水率98%的原油采收率40.2%。
首先注入0.2PV的4#-1大分子溶液,其次注入0.03PV的注入水(隔离液),注入压力变化不明显,含水率几乎没有变化,证明4#-1大分子溶液主要进入高渗区域。随后注入0.2PV的4#-2大分子溶液,在注入的初期压力保持稳定,随着注入量的增加,压力逐渐上升,重新出油,表明4#-1中A类大分子与4#-2中B类大分子在多孔介质混合瞬间形成纳-微球,在运移过程中对高渗区域智能封堵和调控,增加渗流阻力,促使后续流体注入低渗透区域,扩大流体的波及系数,后续水驱至含水率为98%,原位纳-微球提高原油采收率8.2%;保持岩心的温度和压力状态,老化7天后继续水驱,驱替压力比后续水驱的压力明显上升,证明原位纳-微球在多孔介质老化过程中膨胀,调驱能力进一步增强,岩心重新出油,水驱至含水率98%,老化膨胀后的原位纳-微球进一步提高原油采收率约12.5%。水驱至含水率为98%后,原位纳-微球提高原油采收率20.7%,累积采收率60.9%,原位纳-微球在多孔介质中的形成及提高原油采收率效果见图3。

Claims (10)

  1. 原位纳-微球提高原油采收率的矿场应用方法,依次包括以下步骤:
    (1)用现场注入水分别配制质量浓度为0.1~5.0%的A、B类大分子溶液,A类大分子溶液中加入质量浓度为0.05~0.1%的流度调节剂、0.002~0.05%的除氧剂;B类大分子溶液中加入质量浓度为0.002~0.05%的除氧剂;搅拌15min~30min,确保充分溶解;
    (2)将0.1~0.5倍孔隙体积的A类大分子溶液注入地层;
    (3)注入0.02~0.05倍孔隙体积的隔离液段塞;
    (4)注入0.1~0.5倍孔隙体积的B类大分子溶液;
    (5)A、B类大分子在地层的接触过程中产生极强的超分子氢键效应,通过氢键驱动原位迅速构建形成纳-微球,从而促使液流转向,提高高含水油田的采收率。
  2. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述A类大分子为乙基醚或者丙基醚结构的直链水溶性聚合物,所述B类大分子为多羟基或者多酚基结构的水溶性聚合物。
  3. 如权利要求2所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述A类大分子为聚丙二醇、脂肪醇聚氧乙烯醚、甲基烯丙醇聚氧乙烯醚或烯丙醇聚氧乙烯醚,所述B类大分子为羧甲基-β-环糊精、栲胶或茶多酚。
  4. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述流度调节剂为直链淀粉、壳聚糖盐酸盐、黄原胶、羧甲基纤维素的一种。
  5. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述除氧剂为硫脲。
  6. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述步骤(2)中,隔离液为注入水。
  7. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述步骤(4)中,注入B类大分子溶液后,再注入一定量的注入水段塞顶替。
  8. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,所述原位纳-微球在地层的处理距离通过隔离液段塞大小调节。
  9. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,地层油藏的性质如下:温度最高达120℃,水的矿化度最高达20×10 4mg/L。
  10. 如权利要求1所述的原位纳-微球提高原油采收率的矿场应用方法,其特征在于,纳-微球的尺度受A类大分子的类型和分子量及B类大分子的类型控制,根据油藏的非均质性和渗透率大小,选择相应的A类大分子与分子量及B类大分子,实现原位纳-微球的尺度控制。
PCT/CN2019/094594 2019-06-14 2019-07-03 原位纳-微球提高原油采收率的矿场应用方法 WO2020248309A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,580 US11118102B2 (en) 2019-06-14 2019-07-03 Mine application method for in-situ nano-microspheres to increase crude oil recovery rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910515010.1 2019-06-14
CN201910515010.1A CN110242265B (zh) 2019-06-14 2019-06-14 原位纳-微球提高原油采收率的矿场应用方法

Publications (1)

