WO2020246098A1 - 車載ネットワークシステム - Google Patents

車載ネットワークシステム Download PDF

Info

Publication number
WO2020246098A1
WO2020246098A1 PCT/JP2020/010526 JP2020010526W WO2020246098A1 WO 2020246098 A1 WO2020246098 A1 WO 2020246098A1 JP 2020010526 W JP2020010526 W JP 2020010526W WO 2020246098 A1 WO2020246098 A1 WO 2020246098A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control device
communication path
actuator
unit
Prior art date
Application number
PCT/JP2020/010526
Other languages
English (en)
French (fr)
Inventor
芳正 黒川
山下 哲弘
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US17/616,195 priority Critical patent/US20220321656A1/en
Priority to EP20819352.4A priority patent/EP3974252A4/en
Priority to CN202080041573.2A priority patent/CN113905927A/zh
Publication of WO2020246098A1 publication Critical patent/WO2020246098A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • B60Q11/002Emergency driving lights in the event of failure of the principal lighting circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1407General lighting circuits comprising dimming circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/44Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating braking action or preparation for braking, e.g. by detection of the foot approaching the brake pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking

Definitions

  • the technology disclosed here relates to an in-vehicle network system equipped with a vehicle driving control device.
  • a vehicle running control device for controlling a plurality of in-vehicle devices for running mounted on a vehicle.
  • the vehicle travel control device is divided into a plurality of domains in advance according to the functions of a plurality of in-vehicle devices, and each of the plurality of domains includes a device control unit for controlling the in-vehicle device.
  • a control system is disclosed that is layered into a domain control unit that controls the device control unit, is positioned above each domain control unit, and has an integrated control unit that controls each domain control unit.
  • the device control unit calculates the control amount of the corresponding in-vehicle device and outputs a control signal for achieving the control amount to each in-vehicle device.
  • the vehicle outside environment information is acquired by a camera or the like, and the arithmetic unit calculates the route that the vehicle should travel based on the acquired vehicle outside environment information. Based on this calculation result, various actuators mounted on the vehicle are controlled.
  • the technology disclosed here has been made in view of these points, and its purpose is to make communication from the vehicle travel control device to the body actuator in the in-vehicle network system even if the communication is lost.
  • the purpose is to make the body actuator operable.
  • the in-vehicle network system receives the output of the in-vehicle sensor and executes a calculation for controlling the running of the vehicle, and a body actuator.
  • the actuator control device to be controlled, the first communication path for transmitting the output of the travel control device to the actuator control device, and the first communication path are provided independently, and a predetermined signal is sent to the actuator control device.
  • the actuator control device controls the body actuator according to an instruction signal output from the travel control device received via the first communication path.
  • the body system actuator is controlled according to the predetermined signal received via the second communication path.
  • the "body actuator” means an actuator related to so-called vehicle equipment such as a lamp, a door, and an airbag, and does not include an actuator controlled when the vehicle travels, such as a brake actuator. ..
  • the actuator control device controls the body actuator according to the instruction signal output from the travel control device when the output of the travel control device is transmitted via the first communication path. Further, a second communication path for transmitting a predetermined signal to the actuator control device is provided independently of the first communication path. The actuator control device controls the body actuator according to a predetermined signal received via the second communication path when the communication via the first communication path is interrupted. As a result, the body actuator can be operated even when the communication from the travel control device to the body actuator is lost.
  • the body actuator is a stop lamp
  • the vehicle-mounted sensor includes a brake sensor for detecting a brake operation
  • the second communication path uses the detection signal of the brake sensor as the predetermined signal.
  • the actuator control device transmits the signal to the actuator control device, and the actuator control device follows the detection signal of the brake sensor received via the second communication path when the communication via the first communication path is interrupted.
  • the lighting operation of the stop lamp may be controlled.
  • the actuator control device controls the lighting operation of the stop lamp according to the detection signal of the brake sensor received via the second communication path when the communication via the first communication path is interrupted. As a result, even if the communication from the travel control device to the body actuator is lost, the stop lamp can be operated.
  • the body actuator is a headlight
  • the second communication path transmits an ignition signal to the actuator control device as the predetermined signal
  • the actuator control device is
  • the communication via the first communication path is interrupted
  • the lighting operation of the headlight is controlled according to the ignition signal received via the second communication path, and the ignition signal is turned on.
  • the headlight may be turned on, while when the ignition signal indicates an OFF state, the headlight may be turned off.
  • the actuator control device controls the lighting operation of the headlight according to the ignition signal received via the second communication path when the communication via the first communication path is interrupted.
  • the ignition signal indicates an ON state
  • the headlights are turned on, while when the ignition signal indicates an OFF state, the headlights are turned off. This makes it possible to operate the headlights even when the communication from the travel control device to the body actuator is lost.
  • FIG. 1 It is a figure which shows schematic the structure of the vehicle controlled by the vehicle running control device which concerns on an exemplary embodiment. It is a block diagram which shows the control system including a vehicle running control device.
  • This is a configuration example of the in-vehicle network system according to the present embodiment.
  • This is a configuration example of the in-vehicle network system according to the present embodiment.
  • the “traveling device” in the present embodiment refers to devices such as actuators that are controlled when the vehicle travels.
  • FIG. 1 schematically shows a configuration of a vehicle controlled by a vehicle travel control device 100 (hereinafter, referred to as a travel control device 100) according to the present embodiment.
  • This vehicle is a vehicle capable of manual driving that runs in response to the driver's operation of the accelerator, assisted driving that runs by assisting the driver's operation, and automatic driving that runs without the driver's operation. is there.
  • FIG. 2 is a block diagram showing a control system including the vehicle travel control device 100.
  • the vehicle of FIG. 1 has an engine 10 as a drive source having a plurality of (four in FIG. 1) cylinders 11, a transmission 20 connected to the engine 10, and a braking device for braking the rotation of the front wheels 50 as drive wheels. It has 30 and a steering device 40 for steering the front wheels 50 as steering wheels.
  • the engine 10 is, for example, a gasoline engine or a diesel engine.
  • the transmission 20 is, for example, a stepped automatic transmission.
  • the transmission 20 is arranged on one side of the engine 10 in the cylinder row direction.
  • the transmission 20 includes an input shaft (not shown) connected to the crankshaft (not shown) of the engine 10 and an output shaft (not shown) connected to the input shaft via a plurality of reduction gears (not shown). It has.
  • the output shaft is connected to the axle 51 of the front wheel 50. The rotation of the crankshaft of the engine 10 is changed by the transmission 20 and transmitted to the front wheels 50.
  • the operation of the engine 10 and the transmission 20 is controlled by the power train ECU (Electric Control Unit) 200.
  • the power train ECU 200 determines the fuel injection amount by the injector based on the detection value of the accelerator opening sensor SW1 or the like that detects the accelerator opening corresponding to the operation amount of the accelerator pedal of the driver. And fuel injection timing, ignition timing by spark plug, valve opening timing and valve opening period of intake / exhaust valve, etc. are controlled.
  • the power train ECU 200 gears the transmission 20 based on the detection result of the shift sensor SW2 that detects the operation of the shift lever by the driver and the required driving force calculated from the accelerator opening. Adjust the steps.
  • the power train ECU 200 basically achieves each traveling device (here, an injector) so as to achieve the target driving force calculated by the arithmetic unit 110 described later. Etc.) is calculated, and a control signal is output to each driving device.
  • traveling device here, an injector
  • the brake device 30 includes a brake pedal 31, a brake actuator 33, a booster 34 connected to the brake actuator 33, a master cylinder 35 connected to the booster 34, and a DSC (Dynamic Stability Control) for adjusting the braking force. It has a device 36 and a brake pad 37 that actually brakes the rotation of the front wheel 50. A disc rotor 52 is provided on the axle 51 of the front wheel 50.
  • the brake device 30 is an electric brake, and operates the brake actuator 33 according to the operation amount of the brake pedal 31 detected by the brake sensor SW3, and operates the brake pad 36 via the booster 34 and the master cylinder 35.
  • the brake device 30 sandwiches the disc rotor 38 with the brake pads 37, and brakes the rotation of the front wheels 50 by the frictional force generated between the brake pads 37 and the disc rotor 52.
  • the operation of the brake device 30 is controlled by the brake microcomputer 300 and the DSC microcomputer 400.
  • the brake microcomputer 300 controls the operation amount of the brake actuator 33 based on the detection value of the brake sensor SW3 or the like that detects the operation amount of the brake pedal 31 of the driver.
  • the DSC microcomputer 400 operates and controls the DSC device 36 regardless of the operation of the driver's brake pedal 31, and applies braking force to the front wheels 50.
  • the brake microcomputer 300 basically uses each traveling device (here, the brake) so as to achieve the target braking force calculated by the arithmetic unit 110 described later.
  • the control amount of the actuator 33) is calculated, and a control signal is output to each traveling device.
  • the steering device 40 includes a steering wheel 41 operated by the driver, an ENAS (Electronic Power Asist Steering) device 42 that assists the steering operation by the driver, and a pinion shaft 43 connected to the ENAS device 42.
  • the ENAS device 42 includes an electric motor 42a and a speed reducing device 42b that reduces the driving force of the electric motor 42a and transmits it to the pinion shaft 43.
  • the steering device 40 is a steer-by-wire type steering device, and operates the EPAS device 42 according to the amount of operation of the steering wheel 41 detected by the steering angle sensor SW4 to rotate the pinion shaft 43 to operate the front wheels 50. To do.
  • the pinion shaft 43 and the front wheel 50 are connected by a rack bar (not shown), and the rotation of the pinion shaft 43 is transmitted to the front wheels via the rack bar.
  • the operation of the steering device 40 is controlled by the EPAS microcomputer 500.
  • the ENAS microcomputer 500 controls the operation amount of the electric motor 42a based on the detection value of the steering angle sensor SW4 and the like.
  • the ENAS microcomputer 500 basically achieves the target steering amount calculated by the arithmetic unit 110 described later, so that each traveling device (here, ECAS) is achieved.
  • the control amount of the device 42) is calculated, and a control signal is output to each traveling device.
  • the travel control device 100 calculates a route to be traveled by the vehicle in order to enable assisted driving and automatic driving, and also determines the movement of the vehicle to follow the route.
