WO2020244984A1 - Verfahren zur herstellung eines endkonturnahen faserkörpers, faserkörper, verfahren zur herstellung eines keramischen bauteils und keramisches bauteil - Google Patents

Verfahren zur herstellung eines endkonturnahen faserkörpers, faserkörper, verfahren zur herstellung eines keramischen bauteils und keramisches bauteil Download PDF

Info

Publication number
WO2020244984A1
WO2020244984A1 PCT/EP2020/064668 EP2020064668W WO2020244984A1 WO 2020244984 A1 WO2020244984 A1 WO 2020244984A1 EP 2020064668 W EP2020064668 W EP 2020064668W WO 2020244984 A1 WO2020244984 A1 WO 2020244984A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
shape
sieve
net
Prior art date
Application number
PCT/EP2020/064668
Other languages
English (en)
French (fr)
Inventor
Fiona KESSEL
Linda KLOPSCH
Martin Friess
Charlotte ZÖLLNER
Volker Jehle
Nancy-Jane BILLER
Original Assignee
Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum für Luft- und Raumfahrt e.V. filed Critical Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority to EP20729978.5A priority Critical patent/EP3980388A1/de
Publication of WO2020244984A1 publication Critical patent/WO2020244984A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Definitions

  • the present invention relates to a method for producing a near-end-contour fiber body.
  • the present invention also relates to a fiber body produced by a method according to the invention.
  • the present invention further relates to a method for producing a ceramic component and a ceramic component produced according to the aforementioned method.
  • a fiber composite ceramic and a method for its production consists in impregnating fibers with a molten polysilazane in a first step and converting the polysilazane in the fibers into the infusible state in a second step and in a third step the impregnated fibers are heated to 800 ° C. to 2,000 ° C. in a nitrogen, noble gas or ammonia atmosphere.
  • US 2004/0005462 A1 discloses a sliding material consisting of a carbon fiber-reinforced carbon composite material comprising fine particles of a simple substance from a group IV to group VI element or a carbide, a nitride or an oxide thereof.
  • a method for producing a part from composite material with a ceramic matrix comprises the production of a fibrous preform, the impregnation of the preform by means of an impregnation composition which contains an organosilicon polymer as ceramic precursor, and the implementation of a thermal treatment, at the end of which the precursor is passed through without a fusible phase. run, is converted into ceramic.
  • the method further comprises that a reinforcement of the preform is carried out by impregnation by means of an impregnation composition which contains a mixture of a thermosetting monomer and the ceramic precursor polymer, and by thermal treatment, in the course of which the crosslinking of the monomer is first realized in such a way that that prior to the conversion of the precursor into ceramic in the entire volume of the preform an in situ crosslinking of the polymeric mixture is obtained, and then a densification of the reinforced preform by a ceramic matrix is carried out.
  • an impregnation composition which contains a mixture of a thermosetting monomer and the ceramic precursor polymer
  • the ceramic materials are formed as a fiber-ceramic composite, which fibers and a ceramic matrix comprise.
  • WO 2011/007184 A2 discloses a method for producing a
  • a fiber matrix comprising providing a starting material which comprises a liquid carrier, fibers and a binder, passing the starting material over a substrate to deposit fibers on the substrate, forming a 3-dimensional fiber matrix and curing the binder .
  • a ceramic fiber composite structure is known from US 2004/0132607 A1, which is joined by means of an at least partially ceramic binder, the at least partially ceramic binder being formed by a nanoclay and at least one ceramic precursor material or a ceramic material.
  • US 2017/0341004 A1 discloses a candle filter comprising a hollow cylindrical tube, high-temperature-stable fibers, at least one binding agent and optionally another binding agent. The at least one binding agent and optionally the further binding agent are distributed essentially homogeneously in a wall of the candle filter.
  • EP 2 046 700 B1 discloses a method for producing a composite structure or a section of a composite structure of a brake band of a brake disc, comprising the production of a composite ceramic structure comprising carbon fibers, silicon and silicon carbides, whereby a body of a brake band is obtained which has at least one braking surface comprises, machining the braking surface, wherein a layer of the surface is removed such that carbon that is not bonded with silicon is present on the surface, an at least partial removal of the carbon that is not bonded with silicon from the surface and the
  • the step of removing the carbon that is not bonded with silicon being carried out by cleaning the braking surfaces with an abrasive jet or by burning off the braking surfaces.
  • a carbide ceramic material is known from DE 10 2011 001 065 A1 which is produced by infiltration of a porous carbon containing the preform and a mass fraction of free carbon less than 1% and a mass fraction of free carbide former less than 1%.
  • the present invention is based on the object of providing a method by means of which a near-net-shape fiber body can be produced in one step and as simply as possible.
  • the aforementioned object is achieved by a method according to claim 1.
  • the shape of the sieve is selected in particular depending on the application depending on the shape of the near-net-shape fiber body.
