WO2020248138A1 - 样本检测方法及样本分析仪 - Google Patents

样本检测方法及样本分析仪 Download PDF

Info

Publication number
WO2020248138A1
WO2020248138A1 PCT/CN2019/090770 CN2019090770W WO2020248138A1 WO 2020248138 A1 WO2020248138 A1 WO 2020248138A1 CN 2019090770 W CN2019090770 W CN 2019090770W WO 2020248138 A1 WO2020248138 A1 WO 2020248138A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
tested
scattered light
platelets
red blood
Prior art date
Application number
PCT/CN2019/090770
Other languages
English (en)
French (fr)
Inventor
代勇
易秋实
刘忠刚
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201980075478.1A priority Critical patent/CN113015903A/zh
Priority to PCT/CN2019/090770 priority patent/WO2020248138A1/zh
Publication of WO2020248138A1 publication Critical patent/WO2020248138A1/zh
Priority to US17/537,265 priority patent/US20220082551A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/12Coulter-counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N2015/012
    • G01N2015/018
    • G01N2015/1019
    • G01N2015/1024
    • G01N2015/1029
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1402Data analysis by thresholding or gating operations performed on the acquired signals or stored data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/492Determining multiple analytes

Definitions

  • the application relates to the field of blood cell analysis, in particular to a sample detection method for detecting red blood cells and platelets in a blood sample and a corresponding sample analyzer.
  • Blood cell analysis is one of the most widely used analysis tests in hospital clinical testing.
  • the measured parameters can be divided into three series: white blood cell line, red blood cell line (red blood cell (RBC) and hemoglobin) and platelet (PLT).
  • RBC red blood cell
  • PLT platelet
  • impedance method or optical method is generally used.
  • both of the above two methods have some drawbacks.
  • some abnormal samples such as low-value PLT samples
  • the PLT histogram and the RBC histogram, which makes the algorithm unable to accurately cut PLT and RBC.
  • the histogram can not obtain accurate PLT measurement results.
  • the accuracy of low-value PLT is another important clinical blood routine index, which becomes the main disadvantage of impedance measurement.
  • fluorescent dyes are needed to stain the cells, and a special diluent is also needed to spheronize the cells, so the use cost is high, which is not conducive to the promotion of optical methods in clinical practice.
  • the first aspect of the present application provides a sample detection method for detecting red blood cells and platelets in a blood sample, the method including:
  • the first detection result indicates that the red blood cells and/or platelets in the blood sample to be tested are abnormal
  • the first detection result and/or the second detection result may include the result of at least one parameter among red blood cell count, platelet count, average red blood cell volume, average platelet volume, and red blood cell volume distribution width, or the result thereof The result of combining the calculated parameters.
  • the abnormality may be that the number of platelets in the first sample solution to be tested is less than a predetermined threshold.
  • the diluent can maintain the original form of red blood cells and platelets in the blood sample to be tested.
  • the at least two kinds of scattered light signals may include at least one of axial light loss, forward scattered light signal, middle angle scattered light signal, high angle scattered light signal, side scattered light signal, and back scattered light signal. Two kinds.
  • the axial light loss, the forward scattered light signal, the middle angle scattered light signal, the high angle scattered light signal, the side scattered light signal, and the backscattered light signal The scattering angles are 0° ⁇ 1°, 1° ⁇ 10°, 10° ⁇ 20°, 20° ⁇ 70°, 70° ⁇ 110° and 110° ⁇ 160°.
  • the at least two kinds of scattered light signals may include at least one, especially at least two, of a forward scattering signal, a middle-angle scattering signal, and a high-angle scattering signal.
  • the at least two kinds of scattered light signals may include forward scattering signals and mid-angle scattering signals or include forward scattering signals and high-angle scattering signals.
  • the light irradiation may be polarized light irradiation
  • the at least two scattered light signals include axial light loss, forward scattered light signal, and mid-angle light loss caused by the polarized light irradiation of particles in the sample liquid.
  • the at least two kinds of scattered light signals may include at least one, especially at least two, of a specific polarization state signal of a forward scattering signal, a middle angle scattering signal, and a high angle scattering signal.
  • the obtaining the second detection result of red blood cells and platelets in the second sample solution to be tested according to the at least two scattered light signals may include:
  • the method may include: when the first detection result indicates that the red blood cells and/or platelets in the blood sample to be tested are abnormal, calculating according to the first detection result and the second detection result
  • the final detection result of red blood cells and platelets in the blood sample to be tested that is, the final detection result of at least one parameter among red blood cell count, platelet count, average red blood cell volume, average platelet volume, and red blood cell volume distribution width, or a combination thereof
  • the final detection result of the parameter, or the second detection result is determined as the final detection result of red blood cells and platelets in the blood sample to be tested.
  • the method may further include: when the first detection result indicates that the red blood cells and/or platelets in the blood sample to be tested are normal, determining the first detection result as the blood sample to be tested The final test results of the red blood cells and platelets.
  • the method may further include: outputting final detection results of red blood cells and platelets of the blood sample to be tested.
  • the second aspect of the application provides a sample analyzer, including:
  • a sampling device having a pipette with a pipette nozzle and a drive device for driving the pipette to quantitatively suck blood samples through the pipette nozzle;
  • the sample preparation device has a reaction tank and a liquid supply part, wherein the reaction tank is used to receive the blood sample sucked by the sampling device, and the liquid supply part supplies the diluent to the reaction tank so as to be sucked by the sampling device
  • the blood sample of is mixed with the diluent provided by the liquid supply part in the reaction tank to prepare a sample liquid to be tested;
  • the impedance detection device includes a first flow chamber with a hole with electrodes, the impedance detection device detects the DC impedance generated when the particles in the sample solution to be tested pass through the hole, and outputs information reflecting the particles passing through the hole Electrical signal;
  • the optical detection device has a light source, a second flow chamber, and a light collector, wherein the particles in the sample liquid to be tested after the dilution liquid treatment can flow in the flow chamber, and the light emitted by the light source illuminates the first Two particles in the flow chamber to generate at least two scattered light signals, and the light collector is used for collecting the at least two scattered light signals;
  • a conveying device for conveying the sample solution to be tested that has been processed by the diluent in the reaction cell to the impedance detection device and the optical detection device;
  • the processor is in communication connection with the sampling device, the sample preparation device, the impedance detection device, the optical detection device, and the transport device and is used for:
  • the first detection result indicates that the red blood cells and/or platelets in the blood sample to be tested are abnormal
  • the first detection result and/or the second detection result may include a final detection result of at least one parameter among red blood cell count, platelet count, average red blood cell volume, average platelet volume, and red blood cell volume distribution width Or the final test result of the parameters calculated by the combination thereof.
  • the abnormality may be that the number of platelets in the first sample solution to be tested is less than a predetermined threshold.
  • the first flow chamber and the second flow chamber may be configured as the same flow chamber having a hole with an electrode.
  • the diluent can maintain the original form of the red blood cells and the platelets in the blood sample.
  • the at least two kinds of scattered light signals may include at least one of axial light loss, forward scattered light signal, middle angle scattered light signal, high angle scattered light signal, side scattered light signal, and back scattered light signal. Two kinds.
  • the axial light loss, the forward scattered light signal, the middle angle scattered light signal, the high angle scattered light signal, the side scattered light signal, and the backscattered light signal The scattering angles are 0° ⁇ 1°, 1° ⁇ 10°, 10° ⁇ 20°, 20° ⁇ 70°, 70° ⁇ 110° and 110° ⁇ 160°.
  • the at least two scattered light signals may include at least one, especially at least two, of a forward scattered signal, a medium-angle scattered signal, and a high-angle scattered signal.
  • the at least two kinds of scattered light signals may include forward scattering signals and mid-angle scattering signals or include forward scattering signals and high-angle scattering signals.
  • the light source may be configured as a light source that emits polarized light
  • the at least two scattered light signals include axial light loss, forward scattered light signals, At least two of the specific polarization state signals of the middle-angle scattered light signal, the high-angle scattered light signal, the side scattered light signal, and the back scattered light signal.
  • the at least two kinds of scattered light signals include at least one, especially at least two, of a specific polarization state signal of a forward scattering signal, a middle-angle scattering signal, and a high-angle scattering signal.
  • the processor may be used for:
  • the processor may be configured to: when the first detection result indicates that the red blood cells and/or platelets in the blood sample to be tested are abnormal, according to the first detection result and the second detection result Obtain the final test results of red blood cells and platelets in the blood sample to be tested, that is, the final test results of at least one parameter among red blood cell count, platelet count, average red blood cell volume, average platelet volume, and red blood cell volume distribution width or a combination calculation
  • the obtained final detection result of the parameter or the second detection result is determined as the final detection result of the red blood cells and platelets in the blood sample to be tested.
  • the processor may be configured to: when the first detection result indicates that the red blood cells and/or platelets in the blood sample to be tested are normal, determine the first detection result as the blood to be tested Final test results of red blood cells and platelets in the sample.
  • the sample analyzer may further include an output device communicatively connected with the processor for outputting the final test results of the red blood cells and platelets of the blood sample to be tested.
  • the method for detecting red blood cells and platelets in blood samples and the sample analyzer can achieve accurate classification and/or counting of RBC and PLT, especially in the environment of ordinary diluents, to achieve accurate classification and/or RBC and PLT. Or count.
  • the present application can improve the accuracy of impedance measurement, and achieve accurate classification and/or counting of the RBC and PLT of abnormal samples in a common diluent environment.
  • Figure 1 is a histogram obtained by using impedance method to detect RBC and PLT;
  • Figure 2A is an RBC histogram obtained by using impedance method to detect RBC and PLT of normal samples
  • Figure 2B is a PLT histogram obtained by using impedance method to detect RBC and PLT of normal samples
  • Figure 3 is a PLT histogram obtained by using impedance method to detect RBC and PLT of abnormal samples
  • Figure 4 is a scatter plot of forward scattered light signal (FSC) and fluorescence signal (FL) obtained by using fluorescence method to detect RBC and PLT of blood samples;
  • FSC forward scattered light signal
  • FL fluorescence signal
  • FIG. 5 is a schematic structural diagram of a sample analyzer with an optical detection device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a sample analyzer with an impedance detection device according to another embodiment of the application.
  • FIG. 7 is a schematic flowchart of a sample detection method for detecting red blood cells and platelets in a blood sample provided by the first embodiment of the application;
  • FIG. 8 is a schematic diagram of the scattering angles of various scattered light signals in an embodiment of the application.
  • FSC forward scattered light signal
  • MAS mid-angle scattered light signal
  • FIG. 10 is a scatter plot of forward scattered light signal (FSC) and high angle scattered light signal (WAS) obtained according to the sample detection method provided by the first embodiment of the present application;
  • FSC forward scattered light signal
  • WAS high angle scattered light signal
  • FIG. 11 is a schematic flowchart of a sample detection method for detecting red blood cells and platelets in a blood sample provided by the second embodiment of the application.
  • impedance method or fluorescence optical method is generally used in blood analyzers to measure RBC and PLT in blood samples.
  • the impedance method is based on the Coulter principle.
  • the diluted blood sample is passed through a small hole, and a constant current source is applied on both sides of the small hole.