  • the arithmetic unit 110 is a microprocessor composed of one or a plurality of chips, and has a CPU, a memory, and the like. It should be noted that FIG. 2 shows a configuration for exerting the function (path generation function described later) according to the present embodiment, and does not show all the functions of the arithmetic unit 110.
  • the arithmetic unit 110 determines the target motion of the vehicle based on the outputs from a plurality of sensors and the like, and controls the operation of the device.
  • Sensors and the like that output information to the arithmetic unit 110 are provided on the body of the vehicle and the like, and a plurality of cameras 70 that capture the environment outside the vehicle, and a plurality of radars that are provided on the body of the vehicle and detect the target and the like outside the vehicle.
  • the position sensor SW5 that detects the position of the vehicle (vehicle position information) and the behavior of the vehicle such as the vehicle speed sensor, acceleration sensor, and yaw rate sensor are detected.
  • the arithmetic unit 110 is input with communication information received by the external communication unit 72 from another vehicle located around the own vehicle and traffic information from the navigation system.
  • Each camera 70 is arranged so that the surroundings of the vehicle can be photographed 360 ° in the horizontal direction. Each camera 70 captures an optical image showing the environment outside the vehicle and generates image data. Each camera 70 outputs the generated image data to the arithmetic unit 110.
  • the camera 70 is an example of an information acquisition means for acquiring information on the environment outside the vehicle.
  • the image data acquired by each camera 70 is input to the HMI (Human Machine Interface) unit 700 in addition to the arithmetic unit 110.
  • the HMI unit 700 displays information based on the acquired image data on a display device or the like in the vehicle.
  • each radar 71 is arranged so that the detection range extends 360 ° horizontally around the vehicle.
  • the type of radar 71 is not particularly limited, and for example, a millimeter wave radar or an infrared radar can be adopted.
  • the radar 71 is an example of an information acquisition means for acquiring information on the environment outside the vehicle.
  • the arithmetic unit 110 sets the traveling route of the vehicle during assisted driving or automatic driving, and sets the target motion of the vehicle so that the vehicle follows the traveling route.
  • the computing device 110 sets the target motion of the vehicle according to the vehicle exterior environment certification unit 111 that certifies the vehicle exterior environment based on the output from the camera 70 or the like and the vehicle exterior environment certified by the vehicle exterior environment certification unit 111.
  • a candidate route generation unit 112 that calculates one or a plurality of candidate routes on which the vehicle can travel, a vehicle behavior estimation unit 113 that estimates the vehicle behavior based on the output from the vehicle condition sensor SW6, and an occupant condition sensor.
  • the occupant behavior estimation unit 114 that estimates the behavior of the occupant of the vehicle, the route determination unit 115 that determines the route that the vehicle should travel, and the route determined by the route determination unit 115 follow the route set.
  • the vehicle motion determination unit 116 that determines the target motion of the vehicle for the purpose, and the target physical quantity (for example, driving force, braking force) that the traveling device should generate in order to achieve the target motion determined by the vehicle motion determination unit 116. , And steering angle), it has a driving force calculation unit 117, a braking force calculation unit 118, and a steering amount calculation unit 119.
  • the candidate route calculation unit 112, the vehicle behavior estimation unit 113, the occupant behavior estimation unit 114, and the route determination unit 115 set the route setting unit on which the vehicle should travel according to the vehicle exterior environment certified by the vehicle exterior environment certification unit 111. To configure.
  • the arithmetic unit 110 has a rule-based route generation unit 120 that recognizes an object outside the vehicle according to a predetermined rule and generates a traveling route that avoids the object, and the safety of the vehicle such as a shoulder. It has a backup unit 130 that generates a traveling route for guiding to the region.
  • the vehicle exterior environment certification unit 111 receives the output of the camera 70, radar 71, etc. mounted on the vehicle and certifies the vehicle exterior environment.
  • the certified out-of-vehicle environment includes at least roads and obstacles.
  • the vehicle exterior environment certification unit 111 estimates the vehicle environment including roads and obstacles by comparing the three-dimensional information around the vehicle with the vehicle exterior environment model based on the data of the camera 70 and the radar 71. It shall be.
  • the vehicle exterior environment model is, for example, a trained model generated by deep learning, and can recognize roads, obstacles, and the like with respect to three-dimensional information around the vehicle.
  • the vehicle exterior environment certification unit 111 identifies a free space, that is, an area where no object exists, by image processing from the image captured by the camera 70.
  • image processing for example, a trained model generated by deep learning is used.
  • a two-dimensional map representing the free space is generated.
  • the vehicle exterior environment certification unit 111 acquires information on the target objects existing around the vehicle from the output of the radar 71. This information is positioning information including the position and speed of the target.
  • the vehicle exterior environment certification unit 111 combines the generated two-dimensional map with the positioning information of the target to generate a three-dimensional map representing the surroundings of the vehicle.
  • the vehicle exterior environment certification unit 111 estimates the vehicle environment including roads and obstacles by comparing the generated three-dimensional map with the vehicle exterior environment model.
  • a multi-layer neural network (DNN: Deep Neural Network) is used.
  • DNN Deep Neural Network
  • CNN Convolutional Neural Network
  • the candidate route generation unit 112 generates a candidate route on which the vehicle can travel based on the output of the vehicle exterior environment certification unit 111, the output of the position sensor SW5, the information transmitted from the vehicle exterior communication unit 72, and the like. For example, the candidate route generation unit 112 generates a travel route that avoids obstacles certified by the vehicle exterior environment certification unit 111 on the road certified by the vehicle exterior environment certification unit 111.
  • the output of the vehicle exterior environment certification unit 111 includes, for example, travel path information regarding a travel path on which the vehicle travels.
  • the travel path information includes information on the shape of the travel path itself and information on an object on the travel path.
  • Information on the shape of the road includes the shape of the road (straight line, curve, curve curvature), width of the road, number of lanes, width of each lane, and the like.
  • the information about the object includes the relative position and speed of the object with respect to the vehicle, the attributes (type, moving direction) of the object, and the like. Examples of the types of objects include vehicles, pedestrians, roads, lane markings, and the like.
  • the candidate route generation unit 112 calculates a plurality of candidate routes by using the state lattice method, and selects one or a plurality of candidate routes from among them based on the route cost of each candidate route. And.
  • the route may be calculated by using another method.
  • the candidate route generation unit 112 sets a virtual grid area on the travel path based on the travel route information.
  • This grid area has a plurality of grid points.
  • Each grid point identifies a position on the track.
  • the candidate route generation unit 112 sets a predetermined grid point at the target arrival position.
  • a plurality of candidate routes are calculated by a route search using a plurality of grid points in the grid area.
  • the route branches from a certain grid point to an arbitrary grid point ahead in the traveling direction of the vehicle. Therefore, each candidate route is set to sequentially pass through a plurality of grid points.
  • Each candidate route also includes time information indicating the time to pass each grid point, speed information related to speed / acceleration at each grid point, and other information related to vehicle motion.
  • the candidate route generation unit 112 selects one or a plurality of travel routes from a plurality of candidate routes based on the route cost.
  • the route cost here includes, for example, the degree of lane centering, the acceleration of the vehicle, the steering angle, the possibility of collision, and the like.
  • the route determination unit 115 selects one travel route.
  • the vehicle behavior estimation unit 113 measures the state of the vehicle from the outputs of sensors that detect the behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, and a yaw rate sensor.
  • the vehicle behavior estimation unit 113 generates a vehicle 6-axis model showing the behavior of the vehicle.
  • the vehicle 6-axis model is a model of the acceleration in the three-axis directions of "front-back”, “left-right”, and “up-down” of the running vehicle, and the angular velocity in the three-axis directions of "pitch", "roll”, and “yaw”. It is a product. That is, instead of capturing the movement of the vehicle only on the classical vehicle motion engineering plane (only the front-back and left-right (XY movement) and yaw movement (Z-axis) of the vehicle), the suspension is applied to the four wheels.
  • the vehicle behavior estimation unit 113 applies the vehicle 6-axis model to the travel route generated by the candidate route generation unit 112, and estimates the behavior of the vehicle when following the travel route.
  • the occupant behavior estimation unit 114 estimates the driver's health condition and emotions from the detection result of the occupant condition sensor SW7.
  • Health status includes, for example, health, mild fatigue, poor physical condition, decreased consciousness, and the like.
  • Emotions include, for example, fun, normal, boring, frustrated, and uncomfortable.
  • the occupant behavior estimation unit 114 extracts the driver's face image from the image captured by the camera installed in the vehicle interior, and identifies the driver.
  • the extracted face image and the identified driver information are given as inputs to the human model.
  • the human model is, for example, a trained model generated by deep learning, and outputs the health state and emotions from the facial image of each person who can be the driver of the vehicle.
  • the occupant behavior estimation unit 114 outputs the driver's health condition and emotions output by the human model.
  • the occupant behavior estimation unit uses the biometric information sensor.
  • the biometric information of the driver is measured from the output of.
  • the human model inputs the biometric information of each person who may be the driver of the vehicle, and outputs the health condition and emotions.
  • the occupant behavior estimation unit 114 outputs the driver's health condition and emotions output by the human model.
  • a model for estimating the emotions that a person has with respect to the behavior of the vehicle may be used for each person who can be the driver of the vehicle.
  • the output of the vehicle behavior estimation unit 113, the driver's biological information, and the estimated emotional state may be managed in chronological order to build a model.
  • this model for example, it is possible to predict the relationship between the driver's emotional increase (alertness) and the behavior of the vehicle.
  • the occupant behavior estimation unit 114 may include a human body model as a human model.
  • the human body model specifies, for example, the mass of the head (eg, 5 kg) and the muscle strength around the neck that supports the front, back, left, and right G.
  • the human body model inputs the movement of the vehicle body (acceleration G or jerk), it outputs the expected physical and subjective occupants.
  • the occupant's physical is, for example, comfortable / moderate / unpleasant, and the subjective is, for example, unexpected / predictable.
  • the human body model for example, the vehicle body behavior in which the head bends even slightly is unpleasant for the occupant, so that the traveling route can be prevented from being selected.
