WO2020246275A1 - Glass plate manufacturing device and glass plate manufacturing method - Google Patents

Glass plate manufacturing device and glass plate manufacturing method Download PDF

Info

Publication number
WO2020246275A1
WO2020246275A1 PCT/JP2020/020377 JP2020020377W WO2020246275A1 WO 2020246275 A1 WO2020246275 A1 WO 2020246275A1 JP 2020020377 W JP2020020377 W JP 2020020377W WO 2020246275 A1 WO2020246275 A1 WO 2020246275A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
glass plate
heater
plate manufacturing
molded body
Prior art date
Application number
PCT/JP2020/020377
Other languages
French (fr)
Japanese (ja)
Inventor
仁 金谷
光晴 野田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020217037788A priority Critical patent/KR20220016823A/en
Priority to CN202080028054.2A priority patent/CN113677636A/en
Publication of WO2020246275A1 publication Critical patent/WO2020246275A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets

Definitions

  • the present invention relates to an apparatus and method for manufacturing a glass plate by a down draw method.
  • Patent Document 1 discloses an apparatus for manufacturing a glass plate by an overflow down draw method.
  • the molded body which is a component of this device, is supported at both ends in the width direction (longitudinal direction) by a support.
  • the periphery of the molded product is maintained at a high temperature by heating or the like.
  • Patent Document 1 when both ends in the width direction of the molded body are supported by the support, the heat around both ends in the width direction is taken away by the support.
  • the temperature of the portion in contact with both ends in the width direction of the glass ribbon is lower than that in contact with the central portion in the width direction of the glass ribbon to be molded.
  • the first aspect of the present invention which was devised to solve the above problems, supports a molded body used for molding molten glass into a glass ribbon by a down draw method and both ends in the width direction of the molded body. It is a glass plate manufacturing apparatus in which a support is housed in a molding furnace, and is characterized in that a heater is installed on the support.
  • the support supporting both ends in the width direction of the molded body is heated by the heater, the temperature drop around both ends in the width direction in the molding furnace is suppressed. Therefore, in the molded body, the temperature difference between the portion in contact with the central portion in the width direction of the glass ribbon to be molded and the portion in contact with both ends in the width direction of the glass ribbon is reduced. As a result, the uneven thickness (unbalanced thickness) of the glass plate to be a product is reduced and devitrification is less likely to occur, so that it is possible to provide a product of stable quality.
  • the support is preferably refractory brick.
  • the heater may be arranged in the hole formed in the support.
  • the heater may be arranged so as to straddle the hole formed in the support and the hole formed in the furnace wall of the molding furnace.
  • the heater can be properly supported, and the heater can be easily installed or replaced.
  • the heater has a rod shape
  • the holes formed in the support are through holes
  • the holes formed in the furnace wall of the molding furnace are through holes. The heater may be inserted.
  • the heater rod-shaped the heater can be elongated.
  • the through holes formed in the support and the furnace wall can be made smaller in diameter, and the amount of heat escaping from the molding furnace can be reduced.
  • the support may be provided with an opening window for exposing the heater to the internal space of the molding furnace.
  • the heat from the heater is efficiently transferred to the internal space of the molding furnace through the opening window, so that the atmosphere around both ends in the width direction of the molded body can be raised. Therefore, the temperature difference between the portion of the molded product that contacts the central portion of the glass ribbon in the width direction and the portion that contacts both ends of the glass ribbon in the width direction is further reduced.
  • the opening window is provided in the middle portion of the hole formed in the support in the central axis direction, and is formed in the support at both ends of the hole formed in the support in the central axis direction.
  • a sealing material may be filled between the formed hole and the heater.
  • the atmosphere inside the molding furnace tends to flow out from between the hole of the support and the heater through the opening window, and the temperature inside the molding furnace tends to decrease accordingly.
  • a sealing material is filled between the hole of the support and the heater at both ends in the direction of the central axis of the hole of the support, the outflow of the atmosphere in the molding furnace can be prevented and the inside of the molding furnace can be prevented.
  • the temperature can be maintained favorably.
  • a sealing material may be filled between the hole formed in the furnace wall of the molding furnace and the heater.
  • the second aspect of the present invention which was devised to solve the above problems, is a down-draw method in which a molded product and a support supporting both ends of the molded product in the width direction are housed in a molding furnace.
  • a glass plate manufacturing method including a molding step of molding molten glass into a glass ribbon using the molded body, wherein the support is heated by a heater installed on the support in the molding step. Be characterized.
  • the ambient temperature at both ends in the width direction of the molded product can be maintained at an appropriate temperature, and the problems of uneven thickness and devitrification of the glass plate can be reduced.
  • FIG. 1 is a vertical sectional side view showing a main part of the glass plate manufacturing apparatus according to the embodiment of the present invention
  • FIG. 2 is a vertical sectional front view cut according to lines AA of FIG.
  • FIG. 3 is a vertical sectional side view cut according to the line BB of FIG. 2
  • FIG. 4 is a vertical sectional front view cut according to the line CC of FIG.
  • the glass plate manufacturing apparatus 1 includes a molded body 2, a pair of supports 3, and a molding furnace 4 that houses the molded body 2 and the supports 3 as main components.
  • the molten glass 5 is molded into the glass ribbon 6 by the overflow down draw method at the intermediate portion in the width direction.
  • the pair of supports 3 are arranged to support both ends in the width direction of the molded body 2.
  • the "width direction” is the left-right direction in FIGS. 2 and 4, and in the present embodiment, means the longitudinal direction of the molded body 2.
  • the molded body 2 has an overflow groove 7 formed at the top and a pair of surfaces 8 on which the molten glass 5 overflowing from the overflow groove 7 flows down.
  • Each of the pair of surfaces 8 is composed of an upper vertical surface portion 8a and a lower inclined surface portion 8b (see FIGS. 1 and 4).
  • the pair of vertical surface portions 8a are formed on the rectangular parallelepiped portion 2a above the molded body 2.
  • the pair of inclined surface portions 8b are formed on the tapered portion 2b at the lower part of the molded body 2 that gradually becomes thinner (see FIG. 1).
  • the molten glass that has flowed down the pair of vertical surface portions 8a and the pair of inclined surface portions 8b is fused and integrated at the lower end portion 2c of the molded body 2, and then sent downward via a cooling roller or the like (not shown) to be glass. It is continuously molded as a ribbon 6.
  • the molded body 2 is made of refractory bricks such as dense zircon, alumina-based, and zirconia-based.
  • Support 3 is a rectangular parallelepiped refractory brick. Both ends in the width direction of the molded body 2 have a rectangular parallelepiped protruding portion 2d and an end surface portion 2e on the outer side in the width direction of the tapered portion 2b (see FIGS. 2 and 4).
  • the projecting portion 2d projects from the upper portion of the molded body 2 to the outside in the width direction. Further, the protruding portion 2d is placed on the upper surface of the support 3, respectively. As a result, the weight of the molded body 2 is received by the pair of supports 3.
  • the lower end of the protruding portion 2d of the molded body 2 is lower than the upper end of the tapered portion 2b (inclined surface portion 8b).
  • the upper end of the support 3 is lower than the upper end of the inclined surface portion 8b of the molded body 2.
  • the end face portion 3a on the inner side in the width direction of the support 3 is in contact with the end face portion 2e on the outer side in the width direction of the tapered portion 2b of the molded body 2 (see FIGS. 2 and 4).
  • the support 3 is made of refractory bricks such as dense zircon, alumina zircon, and mullite.
  • the furnace wall of the molding furnace 4 includes an end wall portion 4a that covers the outer side of the protruding portion 2d of the molded body 2 in the width direction, and a side wall portion 4b that covers the outer sides of both surfaces 8 of the molded body 2 in the front-rear direction.
  • the ceiling wall portion 4c covering the upper side of the molded body 2 and the bottom wall portion 4d covering the lower side of the molded body 2.
  • the "front-back direction" is the left-right direction in FIGS. 1 and 3, and means the thickness direction of the molded body 2.