  • Each cell passing through the small hole causes a change in the electrical impedance of the liquid in the small hole, thereby generating Electric pulse.
  • the histogram is one-dimensional information, that is, only the volume information of the cell, as shown in Figure 1.
  • the left side of the dotted line is the PLT histogram
  • the right side of the dotted line is the RBC histogram. Since the diameter of RBC particles is about 3 times that of PLT, and the number of RBC particles is about 30 times that of PLT, the PLT histogram is on the left side of the RBC histogram, and the area enclosed by the horizontal axis is much smaller than that of RBC.
  • the dotted line in Figure 1 is the dividing line of the RBC and PLT histograms. Normalize the RBC and PLT histograms and draw them separately to form the common RBC histogram and PLT histogram on the blood cell analyzer, as shown in Figures 2A and 2B.
  • Figure 2A shows the impedance method.
  • Figure 2B is the PLT histogram obtained by detecting the RBC and PLT of the normal sample using the impedance method.
  • the fluorescence optical method can overcome this defect.
  • the fluorescence method is based on flow cytometry. The diluted and stained samples are squeezed by the sheath flow through the optical detection zone in sequence. Each cell is irradiated by the excitation light source, and the forward scatter signal (representing the cell volume) and the fluorescence signal (representing the nucleic acid content in the cell) are obtained in the optical system to generate a two-dimensional scatter plot to divide RBC and PLT And calculation.
  • the two-dimensional scatter plot of the optical method has one more dimension of information, so that PLT and RBC can be accurately divided on the two-dimensional scatter plot, as shown in Figure 4.
  • fluorescent dyes are needed to stain the cells, and a special diluent is also needed to spheronize the cells, so the use cost is high, which is not conducive to the promotion of optical methods in clinical practice.
  • this application proposes a sample detection method and sample analyzer that only use scattered light information to detect red blood cells and platelets in a blood sample.
  • the sample detection method and sample analyzer can be implemented in a common diluent environment Accurate classification and counting of RBC and PLT, especially the RBC and PLT of abnormal samples can be accurately classified and counted in the environment of ordinary diluent.
  • the method and sample analyzer proposed in this application can also improve the accuracy of impedance measurement.
  • the sample analyzer 100 at least includes a sampling device (not shown), a sample preparation device 110, an optical detection device 120, a conveying device 130, and a processor 140.
  • the sampling device has a pipette with a pipette nozzle and has a driving device for driving the pipette to quantitatively suck blood samples through the pipette nozzle. Further, the sampling device is driven by its driving device after the blood sample is drawn and moved to the reaction cell 111 of the sample preparation device 110, and the drawn blood sample is injected into the reaction cell 111.
  • the sample preparation device 110 has at least one reaction cell 111 and has a liquid supply part (not shown), wherein the reaction cell 111 is used to receive the blood sample drawn by the sampling device, and the liquid supply part supplies the diluent
  • the reaction tank 111 is provided so that the blood sample drawn by the sampling device and the diluent provided by the liquid supply part react in the reaction tank to prepare a blood sample to be tested.
  • the liquid supply part may be used to inject appropriate diluent into the reaction tank to process particles in the blood sample, thereby preparing a blood sample to be tested for subsequent testing.
  • the diluent is a common diluent necessary for a blood cell analyzer to maintain the original form of the red blood cells and the platelets in the blood sample, and there is no need to use special diluents that make RBC and PLT spherical.
  • the diluent may include ingredients such as sodium chloride, phosphate buffer, preservative, etc.
  • the diluent is not limited to one, and can be selected according to needs, and will not be repeated here.
  • the optical detection device 120 has a light source 121, a flow chamber 122 and light collectors 123 and 124.
  • the light source 121 may emit natural light or light of a specific wavelength band, and is not limited to one. Alternatively, the light source 121 may also be a polarized light source to emit polarized light in a specific polarization state.
  • the flow chamber 122 has an orifice 1221, and the particles of the sample liquid to be tested after being processed by the diluent in the sample preparation device 110 can flow in the flow chamber 122 and pass through the orifice 1221 one by one. The light emitted by the light source 121 irradiates the particles in the flow chamber 122 to generate optical signal information.
  • the light collectors 123 and 124 are used to collect the optical signal information.
  • the optical signal information may include at least two of axial light loss, forward scattered light signal, mid-angle scattered light signal, high-angle scattered light signal, side scattered light signal, and back scattered light signal.
  • the optical signal information includes the axial light loss, the forward scattered light signal, the middle angle scattered light signal, the high angle scattered light signal, the side scattered light signal, and the At least two of the signals of the specific polarization state of the backscattered light signal.
  • the optical detection device 120 includes at least an axial light loss concentrator, a forward scattered light signal concentrator, a middle angle scattered light signal concentrator, a high angle scattered light signal concentrator, and a side scattered light signal concentrator. And at least two light collectors in the backscattered light signal light collector.
  • the light collector is configured as a photodetector, such as a photodiode or a photomultiplier tube.
  • a photodetector such as a photodiode or a photomultiplier tube.
  • the forward scattered light emitted by the blood cells flowing in the flow chamber 122 is received by the photodiode (forward scattered light concentrator) 123 through the condenser 126 and the pinhole 127, and the side scattered light It is received by the photomultiplier tube (side scattered light concentrator) 124 through the condenser lens 126, the dichroic mirror 128, the optical film 129, and the pinhole 127.
  • the optical signals output from the light collectors 123 and 124 are respectively sent to the processor 140 after being amplified by the amplifier 141 and analog signal processing such as waveform processing.
  • the axial light loss, the forward scattered light signal, the middle angle scattered light signal, the high angle scattered light signal, the side scattered light signal, and the back scattered light signal The scattering angles are 0° ⁇ 1°, 1° ⁇ 10°, 10° ⁇ 20°, 20° ⁇ 70°, 70° ⁇ 110° and 110° ⁇ 160°.
  • the axial light loss collector, the forward scattered light signal collector, the middle angle scattered light signal collector, the high angle scattered light signal collector, and the side scattered light signal collector are respectively configured to receive the aforementioned scattered light Angle of scattered light signal.
  • the optical detection device 120 includes at least two of a forward scattered light signal concentrator, a middle-angle scattered light signal concentrator, and a high-angle scattered light signal concentrator to receive forward scattered light signals, At least two of the angle scattering signal, the high angle scattering signal or the forward scattering signal, the middle angle scattering signal, and the high angle scattering signal and the specific polarization state signal at least two scattered light signals, so as to improve the detection result of the red blood cells and platelets Accuracy.
  • the conveying device 130 is used to convey the blood sample to be tested that has been processed by the diluent in the reaction tank 111 to the optical detection device 120.
  • the processor 140 is communicatively connected with the sampling device, the sample preparation device 110, the optical detection device 120, and the transport device 130 and is configured to obtain the optical signal information from the optical detection device 120 and process the optical signal information , In order to obtain the detection result of the particles in the blood sample to be tested.
  • the processor 140 may have an A/D converter, not shown, for converting an analog signal provided by the optical detection device 120 into a digital signal.
  • the processor 140 is configured to implement the sample detection method according to the present application, which will be described in detail below.
  • the aforementioned processor 140 may be an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (Digital Signal Processor, DSP), or a Digital Signal Processing Device (Digital Signal Processing Device, DSPD). , Programmable logic device (ProgRAMmable Logic Device, PLD), field programmable gate array (Field ProgRAMmable Gate Array, FPGA), central processing unit (Central Processing Unit, CPU), controllers, microcontrollers, microprocessors At least one. It is understandable that, for different devices, the electronic devices used to implement the above-mentioned processor functions may also be other, which is not specifically limited in the embodiment of the present application.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable logic device
  • FPGA field programmable gate array
  • CPU Central Processing Unit
  • controllers microcontrollers
  • microprocessors At least one. It is understandable that, for different devices, the electronic devices used to implement the above-mentioned processor functions may also
  • the sample analyzer 100 may further include an impedance detection device 150, which includes a flow chamber 151 with a hole 152 with an electrode 153, and the impedance detection device 150 detects the sample liquid to be tested.
  • the DC impedance generated when the particles pass through the hole 152, and an electrical signal reflecting the information when the particles pass through the hole is output.
  • the sampling device is driven by its driving device and moved to the reaction tank 111 of the sample preparation device 110, and the sucked blood sample is injected into the reaction tank 111.
  • the conveying device 130 can also convey the blood sample to be tested that has been processed by the diluent in the reaction cell 111 to the impedance detection device 150, that is, to the flow chamber 151.
  • the impedance detection device 150 may also be provided with a sheath fluid tank (not shown) for supplying sheath fluid to the flow chamber 151.
  • the sample liquid to be tested flows under the sheath liquid, and the small holes 152 change the flow of the sample liquid to be measured into a trickle, so that the particles (formed parts) contained in the sample liquid to be tested pass through the small holes 152 one by one. .
  • the electrode 153 is electrically connected to a DC power supply 154, and the DC power supply 154 supplies DC power between the pair of electrodes 153. During the period when the DC power supply 154 provides DC power, the impedance between the pair of electrodes 153 can be detected.
  • the resistance signal representing the impedance change is amplified by the amplifier 155 and sent to the processor 140.
  • the size of the resistance signal corresponds to the volume (size) of the particles. Therefore, the signal processing of the resistance signal by the processor 140 can obtain the results of the classification and counting of particles in the blood sample to be tested, especially the classification and counting results of red blood cells and platelets.
  • the flow chamber 122 of the optical detection device 120 and the flow chamber 152 of the impedance detection device 150 may be the same flow chamber to save space.
  • the flow cell 152 of the impedance detection device 150 can be used as the flow cell 122 of the optical detection device 120 at the same time.
  • the flow chamber 122 of the optical detection device 120 and the flow chamber 152 of the impedance detection device 150 may also be two independent flow chambers.
  • the blood sample analyzer 100 may further include an output device (not shown) communicatively connected to the processor 140, configured to receive and display the blood sample analysis result and/or the processor 140 from the processor 140 A scatter plot composed of at least two types of optical signal information.
  • an output device communicatively connected to the processor 140, configured to receive and display the blood sample analysis result and/or the processor 140 from the processor 140 A scatter plot composed of at least two types of optical signal information.
  • FIG. 7 is a sample detection method for detecting red blood cells and platelets in a blood sample provided by the first embodiment of the application. As shown in FIG. 7, a sample detection method 200 for detecting red blood cells and platelets in a blood sample includes the following steps:
  • step S210 a sample solution to be tested containing a blood sample to be tested and a diluent is prepared.
  • the sample liquid to be tested is prepared in the sample preparation device 110 of the sample analyzer 100.
  • the sample preparation device 110 has at least one reaction cell 111 and a liquid supply part (not shown).
  • the sampling device is driven by its driving device after the blood sample is drawn and moved to the reaction cell 111 of the sample preparation device 110, and then the liquid supply part provides the diluent to the reaction cell 111, so that the sampling device The sucked blood sample reacts with the diluent provided by the liquid supply part in the reaction tank to prepare a blood sample to be tested.