  • the fiber dispersion is preferably conveyed along at least one conveying direction, the at least one conveying direction being arranged transversely to an envelope of the sieve shape.
  • the envelope is in particular an envelope surface, which is also referred to in mathematics as an envelope curve.
  • the geometric shape of the fiber body made of deposited fibers is - as mentioned - predetermined by the geometric shape of the sieve shape and corresponds in particular to the geometric shape of the sieve shape essentially.
  • the geometric shape of the sieve shape can be curved or can have any other shape from which the fiber body can be demolded, 3-dimensional fiber bodies in particular can be produced in one step. A joining of several fiber body parts, as is customary, is therefore unnecessary.
  • inventive method for example, hollow bodies can be produced, which many conventional methods, such as hot pressing methods, are inaccessible.
  • the method according to the invention forms in particular an application of a wet web method for three-dimensional fiber bodies.
  • the fibers in one area of the resulting near-net-shape fiber body enclose in particular an angle of approximately 0 ° to approximately 90 ° with fibers in another area of the near-net-shape fiber body. Even comparatively steep angles within fiber bodies can be represented in particular with the method according to the invention. With the hot pressing process, only limited 3-dimensional bodies can be produced.
  • the deposited fibers in particular essentially have an orientation which is parallel to an envelope of the screen.
  • the sieve shape is preferably reusable. In this way, costs can be saved compared to methods with single-use negative molds.
  • the fibers are preferably separated. It can be provided here that the fibers are present in the form of fiber filaments or are retained as fiber bundles, so-called rovings.
  • the sieve shape is a shape which partially or completely has a mesh and / or grid-like structure.
  • the sieve shape comprises a supporting core and a sieve grid.
  • the passage openings preferably have a diameter which is smaller than the length of the fibers used.
  • the fiber dispersion is conveyed by means of a conveying device.
  • a flow of the fiber dispersion is generated from a deposition side of the sieve mold, on which the fibers are deposited, to a suction side of the sieve mold.
  • essentially no or only a few fibers are deposited on the suction side.
  • the fiber dispersion is sucked off in the direction of an inside of the sieve mold, the fiber body being formed on an outside of the sieve mold.
  • the fiber dispersion is sucked in from an outside of the sieve mold, whereupon the fiber body is formed on an inside of the sieve mold.
  • the delivery device is a pump device which comprises one or more pumps and / or one or more flow deflection elements.
  • the conveyance can also be designed by gravity conveyance.
  • Flow deflection elements can for example be designed in the form of line sections of a line device.
  • the line device is preferably part of the pump device.
  • the one or more pumps are, for example, vacuum pumps.
  • the one or more pumps preferably generate a laminar flow of the fiber dispersion in the direction of the surface of the sieve mold.
  • the method can also be carried out with turbulent flow.
  • the sieve shape is held immobile Lich during deposition relative to a wall of a container in which the fiber dispersion is received.
  • the sieve shape is in particular firmly positioned.
  • the sieve shape is moved, in particular evenly, through the container.
  • a Rotationsbe movement of the sieve shape in particular about its axis of symmetry, can be provided.
  • the sieve shape with the near-net-shape fiber body created therein is removed while the conveyance of the fiber dispersion is maintained. This can prevent deposited fibers from being swirled around by the flow inside the container.
  • the conveyance of the fiber dispersion is stopped before the near-net-shape fiber body is removed and that the incompressible fluid and / or dispersant and / or binder is removed under negative pressure.
  • the sieve mold runs "dry" and only then is the near-net-shape fiber body removed.
  • the fiber body After removal of the sieve mold with the near-net shape fiber body created therein or on it, the fiber body is preferably dried together with the sieve mold, in particular in a drying oven, before it is removed from the sieve mold.
  • the fiber dispersion preferably comprises a dispersant and / or a binder.
  • a dispersant and / or a binder is admixed with the fiber dispersion.
  • the dispersant corresponds to the binder.
  • Preferred binders and / or dispersants are carboxymethyl cellulose (CMC) and xanthan.
  • CMC carboxymethyl cellulose
  • xanthan xanthan
  • the dispersant is added to the incompressible fluid before the dispersing of the fiber material.
  • the binder is added to the fiber dispersion, in particular in order to adjust a viscosity and / or to increase the shear forces of the incompressible fluid.
  • the fibers of the fiber dispersion are preferably kept in suspension and / or sedimentation is avoided and / or made more difficult by the dispersant.
  • the binding agent is an adhesive which further solidifies the resulting near net shape fiber body.
  • the fiber dispersion preferably has a fiber concentration of approximately 0.1 g / l to approximately 10 g / l, in particular from approximately 1 g / l to approximately 5 g / l.
  • the incompressible fluid is preferably water or an alcohol or a mixture thereof.
  • incompressible fluid contains poly tungstate.
  • Preferred alcohols are ethanol and / or isopropanol.