  • the vehicle body behavior in which the head moves forward as if bowing makes it easy for the occupant to take a posture against this, and does not immediately lead to discomfort, so that the traveling route can be selected.
  • the target movement can be dynamically determined so that the occupant's head does not shake or is lively.
  • the occupant behavior estimation unit 114 applies a human model to the vehicle behavior estimated by the vehicle behavior estimation unit 113, and estimates changes in the health condition and emotions of the current driver with respect to the vehicle behavior.
  • the route determination unit 115 determines the route on which the vehicle should travel based on the output of the occupant behavior estimation unit 114. When there is only one route generated by the candidate route generation unit 112, the route determination unit 115 sets the route as the route on which the vehicle should travel. When there are a plurality of routes generated by the candidate route generation unit 112, in consideration of the output of the occupant behavior estimation unit 114, for example, the route that the occupant (particularly the driver) feels most comfortable among the plurality of candidate routes, that is, Select a route that does not make the driver feel redundant, such as being too careful in avoiding obstacles.
  • the rule-based route generation unit 120 Based on the outputs from the camera 70 and the radar 71, the rule-based route generation unit 120 recognizes an object outside the vehicle according to a predetermined rule without using deep learning, and travels so as to avoid the object. Generate a route. Similar to the candidate route generation unit 112, the rule-based route generation unit 120 also calculates a plurality of candidate routes using the state lattice method, and one or more of these based on the route cost of each candidate route. The candidate route of is selected. The rule-based route generation unit 120 calculates the route cost based on, for example, a rule that the object does not enter within a few meters around the object. The rule-based route generation unit 120 may also calculate the route by using another method.
  • the route information generated by the rule-based route generation unit 120 is input to the vehicle motion determination unit 116.
  • the backup unit 130 Based on the outputs from the camera 70 and the radar 71, the backup unit 130 generates a traveling route for guiding the vehicle to a safe area such as a road shoulder when the sensor or the like fails or the occupant is not in good physical condition. For example, the backup unit 130 sets a safety area in which the vehicle can be stopped urgently from the information of the position sensor SW5, and generates a traveling route until the vehicle reaches the safety area. Similar to the candidate route generation unit 112, the backup unit 130 also calculates a plurality of candidate routes using the state lattice method, and one or a plurality of candidate routes from among these based on the route cost of each candidate route. Shall be selected. The backup unit 130 may also calculate the route by using another method.
  • the route information generated by the backup unit 130 is input to the vehicle motion determination unit 116.
  • the vehicle motion determination unit 116 determines the target motion for the travel route determined by the route determination unit 115.
  • the target motion refers to steering and acceleration / deceleration that follow the traveling path. Further, the target motion determining unit 115 calculates the movement of the vehicle body with respect to the traveling route selected by the route determining unit 115 with reference to the vehicle 6-axis model.
  • the vehicle motion determination unit 116 determines a target motion for following the travel path generated by the rule-based route generation unit 120.
  • the vehicle motion determination unit 116 determines a target motion for following the travel path generated by the backup unit 130.
  • the vehicle motion determination unit 116 travels generated by the rule-based route generation unit 120. Select the route as the route that the vehicle should take.
  • the vehicle motion determination unit 116 selects the travel route generated by the backup unit 130 as the route to be traveled by the vehicle when the sensor or the like (particularly, the camera 70 or the radar 71) is out of order or the occupant is estimated to be in poor physical condition. To do.
  • the physical quantity calculation unit is composed of a driving force calculation unit 117, a braking force calculation unit 118, and a steering amount calculation unit 119.
  • the driving force calculation unit 117 calculates the target driving force to be generated by the power train device (engine 10 and transmission 20) in order to achieve the target motion.
  • the braking force calculation unit 118 calculates the target braking force to be generated by the braking device 30 in order to achieve the target motion.
  • the steering amount calculation unit 119 calculates the target steering amount to be generated by the steering device 40 in order to achieve the target motion.
  • the peripheral device operation setting unit 140 sets the operation of the vehicle body-related devices such as lamps and doors based on the output of the vehicle motion determination unit 116.
  • the peripheral operation setting unit 140 sets, for example, the direction of the lamp when the vehicle follows the travel path determined by the route determination unit 115. Further, the peripheral operation setting unit 140, for example, when guiding the vehicle to the safety area set by the backup unit 130, turns on the hazard lamp or unlocks the door after the vehicle reaches the safety area. Set the operation to be performed.
  • the calculation result of the arithmetic unit 110 is output to the power train ECU 200, the brake microcomputer 300, the ENAS microcomputer 500, and the body system microcomputer 600.
  • information on the target driving force calculated by the driving force calculation unit 117 is input to the power train ECU 200, and information on the target braking force calculated by the braking force calculation unit 118 is input to the brake microcomputer 300.
  • Information on the target steering amount calculated by the steering amount calculation unit 119 is input to the ENAS microcomputer 500, and information on the operation of each body-related device set by the peripheral device operation setting unit 140 is input to the body system microcomputer 600. Entered.
  • the powertrain ECU 200 basically calculates the fuel injection timing of the injector and the ignition timing of the spark plug so as to achieve the target driving force, and outputs a control signal to these traveling devices.
  • the brake microcomputer 300 basically calculates a control amount of the brake actuator 33 so as to achieve the target driving force, and outputs a control signal to the brake actuator 33.
  • the ENAS microcomputer 500 basically calculates the amount of current supplied to the ENAS device 42 so as to achieve the target steering amount, and outputs a control signal to the ENAS device 42.
  • the microcomputer function of the actuator (for example, the body-based microcomputer 600) is incorporated into the travel control device 100 including the arithmetic unit 110.
  • the output of the body-based microcomputer 600 is sent to a control device, for example, an ECU that controls each body-based actuator such as a lamp, a door, and an airbag provided in each zone via an in-vehicle network such as CAN (Controller Area Network). Will be sent.
  • a control device for example, an ECU that controls each body-based actuator such as a lamp, a door, and an airbag provided in each zone via an in-vehicle network such as CAN (Controller Area Network).
  • CAN Controller Area Network
  • a predetermined signal can be transmitted to the actuator control device that controls the body actuator via a communication path different from the communication path for transmitting the signal from the travel control device 100. .. Then, when the communication from the travel control device 100 to the body actuator is lost, the body actuator can operate according to a predetermined signal transmitted via another communication path.
  • FIG. 3 is a configuration example of an in-vehicle network system according to the present embodiment, and partially shows a configuration related to a stop lamp as an example of a body actuator.
  • the smart ECU 12 receives the output of the body-based microcomputer 600 and controls the lighting operation of the stop lamp 13 according to this output.
  • the smart ECU 12 is an example of an actuator control device.
  • the communication path 14 from the travel control device 100 to the smart ECU 12 is configured by, for example, a CAN.
  • a communication path 15 for directly transmitting the detection signal of the brake sensor SW3 to the smart ECU 12 is provided independently of the communication path 14 from the travel control device 100 to the smart ECU 12.
  • the communication path 15 is composed of, for example, a hard wire.
  • the smart ECU 12 has a backup control function that controls the lighting operation of the stop lamp 13 according to the detection signal of the brake sensor SW3 received via the communication path 15 when the communication from the travel control device 100 to the smart ECU 12 is interrupted. Have.
  • the backup control function is working, the smart ECU 12 turns on the stop lamp 13 when the detection signal of the brake sensor SW3 indicates that the brake operation has been performed by the driver.
  • the stop lamp 13 is turned on when the driver operates the brake by activating the backup control function of the smart ECU 12. It can be turned on.
  • FIG. 4 is a configuration example of an in-vehicle network system according to the present embodiment, and partially shows a configuration related to a headlight as an example of a body actuator.
  • the smart ECU 23 receives the output of the body-based microcomputer 600 and controls the lighting operation of the right headlight 21 according to this output.
  • the smart ECU 24 receives the output of the body-based microcomputer 600, and controls the lighting operation of the left headlight 22 according to this output.
  • the smart ECUs 23 and 24 are examples of actuator control devices.
  • the communication path 26 from the travel control device 100 to the smart ECUs 23 and 24 is configured by, for example, a CAN.
  • a communication path 27 for directly transmitting the IG signal output from the IG (ignition) switch 25 to the smart ECUs 23 and 24 is provided independently of the communication path 26 from the travel control device 100 to the smart ECUs 23 and 24.
  • the communication path 27 is composed of, for example, a hard wire.
  • the smart ECUs 23 and 24 have a backup control function that controls the lighting operation of the headlights according to the IG signal received via the communication path 27 when the communication from the travel control device 100 to the smart ECUs 23 and 24 is interrupted. doing.
  • the smart ECUs 23 and 24 turn on the headlights 21 and 22 when the IG signal indicates an ON state, while the headlights 21 when the IG signal indicates an OFF state. , 22 are turned off.
  • the smart ECUs 23 and 24 activate the backup control function to turn on the headlights 21 and 22. Can be done. Further, when the driver turns off the IG switch 25, the headlights 21 and 22 can be turned off.
  • the time when the communication is interrupted here includes the case where the signal is no longer transmitted from the travel control device to the actuator control device, or the case where the signal is transmitted but the meaning of the signal becomes unclear. ..
  • the vehicle from the travel control device 100 to the body actuator can be prepared in case of communication failure.
  • a stop lamp and a headlight have been described as an example of the body actuator, but similarly, the traveling control device 100 to the body actuator has been described for other body actuators.
  • a communication system capable of directly controlling the body actuator according to a predetermined signal may be provided.
  • the configuration of the travel control device 100 shown here is only an example, and the configuration of the travel control device is not limited to that shown in the present embodiment.
  • the arithmetic unit 100 may not include the rule-based route generation unit 120 and the backup unit 130.
  • the function provided in the arithmetic unit 110 may be a configuration realized by being divided into a plurality of semiconductor chips.
  • the travel control device may be realized by a configuration in which a central ECU arranged in the central portion of the vehicle and a plurality of zone ECUs arranged in each zone of the vehicle are connected via an in-vehicle network.
  • the technology disclosed here is useful as an in-vehicle network system equipped with a vehicle travel control device.