  • the diluent provides suitable pH, conductivity and osmotic pressure for the blood sample to be tested to ensure the integrity of the cell shape without hemolysis; in addition, the diluent is also used to clean the remaining substances in the last test sample , To ensure the cleanliness of the sampling needle, pipeline and flow chamber of the sample analyzer to prevent cross contamination; on the other hand, the diluent should be filled in the middle of the pipeline during the temporary stop of the sample analyzer to prevent foreign matter such as external dust from entering the instrument and causing malfunction.
  • the diluent is a common diluent necessary for a blood cell analyzer to maintain the original shape of the red blood cells and the platelets in the blood sample, rather than a special diluent that makes RBC and PLT spherical.
  • the diluent may include ingredients such as sodium chloride, phosphate buffer, and preservative.
  • the diluent is not limited to one, and can be selected according to needs. Repeat it again.
  • Step S220 irradiate the sample liquid to be tested with light in the optical detection area.
  • the transport device 130 of the sample analyzer 100 transports the blood sample to be tested after the diluent treatment in the reaction cell 111 to the flow chamber 122 of the optical detection device 120,
  • the particles of the sample solution processed by the diluent can flow in the flow chamber 122 and pass through the aperture 1221 one by one.
  • the light emitted by the light source 121 irradiates the particles in the flow chamber 122 to generate optical signal information.
  • Step S230 Collect at least two kinds of scattered light signals generated by light irradiation of particles in the sample liquid to be tested, that is, scattered light signals with specific scattering angles.
  • the optical detection device 120 transmits the scattered light signal output by the optical detection device 120 to the processor 140, so that the processor 140 can process the scattered light signal.
  • the scattered light signal may include axial light loss, forward scattered light signal, mid-angle scattered light signal, high-angle scattered light signal, side scattered light signal, and backscattered light signal. At least two.
  • the scattered light signal includes at least one, especially at least two, of a forward scattering signal, a middle-angle scattering signal, and a high-angle scattering signal. More preferably, the at least two kinds of scattered light signals may include a forward scattered signal and a mid-angle scattered signal or include a forward scattered signal and a high-angle scattered signal.
  • the scattering angle in the embodiments of the present application refers to the center of the overlapping area between the sample flow and the excitation beam in the flow chamber as the vertex of the angle, and the first side of the angle with the propagation direction of the excitation beam as The propagation direction of the scattered light emitted by the particles at the vertex is the second side of the angle, and the angle formed by the vertex and the two sides. If there is no explanation to the contrary, the scattering angle shall refer to this explanation.
  • the present application defines the scattering angle of the scattered light signal as follows, as shown in FIG. 8, where: the scattering angle of the axial light loss is: 0°-1°; the forward scattered light signal The scattering angle of the medium-angle scattered light signal is: 1° ⁇ 10°; the scattering angle of the medium-angle scattered light signal is: 10°-20°; the scattering angle of the high-angle scattered light signal is: 20° ⁇ 70°; the lateral direction The scattering angle of the scattered light signal is 70° ⁇ 110°; and the scattering angle of the backscattered light signal is 110° ⁇ 160°.
  • any two or all of the forward scatter signal, the mid-angle scatter signal, and the high-angle scatter signal are collected for subsequent classification of red blood cells and platelets in the blood sample, and the above three are selected.
  • At least two of the scattered light signals can more effectively and accurately classify red blood cells and platelets.
  • using at least two of the forward scatter signal, the mid-angle scatter signal, and the high-angle scatter signal to obtain a scatter diagram of red blood cells and platelets there are clearer red blood cell and platelet dividing lines, and the result of classification More precise.
  • the light irradiation may be natural light or light of a specific wavelength band, and polarized light irradiation of a specific polarization state may also be selected.
  • the scattered light signal is the axial light loss, forward scattered light signal, and mid-angle scattered light signal generated by the particles in the sample liquid due to the polarized light irradiation. , High-angle scattered light signals, side scattered light signals, and backscattered light signals with specific polarization states.
  • any two or all of the specific polarization state signals of the forward scatter signal, the mid-angle scatter signal, and the high-angle scatter signal are collected for subsequent analysis of the red blood cells and the red blood cells in the blood sample. Platelets are classified to obtain a more effective and accurate classification of red blood cells and platelets.
  • step S240 the red blood cells and platelets in the blood sample to be tested are classified according to the at least two kinds of scattered light signals.
  • the processor 140 receives the scattered light signal from the optical detection device 120 and processes it to obtain a classification result of red blood cells and platelets in the blood sample to be tested.
  • the step of classifying the red blood cells and the platelets may include: generating a two-dimensional or three-dimensional scatter plot of particles in the blood sample according to the at least two kinds of scattered light signals; Based on the two-dimensional or three-dimensional scatter diagram, the red blood cells and platelets in the blood sample are classified.
  • FIG. 9 is a scatter plot of forward scatter (FSC) light signal and mid-angle scatter (MAS) light signal.
  • Figure 10 is a scatter plot of forward scatter (FSC) light signals and high-angle scatter (WAS) light signals.
  • the detection results of predetermined parameters of the red blood cells and the platelets can also be obtained based on the at least two kinds of scattered light signals.
  • the predetermined parameters may include at least one parameter among red blood cell count, platelet count, average red blood cell volume MCV, average platelet volume MPV, and red blood cell volume distribution width RDW, and other parameters obtained by combining the foregoing parameters.
  • the method 200 may further include outputting a classification result of red blood cells and platelets of the blood sample to be tested and/or the predetermined parameter.
  • the method 200 for detecting red blood cells and platelets in a blood sample and the corresponding sample analyzer according to the first embodiment of the present application can achieve accurate classification and counting of RBC and PLT, especially in the environment of ordinary diluents. Classification and counting.
  • the method 300 includes:
  • Step S310 preparing a first sample solution to be tested containing a blood sample to be tested and a diluent.
  • the step S310 can refer to the step S210 in the method 200 provided in the first embodiment of the present application.
  • further improvements and adjustments can be made according to the method of preparing the sample liquid to be tested by the impedance method, which will not be repeated here.
  • Step S320 allowing the first sample solution to be tested to flow in a flow chamber having a hole with electrodes, and detecting electrical signals generated when particles in the first sample solution to be tested pass through the hole.
  • the first sample solution to be tested is sent to the flow chamber 151 of the impedance detection device 150 via the transport device 130.
  • the sheath fluid tank of the impedance detection device 150 provides the sheath fluid to the flow chamber 151.
  • the sample fluid to be tested flows under the sheath fluid.
  • the small hole 152 turns the flow of the first sample fluid into a trickle, so that the first sample fluid.
  • the particles (formed components) contained in the liquid pass through the small holes 152 one by one, and then pass through the electrodes 153 on the small holes 152 to generate impedance changes, that is, electrical signals.
  • the resistance signal representing the impedance change is amplified by the amplifier and sent to the processor 140.
  • Step S330 Obtain a first detection result of red blood cells and platelets in the first sample solution to be tested according to the electrical signal.
  • the processor 140 obtains an electrical signal from the impedance detection device 150, and the size of the electrical signal corresponds to the volume (size) of the particle.
  • the processor 140 performs signal processing on the electrical signal to obtain the sample solution to be tested.
  • the first test result of red blood cells and platelets refers to the detection result of red blood cells and platelets obtained by the impedance method.
  • the first detection result may include the result of at least one parameter among the red blood cell count, the platelet count, the average red blood cell volume, the average platelet volume, and the red blood cell volume distribution width, or a result of a parameter calculated by a combination thereof.
  • Step S340 Determine whether the red blood cells and/or platelets in the blood sample to be tested are abnormal according to the first detection result.
  • the abnormality may mean that the number of platelets in the blood sample to be tested is less than a predetermined threshold.
  • the predetermined threshold When the number of platelets in the blood sample to be tested is less than the predetermined threshold, the first detection result will appear as shown in FIG. 3
  • PLT and RBC histogram there is often no obvious boundary at the junction of the PLT histogram and the RBC histogram, and the low-value PLT histogram is jagged, which makes the algorithm unable to accurately cut the PLT and RBC histogram, and thus cannot obtain accurate PLT measurement results.
  • step S350 preparing a second sample solution to be tested containing the blood sample to be tested and diluent, or The second sample solution to be tested is prepared from the first sample solution to be tested, that is, the second sample solution to be tested can be re-prepared in the reaction cell 111 of the sample preparation device 110 or directly from the first sample solution.
  • step S360 the second sample solution to be tested is irradiated with light in the optical detection area
  • step S370 the second sample solution to be tested is collected At least two kinds of scattered light signals generated by the particles due to light irradiation
  • step S380 based on the at least two kinds of scattered light signals, obtain a second detection result of red blood cells and platelets in the second sample solution to be tested.
  • the second detection result may also include the result of at least one parameter among the red blood cell count, the platelet count, the average red blood cell volume, the average platelet volume, and the red blood cell volume distribution width or the result of a parameter calculated by a combination thereof.
  • step S360 to step S380 reference may be made to step S220 to step S240 in the method 200 provided in the first embodiment of this application, which will not be repeated here.
  • step S390a is executed, and the to-be-tested result is obtained according to the first detection result and the second detection result.
  • the final detection result of red blood cells and platelets in the blood sample that is, the second detection result obtained by the light scattering method can be used to correct the first detection result obtained by the impedance method.
  • the classification results of RBC and PLT can be obtained more accurately by combining impedance method and light scattering method.
  • the RBC and PLT scatter plots are obtained by light scattering method, and after the analysis of RBC and PLT clusters, the RBC and PLT impedance method histograms are accurately divided into RBC and PLT groups, thereby assisting RBC and PLT impedance channels to obtain more accurate Measurement results.
  • the second detection result can also be directly determined as the final detection result of red blood cells and platelets in the blood sample to be tested.
  • step S390b is executed, and the first test result is determined as the final result of the red blood cells and platelets in the blood sample to be tested. Test results.
  • step S390 outputting the final detection result of red blood cells and platelets in the blood sample to be tested.
  • each step in the method 300 according to the second embodiment of the present application may refer to the corresponding explanations and descriptions in the above-mentioned method 200 according to the first embodiment of the present application, and will not be repeated here.
  • the method for detecting red blood cells and platelets in a blood sample and the corresponding sample analyzer according to the second embodiment of the present application can accurately classify and count the RBC and PLT of abnormal samples in a common diluent environment.
  • the method and sample analyzer provided in the second embodiment of the present application can improve the accuracy of impedance measurement.
  • this application also proposes a sample detection method for detecting red blood cells and platelets in a blood sample.
  • the difference between the method and the sample detection method provided in the second embodiment of this application lies in whether the blood sample to be tested is abnormal or not.
  • the impedance method and the light scattering method proposed in this application are used to detect the blood sample to be tested, and the first detection result of the impedance method and the second detection result of the light scattering method are obtained. Then, according to the actual situation, the first detection result and the second detection result are used. 2.
  • the test result is the final test result of red blood cells and platelets in the blood sample to be tested.