  • the fibers of the fiber material consist of one
  • the fibers of the fiber material are made from one or more of the following materials: oxide ceramic materials, carbon, silicon carbide, aramid, glass.
  • An oxide ceramic material is, for example, aluminum oxide.
  • a surface charge of the fibers is influenced by means of the binding agent and / or the selection of the incompressible fluid.
  • the surface charge of the fibers is preferably influenced in such a way that they repel one another. In this way an agglomeration of fibers can be avoided.
  • fiber bodies with different fibers can be produced by producing a fiber dispersion which contains different fibers.
  • the fiber material comprises recycled fibers or is formed from them. This enables value-added processing, for example of recycled glass fibers or recycled carbon fibers.
  • the fiber material preferably comprises short fibers or is formed from short fibers.
  • the fiber material comprises fibers with an average length of approximately 2 mm to approximately 40 mm or is essentially formed from fibers with an average length of approximately 2 mm to approximately 40 mm.
  • the mean length is defined in particular as the arithmetic mean of the lengths.
  • An orientation of the fibers in the near-net shape fiber body is preferably predetermined by an envelope of the sieve shape, the fibers in particular being oriented essentially along an area which is arranged parallel to the envelope of the sieve shape.
  • the envelope of the screen shape is preferably mapped by deposited fibers, curvatures in particular, as well as areas of the envelopes that are just formed, are mapped by deposited fibers.
  • the envelope of the sieve shape is preferably an envelope of a
  • the envelope is in particular a geometric surface of the screen shape.
  • the near-net shape fiber body preferably has a fiber content in the Z direction of at most approximately 7% by volume, in particular of at most approximately 3% by volume, for example of approximately 1% by volume, the Z direction in each case being transverse to a surface is arranged, along which the fibers in the near-net-shape fiber body are essentially oriented. Fibers in the Z direction lead to restoring forces, for example when the fiber body is pressed. Due to the reduced restoring forces, a tendency to delamination in the near net shape fiber body can be reduced.
  • the respective Z direction is preferably arranged at a point on the surface of the fiber body, in particular perpendicular to the corresponding tangential plane.
  • the fiber body is substantially obtained with a
  • Formed fiber bundle structure For example, a fiber resolution is low.
  • the fiber bundle structure preferably remains in the fiber dispersion
  • the fiber bundle structure is retained.
  • the fiber bundles dissolve.
  • a “fiber dissolution” is to be understood in particular as a separation of individual components of a fiber bundle.
  • the proportion of carbon and carbide in a ceramic component produced on the basis of the corresponding near-net shape fiber body can be controlled via the degree of fiber dissolution.
  • a strong dissolution of a fiber bundle structure into single filaments leads to a high carbide content in the ceramic component.
  • a low resolution of the fiber bundle structure leads to a high proportion of carbon in the component, this carbon proportion being composed of carbon in carbon fibers and of carbon in an amorphous carbon matrix.
  • longer fibers in particular in the range between 15 mm and 40 mm, are used.
  • the sieve shape is preferably subjected to negative pressure by means of a conveying device in a container in which the fiber dispersion is received.
  • a conveying device in particular, by means of a conduit device, incompressible fluid is diverted from the container through a fluid outlet and the incompressible fluid is reintroduced into the container by means of a conveying device through a fluid inlet.
  • suction is generated within the sieve shape.
  • the invention further relates to a fiber body, in particular a near-net-shape fiber body which is Herge according to a method according to the invention.
  • the fiber body is preferably a component, in particular a CFRP component.
  • One area of application for the component mentioned is, for example, the automotive industry and the fiber-reinforced components used there.
  • the fiber body according to the invention preferably has one or more of the features described in connection with the method according to the invention and / or one or more of the advantages described in connection with the method according to the invention.
  • the fiber body according to the invention is particularly suitable for use as a green body in a ceramization method described below.
  • the invention also relates to a method for producing a ceramic component, comprising:
  • the ceramization is expediently carried out by infiltrating the open-pore carbon body with liquid carbide former, the carbide former being in particular silicon.
  • the liquid silicon reacts with carbon in the open-pore carbon body and forms silicon carbide.
  • the open porosity of the carbon body enables the carbon to be infiltrated with carbide formers.
  • the fiber structure is essentially retained. This is in particular a difference to components manufactured by means of fiber injection, in which the fibers generally react completely to form silicon carbide during the infiltration with silicon.
  • the ceramization is carried out by infiltrating the open-pore carbon body with a polymer material, in particular an organometallic or organosilicon polymer material, and subsequent pyrolysis is carried out.
  • a polymer material in particular an organometallic or organosilicon polymer material
  • a ceramic component is provided which is produced according to the method according to the invention.
  • a fiber content of the ceramic component is preferably approximately 50% by volume or less, in particular approximately 25% by volume to approximately 35% by volume, based on a total volume of the ceramic component.
