WO2020245473A1 - Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura - Google Patents

Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura Download PDF

Info

Publication number
WO2020245473A1
WO2020245473A1 PCT/ES2019/070376 ES2019070376W WO2020245473A1 WO 2020245473 A1 WO2020245473 A1 WO 2020245473A1 ES 2019070376 W ES2019070376 W ES 2019070376W WO 2020245473 A1 WO2020245473 A1 WO 2020245473A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
stage
added
elements
temperature
Prior art date
Application number
PCT/ES2019/070376
Other languages
English (en)
French (fr)
Inventor
Aitzol Iturrospe Iregui
Original Assignee
Promoción Y Desarrollo De Sistemas Automáticos S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promoción Y Desarrollo De Sistemas Automáticos S.L. filed Critical Promoción Y Desarrollo De Sistemas Automáticos S.L.
Priority to PCT/ES2019/070376 priority Critical patent/WO2020245473A1/es
Priority to EP19740606.9A priority patent/EP3978892A1/en
Publication of WO2020245473A1 publication Critical patent/WO2020245473A1/es
Priority to US17/540,761 priority patent/US20220090972A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • G01L1/255Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons using acoustic waves, or acoustic emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures

Definitions

  • the present invention relates to methods of measuring the forces acting on a structure and / or to methods of measuring temperature in the structure.
  • US2008001 1091A1 describes a method to measure the load to which a structure is subjected.
  • the method consists of placing at least one sensor on the structure, said sensor being configured to detect changes in the frequency of resonant vibration and changes in phase angle indicative of changes in the load on the structure, and to measure the temperature changes.
  • a computer control unit configured to measure a change in resonance frequency and a change in phase angle detected by the sensor as a result of a change in load is used for sensor operation.
  • the control unit is also used to measure temperature changes and to apply a temperature calibration to calculate the load.
  • the object of the invention is to provide a method of measuring the forces acting on a structure and / or the temperature on the structure, as defined in the claims.
  • the method of the invention allows the measurement of the forces acting on at least one measurement zone of a structure and / or temperature measurement in at least one measurement zone of the structure.
  • the method comprises an addition stage in which an element is added to the structure in each measurement zone, said addition generating in each measurement zone at least one local vibration mode of the set formed by the structure and the element or elements. added to the structure.
  • the method further comprises a stage of analysis of the assembly in which the variation of the resonance frequency associated with the local vibration mode of each measurement zone is determined when the forces acting and / or the temperature in said measurement zone change.
  • the method comprises an excitation stage in which the set is excited, and then a measurement stage in which the variations produced in the resonance frequency of the set associated with the local vibration mode of each measurement zone are measured. .
  • the method comprises a calculation step in which, from the measurements obtained in the measurement step, the forces acting and / or the temperature of the structure in the measurement areas are determined.
  • the method of the invention makes it possible to measure the forces acting in at least one measurement area of the structure and / or the temperature in at least one measurement area of the structure without adding a sensor configured to perform said measurement to the structure.
  • the sensors With the passage of time, the sensors become out of calibration, the measurement they provide can suffer a drift, and sometimes the signal they emit is destabilized, which requires maintenance so that the measurement they take is correct.
  • the method of the invention avoids the use of sensors, since the elements that are added to the structure do not degrade over time, thus avoiding the need for maintenance or recalibration in order to obtain a correct measurement of the forces acting and / or the temperature in at least one measuring zone of the structure.
  • Figure 1 shows a front view of a structure to which two elements have been added to implement the method of the invention.
  • the method of the invention is a method of measuring the forces acting and / or the temperature in at least one area of a structure 10.
  • structure is understood any body on which one or more forces.
  • a structure could be a bridge over which vehicles, people, etc. circulate. or even a pillar of said bridge. It could also be a piece that, after being manufactured, is installed in a car, for example, and of which you want to know the temperature, or the forces that act on it.
  • the method of the invention comprises an addition step in which an element 1 is added to the structure 10 in each measurement zone, said addition generating in each measurement zone at least one local vibration mode of the set formed by the structure 10 and elements 1, 2 added to the structure.
  • Element 1 resonates at a resonance frequency, so that when element 1 is added to structure 10, a local mode is generated in the measurement area, that is, a vibrational mode is generated in the assembly whose amplitude is greater in the measurement zone in which element 1 has been arranged. That is, before adding element 1 to structure 10, said local mode did not exist, and as a consequence of adding said element 1 to structure 10, a new mode appears of vibration, which in this document will be called local mode in the measurement zone.
  • Figure 1 shows a structure 10 to which a first element 1 has been added in a first measurement zone, and a second element 2, in a second measurement zone.
  • the method further comprises a stage of analysis of the assembly in which the variation of the resonance frequency associated with the local vibration mode of each measurement zone is determined when the forces acting and / or the temperature in said measurement zone change.
  • the resonance frequencies associated with certain local modes of vibration of the set undergo variations, these variations being able to occur both in frequency and in phase and / or amplitude of said resonance frequency.
  • the forces acting on the assembly can be due to an axial load on the assembly, a torsional force applied to said assembly, a bending moment, a radial force or even the gravitational force corresponding to the weight of a body on the assembly. , among others.
  • the set formed by structure 10 and elements 1, 2 is subjected to different forces that act on said set, and at different temperatures, determining the variation that occurs in the resonance frequency associated with each of the local modes of vibration of the set.
  • the method comprises an excitation stage in which the set is excited, and then a measurement stage in which the variations produced in the resonance frequency of the set associated with the local vibration mode of each measurement zone are measured.
  • an emitter configured to emit a signal, such as a frequency sweep
  • a receiver configured to receive the emitted signal once it has propagated through the set formed by the structure 10 and elements 1, 2 added, exciting at least one of the local modes generated in the set as a consequence of the addition of elements 1, 2.
  • the receiver is also configured to measure variations in both frequency and phase and / or amplitude produced at the resonance frequency associated with at least one local mode of the set. For this, said receiver will use suitable means of data acquisition from the received signal, means of processing said acquired data, data storage means for both processing and storing the acquired data, means of power supply , and appropriate signal amplification and filtering subsystems.
  • the method comprises a calculation step in which, from the measurements obtained in the measurement step, the forces acting and / or the temperature of the structure 10 in the measurement areas are determined.
  • a control unit will be used, electrically communicated with both the emitter and the receiver.
  • information is generated on the variation of the resonance frequency. associated with the local vibration mode of each measurement zone when the acting forces and / or the temperature change in said measurement zone.
  • Said information is stored in data storage means of the control unit, so that from the measurements of variation in the resonance frequencies associated with the local vibration modes of the set obtained in the measurement stage, and the information on the variation of the resonance frequencies associated with the local vibration modes of the assembly obtained in the assembly analysis stage, the control unit is configured to determine the forces that act and / or the temperature of the structure 10 in the areas measurement.
  • the forces acting on the set formed by structure 10 and the elements 1, 2 added to said structure 10 propagate throughout the set, so that knowing how the resonance frequency associated with a local mode of the set varies, having generated by said local mode in the assembly as a consequence of the addition of an element 1 in a measurement zone of the structure 10, the method of the invention makes it possible to determine the forces acting and / or the temperature of the structure 10 in the zone of measurement in which said element 1 has been added. That is why elements 1, 2 have to be added in those measurement zones in which the temperature and / or forces acting in said measurement zones are to be known by means of the method of the invention.