Publication Number Publication Date
WO2020248309A1 true WO2020248309A1 (zh) 2020-12-17

Family

ID=67887119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094594 WO2020248309A1 (zh) 2019-06-14 2019-07-03 原位纳-微球提高原油采收率的矿场应用方法

Country Status (3)

Country Link
US (1) US11118102B2 (zh)
CN (1) CN110242265B (zh)
WO (1) WO2020248309A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114687714A (zh) * 2022-04-12 2022-07-01 中国矿业大学 一种纳米颗粒复合低矿化度水提高co2注入能力的方法
CN116050293A (zh) * 2022-12-30 2023-05-02 常州大学 一种确定稠油泡沫调驱技术参数最优数值指示图版的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102516652B1 (ko) * 2022-05-06 2023-04-03 주식회사 젠트리바이오 페놀 화합물이 결합된 펜타갈로일 글루코스 유도체 및 이의 항암 및 항당뇨 용도
CN114611180B (zh) * 2022-05-12 2022-08-09 北京龙软科技股份有限公司 基于地质测量保障系统的矿山智能化管控平台建设方法
CN115093843A (zh) * 2022-06-28 2022-09-23 中国石油大学(华东) 一种自适应深部调驱体系及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756370A (en) * 1987-04-06 1988-07-12 Texaco Inc. Lignin amine surfactant system followed by sequential polymer slugs
CN1152587A (zh) * 1995-12-20 1997-06-25 四川联合大学 聚合物驱油剂的制备方法
CN101314711A (zh) * 2008-07-18 2008-12-03 中国石油大学(华东) 弹性颗粒调驱剂、驱油体系以及驱油方法
CN102140337A (zh) * 2011-01-04 2011-08-03 中国石油大学(华东) 一种疏水缔合羟乙基纤维素驱油剂
US20130130950A1 (en) * 2009-12-21 2013-05-23 Yiyan Chen Hydrogen bonding material for oilfield application
CN104650842A (zh) * 2015-01-29 2015-05-27 中国石油天然气股份有限公司 一种调驱组合物及调驱方法
CN108661612A (zh) * 2017-03-27 2018-10-16 中国石油化工股份有限公司 一种高矿化度油藏水驱提高采收率的方法
CN109403932A (zh) * 2017-08-16 2019-03-01 中国石油化工股份有限公司 降低吸附损耗的驱油方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703521B2 (en) * 2008-02-19 2010-04-27 Schlumberger Technology Corporation Polymeric microspheres as degradable fluid loss additives in oilfield applications
CN102251763B (zh) * 2011-06-03 2014-07-02 中国石油天然气股份有限公司 注水开发稠油油藏复合调驱采油方法
CN103897121B (zh) * 2014-04-08 2017-11-28 西南石油大学 AM/AA/N‑β‑CD聚合物‑离子液[bquin]BF4复合粘土稳定剂及其合成方法
GB201507480D0 (en) * 2015-04-30 2015-06-17 Johnson Matthey Plc Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods
EP3322768B1 (en) * 2015-07-13 2020-01-08 Saudi Arabian Oil Company Polysaccharide coated nanoparticle well treatment compositions comprising ions
CN112920782A (zh) * 2015-07-13 2021-06-08 沙特阿拉伯石油公司 稳定化的包含离子的纳米粒子组合物
WO2017015185A1 (en) * 2015-07-17 2017-01-26 Schlumberger Technology Corporation High temperature and high pressure cement retarder composition and use thereof
CN108329420B (zh) * 2017-01-17 2020-09-04 中国石油化工股份有限公司 低张力聚合物微球调驱剂及其制备方法和应用
US10655057B2 (en) * 2017-05-12 2020-05-19 Saudi Arabian Oil Company Methods and materials for treating subterranean formations using a three-phase emulsion based fracturing fluid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756370A (en) * 1987-04-06 1988-07-12 Texaco Inc. Lignin amine surfactant system followed by sequential polymer slugs
CN1152587A (zh) * 1995-12-20 1997-06-25 四川联合大学 聚合物驱油剂的制备方法
CN101314711A (zh) * 2008-07-18 2008-12-03 中国石油大学(华东) 弹性颗粒调驱剂、驱油体系以及驱油方法
US20130130950A1 (en) * 2009-12-21 2013-05-23 Yiyan Chen Hydrogen bonding material for oilfield application
CN102140337A (zh) * 2011-01-04 2011-08-03 中国石油大学(华东) 一种疏水缔合羟乙基纤维素驱油剂
CN104650842A (zh) * 2015-01-29 2015-05-27 中国石油天然气股份有限公司 一种调驱组合物及调驱方法
CN108661612A (zh) * 2017-03-27 2018-10-16 中国石油化工股份有限公司 一种高矿化度油藏水驱提高采收率的方法
CN109403932A (zh) * 2017-08-16 2019-03-01 中国石油化工股份有限公司 降低吸附损耗的驱油方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114687714A (zh) * 2022-04-12 2022-07-01 中国矿业大学 一种纳米颗粒复合低矿化度水提高co2注入能力的方法
CN116050293A (zh) * 2022-12-30 2023-05-02 常州大学 一种确定稠油泡沫调驱技术参数最优数值指示图版的方法
CN116050293B (zh) * 2022-12-30 2023-08-08 常州大学 一种确定稠油泡沫调驱技术参数最优数值指示图版的方法