  • ceramic components preferably have an improved damage tolerance.
  • the fibers can fulfill a support function.
  • the ceramic component is preferably a CMC (Ceramic Matrix Composites) component.
  • the ceramic component is used, for example, in lines for corrosive
  • Figure 1 is a schematic representation of an embodiment of a
  • FIG. 2 shows a schematic illustration of a further embodiment of a method according to the invention for producing a near-net-shape fiber body
  • FIG. 3 shows a schematic side view of a core of a sieve mold which is suitable for use in the method according to FIG. 1 or according to FIG. 2;
  • FIG. 4 shows a schematic cross-sectional view of the core of the sieve mold from FIG. 3 through the plane designated by IV in FIG. 3;
  • FIG. 5 shows a section of a computer tomography recording of a
  • FIG. 6 shows a schematic representation of a sequence of an embodiment of a method for ceramization in which a near-net-shape fiber body serves as the green body.
  • FIG. 1 A first embodiment of a method for producing a near-net-shape fiber body 100 is shown schematically in FIG.
  • a pump circuit can be seen, by means of which a flow guide can be generated so that fibers are deposited on an outside of a sieve mold 110 to form a near-net-shape fiber body 100.
  • a near-net-shape fiber body 100 produced in this way is shown by way of example in FIG.
  • a fiber material 102 is dispersed in a container 104 in an incompressible fluid 106, a fiber dispersion 108 being formed.
  • Individual fibers of the fiber material 102 are in the present case indicated schematically in an already dispersed form in the fiber dispersion 108 by lines.
  • the fibers of the fiber material 102 are preferably made of a ceramic material.
  • Fibers made from one of the following materials are particularly suitable as fiber material 102: oxidic ceramic material, in particular aluminum oxide, carbon, silicon carbide, aramid, glass.
  • a fiber material 102 which comprises a mixture of the fibers mentioned.
  • glass fibers and aluminum oxide fibers with an average length in a range from approximately 6 mm to approximately 25 mm are used.
  • water is used as the incompressible fluid 106.
  • an alcohol for example ethanol or isopropanol, or a mixture of alcohol and water is used as the incompressible fluid.
  • poly tungstate as a component of the incompressible fluid 106 can be advantageous.
  • the use of poly tungstate in the incompressible fluid 106 can also be advantageous for other fiber materials 102.
  • the container 104 is a vat.
  • the fiber dispersion 108 in the present case also comprises carboxymethyl cellulose (CMC), which acts as a binder and increases a viscosity of the fiber dispersion 108 so that it can be processed better.
  • CMC carboxymethyl cellulose
  • the binder also serves as a dispersant to assist in dispersing the fiber material 102.
  • xanthan gum or another binding agent and / or dispersant can also be used.
  • the binder also serves as an adhesive for consolidating the structure of the resulting near-net-shape fiber body 100.
  • a fiber concentration in the fiber dispersion 108 is in the present case approximately 0.1 g / l fiber dispersion to approximately 10 g / l fiber dispersion, in particular approximately 1 g / l fiber dispersion to approximately 5 g / l fiber dispersion.
  • the sieve mold 110 is arranged within the container 104.
  • the sieve mold 110 serves as a positive mold for the near-net-shape fiber body 100 resulting from the method.
  • the sieve mold 110 comprises through openings 112 distributed homogeneously over the sieve mold 110, which connect a suction side 114 and an attachment side 116 of the sieve mold to one another in a fluid-effective manner.
  • the passage openings 112 are indicated by a grid pattern.
  • the suction side 114 is formed by an inside of a lateral surface of a sieve shape 110 which is essentially hollow-cylindrical.
  • the deposit side 116 is formed by an outside of the jacket surface of the sieve mold 110 (compare FIGS. 3 and 4).
  • a line device 118 is arranged on the suction side 114 of the sieve mold 110.
  • the line device 118 serves to line the incompressible fluid 106 and in the present case comprises a plurality of line sections 120 which adjoin one another.
  • a discharge line section 120a in the present case forms a fluid outlet 121, through which incompressible fluid 106 is discharged from the container 104.
  • a supply line section 120b forms a fluid inlet 123 through which incompressible fluid 106 is supplied to the container 104 again.
  • the discharge line section 120a and the supply line section 120b are connected to one another by means of further line sections 120 via a pump 122.
  • the pump 122 is used to convey incompressible fluid 106 and to generate a flow from the deposit side 116 to the suction side 114.
  • the line device 118 and the pump 122 each form components of a delivery device 124, which in the present case is designed as a pump device 126.
  • a flow from the fluid outlet 121 to the fluid inlet 123 is generated by means of the pump 122.
  • the flow of the incompressible fluid 106 from the fluid outlet 121 to the fluid inlet 123 is indicated by arrows.
  • a flow of the fiber dispersion 108 arises from the deposition side 116 to the suction side 114.