  • the method of the invention makes it possible to measure the forces acting in at least one measurement zone of the structure 10 and / or the temperature measurement in at least one measurement zone of the structure 10 without using a sensor configured to perform said measurement. . With the passage of time the sensors become uncalibrated, and sometimes the signal they emit becomes destabilized, thus requiring maintenance so that the measurement they take is correct.
  • the method of the invention avoids the use of sensors, since the elements 1, 2 that are added to the structure 10 do not degrade over time, thus avoiding the need for maintenance in order to obtain a correct measurement. of the forces acting and / or of the temperature in at least one measuring zone.
  • the invention is especially advantageous when it is required to measure the forces acting and / or the temperature in an area that is difficult to access, since element 1, 2 would be added to structure 10 only once, and it would not be necessary to access said area on subsequent occasions for maintenance reasons, for example.
  • the structure 10 itself, together with the added elements 1, 2, would act as a sensor.
  • a first element 1 in a first measurement zone and a second element 2 in a second measurement zone are added to the structure 10.
  • the reference resonance frequency is determined associated with the local vibration mode in the first measurement area, and the reference resonance frequency associated with the local vibration mode in the second measurement area. Both frequencies are frequencies of
  • Reference resonance of the set measured when no force acts on said set, and at a reference temperature of 20 ° C, for example.
  • a first force that propagates through said set acts on the set, said force acting on the first and second elements 1, 2, being able to act differently on said first element 1 and on said second element 2.
  • the frequencies are measured, the measured resonance frequency being associated with the
  • k 1 and k 2 are constants that depend on the structure 10, and fundamentally on the geometry and density of the first and second elements 1, 2, both of which are therefore known,
  • E 0 is the reference Young's modulus, at a given temperature, for example 20 ° C, and without forces acting on the assembly,
  • g () is a function that relates the resonance frequency with the variations produced in Young's modulus both by temperature and by action of forces
  • the reference frequencies can be expressed as:
  • a second assumption would be to place the first element 1 in a
  • both elements 1, 2 changes with respect to the reference temperature of 20 ° C by the same amount, with which the variation of the Young's modulus due to the change in temperature in the first measurement zone is equal to the variation of Young's modulus due to the change in temperature in the second measurement zone:
  • the added elements 1, 2 can be designed so that the variation of the effective Young's modulus due to the forces acting on a first element 1 and a second element 2 are related, that is, where h () is a function known.
  • element 1 resonates at more than one resonance frequency, so that when adding said element 1 to structure 10, said addition generates more than one local vibration mode in the measurement zone. In this way, only by adding an element 1 to the structure 10 it is possible to measure the variations of various resonance frequencies of the assembly associated with the local vibration modes in the measurement area.
  • the measurement method of the invention also allows that, the greater the number of elements 1, 2 added to the structure, the more accurate the measurements of both force and temperature obtained by the method.
  • the structure 10 in the element addition stage the structure 10 is manufactured with the elements 1, 2 integrated.
  • the element 1, 2 to be added to the structure 10 is not an independent element of the structure itself 10.
  • the structure 10 is manufactured so that the elements 1, 2 are part of the structure itself 10. It is especially advantageous in those structures 10 in which it is difficult to access the measurement areas in which the elements 1, 2 to be added have to be arranged, it being preferable that the structure 10 itself is manufactured with the element 1, 2 to be added incorporated in the manufacturing process of the structure 10.
  • the added elements 1, 2 are located inside the structure 10.
  • the added elements 1, 2 are arranged in those measurement areas in which it is desired to know, either the temperature in said zones, or the forces acting on said measurement zones. Normally, these are the critical areas of the structure 10 to be monitored and, on occasions, these areas can be located inside the structure 10.
  • the method of the invention makes it possible to manufacture the structure 10 with elements 1, 2 integrated into the structure itself. structure 10, enabling elements 1, 2 to be arranged in any area of structure 10, even inside.
  • the structure 10 is manufactured by additive manufacturing.
  • the measurement method of the invention comprises a stage of analysis of the structure 10 in which the modes of vibration of the structure 10 and the resonance frequencies associated with the modes of vibration of the structure 10 are determined.
  • the method comprises a design stage after the structure analysis stage 10 and before the addition stage in which the element 1, 2 to be added in each measurement zone is designed, so that the frequencies The resonance frequencies of the element 1, 2 do not overlap with the resonance frequencies of the structure 10.
  • the vibration modes of the structure 10 and the resonance frequencies associated with said vibration modes of the structure 10 in the step of design of the elements to be added said elements 1, 2 can be designed so that the resonance frequencies of the elements 1, 2 do not overlap with the resonance frequencies associated with the vibration modes structure 10.
  • adding element 1, 2 to structure 10 generates a local mode in the measurement area, so that the resonance frequency associated with said local mode does not overlap with the resonance frequencies of the structure 10.
  • the resonance frequency of the assembly associated with the local mode of the measurement area may not be exactly the same as the resonance frequency of the element 1, 2 itself, however, they are usually very close. Therefore, if the element 1, 2 to be added in each measurement zone is designed so that its resonance frequency does not overlap with the resonance frequencies of the structure 10, the resonance frequency associated with the local mode in the zone of measurement will be easily discernible from the rest of the resonance frequencies of the set. This will allow a more precise measurement of the variations suffered by said resonance frequency due to the forces that act and / or the temperature in the measurement area.
  • the vibration modes and the resonance frequencies of the structure 10 are determined by means of a finite element model.
  • the element 1, 2 to be added to the structure 10 in the design stage of the element to be added, is designed so that it has at least two modes of vibration, and that when changing the forces acting on the element 1, 2 couple the vibration modes of the element 1, 2.
  • the method of the invention comprises a stage of static analysis of the set formed by the structure 10 and the elements 1, 2 added after the element addition stage and before the excitation stage, in which determines the mode of propagation of the forces acting on the structure 10 throughout the assembly.
  • the stage of static analysis of the assembly information is generated on how the forces acting on the structure 10 are propagated throughout the assembly. Said information is stored in the data storage means of the control unit.
  • the method of the invention further comprises an additional calculation stage after the calculation stage in which the forces to which it is subjected are calculated from the forces to which the elements 1, 2 are subjected. the structure 10.
  • the control unit is able to determine the forces to which the structure 10 is subjected.
  • the state of health of the structure 10 is determined.
  • the control unit is capable of determining the existence of a crack, for example, that prevents the forces acting on the structure 10 from propagating to said element 1, 2.
  • the variation in the resonance frequency associated with the local vibration mode of each measurement zone is determined by a finite element model.
  • a second aspect of the invention refers to a computer program comprising code instructions adapted to implement the steps of the measurement method of the invention.
  • the computer program may be in the form of source code, object code, an intermediate source code and object code, such as partially compiled form, or in any other form suitable for use in implementing a method.
  • a third aspect of the invention relates to a computer-readable information storage medium (for example, a CD-ROM, a DVD, a USB drive, a computer memory, or a read-only memory) comprising code instructions that when executed by a computer cause the computer to implement the steps of the measurement method of the invention.
  • a computer-readable information storage medium for example, a CD-ROM, a DVD, a USB drive, a computer memory, or a read-only memory