Abstract

一种检测血液样本中的红细胞和血小板的样本检测方法及样本分析仪。该样本检测方法包括:制备含待测血液样本和稀释液的第一待测样本液;利用阻抗法求取第一待测样本液中的红细胞和血小板的第一检测结果;当第一检测结果表明血液样本异常时,制备含待测血液样本和稀释液的第二待测样本液或者从第一待测样本液制备第二待测样本液;在光学检测区对第二待测样本液进行光照射;收集第二待测样本液中的粒子因光照射所产生的至少两种散射光信号;根据至少两种散射光信号,求取第二待测样本液中的红细胞和血小板的第二检测结果。根据本申请能够实现RBC和PLT的准确分类,尤其是能够实现在普通稀释液环境下对异常样本的RBC和PLT进行准确的分类。

Description

样本检测方法及样本分析仪 技术领域
本申请涉及血液细胞分析领域,具体涉及一种检测血液样本中的红细胞和血小板的样本检测方法及一种相应的样本分析仪。
背景技术
血细胞分析是医院临床检验应用非常广泛的分析检测之一,其测量获得的参数可分为三大系列:白细胞系、红细胞系(红细胞(RBC)和血红蛋白)和血小板(PLT)。目前,在血细胞分析中进行RBC和PLT的测量时,一般采用阻抗法或光学法。
但是上述两种方法均存在一些弊端,例如在阻抗法中对于某些异常样本、如低值PLT样本,其PLT直方图与RBC直方图交界处往往没有明显界限,导致算法无法准确切割PLT与RBC直方图,进而不能获取准确的PLT测量结果。而低值PLT的准确性又是临床重点关注的血常规指标,这成为阻抗法测量的主要缺点。另外,在荧光法中,需要荧光染料对细胞染色,而且还需要使用特殊的稀释液对细胞进行球形化处理,所以使用成本较高,不利于光学法在临床的推广。
因此,目前RBC和PLT的检测方法存在上述问题,需要对所述方法进一步改进。
发明内容
本申请第一方面提供了一种检测血液样本中的红细胞和血小板的样本检测方法,所述方法包括:
制备含待测血液样本和稀释液的第一待测样本液;
使所述第一待测样本液在具有一带电极的孔的流动室中流动并检测所述第一待测样本液中的粒子通过所述孔时产生的电信号;
根据所述电信号求取所述第一待测样本液中的红细胞和血小板的第一检测结果;
根据所述第一检测结果判断所述待测血液样本中的红细胞和/或血小板是否异常;
当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,
制备含所述待测血液样本和稀释液的第二待测样本液或者从所述第一待测样本液制备第二待测样本液;
在光学检测区对所述第二待测样本液进行光照射;
收集所述第二待测样本液中的粒子因光照射所产生的至少两种散射光信号;
根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
示例性地,所述第一检测结果和/或所述所述第二检测结果可以包括红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的结果或其组合计算得到的参数的结果。
示例性地,所述异常可以为所述第一待测样本液中的血小板的数量小于预定阈值。
示例性地,所述稀释液能保持所述待测血液样本中的红细胞和血小板的原始形态。
示例性地,所述至少两种散射光信号可以包括轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号及后向散射光信号中的至少两种。
示例性地,所述轴向光损失、所述前向散射光信号、所述中角散射光信号、所述高角散射光信号、所述侧向散射光信号以及所述后向散射光信号的散射角度分别为0°~1°、1°~10°、10°~20°、20°~70°、70°~110°以及110°~160°。
示例性地,所述至少两种散射光信号可以包括前向散射信号、中角散射信 号、高角散射信号中的至少一种、尤其是至少两种。优选地,所述至少两种散射光信号可以包括前向散射信号和中角散射信号或者包括前向散射信号和高角散射信号。
示例性地,所述光照射可以为偏振光照射,所述至少两种散射光信号包括所述样本液中的粒子因偏振光照射所产生的轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号以及后向散射光信号的特定偏振态信号中的至少两种。示例性地,所述至少两种散射光信号可以包括前向散射信号、中角散射信号、高角散射信号的特定偏振态信号中的至少一种、尤其是至少两种。
示例性地,所述根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果可以包括:
根据所述至少两种散射光信号生成所述第二待测样本液中的粒子的二维或三维散点图;
基于所述二维或三维散点图,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
示例性地,所述方法可以包括:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,根据所述第一检测结果和所述第二检测结果求取所述待测血液样本中的红细胞和血小板的最终检测结果,即红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的最终检测结果或其组合计算得到的参数的最终检测结果,或者将所述所述第二检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
示例性地,所述方法还可以包括:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板正常时,将所述第一检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
示例性地,所述方法还可以包括:输出所述待测血液样本的红细胞和血小板的最终检测结果。
本申请第二方面提供了一种样本分析仪,包括:
采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取血液样本;
样本制备装置,具有反应池和供液部,其中,所述反应池用于接收采样装置所吸取的血液样本,所述供液部将稀释液提供给反应池,从而由所述采样装置所吸取的血液样本与由所述供液部提供的稀释液在所述反应池中混合,以制备成待测样本液;
阻抗检测装置,包括具有一带电极的孔的第一流动室,所述阻抗检测装置检测所述待测样本液中的粒子通过所述孔时产生的直流阻抗,并输出反映粒子通过孔时的信息的电信号;
光学检测装置,具有光源、第二流动室以及集光器,其中,经稀释液处理后的待测样本液中的粒子可在所述流动室内流动,所述光源所发出的光照射所述第二流动室中的粒子以产生至少两种散射光信号,所述集光器用于收集所述至少两种散射光信号;
输送装置,用于将所述反应池中经稀释液处理后的待测样本液输送到所述阻抗检测装置和所述光学检测装置中;
处理器,与所述采样装置、所述样本制备装置、所述阻抗检测装置、所述光学检测装置以及所述输送装置通信连接并且用于:
指示所述样本制备装置制备含待测血液样本和稀释液的第一待测样本液;
指示所述输送装置将制备的第一待测样本液输送至所述第一流动室;
从所述阻抗检测装置获取所述第一待测样本液通过所述阻抗检测装置的第一流动室所产生的电信号;
根据所述电信号求取所述第一待测样本液中的红细胞和血小板的第一检测结果;
根据所述第一检测结果判断所述待测血液样本中的红细胞和/或血小板是否异常;
当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,
指示所述样本制备装置制备含所述待测血液样本和稀释液的第二待测样本液或者从所述第一待测样本液制备第二待测样本液;
指示所述输送装置将制备的第二待测样本液输送至所述第二流动室;
从所述光学检测装置获取所述第二待测样本液中的粒子在所述光学检测装置的第二流动室中因光照射所产生的至少两种散射光信号,并且
根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
示例性地,所述第一检测结果和/或所述所述第二检测结果可以包括红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的最终检测结果或其组合计算得到的参数的最终检测结果。
示例性地,所述异常可以为所述第一待测样本液中的血小板的数量小于预定阈值。
示例性地,所述第一流动室和所述第二流动室可以构成为同一个具有一带电极的孔的流动室。
示例性地,所述稀释液能保持所述血液样本中所述红细胞和所述血小板的原始形态。
示例性地,所述至少两种散射光信号可以包括轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号及后向散射光信号中的至少两种。
示例性地,所述轴向光损失、所述前向散射光信号、所述中角散射光信号、所述高角散射光信号、所述侧向散射光信号以及所述后向散射光信号的散射角度分别为0°~1°、1°~10°、10°~20°、20°~70°、70°~110°以及110°~160°。
示例性地,所述至少两种散射光信号可以包括前向散射信号、中角散射信号、高角散射信号中的至少一种、尤其是至少两种。优选地,所述至少两种散射光信号可以包括前向散射信号和中角散射信号或者包括前向散射信号和高角散射信号。
示例性地,所述光源可以构成为发出偏振光的光源,所述至少两种散射光信号包括所述样本液中的粒子因偏振光照射所产生的轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号以及后向散射光信号的特定偏振态信号中的至少两种。
示例性地,所述至少两种散射光信号包括前向散射信号、中角散射信号、高角散射信号的特定偏振态信号中的至少一种、尤其是至少两种。
示例性地,所述处理器可以用于:
根据所述至少两种散射光信号生成所述第二待测样本液中的粒子的二维或三维散点图;
基于所述二维或三维散点图,求取所述第二待测血液样本中的红细胞和血小板的第二检测结果。
示例性地,所述处理器可以用于:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,根据所述第一检测结果和所述第二检测结果求取所述待测血液样本中的红细胞和血小板的最终检测结果,即红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的最终检测结果或其组合计算得到的参数的最终检测结果,或者将所述第二检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
示例性地,所述处理器可以用于:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板正常时,将所述第一检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
示例性地,所述样本分析仪还可以包括与所述处理器通信连接的输出装置,用于输出所述待测血液样本的红细胞和血小板的最终检测结果。
根据本申请实施例的检测血液样本中的红细胞和血小板的方法及样本分析仪能够实现RBC和PLT的准确分类和/或计数,尤其是在普通稀释液环境下实现RBC和PLT的准确分类和/或计数。尤其是,本申请能够提升阻抗法测量的准确性,实现在普通稀释液环境下对异常样本的RBC和PLT进行准确的分类和/或计数。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为采用阻抗法检测RBC和PLT得到的直方图;
图2A为采用阻抗法检测正常样本的RBC和PLT得到的RBC直方图;
图2B为采用阻抗法检测正常样本的RBC和PLT得到的PLT直方图;
图3为采用阻抗法检测异常样本的RBC和PLT得到的PLT直方图;