  • the fibers of the fiber dispersion 108 are deposited on the deposit side 116, while the incompressible fluid 106 flows through the passage openings 112 and is conveyed through the line sections 120 of the line device 118 by means of the pump 122.
  • the flow within the container 104 is maintained until enough fibers have deposited so that a near-net-shape fiber body 100 with sufficient thickness has arisen.
  • the fibers are predominantly oriented along a surface which is arranged parallel to an envelope of the sieve shape 110.
  • the fiber body 100 also has curved areas if the envelope of the screen shape 110 has curved areas.
  • the curved regions of the sieve shape are mapped in one piece in the near net shape fiber body 100.
  • the screen form 110 is removed together with the fiber body 100 and then dried in a drying oven at about 80 ° C. for at least 2 hours. Alternatively, other drying methods can also be used.
  • a degree of fiber resolution is preferably low, so that a bundle structure of the fibers of the fiber material 102 is essentially retained.
  • the fiber bundle structure is retained in 80% of the fibers of the fiber material 102 or more, for example 90% or more.
  • a fiber body 100 has been created, the shape of which essentially corresponds to the shape of the screen shape 110.
  • Sieve shapes can therefore be produced with differently shaped fiber bodies 100.
  • the fiber body 100 As is shown schematically in FIG. 6, the fiber body 100
  • the fiber body 100 has sufficient stability to be used without ceramization and represents a component without further processing.
  • the fiber body 100 can be used in the automotive industry.
  • the fiber body 100 can also be used in the textile industry.
  • the fiber body 100 can, for example, form part of a cup of a brassiere.
  • the near-net shape fiber body 100 represents in particular a green body.
  • the fiber body 100 is first pyrolyzed at temperatures of 1,000 ° C. to 1,600 ° C., as a result of which an open-pore carbon body 140 is produced.
  • the pyrolysis is preferably carried out with the exclusion of oxygen, so that oxidation can be avoided or minimized.
  • the open-pore carbon body 140 is then with a
  • Carbide former in this case silicon (Si), infiltrated, with the silicon in liquid form passing through the pores of the open-pored carbon body 140 into its interior and reacting there with carbon to form silicon carbide.
  • the reaction with silicon to form silicon carbide produces a ceramic component 150.
  • Fiber body 100 can also be carried out by means of a PIP (polymer infiltration and pyrolysis) method.
  • PIP polymer infiltration and pyrolysis
  • the open-pore carbon body 140 is preferably infiltrated, often in several steps, with a polymer material, for example an organometallic or an organosilicon material.
  • a polymer material for example an organometallic or an organosilicon material.
  • the infiltrated open-pore carbon body 140 is then pyrolyzed, for example in a solid-phase thermolysis.
  • a fiber content of the ceramic component 150 is in a range from approximately 25% by volume to approximately 35% by volume based on a total volume of the
  • the ceramic component 150 is particularly suitable for use in guide tubes for corrosive hot gases.
  • the second embodiment of a method for producing a near net shape fiber body 100 shown in FIG. 2 differs essentially from the first embodiment shown in FIG. 1 in that the sieve mold 110 is arranged in a lower region - near a bottom wall - of the container 104 and that a flow direction runs opposite to the flow direction according to the first embodiment.
  • the discharge line section 120a is arranged on the bottom wall 142 of the container 104.
  • the supply line section 120b is in one with respect to FIG.
  • the upper region of the container 104 is arranged in the direction of gravity and protrudes into the fiber dispersion 108.
  • the second embodiment of a method shown in FIG. 2 corresponds to the first embodiment shown in FIG. 1, so that reference is made to the description thereof.
  • the ceramization is preferably carried out as described above.
  • the suction side 114 is formed by an outer surface of the sieve mold 110 and the deposition side 116 is arranged in an interior space and / or on an inside of the sieve mold 110.
  • a flow is generated from the interior and / or the inside to the surroundings of the sieve mold 110 and the fibers are deposited on an inside of the sieve mold 110.
  • the screen shape 110 preferably has an at least approximately hollow cylindrical shape
  • Base body which is pierced by regularly arranged through openings 112.
  • FIGS. 3 and 4 A supporting core of a sieve mold 110 is shown in FIGS. 3 and 4, which core increases the stability of the sieve mold 110.
  • a mesh screen preferably made of metal, for example metal gauze, is placed over the supporting core.
  • An envelope of the screen shape 110 is in the present case at least approximately in the form of a hollow cylinder.
  • a connecting section 144 adjoins the at least approximately hollow cylinder-shaped base body, which in FIG assembled state is connected to line sections 120 of the line device 118. The flow is guided from the sieve mold 110 into the conduit device 118 through the connecting section 144.
  • the passage openings are arranged with main directions of extent transversely with respect to radial directions of a longitudinal central axis 145 of the sieve mold 110.