Abstract

アクチュエータ制御装置(12)は、第1通信経路(14)を介して走行制御装置(100)の出力が送信され、走行制御装置(100)から出力された指示信号に従ってボディ系アクチュエータ(13)を制御する。所定信号をアクチュエータ制御装置(12)に送信する第2通信経路(15)が、第1通信経路(14)とは独立して設けられている。アクチュエータ制御装置(12)は、第1通信経路(14)を介した通信が途絶したとき、第2通信経路(15)を介して受信した所定信号に従ってボディ系アクチュエータ(13)を制御する。

Description

車載ネットワークシステム
 ここに開示された技術は、車両走行制御装置を備えた車載ネットワークシステムに関する。
 従来から、車両に搭載された複数の走行用の車載機器を制御する車両走行制御装置が知られている。例えば、特許文献1には、車両走行制御装置として、複数の車載機器の機能に応じて予め複数のドメインに区分けされ、その複数のドメインにおいて、それぞれ、車載機器を制御するための機器制御部と、機器制御部を統括するドメイン制御部とに階層化され、各ドメイン制御部の上位に位置づけられ、各ドメイン制御部を統括する統合制御部とを備える制御システムが開示されている。また、特許文献1では、機器制御部は、対応する車載機器の制御量を算出して、該制御量を達成するための制御信号を各車載機器に出力している。
特開2017-61278号公報
 ところで、昨今では、国家的に自動運転システムの開発が推進されている。自動運転システムでは、一般に、カメラ等により車外環境情報が取得され、演算装置が、取得された車外環境情報に基づいて車両が走行すべき経路を算出する。この算出結果に基づいて、車両に搭載された各種のアクチュエータが制御される。
 そして将来的には、各アクチュエータの制御機能が、演算装置を含む車両走行制御装置側に取り込まれていくことが想定される。このような構成では、車両走行制御装置からアクチュエータへの通信が失陥した場合に備えて、何らかのバックアップ手段を設ける必要がある。
 ここに開示された技術は、斯かる点に鑑みてなされたものであり、その目的とするとこは、車載ネットワークシステムにおいて、車両走行制御装置からボディ系アクチュエータへの通信が失陥した場合でも、ボディ系アクチュエータを動作可能にすることにある。
 前記課題を解決するために、ここに開示された技術では、車載ネットワークシステムは、車載センサの出力を受けて、車両の走行を制御するための演算を実行する走行制御装置と、ボディ系アクチュエータを制御するアクチュエータ制御装置と、前記走行制御装置の出力を、前記アクチュエータ制御装置に送信する第1通信経路と、前記第1通信経路とは独立して設けられており、所定信号を前記アクチュエータ制御装置に送信する第2通信経路とを備え、前記アクチュエータ制御装置は、前記第1通信経路を介して受信した、前記走行制御装置から出力された指示信号に従って、前記ボディ系アクチュエータを制御するものであり、かつ、前記第1通信経路を介した通信が途絶したとき、前記第2通信経路を介して受信した前記所定信号に従って、前記ボディ系アクチュエータを制御する。
 ここで、「ボディ系アクチュエータ」とは、ランプ、ドア、エアバッグ等のいわゆる車両の装備品に係るアクチュエータのことを意味し、ブレーキアクチュエータ等の車両が走行する際に制御されるアクチュエータを含まない。
 この構成によると、アクチュエータ制御装置は、第1通信経路を介して走行制御装置の出力が送信され、走行制御装置から出力された指示信号に従って、ボディ系アクチュエータを制御する。また、所定信号をアクチュエータ制御装置に送信する第2通信経路が、第1通信経路とは独立して設けられている。アクチュエータ制御装置は、第1通信経路を介した通信が途絶したとき、第2通信経路を介して受信した所定信号に従って、ボディ系アクチュエータを制御する。これにより、走行制御装置からボディ系アクチュエータへの通信が失陥した場合でも、ボディ系アクチュエータを動作させることが可能になる。
 前記車載ネットワークシステムにおいて、前記ボディ系アクチュエータは、ストップランプであり、前記車載センサは、ブレーキ操作を検出するブレーキセンサを含み、前記第2通信経路は、前記ブレーキセンサの検出信号を、前記所定信号として前記アクチュエータ制御装置に送信するものであり、前記アクチュエータ制御装置は、前記第1通信経路を介した通信が途絶したとき、前記第2通信経路を介して受信した前記ブレーキセンサの検出信号に従って、前記ストップランプの点灯動作を制御する、としてもよい。
 この構成によると、アクチュエータ制御装置は、第1通信経路を介した通信が途絶したとき、第2通信経路を介して受信した、ブレーキセンサの検出信号に従って、ストップランプの点灯動作を制御する。これにより、走行制御装置からボディ系アクチュエータへの通信が失陥した場合でも、ストップランプを動作させることが可能になる。
 また、前記車載ネットワークシステムにおいて、前記ボディ系アクチュエータは、ヘッドライトであり、前記第2通信経路は、イグニション信号を、前記所定信号として前記アクチュエータ制御装置に送信するものであり、前記アクチュエータ制御装置は、前記第1通信経路を介した通信が途絶したとき、前記第2通信経路を介して受信した前記イグニション信号に従って、前記ヘッドライトの点灯動作を制御するものであり、前記イグニション信号がON状態を示すときは、前記ヘッドライトを点灯させる一方、前記イグニション信号がOFF状態を示すときは、前記ヘッドライトを消灯させる、としてもよい。
 この構成によると、アクチュエータ制御装置は、第1通信経路を介した通信が途絶したとき、第2通信経路を介して受信した、イグニション信号に従って、ヘッドライトの点灯動作を制御する。イグニション信号がON状態を示すときは、ヘッドライトを点灯させる一方、イグニション信号がOFF状態を示すときは、ヘッドライトを消灯させる。これにより、走行制御装置からボディ系アクチュエータへの通信が失陥した場合でも、ヘッドライトを動作させることが可能になる。
 ここに開示された技術によると、走行制御装置からボディ系アクチュエータへの通信が失陥した場合でも、ボディ系アクチュエータを動作させることが可能になる。
例示的な実施形態に係る車両走行制御装置により制御される車両の構成を概略的に示す図である。 車両走行制御装置を含む制御系を示すブロック図である。 本実施形態に係る車載ネットワークシステムの構成例である。 本実施形態に係る車載ネットワークシステムの構成例である。
 以下、例示的な実施形態について、図面を参照しながら詳細に説明する。なお、本実施形態における「走行用デバイス」とは、車両が走行する際に制御されるアクチュエータ類等の装置類のことを示す。
 図1は本実施形態に係る車両走行制御装置100(以下、走行制御装置100という)により制御される車両の構成を概略的に示す。この車両は、運転者によるアクセル等の操作に応じて走行するマニュアル運転と、運転者の操作をアシストして走行するアシスト運転と、運転者の操作なしに走行する自動運転とが可能な自動車である。また図2は、車両走行制御装置100を含む制御系を示すブロック図である。
 図1の車両は、複数(図1では4個)の気筒11を有する駆動源としてのエンジン10と、エンジン10に連結されたトランスミッション20と、駆動輪としての前輪50の回転を制動するブレーキ装置30と、操舵輪としての前輪50の操舵するステアリング装置40とを有する。
 エンジン10は、例えば、ガソリンエンジン、または、ディーゼルエンジンである。トランスミッション20は、例えば、有段式の自動変速機である。トランスミッション20は、エンジン10の気筒列方向における一側に配置されている。トランスミッション20は、エンジン10のクランクシャフト(図示省略)と連結されたインプットシャフト(図示省略)と、該インプットシャフトと複数の減速ギヤ(図示省略)を介して連結されたアウトプットシャフト(図示省略)とを備えている。アウトプットシャフトは、前輪50の車軸51と連結されている。エンジン10のクランクシャフトの回転は、トランスミッション20により変速されて、前輪50に伝達される。
 エンジン10及びトランスミッション20は、パワートレインECU(Electric Control Unit)200により作動制御される。例えば、車両がマニュアル運転であるときには、パワートレインECU200は、運転者のアクセルペダルの操作量に対応したアクセル開度を検出するアクセル開度センサSW1等の検出値に基づいて、インジェクタによる燃料噴射量や燃料噴射タイミング、点火プラグによる点火タイミング、吸排気弁の開弁タイミング及び開弁期間等を制御する。また、車両がマニュアル運転であるときには、パワートレインECU200は、運転者によるシフトレバーの操作を検出するシフトセンサSW2の検出結果やアクセル開度から算出される要求駆動力に基づいて、トランスミッション20のギヤ段を調整する。また、車両がアシスト運転や自動運転であるときには、パワートレインECU200は、基本的には、後述する演算装置110により算出される目標駆動力を達成するように、各走行用デバイス(ここでは、インジェクタ等)の制御量を算出して、各走行用デバイスに制御信号を出力する。