Also Published As

Publication number Publication date
CN110242265A (zh) 2019-09-17
US20210189221A1 (en) 2021-06-24
CN110242265B (zh) 2021-02-26
US11118102B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2020248309A1 (zh) 原位纳-微球提高原油采收率的矿场应用方法
Kang et al. Progress of polymer gels for conformance control in oilfield
US11015109B2 (en) Particulate profile control agent self-adaptive to size of formation pore throat and preparation method thereof
CN102603966B (zh) 用于油田调驱的交联聚合物微球及其制备方法
Chen et al. Investigation on matching relationship and plugging mechanism of self-adaptive micro-gel (SMG) as a profile control and oil displacement agent
CN103555305B (zh) 一种超支化缓膨性调剖颗粒及其制备方法
WO2017050024A1 (zh) 一种油气田用新型无机微细颗粒强化泡沫体系及其制备方法
CN102485830A (zh) 一种核壳型无机/有机聚合物复合微球调剖驱油剂
CN106047324A (zh) 适用于低渗透高温高盐油藏的强化冻胶分散体深部调驱剂
Pu et al. CO2-responsive preformed gel particles with interpenetrating networks for controlling CO2 breakthrough in tight reservoirs
CN103498643A (zh) 一种用于高含水油藏的复合段塞深部堵水方法
CN106893571B (zh) 一种水包油乳状液驱油剂
CN104989347A (zh) 一种无机凝胶调剖技术
CN105670593B (zh) 一种新的Cr3+聚合物凝胶及其与水交替注入调驱方法
WO2020248310A1 (zh) 深部调驱用聚合物单分散纳-微球及制备方法
CN111636848B (zh) 一种提高聚合物驱后油藏采收率的方法
Cui et al. A novel PPG enhanced surfactant-polymer system for EOR
CN106947450A (zh) 一种具有低初始粘度的深部调驱剂及其制备方法
CN109899044A (zh) 一种调驱洗交替注入提高原油采收率的方法
CN112694885A (zh) 高活性减阻剂、适用于页岩油藏的自渗吸增能提采型滑溜水压裂液体系及其制备方法与应用
CN105131173A (zh) 一种缓膨胀聚合物微球深部调驱剂及制备方法
CN113337260B (zh) 一种阳离子冻胶深部调剖体系及其制备方法
CN103967466B (zh) Pgz油田关停井恢复开采及增产新技术
CN114806523B (zh) 一种多重乳状液冻胶复合调堵体系及其制备方法与应用
CN103194193B (zh) 乳化沥青可控破乳堵水剂及制作方法和利用堵水剂堵水的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932468

Country of ref document: EP

Kind code of ref document: A1