  • FIG. 5 shows a section of a computer tomography recording of a near-net-shape fiber body 100 after consolidation. It can be seen from the picture that the fibers are retained as fiber bundles - so-called rovings - and that there is little fiber in the Z-direction.
  • the Z-direction is the respective direction which is arranged transversely to the surface along which the fibers are oriented. As already mentioned, this surface is parallel to the envelope of the screen shape 110.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Zur Herstellung eines endkonturnahen Faserkörpers (100) wird ein Verfahren bereitgestellt, welches das Dispergieren eines Fasermaterials (102) in einem inkompressiblen Fluid (106) unter Bildung einer Faser-Dispersion (108) umfasst sowie das Fördern der Faser-Dispersion (108) durch eine Siebform (110) mit einer ausgewählten geometrischen Gestalt, wobei das inkompres- sible Fluid (106) durch eine oder mehrere Durchtrittsöffnungen (112) der Siebform (110) hindurchgefördert wird und wobei sich Fasern des Faser- Materials (102) an oder in der Siebform (110) ablagern und einen Faserkörper bilden, dessen geometrische Gestalt von der geometrischen Gestalt der Siebform (110) vorgegeben wird.

Description

Verfahren zur Herstellung eines endkonturnahen Faserkörpers, Faserkörper, Verfahren zur Herstellung eines keramischen Bauteils und keramisches Bauteil
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines end konturnahen Faserkörpers.
Ferner betrifft die vorliegende Erfindung einen Faserkörper, hergestellt nach einem erfindungsgemäßen Verfahren.
Die vorliegende Erfindung betrifft weiter ein Verfahren zur Herstellung eines keramischen Bauteils sowie ein keramisches Bauteil hergestellt nach dem zuvor genannten Verfahren.
Aus der DE 38 40 781 Al ist eine Faserverbundkeramik und ein Verfahren zu ihrer Herstellung bekannt, wobei das Verfahren darin besteht, dass in einem ersten Schritt Fasern mit einem schmelzflüssigen Polysilazan imprägniert, in einem zweiten Schritt das Polysilazan in den Fasern in den unschmelzbaren Zustand überführt und in einem dritten Schritt die imprägnierten Fasern auf 800°C bis 2.000°C in Stickstoff-, Edelgas- oder Ammoniakatmosphäre erhitzt werden.
Die US 2004/0005462 Al offenbart einen Gleitwerkstoff, bestehend aus einem kohlenstofffaserverstärkten Kohlenstoffkompositmaterial, umfassend feine Partikel einer einfachen Substanz aus einem Gruppe-IV- bis Gruppe-VI- Element oder eines Carbids, eines Nitrids oder eines Oxids davon.
Aus der EP 0 555 130 Bl ist ein Verfahren zur Herstellung eines Teils aus Verbundmaterial mit keramischer Matrix bekannt. Das Verfahren umfasst die Anfertigung einer faserigen Vorform, die Imprägnierung der Vorform mittels einer Imprägnierzusammensetzung, die ein siliziumorganisches Polymer als Keramikvorläufer enthält, und die Durchführung einer thermischen Behand lung, an deren Ende der Vorläufer, ohne eine schmelzbare Phase zu durch- laufen, in Keramik umgewandelt ist. Das Verfahren umfasst ferner, dass eine Verstärkung der Vorform durchgeführt wird durch Imprägnierung mittels einer Imprägnierungszusammensetzung, die ein Gemisch aus einem wärmehärt baren Monomer und dem Keramikvorläufer-Polymer enthält, und durch thermische Behandlung, in deren Verlauf die Vernetzung des Monomers zuerst derart verwirklicht wird, das vor der Umwandlung des Vorläufers in Keramik im gesamten Volumen der Vorform eine in situ Vernetzung des polymeren Gemisches erhalten wird, und dann eine Verdichtung der verstärkten Vorform durch eine keramische Matrix durchgeführt wird.
Aus der DE 10 2013 216 437 Al ist die Verwendung von Keramikwerkstoffen in Maschinenkomponenten einer Papiermaschine als Bauelemente für
Verschleißflächen bekannt, wobei die Keramikwerkstoffe als Faserkeramik verbund ausgebildet sind, welche Fasern und eine Keramikmatrix umfassen.
Die WO 2011/007184 A2 offenbart ein Verfahren zur Herstellung einer
Fasermatrix, wobei das Verfahren das Bereitstellen eines Startmaterials, welches einen flüssigen Träger, Fasern und ein Bindemittel umfasst, das Leiten des Startmaterials über ein Substrat, um Fasern auf dem Substrat zu deponieren, das Bilden einer 3-dimensionalen Fasermatrix und das Härten des Bindemittels umfasst.
Aus der WO 2019/228683 Al ist eine kontinuierliche Kompositstruktur, eine Brenneroberfläche, eine Brenner-Baugruppe, ein Verfahren zur Herstellung einer Brenneroberfläche, die Verwendung der Brenneroberfläche und die Verwendung der Brenner-Baugruppe bekannt.