 ブレーキ装置30は、ブレーキペダル31と、ブレーキアクチュエータ33と、ブレーキアクチュエータ33と接続されたブースタ34と、ブースタ34と接続されたマスタシリンダ35と、制動力を調整するためのDSC(Dynamic Stability Control)装置36と、実際に前輪50の回転を制動するブレーキパッド37とを有する。前輪50の車軸51には、ディスクロータ52が設けられている。ブレーキ装置30は、電動ブレーキであって、ブレーキセンサSW3が検知したブレーキペダル31の操作量に応じてブレーキアクチュエータ33を作動させて、ブースタ34及びマスタシリンダ35を介してブレーキパッド36を作動させる。ブレーキ装置30は、ブレーキパッド37によりディスクロータ38を挟んで、ブレーキパッド37とディスクロータ52との間に生じる摩擦力により、前輪50の回転を制動する。
 ブレーキ装置30は、ブレーキマイコン300及びDSCマイコン400により作動制御される。例えば、車両がマニュアル運転であるときには、ブレーキマイコン300は、運転者のブレーキペダル31の操作量を検出するブレーキセンサSW3等の検出値に基づいて、ブレーキアクチュエータ33の操作量を制御する。また、DSCマイコン400は、運転者のブレーキペダル31の操作に関わらずにDSC装置36を作動制御して、前輪50に制動力を付与する。また、車両がアシスト運転や自動運転であるときには、ブレーキマイコン300は、基本的には、後述する演算装置110により算出される目標制動力を達成するように、各走行用デバイス(ここでは、ブレーキアクチュエータ33)の制御量を算出して、各走行用デバイスに制御信号を出力する。
 ステアリング装置40は、運転者により操作されるステアリングホイール41と、運転者によるステアリング操作をアシストするEPAS(Electronic Power Asist Steering)装置42と、EPAS装置42に連結されたピニオンシャフト43とを有する。EPAS装置42は、電動モータ42aと、電動モータ42aの駆動力を減速してピニオンシャフト43に伝達する減速装置42bとを有する。ステアリング装置40は、ステアバイワイヤ方式のステアリング装置であって、操舵角センサSW4が検知したステアリングホイール41の操作量に応じてEPAS装置42を作動させて、ピニオンシャフト43を回転させて前輪50を操作する。ピニオンシャフト43と前輪50とは不図示のラックバーにより連結されており、ピニオンシャフト43の回転は、該ラックバーを介して前輪に伝達される。
 ステアリング装置40は、EPASマイコン500により作動制御される。例えば、車両がマニュアル運転であるときには、EPASマイコン500は、操舵角センサSW4等の検出値に基づいて、電動モータ42aの操作量を制御する。また、車両がアシスト運転や自動運転であるときには、EPASマイコン500は、基本的には、後述する演算装置110により算出される目標操舵量を達成するように、各走行用デバイス(ここでは、EPAS装置42)の制御量を算出して、各走行用デバイスに制御信号を出力する。
 本実施形態において、走行制御装置100は、アシスト運転及び自動運転を可能にするために、車両が走行すべき経路を算出するとともに、該経路を追従するための車両の運動を決定する演算装置110を有する。演算装置110は、1つ又は複数のチップで構成されたマイクロプロセッサであって、CPUやメモリ等を有している。尚、図2においては、本実施形態に係る機能(後述する経路生成機能)を発揮するための構成を示しており、演算装置110が有する全ての機能を示しているわけではない。
 図2に示すように、演算装置110は、複数のセンサ等からの出力に基づいて、車両の目標運動を決定して、デバイスの作動制御を行う。演算装置110に情報を出力するセンサ等は、車両のボディ等に設けられかつ車外環境を撮影する複数のカメラ70と、車両のボディ等に設けられかつ車外の物標等を検知する複数のレーダ71と、全地球測位システム(Global Positioning System:GPS)を利用して、車両の位置(車両位置情報)を検出する位置センサSW5と、車速センサ、加速度センサ、ヨーレートセンサ等の車両の挙動を検出するセンサ類の出力から構成され車両の状態を取得する車両状態センサSW6と、車内カメラ等により構成され、車両の乗員の状態を取得する乗員状態センサSW7とを含む。また、演算装置110には、車外通信部72が受信した、自車両の周囲に位置する他車両からの通信情報やナビゲーションシステムからの交通情報が入力される。
 各カメラ70は、車両の周囲を水平方向に360°撮影できるようにそれぞれ配置されている。各カメラ70は、車外環境を示す光学画像を撮像して画像データを生成する。各カメラ70は、生成した画像データを演算装置110に出力する。カメラ70は、車外環境の情報を取得する情報取得手段の一例である。
 各カメラ70が取得した画像データは、演算装置110以外にも、HMI(Human Machine  Interface)ユニット700に入力される。HMIユニット700は、取得した画像データに基づく情報を車内のディスプレイ装置等に表示する。
 各レーダ71は、カメラ70と同様に、検出範囲が車両の周囲を水平方向に360°広がるようにそれぞれ配置されている。レーダ71の種類が特に限定されず、例えば、ミリ波レーダや赤外線レーダを採用することができる。レーダ71は、車外環境の情報を取得する情報取得手段の一例である。
 演算装置110は、アシスト運転時や自動運転時には、車両の走行経路を設定して、車両が該走行経路を追従するように、車両の目標運動を設定する。演算装置110は、車両の目標運動を設定するために、カメラ70等からの出力を基にして車外環境を認定する車外環境認定部111と、車外環境認定部111が認定した車外環境に応じて、車両が走行可能な1つ又は複数の候補経路を算出する候補経路生成部112と、車両状態センサSW6からの出力を基にして車両の挙動を推定する車両挙動推定部113と、乗員状態センサSW7からの出力を基にして、車両の乗員の挙動を推定する乗員挙動推定部114と、車両が走行すべき経路を決定する経路決定部115と、経路決定部115が設定した経路を追従するための車両の目標運動を決定する車両運動決定部116と、車両運動決定部116が決定した目標運動を達成するために、前記走行用デバイスが生成すべき目標物理量(例えば、駆動力、制動力、及び操舵角)を算出する、駆動力算出部117、制動力算出部118、及び操舵量算出部119を有する。候補経路算出部112、車両挙動推定部113、乗員挙動推定部114及び経路決定部115は、車外環境認定部111が認定した車外環境に応じて、車両が走行すべき経路を設定する経路設定部を構成する。
 また、演算装置110は、セーフティ機能として、所定のルールにより車外の対象物を認定して、該対象物を避けるような走行経路を生成するルールベース経路生成部120と、車両を路肩等の安全領域に誘導するための走行経路を生成するバックアップ部130とを有する。
 〈車外環境認定部〉
 車外環境認定部111は、車両に搭載されたカメラ70やレーダ71等の出力を受け、車外環境を認定する。認定する車外環境は、少なくとも道路および障害物を含む。ここでは、車外環境認定部111は、カメラ70やレーダ71のデータを基にして、車両の周囲の3次元情報と車外環境モデルとを対照することにより、道路および障害物を含む車両環境を推定するものとする。車外環境モデルは、例えば深層学習によって生成された学習済みモデルであって、車両周囲の3次元情報に対して、道路や障害物等を認識することができる。
 例えば、車外環境認定部111は、カメラ70が撮像した画像から、画像処理によって、フリースペースすなわち物体が存在しない領域を特定する。ここでの画像処理には、例えば深層学習によって生成された学習済みモデルが利用される。そしてフリースペースを表す2次元のマップを生成する。また、車外環境認定部111は、レーダ71の出力から、車両の周辺に存在する物標の情報を取得する。この情報は、物標の位置や速度等を含む測位情報である。そして、車外環境認定部111は、生成された2次元のマップと物標の測位情報とを結合させて、車両の周囲を表す3次元マップを生成する。ここでは、カメラ70の設置位置および撮像方向の情報、レーダ71の設置位置および送信方向の情報が用いられる。車外環境認定部111は、生成した3次元マップと車外環境モデルとを対比することによって、道路及び障害物を含む車両環境を推定する。尚、深層学習では、多層ニューラルネットワーク(DNN:Deep Neural Network)が用いられる。多層ニューラルネットワークとして、例えば、CNN(Convolutional Neural Network)がある。
 〈候補経路生成部〉