Abstract

La invención se refiere a un método de medición de las fuerzas que actúan y/o de la temperatura en al menos una zona de una estructura (10), que comprende una etapa de adición de al menos un elemento (1, 2) a la estructura (10), generando dicha adición un modo de vibración local del conjunto formado por la estructura (10) y los elementos (1, 2) añadidos en cada zona de medición, una etapa de análisis del conjunto, una etapa de excitación del conjunto, una etapa de medición delas variaciones producidas en la frecuencia de resonancia del conjunto asociada al modo de vibración local de cada zona de medición, y una etapa de cálculo.

Description

DESCRIPCIÓN
“Método de medición de las fuerzas que actúan en una estructura y/o de la
temperatura en la estructura”
SECTOR DE LA TÉCNICA
La presente invención se relaciona con métodos de medición de las fuerzas que actúan en una estructura y/o con métodos de medición de la temperatura en la estructura.
ESTADO ANTERIOR DE LA TÉCNICA
Son conocidos métodos de medición de las fuerzas que actúan en una estructura y métodos de medición de la temperatura en una estructura.
US2008001 1091A1 describe un método para medir la carga a la que está sometida una estructura. Para ello, el método consiste en colocar al menos un sensor sobre la estructura, estando dicho sensor configurado para detectar los cambios de frecuencia de vibración resonante y los cambios de ángulo de fase indicativos de cambios en la carga sobre la estructura, y para medir los cambios de temperatura. Para el funcionamiento del sensor se utiliza una unidad de control por ordenador configurado para medir un cambio en la frecuencia de resonancia y un cambio en el ángulo de fase detectado por el sensor como resultado de un cambio en la carga. La unidad de control se utiliza también para medir los cambios de temperatura y para aplicar una calibración de temperatura para calcular la carga.
EXPOSICIÓN DE LA INVENCIÓN
El objeto de la invención es el de proporcionar un método de medición de las fuerzas que actúan en una estructura y/o la temperatura en la estructura, según se define en las reivindicaciones.
El método de la invención permite la medición de las fuerzas que actúan en al menos una zona de medición de una estructura y/o la medición de la temperatura en al menos una zona de medición de la estructura.
El método comprende una etapa de adición en la que se añade a la estructura un elemento en cada zona de medición, generando dicha adición en cada zona de medición al menos un modo de vibración local del conjunto formado por la estructura y el elemento o los elementos añadidos a la estructura.
El método comprende además una etapa de análisis del conjunto en la que se determina la variación de la frecuencia de resonancia asociada al modo de vibración local de cada zona de medición al cambiar las fuerzas que actúan y/o la temperatura en dicha zona de medición.
A continuación, el método comprende una etapa de excitación en la que se excita el conjunto, y seguidamente una etapa de medición en la que se miden las variaciones producidas en la frecuencia de resonancia del conjunto asociada al modo de vibración local de cada zona de medición.
Finalmente, el método comprende una etapa de cálculo en la que, a partir de las medidas obtenidas en la etapa de medición, se determinan las fuerzas que actúan y/o la temperatura de la estructura en las zonas de medición.
El método de la invención permite medir las fuerzas que actúan en al menos una zona de medición de la estructura y/o la temperatura en al menos una zona de medición de la estructura sin añadir a la estructura un sensor configurado para realizar dicha medición. Con el paso del tiempo los sensores se descalibran, la medida que proporcionan puede sufrir una deriva, y en ocasiones la señal que emiten se desestabiliza, con lo que necesitan de mantenimiento para que la medida que realizan sea correcta. El método de la invención evita la utilización de sensores, dado que los elementos que se añaden a la estructura no se degradan con el paso del tiempo, evitando de esta manera la necesidad de realizar un mantenimiento o una recalibración para poder obtener una medición correcta de las fuerzas que actúan y/o de la temperatura en al menos una zona de medición de la estructura.
Estas y otras ventajas y características de la invención se harán evidentes a la vista de las figuras y de la descripción detallada de la invención. DESCRIPCIÓN DE LOS DIBUJOS
La Figura 1 muestra una vista frontal de una estructura a la que se han añadido dos elementos para implementar el método de la invención.
EXPOSICIÓN DETALLADA DE LA INVENCIÓN
El método de la invención es un método de medición de las fuerzas que actúan y/o de la temperatura en al menos una zona de una estructura 10. En la presente invención, por estructura se entiende cualquier cuerpo sobre el cual puedan actuar una o más fuerzas. Por ejemplo, una estructura podría ser un puente sobre el cual circulan vehículos, personas, etc. o incluso un pilar de dicho puente. Podría tratarse también de una pieza que, tras haber sido fabricada, se instala en un coche, por ejemplo, y de la cual se quieren conocer la temperatura, o las fuerzas que actúan sobre la misma.
El método de la invención comprende una etapa de adición en la que se añade a la estructura 10 un elemento 1 en cada zona de medición, generando dicha adición en cada zona de medición al menos un modo de vibración local del conjunto formado por la estructura 10 y los elementos 1 , 2 añadidos a la estructura. El elemento 1 resuena a una frecuencia de resonancia, de modo que al añadir el elemento 1 a la estructura 10 se genera un modo local en la zona de medición, es decir, se genera un modo vibracional en el conjunto cuya amplitud es mayor en la zona de medición en la que se ha dispuesto el elemento 1. Es decir, antes de añadir el elemento 1 a la estructura 10, dicho modo local no existía, y como consecuencia de añadir dicho elemento 1 a la estructura 10, aparece un nuevo modo de vibración, al que en el presente documento se denominará modo local en la zona de medición. La Figura 1 muestra una estructura 10 a la que se le han añadido un primer elemento 1 en una primera zona de medición, y un segundo elemento 2, en una segunda zona de medición.