图4为采用荧光法检测血液样本的RBC和PLT得到的前向散射光信号(FSC)与荧光信号(FL)的散点图;
图5为本申请一实施例提供的具有光学检测装置的样本分析仪的结构示意图;
图6为本申请另一实施例提供的具有阻抗检测装置的样本分析仪的结构示意图;
图7为本申请第一实施方式提供的检测血液样本中的红细胞和血小板的样本检测方法的示意性流程图;
图8为本申请一实施例中各种散射光信号的散射角的示意图;
图9为根据本申请第一实施方式提供的样本检测方法得到的前向散射光信号(FSC)与中角散射光信号(MAS)散点图;
图10为根据本申请第一实施方式提供的样本检测方法得到的前向散射光信号(FSC)与高角散射光信号(WAS)散点图;
图11为本申请第二实施方式提供的检测血液样本中的红细胞和血小板的样本检测方法的示意性流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细 描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
目前在血液分析仪中一般采用阻抗法或荧光光学法对血液样本中的RBC和PLT进行测量。
其中,阻抗法基于库尔特原理,使经过稀释的血样通过小孔,在小孔的两侧施加恒流源,每一个通过小孔的细胞都引起小孔内液体电阻抗的变化,从而生成电脉冲。获取对应的电脉冲,其幅度代表细胞的体积,从而生成RBC与PLT直方图,该直方图是一维信息,即只有细胞的体积信息,如图1所示。
在图1中,虚线左边为PLT直方图,虚线右边为RBC直方图。由于RBC粒子直径约为PLT的3倍,RBC粒子数量约为PLT的30倍,因此PLT直方图在RBC直方图的左边,且与横轴所围成的面积比RBC小得多。也就是说,图1中虚线为RBC、PLT直方图的分界线。将RBC和PLT直方图分别做归一化处理,并单独画出来,就形成血细胞分析仪上常见的RBC直方图与PLT直方图,如图2A和2B所示,其中,图2A为采用阻抗法检测正常样本的RBC和PLT得到的RBC直方图;图2B为采用阻抗法检测正常样本的RBC和PLT得到的PLT直方图。
在正常样本的RBC和PLT直方图中,RBC峰与PLT峰之间存在明显的界限,通常将PLT直方图中PLT粒子主峰右侧的凹谷作为PLT与RBC的分界线,再分别对这两个直方图进行分析,得到PLT与RBC相关测量参数。但是对于某些异常样本,如低值PLT样本,其PLT直方图与RBC直方图交界处往往没有明显界限,如图3所示,低值PLT直方图呈现锯齿状,导致算法无法准确切割PLT与RBC直方图,进而不能获取准确的PLT测量结果。低值PLT的准确性是临床重点关注的血常规指标,这是阻抗法测量的主要缺点。
而荧光光学法可以克服此缺陷。荧光法基于流式细胞术。经过稀释和染色的样本在鞘流的挤压下,依次通过光学检测区。每个细胞经过激发光源的照射,在光学系统中获得前向散射信号(代表细胞体积)与荧光信号(代表细胞内核酸含量),以此生成二维散点图,从而对RBC和PLT进行划分与计算。相对于阻抗法获得的一维直方图,光学法的二维散点图多了一个维度的信息,从而可以准确在二维散点图上对PLT和RBC进行划分,如图4所示。因为在荧光法中,需要荧光染料对细胞染色,而且还需要使用特殊的稀释液对细胞进行球形化处理,所以使用成本较高,不利于光学法在临床的推广。
为了解决该问题,本申请提出一种仅利用散射光信息来检测血液血液样本中的红细胞和血小板的样本检测方法和样本分析仪,该样本检测方法和样本分析仪能够在普通稀释液环境下实现RBC和PLT的准确分类和计数,尤其是能够实现在普通稀释液环境下对异常样本的RBC和PLT进行准确的分类和计数。此外,在没有多种稀释液(尤其球形化稀释液)的应用场景,对于异常样本, 通过本申请提出的方法和样本分析仪还能够提升阻抗法测量的准确性。
下面结合附图对本申请提供的检测血液样本中的红细胞和血小板的样本检测方法和样本分析仪进行详细的说明。
首先结合图5和图6详细说明本申请提供的样本分析仪。
如图5所示,该样本分析仪100至少包括采样装置(未示出)、样本制备装置110、光学检测装置120、输送装置130和处理器140。
所述采样装置具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取血液样本。进一步地,采样装置在吸取血液样本之后由其驱动装置驱动并移动至样本制备装置110的反应池111,将所吸取的血液样本注入到该反应池111中。
所述样本制备装置110具有至少一个反应池111并且具有供液部(未示出),其中,所述反应池111用于接收采样装置所吸取的血液样本,所述供液部将稀释液提供给反应池111,从而由所述采样装置所吸取的血液样本与由所述供液部提供的稀释液在所述反应池中反应,以制备成待检测血液样本。例如,供液部可以用于将适当的稀释液注入到反应池中,以对血液样本中的粒子进行处理,从而制备成待检测血液样本,用于后续检测。其中,所述稀释液选用血细胞分析仪必备的普通稀释液,以保持所述血液样本中所述红细胞和所述血小板的原始形态,无需使用使RBC、PLT球形化的特殊稀释液。例如,所述稀释液可以包括氯化钠,磷酸盐缓冲液以及防腐剂等成分,稀释液并不局限于某一种,可以根据需要进行选择,在此不再赘述。
所述光学检测装置120具有光源121、流动室122以及集光器123、124。光源121可以发射自然光或特定波段的光,并不局限于某一种。或者所述光源121还可以选用偏振光源,以发射特定偏振状态的偏振光。流动室122具有孔口1221,在样本制备装置110中经稀释液处理后的待测样本液的粒子可在所述流动室122内流动,并逐个经过孔口1221。光源121所发出的光照射所述流动室122中的粒子以产生光学信号信息。集光器123、124用于收集所述光学信号信息。所述光学信号信息可以包括轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号及后向散射光信号中的至少两 种,当选用偏振光进行照射时,所述光学信号信息包括所述轴向光损失、所述前向散射光信号、所述中角散射光信号、所述高角散射光信号、所述侧向散射光信号以及所述后向散射光信号的特定偏振态信号中的至少两种。即,光学检测装置120至少包括轴向光损失集光器、前向散射光信号集光器、中角散射光信号集光器、高角散射光信号集光器、侧向散射光信号集光器以及后向散射光信号集光器中的至少两种集光器。
在一种实施例中,所述集光器构成为光电探测器,如光电二极管或光电倍增管等。具体地,如图5所示,在流动室122中流动的血细胞发出的前向散射光通过聚光镜126和针孔127被光电二极管(前向散射光集光器)123接受,而侧向散射光通过聚光镜126、分色镜128、光学膜129和针孔127被光电倍增管(侧向散射光集光器)124接受。从各集光器123、124输出的光信号分别通过由放大器141进行放大和波形处理等模拟信号处理后被输送到处理器140中。
在本申请中,所述轴向光损失、所述前向散射光信号、所述中角散射光信号、所述高角散射光信号、所述侧向散射光信号以及所述后向散射光信号的散射角度分别为0°~1°、1°~10°、10°~20°、20°~70°、70°~110°以及110°~160°。其中,轴向光损失集光器、前向散射光信号集光器、中角散射光信号集光器、高角散射光信号集光器、侧向散射光信号集光器分别配置为接收上述散射角度的散射光信号。
优选地,所述光学检测装置120至少包括前向散射光信号集光器、中角散射光信号集光器和高角散射光信号集光器中的至少两个,以接收前向散射信号、中角散射信号、高角散射信号中的至少两种或前向散射信号、中角散射信号、高角散射信号的特定偏振态信号中的至少两种散射光信号,以提高所述红细胞和血小板的检测结果的准确性。
所述输送装置130用于将在反应池111中经稀释液处理后的待测血液样本输送到光学检测装置120中。
所述处理器140与采样装置、样本制备装置110、光学检测装置120以及输送装置130通信连接并且设置用于从所述光学检测装置120获取所述光学信 号信息并且对所述光学信号信息进行处理,以求取待测血液样本中的粒子的检测结果。处理器140可以具有未示出的A/D转换器,用于将由光学检测装置120提供的模拟信号转换为数字信号。具体地,处理器140用于实施以下还要详细说明的按照本申请的样本检测方法。
在本申请实施例中,上述处理器140可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(ProgRAMmable Logic Device,PLD)、现场可编程门阵列(Field ProgRAMmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。
此外,如图6所示,所述样本分析仪100还可以包括阻抗检测装置150,其包括具有一带电极153的孔152的流动室151,所述阻抗检测装置150检测所述待测样本液中的粒子通过所述孔152时产生的直流阻抗,并输出反映粒子通过孔时的信息的电信号。
具体地,采样装置在吸取血液样本之后由其驱动装置驱动并移动至样本制备装置110的反应池111,将所吸取的血液样本注入到该反应池111中。输送装置130还可以将在反应池111中经稀释液处理后的待测血液样本输送到阻抗检测装置150中,即输送到流动室151中。阻抗检测装置150还可以设有未图示的鞘液舱,用于给流动室151提供鞘液。在流动室152中,待测样本液在鞘液的包裹下流过,小孔152使待测样本液流变为细流,使待测样本液中所含粒子(有形成份)逐一通过小孔152。电极153与直流电源154电连接,直流电源154向一对电极153之间提供直流电。在直流电源154提供直流电期间,可以检出一对电极153间的阻抗。表示阻抗变化的电阻信号被放大器155放大后输送到处理器140。电阻信号的大小与粒子的体积(大小)相对应,因此通过处理器140对电阻信号进行信号处理可以获得待测血液样本中的粒子分类计数结果,尤其是红细胞和血小板的分类计数结果。
在有利的实施例中,光学检测装置120的流动室122与阻抗检测装置150的流动室152可以为同一个流动室,以节省空间。也就是说,阻抗检测装置150的流动室152可以同时用作光学检测装置120的流动室122。当然,光学检测装置120的流动室122与阻抗检测装置150的流动室152也可以为独立分开的两个流动室。
此外,所述血液样本分析仪100可以进一步包括与所述处理器140通信连接的输出装置(未示出),设置用于从所述处理器140接收并显示血液样本分析结果和/或所述光信号信息中的至少两种所组成的散点图。
接着参考图7至11对上述血液样本分析仪100检测血液样本中的红细胞和血小板的具体方法和原理进行详细的说明。
图7为本申请第一实施方式提供的检测血液样本中的红细胞和血小板的样本检测方法。如图7所示,一种检测血液样本中的红细胞和血小板的样本检测方法200包括以下步骤:
步骤S210,制备含待测血液样本和稀释液的待测样本液。
例如,在该步骤中,例如在样本分析仪100的样本制备装置110中制备待测样本液,所述样本制备装置110具有至少一个反应池111并且具有供液部(未示出),在处理器140的控制下,采样装置在吸取血液样本之后由其驱动装置驱动并移动至样本制备装置110的反应池111,然后供液部将稀释液提供给反应池111,从而由所述采样装置所吸取的血液样本与由所述供液部提供的稀释液在所述反应池中反应,以制备成待检测血液样本。一方面,稀释液为待测血液样本提供了适宜的pH、电导率和渗透压,保证细胞的形态完整,不发生溶血作用;此外,稀释液还用于对上次检测样本残留的物质进行清洗,保证样本分析仪的采样针、管路和流动室的清洁,防止交叉污染;再一方面,样本分析仪暂时停止运行期间稀释剂要充盈在管路中间,防止外界灰尘等异物进入仪器,造成故障。其中,所述稀释液选用血细胞分析仪必备的普通稀释液,以保持所述血液样本中所述红细胞和所述血小板的原始形态,而不是使RBC、PLT球形化的特殊稀释液。