  • a slit-shaped opening 4e elongated in the width direction for passing the molten glass 5 fused and integrated at the lower end portion 2c of the molded body 2 is formed (FIG. 1). And see FIG. 2).
  • the base 9 is placed on each of the four corners of the bottom wall 4d of the molding furnace 4.
  • Each of the pair of supports 3 is placed on the pair of bases 9.
  • the furnace walls 4a to 4d of the molding furnace 4 are composed of a plurality of refractory bricks.
  • the base 9 is also made of refractory bricks.
  • the end face portion 3b on the outer side in the width direction of the support 3 is separated from the end wall portion 4a of the molding furnace 4 (see FIGS. 2 and 4).
  • the outer side surface portion 3c of the support 3 in the front-rear direction is in contact with or close to the side wall portion 4b of the molding furnace 4 (see FIGS. 1 and 3).
  • a plurality of heaters 10 are installed on each of the pair of supports 3.
  • the heaters 10 are installed at two locations, the upper stage and the lower stage of each support 3, respectively (see FIGS. 2 and 4).
  • Each heater 10 has a rod shape with a circular cross section, and these heaters 10 are inserted into through holes 11 formed in each support 3.
  • These through holes 11 are formed separately at two locations above and below each support 3 so as to extend along the front-rear direction.
  • the through holes 11 formed at two upper and lower positions in the central portion in the front-rear direction of each support 3 and the through holes 11 formed at two upper and lower positions at both ends in the front-rear direction apart from these are formed. They are arranged on the same axis (see FIG. 3).
  • the side wall portions 4b of the molding furnace 4 are also formed with through holes 12 communicating with the through holes 11 (through holes 11 at both ends in the front-rear direction) of the support 3.
  • Each heater 10 is inserted across the through hole 11 of the support 3 and the through hole 12 of the side wall portion 4b, and extends outward from the side wall portion 4b.
  • a heater for heating the molten glass 5 flowing down both surfaces 8 of the molded body 2 is mainly arranged on the side wall portion 4b of the molding furnace 4 so as not to interfere with the support 3. There is.
  • FIG. 5 is an enlarged vertical side view of one side of the main part of FIG. 1
  • FIG. 6 is an enlarged vertical front view of one side of the main part of FIG. 2.
  • FIG. 7 is an enlarged vertical sectional side view of one side portion of the main portion of FIG. 3
  • FIG. 8 is an enlarged vertical sectional front view of one side portion of the main portion of FIG.
  • the support 3 is formed with an opening window 13 for exposing the two heaters 10 to the internal space 4x of the molding furnace 4.
  • opening windows 13 are formed in the middle portion of the through hole 11 in the central axis direction (two locations on both sides of the center in the central axis direction). Specifically, concave opening windows 13 are formed between the through holes 11 in the central portion in the front-rear direction and the through holes 11 at both ends in the front-rear direction, and each through hole 11 is formed in these opening windows 13. Is understood. Further, these opening windows 13 have a shape in which the length in the front-rear direction gradually becomes longer as they move from the upper side to the lower side, and are formed so as not to overlap with the molded body 2 (tapered portion 2b). (See FIG. 5). Then, in these opening windows 13, the inner edge portion in the front-rear direction is inclined so as to follow the inclined surface portion 8b of the molded body 2, and the outer edge portion in the front-rear direction is formed so as to be along the vertical direction. There is.
  • a sealing material 14 is filled between the through holes 11 formed at both ends of the support 3 in the front-rear direction and the heater 10.
  • the sealing material 14 is filled over the entire circumference of the heater 10 at both ends in the central axis direction of the through holes 11 formed at two positions of the support 3.
  • a sealing material 15 is also filled between the through hole 12 formed in the side wall portion 4b of the molding furnace 4 and the heater 10 over the entire circumference of the heater 10.
  • FIGS. 5 to 8 Although the above description based on FIGS. 5 to 8 is for only one side of the main part of the glass plate manufacturing apparatus 1, the same description is applied to the other side of the main part.
  • both ends in the width direction in the internal space 4x of the molding furnace 4 (particularly, the end faces 2e on the outer side in the width direction of the tapered portion 2b).
  • the temperature drop around the is suppressed. Therefore, the temperature difference between the portion of the molded body 2 in contact with the central portion in the width direction of the glass ribbon 6 and the portion in contact with both ends in the width direction of the glass ribbon 6 is reduced.
  • the uneven thickness (unbalanced thickness) of the glass plate to be a product is reduced and devitrification is less likely to occur, so that it is possible to provide a product of stable quality.
  • a heater (not shown) is provided on the side wall portion 4b of the molding furnace 4, but this heater is not capable of sufficiently suppressing a temperature drop due to heat being taken away by the support 3. Absent.
  • the heater 10 is inserted through the through hole 11 formed in the support 3, only the heater 10 can be replaced, and maintenance, inspection, management, and the like can be easily performed. Moreover, since the heater 10 is also inserted through the through hole 12 formed in the side wall portion 4b of the molding furnace 4, the heater 10 can be replaced from the outside of the molding furnace 4, and maintenance, inspection, management, etc. can be performed. It can be done more easily.
  • the support 3 is formed with an opening window 13 for exposing the heater 10 to the internal space 4x of the molding furnace 4, the heat from the heater 10 is efficiently molded through these opening windows 13. It is transmitted to the internal space 4x of the furnace 4. As a result, the temperature drop around both end portions in the width direction of the molded body 2 (particularly, the end face portions 2e on the outer side in the width direction of the tapered portion 2b) is further suppressed.
  • the opening window 13 does not overlap with the molded body 2 and has a shape in which the length in the front-rear direction gradually becomes longer as it moves from the upper side to the lower side. , The heat from the heater 10 can be transferred to the internal space 4x of the molding furnace 4 as much as possible.
  • the sealing material 14 is provided between the through hole 11 and the heater 10 at both ends of the through hole 11 formed in the support 3 in the central axis direction. Is filled.
  • the sealing material 15 is also filled between the through hole 12 formed in the side wall portion 4b of the molding furnace 4 and the heater 10.
  • the glass plate manufacturing apparatus 1 according to the present invention is not limited to the above embodiment, and various variations as shown below are possible.
  • the through hole 11 is formed in the support 3, but a hole that does not penetrate the support 3 may be formed.
  • the heater 10 has a rod shape, it may be a heater having a shape other than the rod shape. Further, the heater 10 may be embedded in the support 3. Further, the number of heaters 10 per support 3 is not limited to two, and may be one or three or more, or the heaters 10 are arranged in a plurality of upper and lower stages and in a plurality of rows. It may be.
  • one opening window 13 is configured to expose all the heaters 10 in a plurality of upper and lower stages, but a plurality of opening windows 13 are formed in the upper and lower portions, and the opening windows 13 are formed in a plurality of upper and lower stages.
  • the heaters 10 in the stage may be configured to be exposed one by one.
  • the through hole 12 is formed in the side wall portion 4b of the molding furnace 4, a hole that does not penetrate the side wall portion 4b may be formed, or the hole may not be formed.
  • the support 3 is separated from the end wall portion 4a of the molding furnace 4, the support 3 may be brought into contact with or close to the end wall portion 4a. In that case, holes extending in the width direction may be formed in the support 3, holes may also be formed in the end wall portion 4a, and the heater 10 may be inserted across these holes.
  • the upper end of the support 3 is made lower than the upper end of the inclined surface portion 8b of the molded body 2, but the upper end of the support 3 is made equal to or higher than the upper end of the inclined surface portion 8b. You may.
  • the present invention is applied to the case where the molten glass 5 is formed into the glass ribbon 6 by the overflow down draw method, but the molded body used for forming the molten glass into the glass ribbon by the slot down draw method and The present invention can be similarly applied to a support that supports both ends in the width direction.
  • Glass plate manufacturing method Next, a glass plate manufacturing method according to another embodiment of the present invention will be described.
  • a molded body 2 and a support 3 that supports both ends in the width direction of the molded body 2 are housed in a molding furnace 4, and a down draw is performed.
  • a molding step of molding the molten glass 5 into a glass ribbon 6 by using a molded body 2 by a method is provided.
  • the support 3 is heated by the heater 10 installed on the support 3.