El método comprende además una etapa de análisis del conjunto en la que se determina la variación de la frecuencia de resonancia asociada al modo de vibración local de cada zona de medición al cambiar las fuerzas que actúan y/o la temperatura en dicha zona de medición.
Cuando una o más fuerzas actúan en el conjunto formado por la estructura 10 y los elementos 1 , 2 añadidos a la misma, o cuando cambia la temperatura en las zonas de medición, las frecuencias de resonancia asociadas a ciertos modos de vibración locales del conjunto sufren variaciones, pudiendo estas variaciones producirse tanto en frecuencia como en la fase y/o amplitud de dicha frecuencia de resonancia. Las fuerzas que actúan en el conjunto pueden ser debidas a una carga axial sobre el conjunto, a una fuerza de torsión aplicada sobre dicho conjunto, un momento de flexión, una fuerza radial o incluso la fuerza gravitacional correspondiente al peso de un cuerpo sobre el conjunto, entre otros.
Por todo ello, una vez se han añadido uno o más elementos 1 , 2 a la estructura 10, en la etapa de análisis del conjunto, el conjunto formado por la estructura 10 y los elementos 1 , 2 se somete a distintas fuerzas que actúan sobre dicho conjunto, y a distintas temperaturas, determinándose la variación que se produce en la frecuencia de resonancia asociada a cada uno de los modos de vibración locales del conjunto.
A continuación, el método comprende una etapa de excitación en la que se excita el conjunto, y seguidamente una etapa de medición en la que se miden las variaciones producidas en la frecuencia de resonancia del conjunto asociada al modo de vibración local de cada zona de medición. En la etapa de excitación del conjunto se utilizará un emisor configurado para emitir una señal, tal como un barrido en frecuencia, y en la etapa de medición un receptor configurado para recibir la señal emitida una vez ésta se ha propagado por el conjunto formado por la estructura 10 y los elementos 1 , 2 añadidos, excitando al menos uno de los modos locales generados en el conjunto como consecuencia de la adición de los elementos 1 , 2. El receptor está configurado también para medir las variaciones tanto en frecuencia como en fase y/o amplitud producidas en la frecuencia de resonancia asociada a al menos un modo local del conjunto. Para ello, dicho receptor utilizará medios adecuados de adquisición de datos a partir de la señal recibida, medios de procesado de dichos datos adquiridos, medios de almacenamiento de datos tanto para el procesamiento como para el almacenamiento de los datos adquiridos, medios de alimentación de corriente, y los subsistemas de amplificación y filtrado de señal adecuados.
Finalmente, el método comprende una etapa de cálculo en la que, a partir de las medidas obtenidas en la etapa de medición, se determinan las fuerzas que actúan y/o la temperatura de la estructura 10 en las zonas de medición. En la etapa de cálculo se utilizará una unidad de control, comunicada eléctricamente tanto con el emisor como con el receptor. En la etapa de análisis del conjunto se genera información de la variación de la frecuencia de resonancia asociada al modo de vibración local de cada zona de medición al cambiar las fuerzas que actúan y/o la temperatura en dicha zona de medición. Dicha información se almacena en unos medios de almacenamiento de datos de la unidad de control, de modo que a partir de las medidas de variación en las frecuencias de resonancia asociadas a los modos de vibración locales del conjunto obtenidas en la etapa de medición, y la información de variación de las frecuencias de resonancia asociadas a los modos de vibración locales del conjunto obtenidas en la etapa de análisis del conjunto, la unidad de control está configurada para determinar las fuerzas que actúan y/o la temperatura de la estructura 10 en las zonas de medición.
Las fuerzas que actúan sobre el conjunto formado por la estructura 10 y los elementos 1 , 2 añadidos a dicha estructura 10 se propagan a lo largo del conjunto, de modo que conociendo cómo varía la frecuencia de resonancia asociada a un modo local del conjunto, habiéndose generado dicho modo local en el conjunto como consecuencia de la adición de un elemento 1 en una zona de medición de la estructura 10, el método de la invención permite determinar las fuerzas que actúan y/o la temperatura de la estructura 10 en la zona de medición en la que se ha añadido dicho elemento 1. Es por ello que los elementos 1 , 2 se han de añadir en aquellas zonas de medición en las cuales se quiera conocer la temperatura y/o las fuerzas que actúan en dichas zonas de medición mediante el método de la invención.
El método de la invención permite medir las fuerzas que actúan en al menos una zona de medición de la estructura 10 y/o la medición de la temperatura en al menos una zona de medición de la estructura 10 sin utilizar un sensor configurado para realizar dicha medición. Con el paso del tiempo los sensores se descalibran, y en ocasiones la señal que emiten se desestabiliza, con lo que necesitan de mantenimiento para que la medida que realizan sea correcta. El método de la invención evita la utilización de sensores, dado que los elementos 1 , 2 que se añaden a la estructura 10 no se degradan con el paso del tiempo, evitando de esta manera la necesidad de realizar un mantenimiento para poder obtener una medición correcta de las fuerzas que actúan y/o de la temperatura en al menos una zona de medición. La invención es especialmente ventajosa cuando se requiere medir las fuerzas que actúan y/o la temperatura en una zona de difícil acceso, dado que el elemento 1 , 2 se añadiría a la estructura 10 una única vez, y no sería necesario acceder a dicha zona en posteriores ocasiones por razones de mantenimiento, por ejemplo. Mediante el método de la invención la propia estructura 10, junto con los elementos 1 , 2 añadidos, actuaría como sensor. En una primera realización del método de la invención, en la etapa de adición se añaden a la estructura 10 un primer elemento 1 en una primera zona de medición y un segundo elemento 2 en una segunda zona de medición. En la etapa de análisis del conjunto formado por la estructura 10 y el primer y el segundo elementos 1 , 2 añadidos a la misma, se determinan la frecuencia de resonancia de referencia
Figure imgf000007_0001