其中,在本申请的一实施例中,所述稀释液可以包括氯化钠,磷酸盐缓冲 液以及防腐剂等成分,稀释液并不局限于某一种,可以根据需要进行选择,在此不再赘述。
步骤S220,在光学检测区对所述待测样本液进行光照射。
例如在该步骤中,在处理器140的控制下,样本分析仪100的输送装置130将在反应池111中经稀释液处理后的待测血液样本输送到光学检测装置120的流动室122中,经稀释液处理后的待测样本液的粒子可在所述流动室122内流动,并逐个经过孔口1221,光源121所发出的光照射所述流动室122中的粒子以产生光学信号信息。
步骤S230,收集所述待测样本液中的粒子因光照射所产生的至少两种散射光信号,即特定散射角度的散射光信号。
例如,在该步骤中,在处理器140的控制下,光学检测装置120将其输出的散射光信号输送到处理器140中,以便处理器140对所述散射光信号进行处理。在本申请的实施例中,所述散射光信号可以包括轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号及后向散射光信号中的至少两种。优选地,所述散射光信号包括前向散射信号、中角散射信号、高角散射信号中的至少一种、尤其是至少两种。更优选地,所述至少两种散射光信号可以包括前向散射信号和中角散射信号或者包括前向散射信号和高角散射信号。
其中,在本申请的实施例中所述散射角度指的是,以流动室中样本流与激发光束重合区域的中心为角度的顶点,以激发光束的传播方向为角度的第一条边,以在上述顶点的粒子发出的散射光的传播方向为角度的第二条边,由上述顶点和两条边所形成的角度。在没有相反说明的情况下,散射角度均参照该解释。
在此,本申请对所述散射光信号的散射角度进行如下定义,如图8所示,其中:所述轴向光损失的散射角度为:0°~1°;所述前向散射光信号的散射角度为:1°~10°;所述中角散射光信号的散射角度为:10°~20°;所述高角散射光信号的散射角度为:20°~70°;所述侧向散射光信号的散射角度为:70°~110°;并且所述后向散射光信号的散射角度为:110° ~160°。
在本申请的一实施例中,收集前向散射信号、中角散射信号、高角散射信号中的任意两种或全部用于后续对所述血液样本中的红细胞和血小板进行分类,选用上述三种散射光信号中的至少两种可以更有效和更加准确的对红细胞和血小板进行分类。具体地,例如,选用前向散射信号、中角散射信号、高角散射信号中至少两种获得到的红细胞和血小板的散点图中有更加清晰的红细胞和血小板分界线,由此进行分类的结果更加精准。
当然,需要说明的是,散射光信号的选择并不局限于上述示例,可以根据实际需要进行选择。
其中,所述光照射为可以为自然光或特定波段的光,还可以选用特定偏振状态的偏振光照射。当选用偏振光对所述待测样本液进行照射时,所述散射光信号为所述样本液中的粒子因偏振光照射而产生轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号以及后向散射光信号的特定偏振态信号。
类似地,在本申请的一实施例中,收集前向散射信号、中角散射信号、高角散射信号的特定偏振态信号中的任意两种或全部用于后续对所述血液样本中的红细胞和血小板进行分类,以获得更有效和更加准确的对红细胞和血小板进行分类。
步骤S240,根据所述至少两种散射光信号,对所述待测血液样本中的红细胞和血小板进行分类。
例如,处理器140从光学检测装置120接收所述散射光信号并进行处理,以获得所述待测血液样本中的红细胞和血小板的分类结果。
优选地,在该步骤S240中,对所述红细胞和所述血小板进行分类的步骤可以包括:根据所述至少两种散射光信号生成所述血液样本中的粒子的二维或三维散点图;基于所述二维或三维散点图,对所述血液样本中的红细胞和血小板进行分类。
在本申请的一实施例中,例如当待测样本液的PLT值<30时,PLT直方图在右边界区呈现出锯齿状,如图3所示,难以划出与RBC区域相分离的分 界线。但是采用本申请所述检测方法,可以生成如图9和图10所示的散点图。其中,图9为前向散射(FSC)光信号与中角散射(MAS)光信号的散点图。图10为前向散射(FSC)光信号与高角散射(WAS)光信号的散点图。从图9和图10中可以看出PLT粒子团与RBC粒子团之间均存在明显界限,如图中虚线所示方向。因此,在阻抗法中无法区分的PLT与RBC粒子团能够在光散射散点图中得以区分,从而得到准确的RBC和PLT测量结果。
除了可以对红细胞和所述血小板进行分类以外,还可以根据所述至少两种散射光信号,求取所述红细胞和所述血小板的预定参数的检测结果。其中,所述预定参数可以包括红细胞计数、血小板计数、红细胞平均体积MCV、血小板平均体积MPV和红细胞体积分布宽度RDW中的至少一个参数以及由上述参数经过组合计算后得到的其他参数。
进一步地,所述方法200还可以包括输出所述待测血液样本的红细胞和血小板的分类结果和/或所述预定参数。
根据本申请第一实施方式的检测血液样本中的红细胞和血小板的方法200及相应的样本分析仪能够实现RBC和PLT的准确分类和计数,尤其是在普通稀释液环境下实现RBC和PLT的准确分类和计数。
接着结合图11对本申请第二实施方式提供的检测血液样本中的红细胞和血小板的样本检测方法进行详细的说明。如图11所示,所述方法300包括:
步骤S310,制备含待测血液样本和稀释液的第一待测样本液。
该步骤S310可以参照本申请第一实施方式提供的方法200中的步骤S210,当然可以根据阻抗法的待测样本液的制备方法做进一步的改进和调整,在此不再赘述。
步骤S320,使所述第一待测样本液在具有一带电极的孔的流动室中流动并检测所述第一待测样本液中的粒子通过所述孔时产生的电信号。
例如,在该步骤中,在处理器140的控制下,将第一待测样本液经输送装置130送往阻抗检测装置150的流动室151。阻抗检测装置150的鞘液舱给流动室151提供鞘液,待测样本液在鞘液的包裹下流过,小孔152使第一待测样本液流变为细流,使第一待测样本液中所含粒子(有形成份)逐一通过小孔152, 进而通过小孔152上的电极153产生阻抗变化、即电信号。表示阻抗变化的电阻信号被放大器放大后输送到处理器140。
步骤S330,根据所述电信号求取所述第一待测样本液中的红细胞和血小板的第一检测结果。
例如在该步骤中,处理器140从阻抗检测装置150获取电信号,电信号的大小与粒子的体积(大小)相对应,通过处理器140对电信号进行信号处理可以获得待测样本液中的红细胞和血小板的第一检测结果。即,所述第一检测结果是指通过阻抗法获得到的红细胞和血小板的检测结果。示例性地,所述第一检测结果可以包括红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的结果或其组合计算得到的参数的结果。
步骤S340,根据所述第一检测结果判断所述待测血液样本中的红细胞和/或血小板是否异常。在获得第一检测结果之后,执行步骤S340。优选地,所述异常可以指所述待测血液样本中的血小板的数量小于预定阈值,当待测血液样本中的血小板的数量小于预定阈值时,第一检测结果则会出现如图3所示的情况,其PLT直方图与RBC直方图交界处往往没有明显界限,低值PLT直方图呈现锯齿状,导致算法无法准确切割PLT与RBC直方图,进而不能获取准确的PLT测量结果。
当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,执行如下步骤:步骤S350,制备含所述待测血液样本和稀释液的第二待测样本液或者从所述第一待测样本液制备第二待测样本液,即所述第二待测样本液可以在所述样本制备装置110的反应池111中重新制备或者直接将从所述第一待测样本液的剩余部分作为所述第二待测样本液;步骤S360,在光学检测区对所述第二待测样本液进行光照射;步骤S370,收集所述第二待测样本液中的粒子因光照射所产生的至少两种散射光信号;步骤S380,根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。示例性地,所述第二检测结果也可以包括红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的结 果或其组合计算得到的参数的结果。其中,步骤S360至步骤S380的具体实现方式可以参照本申请第一实施方式提供的方法200中的步骤S220-步骤S240,在此不再赘述。
此外,当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,执行步骤S390a,根据所述第一检测结果和所述第二检测结果求取所述待测血液样本中的红细胞和血小板的最终检测结果,也就是说可以利用光散射法获得的第二检测结果对由阻抗法获得的第一检测结果进行修正。通过将阻抗法与光散射法结合能够更加准确的获得RBC、PLT的分类结果。例如通过光散射法获得RBC、PLT散点图,经过RBC、PLT聚团的分析,在RBC、PLT阻抗法直方图上准确的划分RBC与PLT群,从而辅助RBC、PLT阻抗通道获得更准确的测量结果。当然,在步骤S390a中,也可以将所述第二检测结果直接确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板正常时,执行步骤S390b,将所述第一检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
此外,在步骤S390之后还可以实施如下步骤:输出所述待测血液样本中的红细胞和血小板的最终检测结果。
应说明的是,按照本申请第二实施方式的方法300中的各个步骤可以参照上述按照本申请第一实施方式的方法200中相应的解释和说明,在此不再赘述。
根据本申请第二实施方式的检测血液样本中的红细胞和血小板的方法及相应的样本分析仪能够实现在普通稀释液环境下对异常样本的RBC和PLT进行准确的分类和计数。在没有多种稀释液(尤其球形化稀释液)的应用场景,对于异常样本,通过本申请第二实施方式提供的方法和样本分析仪能够提升阻抗法测量的准确性。
此外,本申请还提出一种检测血液样本中的红细胞和血小板的样本检测方法,所述方法与本申请第二实施方式提供的的样本检测方法的不同之处在于,无论待测血液样本是否异常,同时采用阻抗法和本申请提出的光散射法对待测血液样本进行检测,得出阻抗法的第一检测结果和光散射法的第二检测结果, 然后根据实际情况,利用第一检测结果和第二检测结果得出待测血液样本中的红细胞和血小板的最终检测结果。
应理解,在说明书、权利要求书和附图中提及的特征、结构和优点,只要在本申请的范围内是有意义的,均可以任意相互组合。针对本申请的方法所说明的特征、结构和优点以相应的方式适用于本申请的样本分析仪,反之亦然。
本申请实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本申请。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本申请的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被本申请限制在所公开的形式。在不偏离本申请的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本申请中所描述的实施例能够更好地揭示本申请的原理与实际应用,并使本领域的一般技术人员可了解本申请。
本申请中所描述的流程图仅仅为一个实施例,在不偏离本申请的精神的情况下对此图示或者本申请中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于本申请所涵盖的范围。