Abstract

The main configuration of this glass plate manufacturing device 1 is housing, in a molding furnace 4, a mold 2 used for molding molten glass 5 into a glass ribbon 6 with the down-draw process and a support body 3 for supporting both ends in the width direction of the mold 2; this glass plate manufacturing device 1 is configured by arranging a heater 10 on the support body 3.

Description

ガラス板製造装置及びガラス板製造方法Glass plate manufacturing equipment and glass plate manufacturing method
 本発明は、ダウンドロー法によりガラス板を製造する装置及び方法に関する。 The present invention relates to an apparatus and method for manufacturing a glass plate by a down draw method.
 周知のように、ガラス板製造の分野で採用されるダウンドロー法の代表例として、断面が略くさび形の成形体の両表面に沿って溶融ガラスを流下させながらガラスリボンを連続的に成形していくオーバーフローダウンドロー法がある。これ以外のダウンドロー法としては、スロットダウンドロー法等が知られている。 As is well known, as a typical example of the downdraw method adopted in the field of glass plate manufacturing, a glass ribbon is continuously molded while molten glass is allowed to flow down along both surfaces of a molded body having a substantially wedge-shaped cross section. There is an overflow down draw method. As other down draw methods, a slot down draw method and the like are known.
 特許文献1には、オーバーフローダウンドロー法によりガラス板を製造する装置が開示されている。この装置の構成要素である成形体は、幅方向(長手方向)の両端部が支持体によって支持されている。 Patent Document 1 discloses an apparatus for manufacturing a glass plate by an overflow down draw method. The molded body, which is a component of this device, is supported at both ends in the width direction (longitudinal direction) by a support.
WO2012/132309号公報WO2012 / 132309
 一般に、成形体の周辺は、加熱等によって高温に維持されている。しかしながら、特許文献1に開示されているように、成形体の幅方向両端部が支持体によって支持されていると、当該幅方向両端部の周辺の熱が支持体に奪われる。 Generally, the periphery of the molded product is maintained at a high temperature by heating or the like. However, as disclosed in Patent Document 1, when both ends in the width direction of the molded body are supported by the support, the heat around both ends in the width direction is taken away by the support.
 そのため、成形体は、成形されるガラスリボンの幅方向中央部と接触する部分に比して、ガラスリボンの幅方向両端部と接触する部分の温度が低下する。その結果、製品となるガラス板の偏肉(偏肉度)の増大や失透の発生を招くおそれがあり、安定した品質の製品を得ることが困難になる。 Therefore, in the molded body, the temperature of the portion in contact with both ends in the width direction of the glass ribbon is lower than that in contact with the central portion in the width direction of the glass ribbon to be molded. As a result, there is a risk of increasing the uneven thickness (unbalanced thickness) of the glass plate to be a product and causing devitrification, and it becomes difficult to obtain a product of stable quality.
 以上の観点から、本発明は、成形体の幅方向両端部の周辺温度を適温に維持して、ガラス板の偏肉や失透の問題を低減することを課題とする。 From the above viewpoint, it is an object of the present invention to maintain the ambient temperature at both ends of the molded product in the width direction at an appropriate temperature and reduce the problems of uneven thickness and devitrification of the glass plate.
 上記課題を解決するために創案された本発明の第一の側面は、ダウンドロー法により溶融ガラスをガラスリボンに成形するために用いられる成形体と、前記成形体の幅方向両端部を支持する支持体とを、成形炉内に収容したガラス板製造装置であって、前記支持体にヒータを設置したことに特徴づけられる。 The first aspect of the present invention, which was devised to solve the above problems, supports a molded body used for molding molten glass into a glass ribbon by a down draw method and both ends in the width direction of the molded body. It is a glass plate manufacturing apparatus in which a support is housed in a molding furnace, and is characterized in that a heater is installed on the support.
 このような構成によれば、成形体の幅方向両端部を支持する支持体がヒータによって加熱されるため、成形炉内における当該幅方向両端部の周辺の温度低下が抑制される。そのため、成形体は、成形されるガラスリボンの幅方向中央部と接触する部分と、ガラスリボンの幅方向両端部と接触する部分との温度差が減少する。その結果、製品となるガラス板の偏肉(偏肉度)が低減すると共に失透が生じ難くなり、安定した品質の製品を提供することが可能になる。 According to such a configuration, since the support supporting both ends in the width direction of the molded body is heated by the heater, the temperature drop around both ends in the width direction in the molding furnace is suppressed. Therefore, in the molded body, the temperature difference between the portion in contact with the central portion in the width direction of the glass ribbon to be molded and the portion in contact with both ends in the width direction of the glass ribbon is reduced. As a result, the uneven thickness (unbalanced thickness) of the glass plate to be a product is reduced and devitrification is less likely to occur, so that it is possible to provide a product of stable quality.
 この構成において、前記支持体は、耐火煉瓦であることが好ましい。 In this configuration, the support is preferably refractory brick.
 このようにすれば、高温での強度を確保することができ、支持体の変形を防止することができる。 By doing so, the strength at high temperature can be ensured, and the deformation of the support can be prevented.
 以上の構成において、前記支持体に形成された孔に、前記ヒータが配設されるようにしてもよい。 In the above configuration, the heater may be arranged in the hole formed in the support.
 このようにすれば、ヒータのみの交換が可能となり、保守点検や管理等を容易に行うことができる。 In this way, only the heater can be replaced, and maintenance, inspection, management, etc. can be easily performed.
 以上の構成において、前記支持体に形成された孔と、前記成形炉の炉壁に形成された孔とに跨って、前記ヒータが配設されるようにしてもよい。 In the above configuration, the heater may be arranged so as to straddle the hole formed in the support and the hole formed in the furnace wall of the molding furnace.
 このようにすれば、ヒータを適切に支持することができると共に、ヒータの設置や交換も容易に行うことができる。 In this way, the heater can be properly supported, and the heater can be easily installed or replaced.
 この構成において、前記ヒータが棒状をなし、前記支持体に形成された孔が貫通孔であると共に、前記成形炉の炉壁に形成された孔が貫通孔であり、これらの貫通孔に、前記ヒータが挿通されるようにしてもよい。 In this configuration, the heater has a rod shape, the holes formed in the support are through holes, and the holes formed in the furnace wall of the molding furnace are through holes. The heater may be inserted.
 このようにすれば、成形炉外からのヒータの設置や、操業中のヒータの交換が可能になる。また、ヒータを成形炉外まで延び出させた状態で、ヒータに対して配線をすることも可能になる。しかも、ヒータを棒状にすることで、該ヒータを細長状にすることができる。これにより、支持体及び炉壁に形成する貫通孔を細径にすることができ、成形炉内から逃げる熱量を少なくすることができる。 In this way, it is possible to install a heater from outside the molding furnace and replace the heater during operation. Further, it is possible to wire the heater in a state where the heater extends to the outside of the molding furnace. Moreover, by making the heater rod-shaped, the heater can be elongated. As a result, the through holes formed in the support and the furnace wall can be made smaller in diameter, and the amount of heat escaping from the molding furnace can be reduced.
 この構成において、前記支持体に、前記ヒータを前記成形炉の内部空間に露出させるための開口窓を形成してもよい。 In this configuration, the support may be provided with an opening window for exposing the heater to the internal space of the molding furnace.
 このようにすれば、ヒータからの熱が、開口窓を通じて効率良く成形炉の内部空間に伝わるため、成形体の幅方向両端部の周辺の雰囲気を昇温することができる。そのため、成形体におけるガラスリボンの幅方向中央部と接触する部分と、ガラスリボンの幅方向両端部と接触する部分との温度差がさらに減少する。 In this way, the heat from the heater is efficiently transferred to the internal space of the molding furnace through the opening window, so that the atmosphere around both ends in the width direction of the molded body can be raised. Therefore, the temperature difference between the portion of the molded product that contacts the central portion of the glass ribbon in the width direction and the portion that contacts both ends of the glass ribbon in the width direction is further reduced.
 この構成において、前記開口窓は、前記支持体に形成された孔の中心軸線方向の中間部に設けられ、前記支持体に形成された孔の中心軸線方向の両端部において、前記支持体に形成された孔と、前記ヒータとの間に、シール材を充填させるようにしてもよい。 In this configuration, the opening window is provided in the middle portion of the hole formed in the support in the central axis direction, and is formed in the support at both ends of the hole formed in the support in the central axis direction. A sealing material may be filled between the formed hole and the heater.
 開口窓を設ける場合、成形炉内の雰囲気が、開口窓を介して支持体の孔とヒータとの間から流出しやすく、これに伴って成形炉内の温度が低下しやすい。これに対して、支持体の孔の中心軸線方向の両端部において、支持体の孔とヒータとの間にシール材を充填すれば、成形炉内の雰囲気の流出を防止でき、成形炉内の温度を好適に維持できる。 When an opening window is provided, the atmosphere inside the molding furnace tends to flow out from between the hole of the support and the heater through the opening window, and the temperature inside the molding furnace tends to decrease accordingly. On the other hand, if a sealing material is filled between the hole of the support and the heater at both ends in the direction of the central axis of the hole of the support, the outflow of the atmosphere in the molding furnace can be prevented and the inside of the molding furnace can be prevented. The temperature can be maintained favorably.