Aus der US 2004/0132607 Al ist eine keramische Faser-Kompositstruktur bekannt, welche mittels eines zumindest teilweise keramischen Bindemittels zusammengefügt ist, wobei das zumindest teilweise keramische Bindemittel durch einen Nanoclay und zumindest ein keramisches Precursor-Material oder ein keramisches Material gebildet ist. Die US 2017/0341004 Al offenbart einen Kerzenfilter, umfassend eine hohl zylindrische Röhre, Hochtemperatur-stabile Fasern, mindestens ein Bindemittel und optional ein weiteres Bindemittel. Das mindestens eine Bindemittel und optional das weitere Bindemittel sind im Wesentlichen homogen in einer Wand des Kerzenfilters verteilt.
Die EP 2 046 700 Bl offenbart ein Verfahren zur Herstellung einer Verbund struktur oder eines Abschnitts eines Verbundstruktur eines Bremsbandes einer Bremsscheibe, umfassend das Herstellen einer Verbundkeramikstruktur, die Kohlenstofffasern, Silizium und Siliziumcarbide umfasst, wodurch ein Körper eines Bremsbandes erhalten wird, der wenigstens eine Bremsfläche aufweist, das Bearbeiten der Bremsfläche, wobei eine Schicht der Oberfläche derart entfernt wird, dass Kohlenstoff, der nicht mit Silizium gebunden ist, an der Oberfläche vorhanden ist, ein wenigstens teilweises Entfernen des Kohlen stoffs, der nicht mit Silizium gebunden ist, von der Oberfläche und das
Aufbringen einer Schutzbeschichtung auf der Bremsfläche, wobei der Schritt des Entfernens des Kohlenstoffs, der nicht mit Silizium gebunden ist, durch Reinigen der Bremsflächen mit einem Schleifmittelstrahl oder durch Abbrennen der Bremsflächen durchgeführt wird.
Aus der DE 10 2011 001 065 Al ist ein carbidkeramischer Werkstoff bekannt, welcher durch Carbidbildner-Infiltration eines porösen Kohlenstoff enthalten den Vorkörpers hergestellt ist und einen Massenanteil von freiem Kohlenstoff kleiner als 1% und einen Massenanteil von freiem Carbidbildner kleiner als 1% aufweist.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren bereit zustellen, mittels welchem sich ein endkonturnaher Faserkörper in einem Schritt und möglichst einfach hersteilen lässt.
Die vorgenannte Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst. Die Siebform wird insbesondere je nach Anwendungsfall abhängig davon ausgewählt, welche Form der endkonturnahe Faserkörper aufweisen soll.
Vorzugsweise wird die Faser-Dispersion längs mindestens einer Förderrichtung gefördert, wobei die mindestens eine Förderrichtung quer zu einer Einhüllen den der Siebform angeordnet ist.
Bei der Einhüllenden handelt es sich insbesondere um eine Einhüllenden- Fläche, welche in der Mathematik auch als Hüllkurve bezeichnet wird.
Die geometrische Gestalt des Faserkörpers aus abgelagerten Fasern wird - wie erwähnt - durch die geometrische Gestalt der Siebform vorgegeben und ent spricht insbesondere der geometrischen Gestalt der Siebform im Wesentlichen.
Insbesondere dadurch, dass die geometrische Gestalt der Siebform gekrümmt ausgebildet sein kann, oder jede andere Form aufweisen kann, von welcher sich der Faserkörper entformen lässt, sind insbesondere 3-dimensionale Faser körper in einem Schritt herstellbar. Ein Fügen von mehreren Faserkörperteilen, wie es herkömmlicherweise üblich ist, ist somit entbehrlich.
Durch das erfindungsgemäße Verfahren können beispielsweise auch Hohl körper hergestellt werden, welche vielen herkömmlichen Verfahren, beispiels weise Heißpressverfahren, unzugänglich sind.
Das erfindungsgemäße Verfahren bildet insbesondere eine Anwendung eines Nassvliesverfahrens für 3-dimensionale Faserkörper.
Die Fasern in einem Bereich des resultierenden endkonturnahen Faserkörpers schließen insbesondere einen Winkel von circa 0° bis circa 90° mit Fasern in einem anderen Bereich des endkonturnahen Faserkörpers ein. Auch vergleich bar steile Winkel innerhalb von Faserkörpern sind insbesondere mit dem erfindungsgemäßen Verfahren darstellbar. Mit Heißpressverfahren können nur begrenzt 3-dimensionale Körper herge stellt werden.
Bei dem erfindungsgemäßen Verfahren können im Vergleich zu Heißpress verfahren Material und damit auch Kosten eingespart werden.
Durch die Förderung weisen die abgelagerten Fasern insbesondere im Wesent lichen eine Orientierung auf, welche parallel zu einer Einhüllenden der Sieb form liegt.