 候補経路生成部112は、車外環境認定部111の出力、位置センサSW5の出力、及び車外通信部72から送信される情報等を基にして、車両が走行可能な候補経路を生成する。例えば、候補経路生成部112は、車外環境認定部111によって認定された道路上において、車外環境認定部111によって認定された障害物を回避する走行経路を生成する。車外環境認定部111の出力は、例えば、車両が走行する走行路に関する走行路情報が含まれている。走行路情報には、走行路自体の形状に関する情報や、走行路上の対象物に関する情報が含まれる。走行路形状に関する情報には、走行路の形状(直線、カーブ、カーブ曲率)、走行路幅、車線数、各車線幅等が含まれる。対象物に関する情報には、車両に対する対象物の相対位置及び相対速度、対象物の属性(種類、移動方向)等が含まれる。対象物の種類としては、例えば、車両、歩行者、道路、区画線等がある。
 ここでは、候補経路生成部112は、ステートラティス法を用いて複数の候補経路を計算し、これらの中からそれぞれの候補経路の経路コストに基づいて、1つまたは複数の候補経路を選択するものとする。ただし、他の手法を用いて経路の算出を行ってもよい。
 候補経路生成部112は、走行路情報に基づいて走行路上に仮想のグリッド領域を設定する。このグリッド領域は、複数のグリッド点を有する。各グリッド点により、走行路上の位置が特定される。候補経路生成部112は、所定のグリッド点を目標到達位置に設定する。そして、グリッド領域内の複数のグリッド点を用いた経路探索により複数の候補経路を演算する。ステートラティス法では、あるグリッド点から車両の進行方向前方の任意のグリッド点へ経路が枝分かれしていく。したがって、各候補経路は、複数のグリッド点を順次に通過するように設定される。各候補経路は、各グリッド点を通過する時間を表す時間情報、各グリッド点での速度・加速度等に関する速度情報、その他車両運動に関する情報等も含む。
 候補経路生成部112は、複数の候補経路から、経路コストに基づいて1つまたは複数の走行経路を選択する。ここでの経路コストは、例えば、レーンセンタリングの程度、車両の加速度、ステアリング角度、衝突の可能性等がある。なお、候補経路生成部112が複数の走行経路を選択する場合は、経路決定部115が、1つの走行経路を選択する。
 〈車両挙動推定部〉
 車両挙動推定部113は、車速センサ、加速度センサ、ヨーレートセンサ等の車両の挙動を検出するセンサ類の出力から、車両の状態を計測する。車両挙動推定部113は、車両の挙動を示す車両6軸モデルを生成する。
 ここで、車両6軸モデルとは、走行中の車両の「前後」「左右」「上下」の3軸方向の加速度と、「ピッチ」「ロール」「ヨー」の3軸方向の角速度を、モデル化したものである。すなわち、車両の動きを古典的な車両運動工学的な平面上のみ(車両の前後左右(X-Y移動)とヨー運動(Z軸)のみ)で捉えるのではなく、4つの車輪にサスペンションを介して乗っている車体のピッチング(Y軸)およびロール(X軸)運動とZ軸の移動(車体の上下動)の、計6軸を用いて車両の挙動を再現する数値モデルである。
 車両挙動推定部113は、候補経路生成部112が生成した走行経路に対して、車両6軸モデルを当てはめて、該走行経路を追従する際の車両の挙動を推定する。
 〈乗員挙動推定部〉
 乗員挙動推定部114は、乗員状態センサSW7の検出結果から、特に、運転者の健康状態や感情を推定する。健康状態としては、例えば、健康、軽い疲労、体調不良、意識低下等がある。感情としては、例えば、楽しい、普通、退屈、イライラ、不快等がある。
 例えば、乗員挙動推定部114は、例えば、車室内に設置されたカメラによって撮像された画像から、運転者の顔画像を抽出し、運転者を特定する。抽出した顔画像と特定した運転者の情報は、人間モデルに入力として与えられる。人間モデルは、例えば深層学習によって生成された学習済みモデルであり、当該車両の運転者であり得る各人について、その顔画像から、健康状態および感情を出力する。乗員挙動推定部114は、人間モデルが出力した運転者の健康状態および感情を、出力する。
 また、運転者の情報を取得するための乗員状態センサSW7として、皮膚温センサ、心拍センサ、血流量センサ、発汗センサ等の生体情報センサが用いられる場合は、乗員挙動推定部は、生体情報センサの出力から、運転者の生体情報を計測する。この場合、人間モデルは、当該車両の運転者であり得る各人について、その生体情報を入力とし、健康状態および感情を出力する。乗員挙動推定部114は、人間モデルが出力した運転者の健康状態および感情を、出力する。
 また、人間モデルとして、当該車両の運転者であり得る各人について、車両の挙動に対して人間が持つ感情を推定するモデルを用いてもよい。この場合には、車両挙動推定部113の出力、運転者の生体情報、推定した感情状態を時系列で管理して、モデルを構築すればよい。このモデルによって、例えば、運転者の感情の高まり(覚醒度)と車両の挙動との関係を予測することが可能となる。
 また、乗員挙動推定部114は、人間モデルとして、人体モデルを備えていてもよい。人体モデルは、例えば、頭部質量(例:5kg)と前後左右Gを支える首周り筋力等を特定している。人体モデルは、車体の動き(加速度Gや加加速度)を入力すると、予想される乗員のフィジカルと主観を出力する。乗員のフィジカルとしては例えば、心地よい/適度/不快、主観としては例えば、不意/予測可能、等である。人体モデルを参照することによって、例えば、頭部がわずかでも仰け反らせるような車体挙動は乗員にとって不快であるので、その走行経路を選択しないようにすることができる。一方、頭部がお辞儀するように前に移動する車体挙動は乗員がこれに抗する姿勢をとりやすく、直ちに不快につながらないようので、その走行経路を選択するようにすることができる。あるいは、人体モデルを参照することによって、例えば、乗員の頭部が揺れないように、あるいは、生き生きするようにダイナミックに、目標運動を決定することができる。
 乗員挙動推定部114は、車両挙動推定部113により推定された車両挙動に対して、人間モデルを当てはめて、現在の運転者の、車両挙動に対する健康状態の変化や感情の変化を推定する。
 〈経路決定部〉
 経路決定部115は、乗員挙動推定部114の出力に基づいて、車両が走行すべき経路を決定する。候補経路生成部112が生成した経路が1つである場合には、経路決定部115は当該経路を車両が走行すべき経路とする。候補経路生成部112が生成した経路が複数ある場合には、乗員挙動推定部114の出力を考慮して、例えば、複数の候補経路のうち乗員(特に運転者)が最も快適と感じる経路、すなわち、障害物を回避するに当たって慎重過ぎるなどの冗長さを運転者に感じさせない経路を選択する。
 〈ルールベース経路生成部〉
 ルールベース経路生成部120は、カメラ70及びレーダ71からの出力を基にして、深層学習を利用せずに、所定のルールにより車外の対象物を認定して、該対象物を避けるような走行経路を生成する。ルールベース経路生成部120でも、候補経路生成部112と同様に、ステートラティス法を用いて複数の候補経路を計算し、これらの中からそれぞれの候補経路の経路コストに基づいて、1つまたは複数の候補経路を選択するものとする。ルールベース経路生成部120では、例えば、対象物の周囲数m以内には侵入しないというルールに基づいて、経路コストが算出される。このルールベース経路生成部120でも、他の手法を用いて経路の算出を行ってもよい。
 ルールベース経路生成部120が生成した経路の情報は車両運動決定部116に入力される。
 〈バックアップ部〉
 バックアップ部130は、カメラ70及びレーダ71からの出力を基にして、センサ等の故障時や乗員の体調が優れない時に、車両を路肩等の安全領域に誘導するための走行経路を生成する。バックアップ部130は、例えば、位置センサSW5の情報から車両を緊急停止させることができる安全領域を設定し、該安全領域に到達するまでの走行経路を生成する。バックアップ部130でも、候補経路生成部112と同様に、ステートラティス法を用いて複数の候補経路を計算し、これらの中からそれぞれの候補経路の経路コストに基づいて、1つまたは複数の候補経路を選択するものとする。このバックアップ部130でも、他の手法を用いて経路の算出を行ってもよい。
 バックアップ部130が生成した経路の情報は車両運動決定部116に入力される。
 〈車両運動決定部〉
 車両運動決定部116は、経路決定部115が決定した走行経路について、目標運動を決定する。目標運動とは、走行経路を追従するような操舵および加減速のことをいう。また、目標運動決定部115は、車両6軸モデルを参照して、経路決定部115が選択した走行経路について、車体の動きを演算する。
 車両運動決定部116は、ルールベース経路生成部120が生成する走行経路を追従するための目標運動を決定する。
 車両運動決定部116は、バックアップ部130が生成する走行経路を追従するための目標運動を決定する。
 車両運動決定部116は、経路決定部115が決定した走行経路が、ルールベース経路生成部120が生成した走行経路と比較して大きく逸脱していたときには、ルールベース経路生成部120が生成した走行経路を、車両が走行すべき経路として選択する。
 車両運動決定部116は、センサ等(特に、カメラ70やレーダ71)の故障時や乗員の体調不良が推定されたときには、バックアップ部130が生成した走行経路を、車両が走行すべき経路として選択する。