 開口窓を設ける構成において、前記成形炉の炉壁に形成された孔と、前記ヒータとの間に、シール材を充填させるようにしてもよい。 In the configuration in which the opening window is provided, a sealing material may be filled between the hole formed in the furnace wall of the molding furnace and the heater.
 このようにした場合も、成形炉内の雰囲気の流出を防止でき、成形炉内の温度を好適に維持できる。 Even in this case, the outflow of the atmosphere in the molding furnace can be prevented, and the temperature in the molding furnace can be maintained suitably.
 上記課題を解決するために創案された本発明の第二の側面は、成形炉内に、成形体と、該成形体の幅方向両端部を支持する支持体とを収容して、ダウンドロー法により前記成形体を用いて溶融ガラスをガラスリボンに成形する成形工程を備えたガラス板製造方法であって、前記成形工程で、前記支持体に設置されたヒータで前記支持体を加熱することに特徴づけられる。 The second aspect of the present invention, which was devised to solve the above problems, is a down-draw method in which a molded product and a support supporting both ends of the molded product in the width direction are housed in a molding furnace. A glass plate manufacturing method including a molding step of molding molten glass into a glass ribbon using the molded body, wherein the support is heated by a heater installed on the support in the molding step. Be characterized.
 この方法による場合も、既に述べた事項と同様にして、製品となるガラス板の偏肉(偏肉度)や失透の問題が生じ難くなり、安定した品質の製品を提供することが可能になる。 Even with this method, the problems of uneven thickness (unevenness) and devitrification of the glass plate to be the product are less likely to occur, and it is possible to provide a product of stable quality, as in the case of the above-mentioned matters. Become.
 本発明によれば、成形体の幅方向両端部の周辺温度が適温に維持され、ガラス板の偏肉や失透の問題が低減され得る。 According to the present invention, the ambient temperature at both ends in the width direction of the molded product can be maintained at an appropriate temperature, and the problems of uneven thickness and devitrification of the glass plate can be reduced.
本発明の実施形態に係るガラス板製造装置の主要部を示す縦断側面図である。It is a vertical sectional side view which shows the main part of the glass plate manufacturing apparatus which concerns on embodiment of this invention. 図1のAーA線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to line AA of FIG. 図2のBーB線に従って切断した縦断側面図である。It is a vertical sectional side view cut according to the line BB of FIG. 図1のCーC線に従って切断した縦断正面図である。It is a vertical sectional front view cut according to line CC of FIG. 図1の主要部の片側部分を拡大した縦断側面図である。It is a vertical sectional side view which enlarged one side part of the main part of FIG. 図2の主要部の片側部分を拡大した縦断正面図である。It is a vertical sectional front view which enlarged one side part of the main part of FIG. 図3の主要部の片側部分を拡大した縦断側面図である。It is a vertical sectional side view which enlarged one side part of the main part of FIG. 図4の主要部の片側部分を拡大した縦断正面図である。It is a vertical sectional front view which enlarged one side part of the main part of FIG.
 以下、本発明の実施形態について添付図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[ガラス板製造装置]
 図1は、本発明の実施形態に係るガラス板製造装置の要部を示す縦断側面図であり、図2は、図1のA―A線に従って切断した縦断正面図である。また、図3は、図2のB-B線に従って切断した縦断側面図であり、図4は、図1のC-C線に従って切断した縦断正面図である。これら各図に示すように、ガラス板製造装置1は、主たる構成要素として、成形体2と、一対の支持体3と、これら成形体2及び支持体3を収容する成形炉4とを備える。成形体2は、その幅方向中間部で、オーバーフローダウンドロー法により溶融ガラス5をガラスリボン6に成形する。一対の支持体3は、成形体2の幅方向両端部を支持するために配備される。ここで、「幅方向」とは、図2及び図4における左右方向であって、本実施形態では成形体2の長手方向を意味する。
[Glass plate manufacturing equipment]
FIG. 1 is a vertical sectional side view showing a main part of the glass plate manufacturing apparatus according to the embodiment of the present invention, and FIG. 2 is a vertical sectional front view cut according to lines AA of FIG. Further, FIG. 3 is a vertical sectional side view cut according to the line BB of FIG. 2, and FIG. 4 is a vertical sectional front view cut according to the line CC of FIG. As shown in each of these figures, the glass plate manufacturing apparatus 1 includes a molded body 2, a pair of supports 3, and a molding furnace 4 that houses the molded body 2 and the supports 3 as main components. In the molded body 2, the molten glass 5 is molded into the glass ribbon 6 by the overflow down draw method at the intermediate portion in the width direction. The pair of supports 3 are arranged to support both ends in the width direction of the molded body 2. Here, the "width direction" is the left-right direction in FIGS. 2 and 4, and in the present embodiment, means the longitudinal direction of the molded body 2.
 成形体2は、頂部に形成されたオーバーフロー溝7と、オーバーフロー溝7から溢れ出た溶融ガラス5が流下する一対の表面8とを有する。一対の表面8はそれぞれ、上部の垂直面部8aと、下部の傾斜面部8bとで構成される(図1及び図4参照)。一対の垂直面部8aは、成形体2の上部の直方体状部2aに形成される。一対の傾斜面部8bは、成形体2の下部における下方に向かって漸次薄肉となる先細り部2bに形成される(図1参照)。一対の垂直面部8a及び一対の傾斜面部8bを流下した溶融ガラスは、成形体2の下端部2cで融合一体化した後、図外の冷却ローラ等を経由して下方に送られることで、ガラスリボン6として連続的に成形される。成形体2は、例えばデンスジルコンやアルミナ系、ジルコニア系等の耐火煉瓦により構成される。 The molded body 2 has an overflow groove 7 formed at the top and a pair of surfaces 8 on which the molten glass 5 overflowing from the overflow groove 7 flows down. Each of the pair of surfaces 8 is composed of an upper vertical surface portion 8a and a lower inclined surface portion 8b (see FIGS. 1 and 4). The pair of vertical surface portions 8a are formed on the rectangular parallelepiped portion 2a above the molded body 2. The pair of inclined surface portions 8b are formed on the tapered portion 2b at the lower part of the molded body 2 that gradually becomes thinner (see FIG. 1). The molten glass that has flowed down the pair of vertical surface portions 8a and the pair of inclined surface portions 8b is fused and integrated at the lower end portion 2c of the molded body 2, and then sent downward via a cooling roller or the like (not shown) to be glass. It is continuously molded as a ribbon 6. The molded body 2 is made of refractory bricks such as dense zircon, alumina-based, and zirconia-based.
 支持体3は、直方体状の耐火煉瓦である。成形体2の幅方向両端部は、直方体状の突出部2dと、先細り部2bの幅方向外側の端面部2eとをそれぞれ有する(図2及び図4参照)。突出部2dは、成形体2の上部から幅方向外側にそれぞれ突設されている。また、突出部2dは、支持体3の上面にそれぞれ載置されている。これによって、成形体2の重量が一対の支持体3により受けられている。本実施形態では、成形体2の突出部2dの下端が、先細り部2b(傾斜面部8b)の上端よりも低くなっている。換言すれば、支持体3の上端は、成形体2の傾斜面部8bの上端よりも低くなっている。そして、支持体3の幅方向内側の端面部3aは、成形体2の先細り部2bの幅方向外側の端面部2eに接触している(図2及び図4参照)。支持体3は、例えばデンスジルコンやアルミナジルコン、ムライト等の耐火煉瓦により構成される。 Support 3 is a rectangular parallelepiped refractory brick. Both ends in the width direction of the molded body 2 have a rectangular parallelepiped protruding portion 2d and an end surface portion 2e on the outer side in the width direction of the tapered portion 2b (see FIGS. 2 and 4). The projecting portion 2d projects from the upper portion of the molded body 2 to the outside in the width direction. Further, the protruding portion 2d is placed on the upper surface of the support 3, respectively. As a result, the weight of the molded body 2 is received by the pair of supports 3. In the present embodiment, the lower end of the protruding portion 2d of the molded body 2 is lower than the upper end of the tapered portion 2b (inclined surface portion 8b). In other words, the upper end of the support 3 is lower than the upper end of the inclined surface portion 8b of the molded body 2. The end face portion 3a on the inner side in the width direction of the support 3 is in contact with the end face portion 2e on the outer side in the width direction of the tapered portion 2b of the molded body 2 (see FIGS. 2 and 4). The support 3 is made of refractory bricks such as dense zircon, alumina zircon, and mullite.
 成形炉4の炉壁は、成形体2の突出部2dの幅方向外方側をそれぞれ覆う端壁部4aと、成形体2の両表面8の前後方向外方側をそれぞれ覆う側壁部4bと、成形体2の上方側を覆う天井壁部4cと、成形体2の下方側を覆う底壁部4dとで構成される。ここで、「前後方向」とは、図1及び図3における左右方向であって、成形体2の厚み方向を意味する。底壁部4dの中央部には、成形体2の下端部2cで融合一体化した溶融ガラス5が通過するための幅方向に長尺なスリット状の開口部4eが形成されている(図1及び図2参照)。 The furnace wall of the molding furnace 4 includes an end wall portion 4a that covers the outer side of the protruding portion 2d of the molded body 2 in the width direction, and a side wall portion 4b that covers the outer sides of both surfaces 8 of the molded body 2 in the front-rear direction. , The ceiling wall portion 4c covering the upper side of the molded body 2 and the bottom wall portion 4d covering the lower side of the molded body 2. Here, the "front-back direction" is the left-right direction in FIGS. 1 and 3, and means the thickness direction of the molded body 2. In the central portion of the bottom wall portion 4d, a slit-shaped opening 4e elongated in the width direction for passing the molten glass 5 fused and integrated at the lower end portion 2c of the molded body 2 is formed (FIG. 1). And see FIG. 2).