Claims (28)

  1. 一种检测血液样本中的红细胞和血小板的样本检测方法,其特征在于,所述方法包括:
    制备含待测血液样本和稀释液的第一待测样本液;
    使所述第一待测样本液在具有一带电极的孔的流动室中流动并检测所述第一待测样本液中的粒子通过所述孔时产生的电信号;
    根据所述电信号求取所述第一待测样本液中的红细胞和血小板的第一检测结果;
    根据所述第一检测结果判断所述待测血液样本中的红细胞和/或血小板是否异常;
    当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,
    制备含所述待测血液样本和稀释液的第二待测样本液或者从所述第一待测样本液制备第二待测样本液;
    在光学检测区对所述第二待测样本液进行光照射;
    收集所述第二待测样本液中的粒子因光照射所产生的至少两种散射光信号;
    根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
  2. 根据权利要求1所述的方法,其特征在于,所述第一检测结果和/或所述所述第二检测结果包括红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的结果或其组合计算得到的参数的结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述异常为所述第一待测样本液中的血小板的数量小于预定阈值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述稀释液能保持所述待测血液样本中的红细胞和血小板的原始形态。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述至少两种散射光信号包括轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号及后向散射光信号中的至少两种。
  6. 根据权利要求5所述的方法,其特征在于,所述轴向光损失、所述前向散射光信号、所述中角散射光信号、所述高角散射光信号、所述侧向散射光信号以及所述后向散射光信号的散射角度分别为0°~1°、1°~10°、10°~20°、20°~70°、70°~110°以及110°~160°。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述至少两种散射光信号包括前向散射信号、中角散射信号、高角散射信号中的至少一种、尤其是至少两种。
  8. 根据权利要求7所述的方法,其特征在于,所述至少两种散射光信号包括前向散射信号和中角散射信号或者包括前向散射信号和高角散射信号。
  9. 根据权利要求1至4中任一项所述的方法,其特征在于,所述光照射为偏振光照射,所述至少两种散射光信号包括所述样本液中的粒子因偏振光照射所产生的轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号以及后向散射光信号的特定偏振态信号中的至少两种。
  10. 根据权利要求9所述的方法,其特征在于,所述至少两种散射光信号包括前向散射信号、中角散射信号、高角散射信号的特定偏振态信号中的至少一种、尤其是至少两种。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果的步骤包括:
    根据所述至少两种散射光信号生成所述待测血液样本中的粒子的二维或三维散点图;
    基于所述二维或三维散点图,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法包括:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异 常时,根据所述第一检测结果和所述第二检测结果求取所述待测血液样本中的红细胞和血小板的最终检测结果,或者将所述第二检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法包括:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板正常时,将所述第一检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    输出所述待测血液样本的红细胞和血小板的最终检测结果。
  15. 一种样本分析仪,其特征在于,包括:
    采样装置,具有带吸移管嘴的吸移管并且具有驱动装置,该驱动装置用于驱动所述吸移管通过所述吸移管嘴定量吸取血液样本;
    样本制备装置,具有反应池和供液部,其中,所述反应池用于接收采样装置所吸取的血液样本,所述供液部将稀释液提供给反应池,从而由所述采样装置所吸取的血液样本与由所述供液部提供的稀释液在所述反应池中混合,以制备成待测样本液;
    阻抗检测装置,包括具有一带电极的孔的第一流动室,所述阻抗检测装置检测所述待测样本液中的粒子通过所述孔时产生的直流阻抗,并输出反映粒子通过孔时的信息的电信号;
    光学检测装置,具有光源、第二流动室以及集光器,其中,经稀释液处理后的待测样本液中的粒子可在所述流动室内流动,所述光源所发出的光照射所述第二流动室中的粒子以产生至少两种散射光信号,所述集光器用于收集所述至少两种散射光信号;
    输送装置,用于将所述反应池中经稀释液处理后的待测样本液输送到所述阻抗检测装置和所述光学检测装置中;
    处理器,与所述采样装置、所述样本制备装置、所述阻抗检测装置、所述光学检测装置以及所述输送装置通信连接并且用于:
    指示所述样本制备装置制备含待测血液样本和稀释液的第一待测样本 液;
    指示所述输送装置将制备的第一待测样本液输送至所述第一流动室;
    从所述阻抗检测装置获取所述第一待测样本液通过所述阻抗检测装置的第一流动室所产生的电信号;
    根据所述电信号求取所述第一待测样本液中的红细胞和血小板的第一检测结果;
    根据所述第一检测结果判断所述待测血液样本中的红细胞和/或血小板是否异常;
    当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,
    指示所述样本制备装置制备含所述待测血液样本和稀释液的第二待测样本液或者从所述第一待测样本液制备第二待测样本液;
    指示所述输送装置将制备的第二待测样本液输送至所述第二流动室;
    从所述光学检测装置获取所述第二待测样本液中的粒子在所述光学检测装置的第二流动室中因光照射所产生的至少两种散射光信号,并且
    根据所述至少两种散射光信号,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
  16. 根据权利要求15所述的样本分析仪,其特征在于,所述第一检测结果和/或所述所述第二检测结果包括红细胞计数、血小板计数、红细胞平均体积、血小板平均体积和红细胞体积分布宽度中的至少一个参数的结果或其组合计算得到的参数的结果。
  17. 根据权利要求15或16所述的样本分析仪,其特征在于,所述异常为所述第一待测样本液中的血小板的数量小于预定阈值。
  18. 根据权利要求15至17中任一项所述的样本分析仪,其特征在于,所述第一流动室和所述第二流动室构成为同一个具有一带电极的孔的流动室。
  19. 根据权利要求15至18中任一项所述的样本分析仪,其特征在于,所述稀释液能保持所述待测血液样本中的红细胞和血小板的原始形态。
  20. 根据权利要求15至19中任一项所述的样本分析仪,其特征在于,所 述至少两种散射光信号包括轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号及后向散射光信号中的至少两种。
  21. 根据权利要求20所述的样本分析仪,其特征在于,所述轴向光损失、所述前向散射光信号、所述中角散射光信号、所述高角散射光信号、所述侧向散射光信号以及所述后向散射光信号的散射角度分别为0°~1°、1°~10°、10°~20°、20°~70°、70°~110°以及110°~160°。
  22. 根据权利要求15至21中任一项所述的样本分析仪,其特征在于,所述至少两种散射光信号包括前向散射信号、中角散射信号、高角散射信号中的至少一种、尤其是至少两种。
  23. 根据权利要求15至19中任一项所述的样本分析仪,其特征在于,所述光源构成为发出偏振光的光源,所述至少两种散射光信号包括所述样本液中的粒子因偏振光照射所产生的轴向光损失、前向散射光信号、中角散射光信号、高角散射光信号、侧向散射光信号以及后向散射光信号的特定偏振态信号中的至少两种。
  24. 根据权利要求23所述的样本分析仪,其特征在于,所述至少两种散射光信号包括前向散射信号、中角散射信号、高角散射信号的特定偏振态信号中的至少一种、尤其是至少两种。
  25. 根据权利要求15至24中任一项所述的样本分析仪,其特征在于,所述处理器用于:
    根据所述至少两种散射光信号生成所述待测血液样本中的粒子的二维或三维散点图;
    基于所述二维或三维散点图,求取所述第二待测样本液中的红细胞和血小板的第二检测结果。
  26. 根据权利要求15至24中任一项所述的样本分析仪,其特征在于,所述处理器用于:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板异常时,根据所述第一检测结果和所述第二检测结果求取所述待测血液样本中的红细胞和血小板的最终检测结果,或者将所述第二检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
  27. 根据权利要求15至26中任一项所述的样本分析仪,其特征在于,所述处理器用于:当所述第一检测结果表明所述待测血液样本中的红细胞和/或血小板正常时,将所述第一检测结果确定作为所述待测血液样本中的红细胞和血小板的最终检测结果。