 〈物理量算出部〉
 物理量算出部は、駆動力算出部117、制動力算出部118、及び操舵量算出部119で構成されている。駆動力算出部117は、目標運動を達成するために、パワートレイン装置(エンジン10及びトランスミッション20)が生成すべき目標駆動力を算出する。制動力算出部118は、目標運動を達成するために、ブレーキ装置30が生成すべき目標制動力を算出する。操舵量算出部119は、目標運動を達成するために、ステアリング装置40が生成すべき目標操舵量を算出する。
 〈周辺機器動作設定部〉
 周辺機器動作設定部140は、車両運動決定部116の出力に基づいて、ランプやドアなどの車両のボディ関係のデバイスの動作を設定する。周辺動作設定部140は、例えば、経路決定部115で決定した走行経路を車両が追従する際のランプの向きを設定する。また、周辺動作設定部140は、例えば、バックアップ部130により設定された安全領域に車両を誘導するときには、車両が安全領域に到達した後、ハザードランプを点灯させたり、ドアのロックを解除したりする動作を設定する。
 〈演算装置の出力先〉
 演算装置110での演算結果は、パワートレインECU200、ブレーキマイコン300、EPASマイコン500、及びボディ系マイコン600に出力される。具体的には、パワートレインECU200には、駆動力算出部117が算出した目標駆動力に関する情報が入力され、ブレーキマイコン300には、制動力算出部118が算出した目標制動力に関する情報が入力され、EPASマイコン500には、操舵量算出部119が算出した目標操舵量に関する情報が入力され、ボディ系マイコン600には、周辺機器動作設定部140が設定したボディ関係の各デバイスの動作に関する情報が入力される。
 前述したように、パワートレインECU200は、基本的には、目標駆動力を達成するように、インジェクタの燃料噴射時期や点火プラグの点火時期を算出して、これらの走行用デバイスに制御信号を出力する。ブレーキマイコン300は、基本的には、目標駆動力を達成するように、ブレーキアクチュエータ33の制御量を算出して、ブレーキアクチュエータ33に制御信号を出力する。EPASマイコン500は、基本的には、目標操舵量を達成するように、EPAS装置42に供給する電流量を算出して、EPAS装置42に制御信号を出力する。
 ここで、上述した走行制御装置100の構成例では、アクチュエータのマイコン機能(例えば、ボディ系マイコン600)が、演算装置110を含む走行制御装置100側に取り込まれている。ボディ系マイコン600の出力は、CAN(Controller Area Network)等の車載ネットワークを介して、各ゾーンに設けられた、ランプ、ドア、エアバッグ等の各ボディ系アクチュエータを制御する制御装置、例えばECUに送信される。このような構成では、走行制御装置100からアクチュエータへの通信が失陥した場合に備えて、何らかのバックアップ手段を設ける必要がある。ところが、例えば、走行制御装置100から多数のアクチュエータに対してそれぞれ2重の通信経路を設けることは、構成が複雑になるため、好ましくない。
 そこで、本実施形態では、ボディ系アクチュエータを制御するアクチュエータ制御装置に対して、走行制御装置100からの信号を送信する通信経路とは別の通信経路を介して、所定信号を送信できるようにする。そして、走行制御装置100からボディ系アクチュエータへの通信が失陥した場合に、ボディ系アクチュエータが、別の通信経路を介して送信された所定信号に従って動作できるようにする。
 <構成例1>
 図3は本実施形態に係る車載ネットワークシステムの構成例であり、ボディ系アクチュエータの一例としてのストップランプに係る構成を部分的に示す。図3の構成において、スマートECU12は、ボディ系マイコン600の出力を受け、この出力に従って、ストップランプ13の点灯動作を制御する。スマートECU12はアクチュエータ制御装置の一例である。走行制御装置100からスマートECU12への通信経路14は、例えば、CANによって構成されている。
 また、走行制御装置100からスマートECU12への通信経路14とは独立して、ブレーキセンサSW3の検出信号をスマートECU12に直接送信する通信経路15が設けられている。この通信経路15は、例えば、ハードワイヤによって構成されている。そして、スマートECU12は、走行制御装置100からスマートECU12への通信が途絶したとき、通信経路15を介して受信したブレーキセンサSW3の検出信号に従って、ストップランプ13の点灯動作を制御するバックアップ制御機能を有している。バックアップ制御機能が働いている場合には、スマートECU12は、ブレーキセンサSW3の検出信号がドライバによってブレーキ操作がなされたことを示すとき、ストップランプ13を点灯させる。
 これにより、何らかの理由により走行制御装置100からスマートECU12への通信が失陥した場合であっても、スマートECU12がバックアップ制御機能を働かせることによって、ドライバがブレーキを操作した場合に、ストップランプ13を点灯させることができる。
 <構成例2>
 図4は本実施形態に係る車載ネットワークシステムの構成例であり、ボディ系アクチュエータの一例としてのヘッドライトに係る構成を部分的に示す。図4の構成において、スマートECU23は、ボディ系マイコン600の出力を受け、この出力に従って、右ヘッドライト21の点灯動作を制御する。スマートECU24は、ボディ系マイコン600の出力を受け、この出力に従って、左ヘッドライト22の点灯動作を制御する。スマートECU23,24はアクチュエータ制御装置の一例である。走行制御装置100からスマートECU23,24への通信経路26は、例えば、CANによって構成されている。
 また、走行制御装置100からスマートECU23,24への通信経路26とは独立して、IG(イグニション)スイッチ25から出力されるIG信号をスマートECU23,24に直接送信する通信経路27が設けられている。この通信経路27は、例えば、ハードワイヤによって構成されている。そして、スマートECU23,24は、走行制御装置100からスマートECU23,24への通信が途絶したとき、通信経路27を介して受信したIG信号に従って、ヘッドライトの点灯動作を制御するバックアップ制御機能を有している。バックアップ制御機能が働いている場合には、スマートECU23,24は、IG信号がON状態を示すときは、ヘッドライト21,22を点灯させる一方、IG信号がOFF状態を示すときは、ヘッドライト21,22を消灯させる。
 これにより、何らかの理由により走行制御装置100からスマートECU23,24への通信が失陥した場合であっても、スマートECU23,24がバックアップ制御機能を働かせることによって、ヘッドライト21,22を点灯させることができる。さらに、ドライバがIGスイッチ25をOFF状態にしたときには、ヘッドライト21,22を消灯することができる。
 なお、ここでの通信が途絶したときとは、走行制御装置からアクチュエータ制御装置に信号が送信されなくなったとき、あるいは、信号は送信されるが当該信号の意味が不明になったとき、を含む。
 これらの構成例のように、走行制御装置100からボディ系アクチュエータへの通信系とは別に、ボディ系アクチュエータを所定信号に従って直接制御できる通信系を設けることによって、走行制御装置100からボディ系アクチュエータへの通信が失陥した場合に備えることができる。なお、上述の構成例では、ボディ系アクチュエータの例として、ストップランプおよびヘッドライトを例にとって説明を行ったが、他のボディ系アクチュエータについても、同様に、走行制御装置100からボディ系アクチュエータへの通信系とは別に、ボディ系アクチュエータを所定信号に従って直接制御できる通信系を設けるように構成してもよい。
 また、ここで示した走行制御装置100の構成はあくまでも一例であり、走行制御装置の構成は、本実施形態で示したものに限られるものではない。例えば、演算装置100がルールベース経路生成部120やバックアップ部130を備えない構成であってもよい。あるいは、演算装置110が備える機能が、複数の半導体チップに分割して実現された構成であってもかまわない。また、車両の中央部に配置されたセントラルECUと車両の各ゾーンに配置された複数のゾーンECUとが車載ネットワークを介して接続された構成によって、走行制御装置が実現されていてもかまわない。
 前述の実施形態は単なる例示に過ぎず、本開示の範囲を限定的に解釈してはならない。本開示の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本開示の範囲内のものである。
 ここに開示された技術は、車両走行制御装置を備えた車載ネットワークシステムとして有用である。
12 スマートECU(アクチュエータ制御装置),
13 ストップランプ(ボディ系アクチュエータ)
14 第1通信経路
15 第2通信経路
21,22 ヘッドライト(ボディ系アクチュエータ)
23,24 スマートECU(アクチュエータ制御装置)
26 第1通信経路
27 第2通信経路
100 走行制御装置
SW3 ブレーキセンサ