 成形炉4の底壁部4dの四隅部には、基台体9がそれぞれ載置されている。一対の支持体3はそれぞれ、一対の基台体9の上に載置されている。成形炉4の炉壁4a~4dは、複数の耐火煉瓦で構成される。また、基台体9も耐火煉瓦で構成される。 The base 9 is placed on each of the four corners of the bottom wall 4d of the molding furnace 4. Each of the pair of supports 3 is placed on the pair of bases 9. The furnace walls 4a to 4d of the molding furnace 4 are composed of a plurality of refractory bricks. The base 9 is also made of refractory bricks.
 支持体3の幅方向外側の端面部3bは、成形炉4の端壁部4aから離間している(図2及び図4参照)。これに対して、支持体3の前後方向外側の側面部3cは、成形炉4の側壁部4bに接触または近接している(図1及び図3参照)。 The end face portion 3b on the outer side in the width direction of the support 3 is separated from the end wall portion 4a of the molding furnace 4 (see FIGS. 2 and 4). On the other hand, the outer side surface portion 3c of the support 3 in the front-rear direction is in contact with or close to the side wall portion 4b of the molding furnace 4 (see FIGS. 1 and 3).
 一対の支持体3には、複数本のヒータ10がそれぞれ設置されている。図例では、各支持体3の上段及び下段の2箇所にヒータ10がそれぞれ設置されている(図2及び図4参照)。各ヒータ10は、断面円形の棒状をなし、これらのヒータ10は、各支持体3にそれぞれ形成された貫通孔11に挿通されている。これらの貫通孔11は、前後方向に沿って延びるように各支持体3の上下2箇所においてそれぞれが分離して形成されている。詳しくは、各支持体3における前後方向の中央部の上下2箇所に形成された貫通孔11と、これらから離間して前後方向の両端部の上下2箇所に形成された貫通孔11とが、それぞれ同一軸線上に配置されている(図3参照)。さらに、成形炉4の側壁部4bにもそれぞれ、支持体3の貫通孔11(前後方向の両端部の貫通孔11)と連通する貫通孔12が形成されている。各ヒータ10は、支持体3の貫通孔11と側壁部4bの貫通孔12とに跨って挿通され、側壁部4bから外側に延び出している。 A plurality of heaters 10 are installed on each of the pair of supports 3. In the illustrated example, the heaters 10 are installed at two locations, the upper stage and the lower stage of each support 3, respectively (see FIGS. 2 and 4). Each heater 10 has a rod shape with a circular cross section, and these heaters 10 are inserted into through holes 11 formed in each support 3. These through holes 11 are formed separately at two locations above and below each support 3 so as to extend along the front-rear direction. Specifically, the through holes 11 formed at two upper and lower positions in the central portion in the front-rear direction of each support 3 and the through holes 11 formed at two upper and lower positions at both ends in the front-rear direction apart from these are formed. They are arranged on the same axis (see FIG. 3). Further, the side wall portions 4b of the molding furnace 4 are also formed with through holes 12 communicating with the through holes 11 (through holes 11 at both ends in the front-rear direction) of the support 3. Each heater 10 is inserted across the through hole 11 of the support 3 and the through hole 12 of the side wall portion 4b, and extends outward from the side wall portion 4b.
 なお、図示しないが、成形炉4の側壁部4bには、主として成形体2の両表面8を流下する溶融ガラス5を加熱するためのヒータが、支持体3と干渉しないように配設されている。 Although not shown, a heater for heating the molten glass 5 flowing down both surfaces 8 of the molded body 2 is mainly arranged on the side wall portion 4b of the molding furnace 4 so as not to interfere with the support 3. There is.
 図5は、図1の主要部の片側部分を拡大した縦断側面図であり、図6は、図2の主要部の片側部分を拡大した縦断正面図である。また、図7は、図3の主要部の片側部分を拡大した縦断側面図であり、図8は、図4の主要部の片側部分を拡大した縦断正面図である。これら各図に示すように、支持体3には、2本のヒータ10を成形炉4の内部空間4xに露出させるための開口窓13が形成されている。 FIG. 5 is an enlarged vertical side view of one side of the main part of FIG. 1, and FIG. 6 is an enlarged vertical front view of one side of the main part of FIG. 2. Further, FIG. 7 is an enlarged vertical sectional side view of one side portion of the main portion of FIG. 3, and FIG. 8 is an enlarged vertical sectional front view of one side portion of the main portion of FIG. As shown in each of these figures, the support 3 is formed with an opening window 13 for exposing the two heaters 10 to the internal space 4x of the molding furnace 4.
 これらの開口窓13は、貫通孔11の中心軸線方向の中間部(中心軸線方向の中央の両側2箇所)に形成されている。詳しくは、前後方向の中央部の貫通孔11と、前後方向の両端部の貫通孔11との間に、凹状をなす開口窓13がそれぞれ形成され、これらの開口窓13に、各貫通孔11が通じている。さらに、これらの開口窓13は、上方から下方に移行するに連れて前後方向長さが漸次長尺になる形状をなし、成形体2(先細り部2b)とオーバーラップしないように形成されている(図5参照)。そして、これらの開口窓13は、前後方向の内側の縁部が、成形体2の傾斜面部8bに倣うように傾斜し、前後方向の外側の縁部が、鉛直方向に沿うように形成されている。 These opening windows 13 are formed in the middle portion of the through hole 11 in the central axis direction (two locations on both sides of the center in the central axis direction). Specifically, concave opening windows 13 are formed between the through holes 11 in the central portion in the front-rear direction and the through holes 11 at both ends in the front-rear direction, and each through hole 11 is formed in these opening windows 13. Is understood. Further, these opening windows 13 have a shape in which the length in the front-rear direction gradually becomes longer as they move from the upper side to the lower side, and are formed so as not to overlap with the molded body 2 (tapered portion 2b). (See FIG. 5). Then, in these opening windows 13, the inner edge portion in the front-rear direction is inclined so as to follow the inclined surface portion 8b of the molded body 2, and the outer edge portion in the front-rear direction is formed so as to be along the vertical direction. There is.
 支持体3の前後方向の両端部に形成された貫通孔11とヒータ10との間には、シール材14が充填されている。換言すると、シール材14は、支持体3の2箇所に形成された貫通孔11の中心軸線方向の両端部において、ヒータ10の全周にわたって充填されている。成形炉4の側壁部4bに形成された貫通孔12とヒータ10との間にも、ヒータ10の全周にわたってシール材15が充填されている。これらのシール材14、15は、断熱材であって、例えば耐火繊維からなる。 A sealing material 14 is filled between the through holes 11 formed at both ends of the support 3 in the front-rear direction and the heater 10. In other words, the sealing material 14 is filled over the entire circumference of the heater 10 at both ends in the central axis direction of the through holes 11 formed at two positions of the support 3. A sealing material 15 is also filled between the through hole 12 formed in the side wall portion 4b of the molding furnace 4 and the heater 10 over the entire circumference of the heater 10. These sealing materials 14 and 15 are heat insulating materials and are made of, for example, refractory fibers.
 なお、図5~図8に基づく以上の説明は、ガラス板製造装置1の主要部の片側のみに対するものであるが、当該主要部の他方の側に対しても同一の説明が適用される。 Although the above description based on FIGS. 5 to 8 is for only one side of the main part of the glass plate manufacturing apparatus 1, the same description is applied to the other side of the main part.
 以上の構成を備えたガラス板製造装置1によれば、下記のような作用効果を奏する。 According to the glass plate manufacturing apparatus 1 having the above configuration, the following effects are exhibited.
 成形体2の幅方向両端部を支持する支持体3はヒータ10によって加熱されるため、成形炉4の内部空間4xにおける当該幅方向両端部(特に先細り部2bの幅方向外側の端面部2e)の周辺の温度低下が抑制される。そのため、成形体2は、ガラスリボン6の幅方向中央部と接触する部分と、ガラスリボン6の幅方向両端部と接触する部分との温度差が減少する。その結果、製品となるガラス板の偏肉(偏肉度)が低減すると共に失透が生じ難くなり、安定した品質の製品を提供することが可能になる。なお、既述のように成形炉4の側壁部4bには図示しないヒータが配設されているが、このヒータは、支持体3に熱が奪われることによる温度低下を十分に抑制できるものではない。 Since the support 3 that supports both ends in the width direction of the molded body 2 is heated by the heater 10, both ends in the width direction in the internal space 4x of the molding furnace 4 (particularly, the end faces 2e on the outer side in the width direction of the tapered portion 2b). The temperature drop around the is suppressed. Therefore, the temperature difference between the portion of the molded body 2 in contact with the central portion in the width direction of the glass ribbon 6 and the portion in contact with both ends in the width direction of the glass ribbon 6 is reduced. As a result, the uneven thickness (unbalanced thickness) of the glass plate to be a product is reduced and devitrification is less likely to occur, so that it is possible to provide a product of stable quality. As described above, a heater (not shown) is provided on the side wall portion 4b of the molding furnace 4, but this heater is not capable of sufficiently suppressing a temperature drop due to heat being taken away by the support 3. Absent.