asociada al modo de vibración local en la primera zona de medición, y la frecuencia de resonancia de referencia asociada al modo de vibración local en la segunda zona de medición. Ambas frecuencias son frecuencias de
Figure imgf000007_0002
resonancia de referencia del conjunto, medidas cuando sobre dicho conjunto no actúa ninguna fuerza, y a una temperatura de referencia de 20°C, por ejemplo. A continuación, sobre el conjunto actúa una primera fuerza que se propaga por dicho conjunto, actuando dicha fuerza sobre el primer y segundo elementos 1 , 2, pudiendo actuar de forma distinta sobre dicho primer elemento 1 y sobre dicho segundo elemento 2. A continuación, en la etapa de excitación se excita el conjunto, y en la etapa de medición de la primera realización se miden las frecuencias siendo la frecuencia de resonancia medida asociada al modo de
Figure imgf000007_0003
vibración local en la primera zona de medición y la frecuencia de resonancia medida
Figure imgf000007_0004
asociada al modo de vibración local en la segunda zona de medición cuando sobre el conjunto actúa una primera fuerza.
Ambas frecuencias de resonancia se expresan mediante las siguientes ecuaciones:
Figure imgf000007_0005
En donde:
k1 y k2 son constantes que dependen de la estructura 10, y fundamentalmente de la geometría y de la densidad del primer y del segundo elementos 1 , 2, siendo por lo tanto ambas constantes conocidas,
E0 es el módulo de Young de referencia, a una temperatura determinada, de por ejemplo 20°C, y sin fuerzas que actúen sobre el conjunto,
g( ) es una función que relaciona la frecuencia de resonancia con las variaciones producidas en el módulo de Young tanto por la temperatura como por acción de las fuerzas,
es la variación del módulo de Young debido al cambio de temperatura en la primera zona de medición y la variación del módulo de Young debido al cambio
Figure imgf000007_0006
de temperatura en la segunda zona de medición, y es la variación del módulo de Young efectivo debido a las fuerzas que actúan en
Figure imgf000008_0008
la primera zona de medición y la variación del módulo de Young efectivo debido
Figure imgf000008_0007
a las fuerzas que actúan en la segunda zona de medición.
Del mismo modo, en esta primera realización, las frecuencias de referencia se pueden expresar como:
Figure imgf000008_0001
Se definen los siguientes cocientes para cada modo:
Figure imgf000008_0002
De modo que, sustituyendo las ecuaciones (1) a (4) en las ecuaciones (5) y (6), se obtiene que:
Figure imgf000008_0003
El módulo de Young de referencia E0 es conocido, por lo tanto hay dos ecuaciones con cuatro incógnitas:
Figure imgf000008_0005
Suponiendo que la temperatura no ha variado en ninguna de las zonas de medición y continúa siendo la temperatura de referencia de 20°C:
Figure imgf000008_0004
Con lo que, sustituyendo ambos valores en las ecuaciones (7) y (8), se obtienen la variación del módulo de Young efectivo debido a las fuerzas que actúan sobre el primer elemento 1 y la variación del módulo de Young efectivo debido a las fuerzas que actúan sobre el segundo elemento 2:
Figure imgf000008_0006
Sin embargo, es posible partir de otros supuestos para obtener el valor de las incógnitas
Figure imgf000009_0002
Un segundo supuesto consistiría en situar el primer elemento 1 en una
Figure imgf000009_0001
primera zona de medición, y el segundo elemento 2 en una segunda zona de medición, de modo que la primera y segunda zonas de medición estén lo suficientemente cerca la una de la otra como para suponer que la temperatura en ambas zonas de medición es la misma. Si la temperatura es la misma, en ambos elementos 1 , 2 cambia con respecto a la temperatura de referencia de 20°C en la misma cantidad, con lo que la variación del módulo de Young debido al cambio de temperatura en la primera zona de medición es igual a la variación del módulo de Young debido al cambio de temperatura en la segunda zona de medición:
Figure imgf000009_0003
Además, los elementos 1 , 2 añadidos se pueden diseñar de modo que la la variación del módulo de Young efectivo debido a las fuerzas que actúan sobre un primer elemento 1 y un segundo elemento 2 estén relacionadas, es decir, siendo h( ) una función conocida.
Figure imgf000009_0004
Por lo tanto, sustituyendo los valores de ambas dos relaciones anteriores en las ecuaciones (7) y (8), resultarían dos ecuaciones con dos incógnitas, de las cuales se podrían despejar los valores tanto de como de y a partir de dichos valores los de
Figure imgf000009_0007
Figure imgf000009_0005
Figure imgf000009_0006
En una segunda realización de la invención, el elemento 1 resuena a más de una frecuencia de resonancia, de modo que al añadir dicho elemento 1 a la estructura 10, dicha adición genera más de un modo de vibración local en la zona de medición. De este modo, solamente con añadir un elemento 1 a la estructura 10 se pueden medir las variaciones de varias frecuencias de resonancia del conjunto asociadas a los modos de vibración locales en la zona de medición.
El método de medición de la invención permite además que, cuanto mayor sea el número de elementos 1 , 2 añadidos a la estructura, más precisas sean las medidas tanto de fuerza como de temperatura obtenidas mediante el método. En una realización preferente del método de medición de la invención, en la etapa de adición de elementos la estructura 10 se fabrica con los elementos 1 , 2 integrados. En ocasiones resulta ventajoso que el elemento 1 , 2 a añadir a la estructura 10 no sea un elemento independiente de la propia estructura 10. En estos casos, la estructura 10 se fabrica de modo que los elementos 1 , 2 son parte de la propia estructura 10. Resulta especialmente ventajoso en aquellas estructuras 10 en las que resulte complicado acceder a las zonas de medición en las que se hayan de disponer los elementos 1 , 2 a añadir, siendo preferible que la propia estructura 10 se fabrique con el elemento 1 , 2 a añadir incorporado en el proceso de fabricación de la estructura 10.
En una realización preferente del método de medición de la invención, los elementos 1 , 2 añadidos están situados en el interior de la estructura 10. Los elementos 1 , 2 añadidos se disponen en aquellas zonas de medición en las que se quiere conocer, bien la temperatura en dichas zonas, o bien, las fuerzas que actúan en dichas zonas de medición. Normalmente se trata de las zonas críticas de la estructura 10 a monitorizar y, en ocasiones, dichas zonas pueden situarse en el interior de la estructura 10. El método de la invención permite fabricar la estructura 10 con los elementos 1 , 2 integrados en la propia estructura 10, posibilitando que los elementos 1 , 2 se dispongan en cualquier zona de la estructura 10, incluso en su interior.