Claims (3)

  1.  車載ネットワークシステムであって、
     車載センサの出力を受けて、車両の走行を制御するための演算を実行する走行制御装置と、
     ボディ系アクチュエータを制御するアクチュエータ制御装置と、
     前記走行制御装置の出力を、前記アクチュエータ制御装置に送信する第1通信経路と、
     前記第1通信経路とは独立して設けられており、所定信号を前記アクチュエータ制御装置に送信する第2通信経路とを備え、
     前記アクチュエータ制御装置は、
     前記第1通信経路を介して受信した、前記走行制御装置から出力された指示信号に従って、前記ボディ系アクチュエータを制御するものであり、かつ、前記第1通信経路を介した通信が途絶したとき、前記第2通信経路を介して受信した前記所定信号に従って、前記ボディ系アクチュエータを制御する
    ことを特徴とする車載ネットワークシステム。
  2.  請求項1記載の車載ネットワークシステムにおいて、
     前記ボディ系アクチュエータは、ストップランプであり、
     前記車載センサは、ブレーキ操作を検出するブレーキセンサを含み、
     前記第2通信経路は、前記ブレーキセンサの検出信号を、前記所定信号として前記アクチュエータ制御装置に送信するものであり、
     前記アクチュエータ制御装置は、
     前記第1通信経路を介した通信が途絶したとき、前記第2通信経路を介して受信した前記ブレーキセンサの検出信号に従って、前記ストップランプの点灯動作を制御する
    ことを特徴とする車載ネットワークシステム。
  3.  請求項1記載の車載ネットワークシステムにおいて、
     前記ボディ系アクチュエータは、ヘッドライトであり、
     前記第2通信経路は、イグニション信号を、前記所定信号として前記アクチュエータ制御装置に送信するものであり、
     前記アクチュエータ制御装置は、
     前記第1通信経路を介した通信が途絶したとき、前記第2通信経路を介して受信した前記イグニション信号に従って、前記ヘッドライトの点灯動作を制御するものであり、前記イグニション信号がON状態を示すときは、前記ヘッドライトを点灯させる一方、前記イグニション信号がOFF状態を示すときは、前記ヘッドライトを消灯させる
    ことを特徴とする車載ネットワークシステム。
PCT/JP2020/010526 2019-06-06 2020-03-11 車載ネットワークシステム WO2020246098A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/616,195 US20220321656A1 (en) 2019-06-06 2020-03-11 In-vehicle network system
EP20819352.4A EP3974252A4 (en) 2019-06-06 2020-03-11 NETWORK SYSTEM IN A VEHICLE
CN202080041573.2A CN113905927A (zh) 2019-06-06 2020-03-11 车载网络系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-106296 2019-06-06
JP2019106296A JP2020199798A (ja) 2019-06-06 2019-06-06 車載ネットワークシステム

Publications (1)

Publication Number Publication Date
WO2020246098A1 true WO2020246098A1 (ja) 2020-12-10

Family

ID=73652199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010526 WO2020246098A1 (ja) 2019-06-06 2020-03-11 車載ネットワークシステム

Country Status (5)

Country Link
US (1) US20220321656A1 (ja)
EP (1) EP3974252A4 (ja)
JP (1) JP2020199798A (ja)
CN (1) CN113905927A (ja)
WO (1) WO2020246098A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061278A (ja) 2015-09-25 2017-03-30 株式会社デンソー 制御システム
WO2017222077A1 (ja) * 2016-06-24 2017-12-28 矢崎総業株式会社 車両用回路体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848027B2 (ja) * 2004-01-30 2011-12-28 日立オートモティブシステムズ株式会社 車両制御装置
CN201566573U (zh) * 2009-09-08 2010-09-01 江苏雅迪科技发展有限公司 一种电动车自动控制系统
US20120271503A1 (en) * 2011-04-19 2012-10-25 GM Global Technology Operations LLC Bulb outage detection and part number lookup using a telematics-equipped vehicle
JP2013132939A (ja) * 2011-12-26 2013-07-08 Keihin Corp ヘッドライト駆動制御装置
JP6212318B2 (ja) * 2013-07-25 2017-10-11 矢崎総業株式会社 車載負荷制御システム
CN103818306A (zh) * 2014-02-19 2014-05-28 西安理工大学 汽车雾灯、远近光、危险警报灯和紧急救援自动控制系统
WO2016031011A1 (ja) * 2014-08-28 2016-03-03 日産自動車株式会社 走行制御装置および走行制御方法
JP2017007583A (ja) * 2015-06-24 2017-01-12 トヨタ車体株式会社 車両安全制御装置
CN109733301A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 车辆冗余总线系统及其控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061278A (ja) 2015-09-25 2017-03-30 株式会社デンソー 制御システム
WO2017222077A1 (ja) * 2016-06-24 2017-12-28 矢崎総業株式会社 車両用回路体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974252A4

Also Published As

Publication number Publication date
EP3974252A4 (en) 2022-08-10
JP2020199798A (ja) 2020-12-17
EP3974252A1 (en) 2022-03-30
CN113905927A (zh) 2022-01-07
US20220321656A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2020203058A1 (ja) 自動車用走行制御システム
WO2020203055A1 (ja) 車両走行制御装置
WO2020203078A1 (ja) 自動車走行制御用の演算装置及びそれを用いた走行制御システム
WO2020203057A1 (ja) 車両走行制御装置
WO2020203068A1 (ja) 車両走行制御装置
WO2020246098A1 (ja) 車載ネットワークシステム
WO2020203054A1 (ja) 車両走行制御装置
JP7392293B2 (ja) 車両の故障診断装置
JP2020142761A (ja) 車両用演算システム
JP7354601B2 (ja) 車載ネットワークシステム
WO2020246100A1 (ja) 車載ネットワークシステム
JP2020142759A (ja) 車両用演算システム
JP2020142760A (ja) 車両用演算システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819352

Country of ref document: EP

Effective date: 20211220