 また、支持体3に形成された貫通孔11に、ヒータ10が挿通されているため、ヒータ10のみの交換が可能となり、保守点検や管理等を容易に行うことができる。しかも、ヒータ10は、成形炉4の側壁部4bに形成された貫通孔12にも挿通されているため、ヒータ10の交換を成形炉4の外部から行うことができ、保守点検や管理等をより一層容易に行うことができる。 Further, since the heater 10 is inserted through the through hole 11 formed in the support 3, only the heater 10 can be replaced, and maintenance, inspection, management, and the like can be easily performed. Moreover, since the heater 10 is also inserted through the through hole 12 formed in the side wall portion 4b of the molding furnace 4, the heater 10 can be replaced from the outside of the molding furnace 4, and maintenance, inspection, management, etc. can be performed. It can be done more easily.
 さらに、支持体3には、ヒータ10を成形炉4の内部空間4xに露出させるための開口窓13が形成されていることにより、ヒータ10からの熱は、これらの開口窓13を通じて効率良く成形炉4の内部空間4xに伝わる。これにより、成形体2の幅方向両端部(特に先細り部2bの幅方向外側の端面部2e)の周辺の温度低下がさらに抑制される。しかも、図5に示すように、開口窓13は、成形体2とオーバーラップしておらず、且つ、上方から下方に移行するに連れて前後方向長さが漸次長尺になる形状であるため、ヒータ10からの熱をできるだけ多く成形炉4の内部空間4xに伝えることができる。 Further, since the support 3 is formed with an opening window 13 for exposing the heater 10 to the internal space 4x of the molding furnace 4, the heat from the heater 10 is efficiently molded through these opening windows 13. It is transmitted to the internal space 4x of the furnace 4. As a result, the temperature drop around both end portions in the width direction of the molded body 2 (particularly, the end face portions 2e on the outer side in the width direction of the tapered portion 2b) is further suppressed. Moreover, as shown in FIG. 5, the opening window 13 does not overlap with the molded body 2 and has a shape in which the length in the front-rear direction gradually becomes longer as it moves from the upper side to the lower side. , The heat from the heater 10 can be transferred to the internal space 4x of the molding furnace 4 as much as possible.
 また、開口窓13を設ける場合、成形炉4内の雰囲気が、開口窓13を介して貫通孔11、12とヒータ10との間から流出しやすく、これに伴って成形炉4内の温度が低下しやすい。これに対して、本実施形態に係るガラス板製造装置1では、支持体3に形成された貫通孔11の中心軸線方向の両端部において、貫通孔11とヒータ10との間に、シール材14が充填されている。これに加えて、成形炉4の側壁部4bに形成された貫通孔12とヒータ10との間にも、シール材15が充填されている。これらにより、成形炉4内の雰囲気の流出を防止でき、成形炉4内の温度を好適に維持できる。 Further, when the opening window 13 is provided, the atmosphere inside the molding furnace 4 tends to flow out from between the through holes 11 and 12 and the heater 10 through the opening window 13, and the temperature inside the molding furnace 4 rises accordingly. It is easy to drop. On the other hand, in the glass plate manufacturing apparatus 1 according to the present embodiment, the sealing material 14 is provided between the through hole 11 and the heater 10 at both ends of the through hole 11 formed in the support 3 in the central axis direction. Is filled. In addition to this, the sealing material 15 is also filled between the through hole 12 formed in the side wall portion 4b of the molding furnace 4 and the heater 10. As a result, the outflow of the atmosphere in the molding furnace 4 can be prevented, and the temperature in the molding furnace 4 can be suitably maintained.
 なお、本発明に係るガラス板製造装置1は、上記実施形態に限定されるものではなく、以下に示すような種々のバリエーションが可能である。 The glass plate manufacturing apparatus 1 according to the present invention is not limited to the above embodiment, and various variations as shown below are possible.
 すなわち、上記実施形態では、支持体3に貫通孔11を形成したが、支持体3に貫通しない孔を形成するようにしてもよい。また、ヒータ10は棒状をなすようにしたが、棒状以外の形状をなすヒータであってもよい。さらに、ヒータ10は、支持体3に埋め込まれるようにしてもよい。また、1つの支持体3につき、ヒータ10の個数は2個に限られず、1個、または3個以上であってもよく、或いは、ヒータ10を上下複数段で且つ複数列に配設するようにしてもよい。さらに、上記実施形態では、1つの開口窓13が上下複数段の全てのヒータ10を露出させるように構成したが、上下に複数の開口窓13を形成して、それらの開口窓13が上下複数段のヒータ10を1個ずつ露出させるように構成してもよい。また、成形炉4の側壁部4bに貫通孔12を形成したが、側壁部4bに貫通しない孔を形成するようにしてもよく、孔を形成しないようにしてもよい。しかも、支持体3を成形炉4の端壁部4aから離間するようにしたが、支持体3を端壁部4aに接触または近接させるようにしてもよい。その場合には、支持体3に幅方向に延びる孔を形成し、端壁部4aにも孔を形成して、これらの孔に跨ってヒータ10を挿通するようにしてもよい。 That is, in the above embodiment, the through hole 11 is formed in the support 3, but a hole that does not penetrate the support 3 may be formed. Further, although the heater 10 has a rod shape, it may be a heater having a shape other than the rod shape. Further, the heater 10 may be embedded in the support 3. Further, the number of heaters 10 per support 3 is not limited to two, and may be one or three or more, or the heaters 10 are arranged in a plurality of upper and lower stages and in a plurality of rows. It may be. Further, in the above embodiment, one opening window 13 is configured to expose all the heaters 10 in a plurality of upper and lower stages, but a plurality of opening windows 13 are formed in the upper and lower portions, and the opening windows 13 are formed in a plurality of upper and lower stages. The heaters 10 in the stage may be configured to be exposed one by one. Further, although the through hole 12 is formed in the side wall portion 4b of the molding furnace 4, a hole that does not penetrate the side wall portion 4b may be formed, or the hole may not be formed. Moreover, although the support 3 is separated from the end wall portion 4a of the molding furnace 4, the support 3 may be brought into contact with or close to the end wall portion 4a. In that case, holes extending in the width direction may be formed in the support 3, holes may also be formed in the end wall portion 4a, and the heater 10 may be inserted across these holes.
 また、上記実施形態では、支持体3の上端を、成形体2の傾斜面部8bの上端よりも低くしたが、支持体3の上端を、傾斜面部8bの上端と同じかまたはそれよりも高くしてもよい。 Further, in the above embodiment, the upper end of the support 3 is made lower than the upper end of the inclined surface portion 8b of the molded body 2, but the upper end of the support 3 is made equal to or higher than the upper end of the inclined surface portion 8b. You may.
 さらに、上記実施形態では、オーバーフローダウンドロー法により溶融ガラス5をガラスリボン6に成形する場合について本発明を適用したが、スロットダウンドロー法により溶融ガラスをガラスリボンに成形するために用いる成形体及びその幅方向両端部を支持する支持体についても同様にして本発明を適用することができる。 Further, in the above embodiment, the present invention is applied to the case where the molten glass 5 is formed into the glass ribbon 6 by the overflow down draw method, but the molded body used for forming the molten glass into the glass ribbon by the slot down draw method and The present invention can be similarly applied to a support that supports both ends in the width direction.
 [ガラス板製造方法]
 次に、本発明の他の実施形態であるガラス板製造方法について説明する。図1~図8を参照して、このガラス板製造方法は、成形炉4内に、成形体2と、成形体2の幅方向両端部を支持する支持体3とを収容して、ダウンドロー法により成形体2を用いて溶融ガラス5をガラスリボン6に成形する成形工程を備える。そして、この成形工程で、支持体3に設置されたヒータ10で支持体3を加熱するようにする。従って、このガラス板製造方法による場合も、上記のガラス板製造装置1について既に述べた事項と同様の理由により、製品となるガラス板の偏肉(偏肉度)や失透の問題が生じ難くなり、安定した品質の製品を提供することが可能になる。
[Glass plate manufacturing method]
Next, a glass plate manufacturing method according to another embodiment of the present invention will be described. With reference to FIGS. 1 to 8, in this glass plate manufacturing method, a molded body 2 and a support 3 that supports both ends in the width direction of the molded body 2 are housed in a molding furnace 4, and a down draw is performed. A molding step of molding the molten glass 5 into a glass ribbon 6 by using a molded body 2 by a method is provided. Then, in this molding step, the support 3 is heated by the heater 10 installed on the support 3. Therefore, even in the case of this glass plate manufacturing method, problems of uneven thickness (unevenness) and devitrification of the glass plate to be a product are unlikely to occur for the same reason as described above for the glass plate manufacturing apparatus 1. Therefore, it becomes possible to provide products of stable quality.
1     ガラス板製造装置
2     成形体
3     支持体
4     成形炉
4a   炉壁(端壁部)
4b   炉壁(側壁部)
4x   成形炉の内部空間
5     溶融ガラス
6     ガラスリボン
10   ヒータ
11   支持体に形成された貫通孔
12   炉壁に形成された貫通孔
13   開口窓
14   支持体のシール材
15   炉壁のシール材
1 Glass plate manufacturing equipment 2 Molded body 3 Support 4 Molding furnace 4a Furnace wall (end wall part)
4b Furnace wall (side wall)
4x Internal space of the molding furnace 5 Molten glass 6 Glass ribbon 10 Heater 11 Through hole formed in the support 12 Through hole formed in the furnace wall 13 Opening window 14 Sealing material for the support 15 Sealing material for the furnace wall