En una realización preferente del método de medición de la invención, la estructura 10 se fabrica mediante fabricación aditiva.
En una realización preferente, el método de medición de la invención comprende una etapa de análisis de la estructura 10 en la que se determinan los modos de vibración de la estructura 10 y las frecuencias de resonancia asociadas a los modos de vibración de la estructura 10. A continuación, el método comprende una etapa de diseño después de la etapa de análisis de la estructura 10 y antes de la etapa de adición en la que se diseña el elemento 1 , 2 a añadir en cada zona de medición, de modo que las frecuencias de resonancia del elemento 1 , 2 no se solapen con las frecuencias de resonancia de la estructura 10. Al determinarse los modos de vibración de la estructura 10 y las frecuencias de resonancia asociadas a dichos modos de vibración de la estructura 10, en la etapa de diseño de los elementos a añadir dichos elementos 1 , 2 se pueden diseñar de modo que las frecuencias de resonancia de los elementos 1 , 2 no se solapen con las frecuencias de resonancia asociadas a los modos de vibración de la estructura 10. De este modo, al añadir el elemento 1 , 2 a la estructura 10, se genera un modo local en la zona de medición, de forma que la frecuencia de resonancia asociada a dicho modo local, no se solape con las frecuencias de resonancia de la estructura 10.
La frecuencia de resonancia del conjunto asociada al modo local de la zona de medición puede no ser exactamente igual a la frecuencia de resonancia del propio elemento 1 , 2, sin embargo, suelen ser muy cercanas. Por ello, si el elemento 1 , 2 a añadir en cada zona de medición se diseña de modo que su frecuencia de resonancia no se solape con las frecuencias de resonancia de la estructura 10, la frecuencia de resonancia asociada al modo local en la zona de medición será fácilmente discernible del resto de frecuencias de resonancia del conjunto. Ello permitirá una medición más precisa de las variaciones sufridas por dicha frecuencia de resonancia debido a las fuerzas que actúan y/o la temperatura en la zona de medición.
En una realización preferente del método de medición de la invención, en la etapa de análisis de la estructura los modos de vibración y las frecuencias de resonancia de la estructura 10 se determinan mediante un modelo de elementos finitos.
En una realización preferente del método de medición de la invención, en la etapa de diseño del elemento a añadir, el elemento 1 , 2 a añadir a la estructura 10 se diseña de modo que tenga al menos dos modos de vibración, y que al cambiar las fuerzas que actúan en el elemento 1 , 2 se acoplen los modos de vibración del elemento 1 , 2. El hecho de que el elemento 1 , 2 añadido tenga dos modos de vibración, de modo que al cambiar las fuerzas que actúan en el elemento 1 , 2 se acoplen los modos de vibración de dicho elemento 1 , 2, hace posible que el receptor utilizado en la etapa de medición sea más sencillo, ya que en ese caso la frecuencia de resonancia asociada al modo local en la zona de medición varía notablemente en amplitud.
En una realización preferente, el método de la invención comprende una etapa de análisis estático del conjunto formado por la estructura 10 y los elementos 1 , 2 añadidos después de la etapa de adición de elementos y antes de la etapa de excitación, en la que se determina el modo de propagación de las fuerzas que actúan en la estructura 10 a lo largo del conjunto. En la etapa de análisis estático del conjunto se genera información sobre cómo se propagan las fuerzas que actúan sobre la estructura 10 a lo largo del conjunto. Dicha información se almacena en los medios de almacenamiento de datos de la unidad de control. En una realización preferente, el método de la invención comprende además una etapa de cálculo adicional después de la etapa de cálculo en la que a partir de las fuerzas a las que están sometidos los elementos 1 , 2 se calculan las fuerzas a las que está sometida la estructura 10. Por lo tanto, una vez se han determinado en la etapa de cálculo las fuerzas que actúan y/o la temperatura de la estructura 10 en las zonas de medición, y con la información del modo en que se propagan las fuerzas que actúan sobre la estructura 10 a lo largo del conjunto obtenida en la etapa de análisis estático del conjunto, la unidad de control es capaz de determinar las fuerzas a las que está sometida la estructura 10.
En una realización preferente del método de medición de la invención, en la etapa de cálculo se determina el estado de salud de la estructura 10. En función de las variaciones en la frecuencia de resonancia del conjunto asociada al modo local en la zona de medición, la unidad de control es capaz de determinar la existencia de una grieta, por ejemplo, que impida que las fuerzas que actúan sobre la estructura 10 se propaguen hasta dicho elemento 1 , 2.
En una realización preferente del método de medición de la invención, en la etapa de análisis del conjunto formado por la estructura 10 y los elementos 1 , 2 añadidos la variación de la frecuencia de resonancia asociada al modo de vibración local de cada zona de medición se determina mediante un modelo de elementos finitos.
Un segundo aspecto de la invención se refiere a un programa de ordenador que comprende instrucciones de código adaptadas para implementar las etapas del método de medición de la invención. El programa de ordenador puede ser en forma de código fuente, código objeto, un código fuente intermedio y código objeto, como en forma parcialmente compilada, o en cualquier otra forma adecuada para su uso en la implementación de un método.
Un tercer aspecto de la invención se refiere a un medio de almacenamiento de información legible por ordenador (por ejemplo, un CD-ROM, un DVD, una unidad USB, una memoria de ordenador o una memoria de sólo lectura) que comprende instrucciones de código que cuando son ejecutadas por un ordenador hacen que el ordenador implemente las etapas del método de medición de la invención.