  28. 根据权利要求26或27所述的样本分析仪,其特征在于,所述样本分析仪还包括与所述处理器通信连接的输出装置,用于输出所述待测血液样本的红细胞和血小板的最终检测结果。
PCT/CN2019/090770 2019-06-11 2019-06-11 样本检测方法及样本分析仪 WO2020248138A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980075478.1A CN113015903A (zh) 2019-06-11 2019-06-11 样本检测方法及样本分析仪
PCT/CN2019/090770 WO2020248138A1 (zh) 2019-06-11 2019-06-11 样本检测方法及样本分析仪
US17/537,265 US20220082551A1 (en) 2019-06-11 2021-11-29 Sample analyzing method and sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090770 WO2020248138A1 (zh) 2019-06-11 2019-06-11 样本检测方法及样本分析仪

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/537,265 Continuation US20220082551A1 (en) 2019-06-11 2021-11-29 Sample analyzing method and sample analyzer

Publications (1)

Publication Number Publication Date
WO2020248138A1 true WO2020248138A1 (zh) 2020-12-17

Family

ID=73781153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090770 WO2020248138A1 (zh) 2019-06-11 2019-06-11 样本检测方法及样本分析仪

Country Status (3)

Country Link
US (1) US20220082551A1 (zh)
CN (1) CN113015903A (zh)
WO (1) WO2020248138A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410330B1 (en) * 2001-07-27 2002-06-25 Coulter International Corp. Method for measurement of nucleated red blood cells
US20050002826A1 (en) * 2003-07-04 2005-01-06 Sysmex Corporation Apparatus and method for measuring immature platelets
CN102933964A (zh) * 2010-01-15 2013-02-13 雅培制药有限公司 用于测定单个红血细胞的体积和血红蛋白含量的方法
CN104755905A (zh) * 2012-12-31 2015-07-01 贝克曼考尔特公司 具有凝集块校准的血小板计数的系统和方法
WO2018232589A1 (zh) * 2017-06-20 2018-12-27 深圳迈瑞生物医疗电子股份有限公司 一种血小板聚集识别的方法、装置和细胞分析仪
CN109580550A (zh) * 2018-12-03 2019-04-05 迪瑞医疗科技股份有限公司 一种白细胞的分类处理方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW438973B (en) * 1995-12-19 2001-06-07 Sysmex Corp Apparatus and method for analyzing solid components in urine
JP5010443B2 (ja) * 2006-12-20 2012-08-29 シスメックス株式会社 血球分析装置および血球分析方法
CN102331397A (zh) * 2011-07-08 2012-01-25 无锡荣兴科技有限公司 一种用于血液细胞统计分析的光电传感器
CN102331411A (zh) * 2011-07-08 2012-01-25 无锡荣兴科技有限公司 一种具有蓝色半导体激光器的血液细胞分析仪
CN104458541A (zh) * 2013-09-12 2015-03-25 深圳迈瑞生物医疗电子股份有限公司 红细胞血红蛋白含量的分析方法、装置及血液细胞分析仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410330B1 (en) * 2001-07-27 2002-06-25 Coulter International Corp. Method for measurement of nucleated red blood cells
US20050002826A1 (en) * 2003-07-04 2005-01-06 Sysmex Corporation Apparatus and method for measuring immature platelets
CN102933964A (zh) * 2010-01-15 2013-02-13 雅培制药有限公司 用于测定单个红血细胞的体积和血红蛋白含量的方法
CN104755905A (zh) * 2012-12-31 2015-07-01 贝克曼考尔特公司 具有凝集块校准的血小板计数的系统和方法
WO2018232589A1 (zh) * 2017-06-20 2018-12-27 深圳迈瑞生物医疗电子股份有限公司 一种血小板聚集识别的方法、装置和细胞分析仪
CN109580550A (zh) * 2018-12-03 2019-04-05 迪瑞医疗科技股份有限公司 一种白细胞的分类处理方法及其装置

Also Published As

Publication number Publication date
CN113015903A (zh) 2021-06-22
US20220082551A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
US9588102B2 (en) Method and apparatus for determining white blood cell counts
JP4593404B2 (ja) 液体試料吸引監視方法及び装置、並びに液体試料分析装置
JP3707620B2 (ja) 光散乱技術を使用した網赤血球分析方法と装置
JP5950423B2 (ja) 幼若顆粒球(earlygranulatedcell)(EGC)の同定および計数
JP2015522165A5 (zh)
CN103472034B (zh) 一种血细胞分析芯片、分析仪及分析方法
CN105026928A (zh) 尿样本分析装置及尿样本分析方法
JP6225085B2 (ja) 検体分析方法および検体分析装置
KR101991989B1 (ko) 응괴 조정을 갖는 혈소판 카운트를 위한 시스템들 및 방법들
US9417231B2 (en) Urine sample analyzing method and sample analyzer including classifying epithelial cells into at least two types based on the change of polarization condition
WO2020147255A1 (zh) 样本光学检测装置、样本检测方法及样本分析仪
US10775362B2 (en) Urine analyzer and urinalysis method
JP2021173756A (ja) 血液を検査するための方法、装置、システム、およびコンピュータプログラム製品
WO2020248138A1 (zh) 样本检测方法及样本分析仪
JP4659242B2 (ja) 粒子分析装置
WO2023056712A1 (zh) 一种动物用血液分析装置和血液分析方法
JP2010223833A (ja) 動物用血球測定装置
EP4187228A1 (en) System, apparatus, and method for measuring erythrocyte sedimentation rate
WO2023010447A1 (zh) 一种样本分析装置、动物用分析装置和样本分析方法
CN114062696A (zh) 血样测量方法、血液测量装置、电子设备及计算机可读存储介质
WO2021207894A1 (zh) 细胞分析方法、细胞分析仪及计算机可读存储介质
WO2021042307A1 (zh) 血液检测方法及血液分析系统
WO2023115389A1 (zh) 一种样本分析装置和样本分析方法
CN117907197A (zh) 血液细胞分析仪和血液细胞分析方法
CN115436646A (zh) 一种血液分析装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932762

Country of ref document: EP

Kind code of ref document: A1