Claims (9)

  1.  ダウンドロー法により溶融ガラスをガラスリボンに成形するために用いられる成形体と、前記成形体の幅方向両端部を支持する支持体とを、成形炉内に収容したガラス板製造装置であって、
     前記支持体にヒータを設置したことを特徴とするガラス板製造装置。
    A glass plate manufacturing apparatus in which a molded body used for molding molten glass into a glass ribbon by a down-draw method and a support supporting both ends of the molded body in the width direction are housed in a molding furnace.
    A glass plate manufacturing apparatus characterized in that a heater is installed on the support.
  2.  前記支持体は、耐火煉瓦である請求項1に記載のガラス板製造装置。 The glass plate manufacturing apparatus according to claim 1, wherein the support is refractory bricks.
  3.  前記支持体に形成された孔に、前記ヒータが配設されている請求項1または2に記載のガラス板製造装置。 The glass plate manufacturing apparatus according to claim 1 or 2, wherein the heater is arranged in a hole formed in the support.
  4.  前記支持体に形成された孔と、前記成形炉の炉壁に形成された孔とに跨って、前記ヒータが配設されている請求項3に記載のガラス板製造装置。 The glass plate manufacturing apparatus according to claim 3, wherein the heater is arranged so as to straddle the holes formed in the support and the holes formed in the furnace wall of the molding furnace.
  5.  前記ヒータが棒状をなし、前記支持体に形成された孔が貫通孔であると共に、前記成形炉の炉壁に形成された孔が貫通孔であり、これらの貫通孔に、前記ヒータが挿通されている請求項4に記載のガラス板製造装置。 The heater has a rod shape, the holes formed in the support are through holes, and the holes formed in the furnace wall of the molding furnace are through holes, and the heater is inserted through these through holes. The glass plate manufacturing apparatus according to claim 4.
  6.  前記支持体に、前記ヒータを前記成形炉の内部空間に露出させるための開口窓を形成する請求項4または5に記載のガラス板製造装置。 The glass plate manufacturing apparatus according to claim 4 or 5, wherein an opening window for exposing the heater to the internal space of the molding furnace is formed on the support.
  7.  前記開口窓は、前記支持体に形成された孔の中心軸線方向の中間部に設けられ、
     前記支持体に形成された孔の中心軸線方向の両端部において、前記支持体に形成された孔と、前記ヒータとの間に、シール材が充填されている請求項6に記載のガラス板製造装置。
    The opening window is provided in the middle portion in the central axis direction of the hole formed in the support.
    The glass plate manufacturing according to claim 6, wherein a sealing material is filled between the holes formed in the support and the heater at both ends of the holes formed in the support in the direction of the central axis. apparatus.
  8.  前記成形炉の炉壁に形成された孔と、前記ヒータとの間に、シール材が充填されている請求項6または7に記載のガラス板製造装置。 The glass plate manufacturing apparatus according to claim 6 or 7, wherein a sealing material is filled between the hole formed in the furnace wall of the molding furnace and the heater.
  9.  成形炉内に、成形体と、該成形体の幅方向両端部に形成された突出部を支持する支持体とを収容して、ダウンドロー法により前記成形体を用いて溶融ガラスをガラスリボンに成形する成形工程を備えたガラス板製造方法であって、
     前記成形工程で、前記支持体に設置されたヒータで前記支持体を加熱することを特徴とするガラス板製造方法。
    A molded body and a support supporting the protrusions formed at both ends of the molded body in the width direction are housed in the molding furnace, and the molten glass is made into a glass ribbon by the down draw method using the molded body. It is a glass plate manufacturing method including a molding process for molding.
    A method for manufacturing a glass plate, which comprises heating the support with a heater installed on the support in the molding step.
PCT/JP2020/020377 2019-06-07 2020-05-22 Glass plate manufacturing device and glass plate manufacturing method WO2020246275A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217037788A KR20220016823A (en) 2019-06-07 2020-05-22 Glass plate manufacturing apparatus and glass plate manufacturing method
CN202080028054.2A CN113677636A (en) 2019-06-07 2020-05-22 Glass plate manufacturing device and glass plate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106907A JP7144750B2 (en) 2019-06-07 2019-06-07 Glass plate manufacturing apparatus and glass plate manufacturing method
JP2019-106907 2019-06-07