Claims

REIVINDICACIONES
1. Método de medición de las fuerzas que actúan y/o de la temperatura en al menos una zona de una estructura, en donde el método comprende:
- una etapa de adición en la que se añade a la estructura (10) un elemento (1 , 2) en cada zona de medición, generando dicha adición en cada zona de medición al menos un modo de vibración local del conjunto formado por la estructura (10) y el elemento (1 , 2) o los elementos (1 ,2) añadidos,
- una etapa de análisis de dicho conjunto en la que se determina la variación de la frecuencia de resonancia asociada al modo de vibración local de cada zona de medición al cambiar las fuerzas que actúan y/o la temperatura en dicha zona de medición,
- una etapa de excitación en la que se excita el conjunto,
- una etapa de medición en la que se miden las variaciones producidas en la frecuencia de resonancia del conjunto asociada al modo de vibración local de cada zona de medición, y
- una etapa de cálculo en la que, a partir de las medidas obtenidas en la etapa de medición, se determinan las fuerzas que actúan y/o la temperatura de la estructura (10) en las zonas de medición.
2. Método de medición según la reivindicación 1 , en donde en la etapa de adición de elementos se fabrica la estructura (10) con los elementos (1 , 2) integrados.
3. Método de medición según la reivindicación 1 o 2, en donde los elementos (1 , 2) añadidos están situados en el interior de la estructura (10).
4. Método de medición según las reivindicaciones 2 o 3, en donde la estructura (10) se fabrica mediante fabricación aditiva.
5. Método de medición según cualquiera de las reivindicaciones anteriores, que comprende una etapa de análisis de la estructura (10) en la que se determinan los modos de vibración de la estructura (10) y las frecuencias de resonancia asociadas a los modos de vibración de la estructura (10), y una etapa de diseño después de la etapa de análisis de la estructura (10) y antes de la etapa de adición en la que se diseña el elemento (1 , 2) a añadir en cada zona de medición, de modo que las frecuencias de resonancia del elemento (1 , 2) no se solapen con las frecuencias de resonancia de la estructura (10).
6. Método de medición según la reivindicación 5, en donde, en la etapa de análisis de la estructura (10), los modos de vibración y las frecuencias de resonancia de la estructura (10) se determinan mediante un modelo de elementos finitos.
7. Método de medición según la reivindicación 5 o 6, en donde, en la etapa de diseño del elemento a añadir, el elemento (1 , 2) a añadir a la estructura (10) se diseña de modo que tenga al menos dos modos de vibración, y de modo que al cambiar las fuerzas que actúan en el elemento (1 , 2) se acoplen los modos de vibración del elemento (1 , 2).
8. Método de medición según cualquiera de las reivindicaciones anteriores, que comprende una etapa de análisis estático del conjunto formado por la estructura (10) y los elementos (1 , 2) añadidos después de la etapa de adición y antes de la etapa de excitación, en la que se determina el modo de propagación de las fuerzas que actúan en la estructura (10) a lo largo del conjunto.
9. Método de medición según la reivindicación 8, que comprende una etapa de cálculo adicional después de la etapa de cálculo en la que, a partir de las fuerzas a las que están sometidos los elementos (1 , 2), se calculan las fuerzas a las que está sometida la estructura (10).
10. Método de medición según cualquiera de las reivindicaciones anteriores, en donde en la etapa de cálculo se determina el estado de salud de la estructura (10).
1 1. Método de medición según cualquiera de las reivindicaciones anteriores, en donde, en la etapa de análisis del conjunto formado por la estructura (10) y los elementos (1 , 2) añadidos, la variación de la frecuencia de resonancia asociada al modo de vibración local de cada zona de medición se determina mediante un modelo de elementos finitos.
12. Programa de ordenador que comprende instrucciones de código adaptadas para implementar las etapas del método según las reivindicaciones 1 a 11.
13. Medio de almacenamiento de información legible por ordenador que comprende instrucciones de código que cuando son ejecutadas por un ordenador hacen que el ordenador implemente las etapas del método según las reivindicaciones 1 a 11.
PCT/ES2019/070376 2019-06-03 2019-06-03 Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura WO2020245473A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES2019/070376 WO2020245473A1 (es) 2019-06-03 2019-06-03 Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura
EP19740606.9A EP3978892A1 (en) 2019-06-03 2019-06-03 Method of measurement of the acting forces in a structure and/or the temperature in the structure
US17/540,761 US20220090972A1 (en) 2019-06-03 2021-12-02 Method of measurement of the acting forces in a structure and/or the temperature in the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070376 WO2020245473A1 (es) 2019-06-03 2019-06-03 Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/540,761 Continuation US20220090972A1 (en) 2019-06-03 2021-12-02 Method of measurement of the acting forces in a structure and/or the temperature in the structure