Publications (1)

Publication Number Publication Date
WO2020246275A1 true WO2020246275A1 (en) 2020-12-10

Family

ID=73652827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020377 WO2020246275A1 (en) 2019-06-07 2020-05-22 Glass plate manufacturing device and glass plate manufacturing method

Country Status (4)

Country Link
JP (1) JP7144750B2 (en)
KR (1) KR20220016823A (en)
CN (1) CN113677636A (en)
WO (1) WO2020246275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304247A (en) * 2022-06-28 2022-11-08 虹阳显示(咸阳)科技有限公司 Muffle furnace drainage plate crystallization prevention control device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246230A (en) * 1998-03-05 1999-09-14 Nippon Electric Glass Co Ltd Sheet glass molding apparatus
JP2004203691A (en) * 2002-12-26 2004-07-22 Nippon Electric Glass Co Ltd Apparatus and method for shaping glass sheet
JP2004315286A (en) * 2003-04-16 2004-11-11 Nippon Electric Glass Co Ltd Formation apparatus for plate glass
JP2004315287A (en) * 2003-04-16 2004-11-11 Nippon Electric Glass Co Ltd Formation apparatus for plate glass
JP2006213579A (en) * 2005-02-07 2006-08-17 Nippon Electric Glass Co Ltd Apparatus and method for forming plate glass
JP2010215428A (en) * 2009-03-13 2010-09-30 Avanstrate Inc Method and apparatus for manufacturing glass plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077254B1 (en) * 2006-10-24 2013-06-05 Nippon Electric Glass Co., Ltd. Glass ribbon producing apparatus and process for producing the same
JP5428288B2 (en) * 2007-12-25 2014-02-26 日本電気硝子株式会社 Glass plate manufacturing method and manufacturing equipment
WO2011007681A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate production method and production device
CN102811959B (en) 2011-03-28 2015-04-29 安瀚视特股份有限公司 Production method for glass plate and glass plate production device
JP2017109881A (en) * 2015-12-14 2017-06-22 日本電気硝子株式会社 Production device of sheet glass, production method of sheet glass and transport device of sheet glass
JP6638381B2 (en) * 2015-12-22 2020-01-29 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246230A (en) * 1998-03-05 1999-09-14 Nippon Electric Glass Co Ltd Sheet glass molding apparatus
JP2004203691A (en) * 2002-12-26 2004-07-22 Nippon Electric Glass Co Ltd Apparatus and method for shaping glass sheet
JP2004315286A (en) * 2003-04-16 2004-11-11 Nippon Electric Glass Co Ltd Formation apparatus for plate glass
JP2004315287A (en) * 2003-04-16 2004-11-11 Nippon Electric Glass Co Ltd Formation apparatus for plate glass
JP2006213579A (en) * 2005-02-07 2006-08-17 Nippon Electric Glass Co Ltd Apparatus and method for forming plate glass
JP2010215428A (en) * 2009-03-13 2010-09-30 Avanstrate Inc Method and apparatus for manufacturing glass plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304247A (en) * 2022-06-28 2022-11-08 虹阳显示(咸阳)科技有限公司 Muffle furnace drainage plate crystallization prevention control device and method

Also Published As

Publication number Publication date
KR20220016823A (en) 2022-02-10
JP2020200205A (en) 2020-12-17
JP7144750B2 (en) 2022-09-30
CN113677636A (en) 2021-11-19

Similar Documents

Publication Publication Date Title
KR101751082B1 (en) Glass plate manufacturing method and manufacturing device
WO2020246275A1 (en) Glass plate manufacturing device and glass plate manufacturing method
JP2010195677A (en) Apparatus and method for drawing ribbon of glass
JP6458448B2 (en) Glass manufacturing apparatus and glass manufacturing method
WO2017110212A1 (en) Plate glass manufacturing apparatus and plate glass manufacturing method
TWI564256B (en) Apparatus for thermal decoupling of a forming body in a glass making process
JP4227018B2 (en) Method and apparatus for non-contact molding of molten glass melt mass
JP2004315287A (en) Formation apparatus for plate glass
KR20180008710A (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
WO2005063635A1 (en) Float bath and float manufacturing process
KR102497517B1 (en) Manufacturing method and melting furnace of glass article
WO2011145526A1 (en) Pressure reducing and defoaming device for molten glass, molten glass manufacturing method, and glass product manufacturing method
JP2556567B2 (en) Glass plate manufacturing equipment
KR20080047506A (en) Method of forming refractory shaped item for mounting on plate glass forming apparatus, refractory shaped item, method of forming plate glass and plate glass
KR101136930B1 (en) Crucible for manufacturing silicon ingot with detachable crucible
JP7459624B2 (en) Glass melting furnace, glass manufacturing apparatus, and glass manufacturing method
JP2016117608A (en) Supply method of molten glass
TWI576318B (en) Method for manufacturing glass substrates
JP7392910B2 (en) Glass melting equipment, glass article manufacturing method
KR200448733Y1 (en) temperature sensor mounting means for heater control of heating mold
JP6273812B2 (en) Bushing, glass fiber manufacturing apparatus and glass fiber manufacturing method
JP7159937B2 (en) Molding device and method for manufacturing glass article
JP7396430B2 (en) Feeder and glass article manufacturing method
KR20060112085A (en) Electrode assembly for glass furnace
WO2020129399A1 (en) Glass fiber production method, bushing replacement method, and glass fiber production apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819222

Country of ref document: EP

Kind code of ref document: A1