Publications (1)

Publication Number Publication Date
WO2020245473A1 true WO2020245473A1 (es) 2020-12-10

Family

ID=67314785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070376 WO2020245473A1 (es) 2019-06-03 2019-06-03 Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura

Country Status (3)

Country Link
US (1) US20220090972A1 (es)
EP (1) EP3978892A1 (es)
WO (1) WO2020245473A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20021970U1 (de) * 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umw Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
US20080011091A1 (en) 2006-06-27 2008-01-17 Abnaki Systems, Inc. Method for measuring loading and temperature in structures and materials by measuring changes in natural frequencies
EP3438634A1 (en) * 2017-08-03 2019-02-06 Siemens Aktiengesellschaft Method of manufacturing and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8508491A (en) * 1990-06-01 1991-12-31 Technology Integration And Development Group Incorporated Method for assessing structural integrity of composite structures
US5886263A (en) * 1997-03-27 1999-03-23 Quatrosonics Method of resonant life cycle comparison inspection and testing
US7180404B2 (en) * 2004-03-17 2007-02-20 Battelle Energy Alliance, Llc Wireless sensor systems and methods, and methods of monitoring structures
US20070006652A1 (en) * 2005-07-06 2007-01-11 Abnaki Systems, Inc. Load measuring sensor and method
US9689760B2 (en) * 2011-11-10 2017-06-27 The Regents Of The University Of California Stress detection in rail
EP3575785B1 (en) * 2018-06-01 2021-03-10 Promocion y Desarrollo de Sistemas Automaticos S.L. Method for non-destructive inspection of parts
RU2685578C1 (ru) * 2018-07-19 2019-04-22 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Способ дистанционного контроля и диагностики состояния конструкций и инженерных сооружений и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20021970U1 (de) * 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umw Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
US20080011091A1 (en) 2006-06-27 2008-01-17 Abnaki Systems, Inc. Method for measuring loading and temperature in structures and materials by measuring changes in natural frequencies
EP3438634A1 (en) * 2017-08-03 2019-02-06 Siemens Aktiengesellschaft Method of manufacturing and apparatus

Also Published As

Publication number Publication date
US20220090972A1 (en) 2022-03-24
EP3978892A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US7343822B2 (en) Method for operating a mass flow meter
ES2750601T3 (es) Procedimiento para detectar tensiones termomecánicas variables en el tiempo y/o gradientes de tensión a través del espesor de las paredes de cuerpos metálicos
US7801704B2 (en) Method and system for azimuth measurements using gyro sensors
EP2574879B1 (en) Systems and methods for thermal gradient compensation for ring laser gyroscopes
US6374190B2 (en) Method for calibrating an angle sensor and navigation system having an angle sensor
BR112012000981B1 (pt) método e aparelho para avaliação de uma formação terrestre
JP6089113B2 (ja) 横モードの剛性を決定することにより、振動計における流体チューブの断面領域の変化の検出
JP6741744B2 (ja) 加速度センサを備えるwimセンサ、並びにwimセンサを使用してたわみ及び存在を測定する方法
RU2480713C1 (ru) Способ алгоритмической компенсации температурной скорости дрейфа твердотельного волнового гироскопа
WO2020245473A1 (es) Método de medición de las fuerzas que actúan en una estructura y/o de la temperatura en la estructura
ES2903446T3 (es) Procedimiento para la determinación de una fuerza de ajuste de un accionamiento de agujas en base a medidas de emisión de sonido y sistema de accionamiento de agujas
JP2008122087A (ja) 削孔の深さ計測器及び深さ計測方法
ES2959578T3 (es) Elemento estructural de hormigón instrumentado
ES2299954T3 (es) Procedimiento para la medicion de la distancia independientemente de la temperatura.
US8140285B2 (en) Compass system and method for determining a reference field strength
JP4944005B2 (ja) 温度センサ、及び温度測定方法
RU2579768C2 (ru) Способ определения масштабного коэффициента твердотельного волнового гироскопа на поворотном столе
Ayswarya et al. A survey on ring laser gyroscope technology
RU2570096C1 (ru) Способ отбраковки кольцевых резонаторов лазерных гироскопов
Smith III et al. Calibration surface design and validation for terrain measurement systems
JP3959414B2 (ja) マイクロ波検出器
WO2019229277A1 (es) Metodo de inspeccion no destructiva de piezas
EP1785701A1 (en) Apparatus and method for determining a temperature of a volume of gas
Lu et al. Parameters identification for a coupled bridge-vehicle system with spring-mass attachments
RU2544262C2 (ru) Способ измерения ускорения свободного падения на подвижном объекте

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019740606

Country of ref document: EP

Effective date: 20220103