Die Siebform ist vorzugsweise wiederverwendbar. So können im Vergleich zu Verfahren mit Einmal-Negativformen Kosten gespart werden.
Bei dem Dispergieren kommt es vorzugsweise zu einer Vereinzelung der Fasern. Hierbei kann vorgesehen sein, dass die Fasern in Form von Faserfila menten vorliegen oder als Faserbündel, sogenannte Rovings, erhalten bleiben.
Im Sinne der Erfindung ist die Siebform eine Form, welche teilweise oder vollständig eine netz- und/oder gitterartige Struktur aufweist.
Für eine Stabilität der Siebform kann es vorteilhaft sein, wenn die Siebform einen stützenden Kern und ein Siebgitter umfasst.
Die Durchtrittsöffnungen haben vorzugsweise einen Durchmesser, welcher kleiner ist als die Länge der verwendeten Fasern.
Günstig kann es sein, wenn die Faser-Dispersion mittels einer Förderein richtung gefördert wird.
Insbesondere wird eine Strömung der Faser-Dispersion von einer Ablagerungs seite der Siebform, an welcher sich die Fasern ablagern, zu einer Absaugseite der Siebform erzeugt. An der Absaugseite lagern sich insbesondere im Wesentlichen keine oder nur vereinzelt Fasern ab.
Insbesondere wird die Faser-Dispersion in Richtung einer Innenseite der Siebform aus abgesaugt, wobei sich der Faserkörper an einer Außenseite der Siebform ausbildet.
Alternativ kann vorgesehen sein, dass die Faser-Dispersion von einer Außen seite der Siebform aus angesaugt wird, woraufhin sich der Faserkörper an einer Innenseite der Siebform ausbildet.
Günstig kann es sein, wenn die Fördereinrichtung eine Pumpeneinrichtung ist, welche eine oder mehrere Pumpen und/oder ein oder mehrere Strömungsum- lenkelemente umfasst.
Alternativ zu einer Pumpeneinrichtung kann die Förderung auch durch eine Schwerkraftförderung ausgebildet sein.
Strömungsumlenkelemente können beispielsweise in Form von Leitungs abschnitten einer Leitungseinrichtung ausgebildet sein. Die Leitungsein richtung ist vorzugsweise ein Teil der Pumpeneinrichtung.
Die eine oder die mehreren Pumpen sind beispielsweise Vakuumpumpen.
Durch die eine oder mehreren Pumpen wird vorzugsweise eine laminare Strömung der Faser-Dispersion in Richtung der Oberfläche der Siebform erzeugt.
Alternativ kann das Verfahren auch bei turbulenter Strömung durchgeführt werden. Vorzugsweise ist die Siebform während des Ablagerns relativ zu einer Wand eines Behälters, in welchem die Faser-Dispersion aufgenommen ist, unbeweg lich gehalten. Die Siebform ist insbesondere fest positioniert.
Alternativ kann vorgesehen sein, dass die Siebform, insbesondere gleich mäßig, durch den Behälter bewegt wird. Beispielsweise kann eine Rotationsbe wegung der Siebform, insbesondere um deren Symmetrieachse, vorgesehen sein.
Es kann vorgesehen sein, dass die Siebform mit dem darin entstandenen endkonturnahen Faserkörper bei Aufrechterhaltung der Förderung der Faser- Dispersion entnommen wird. So kann verhindert werden, dass abgelagerte Fasern durch die Strömung innerhalb des Behälters verwirbelt werden.
Alternativ kann vorgesehen sein, dass die Förderung der Faser-Dispersion vor der Entnahme des endkonturnahen Faserkörpers gestoppt wird und dass das inkompressible Fluid und/oder Dispergiermittel und/oder Bindemittel unter Unterdruckbeaufschlagung entfernt wird. Die Siebform läuft insbesondere "trocken" und erst anschließend wird der endkonturnahe Faserkörper entnom men.
Nach der Entnahme der Siebform mit dem darin oder daran entstandenen endkonturnahen Faserkörper wird der Faserkörper vorzugsweise zusammen mit der Siebform, insbesondere in einem Trockenofen, getrocknet, bevor er von der Siebform entformt wird.
Vorzugsweise umfasst die Faser-Dispersion ein Dispergiermittel und/oder ein Bindemittel. Insbesondere wird der Faser-Dispersion ein Dispergiermittel und/oder ein Bindemittel zugemischt.
Gemäß einer bevorzugten Ausführungsform entspricht das Dispergiermittel dem Bindemittel. Bevorzugte Bindemittel und/oder Dispergiermittel sind Carboxymethylcellulose (CMC) und Xanthan. Ergänzend oder alternativ können auch weitere
herkömmlicherweise verwendete Bindemittel und/oder Dispergiermittel eingesetzt werden.
Es kann vorgesehen sein, dass das Dispergiermittel vor dem Dispergieren des Fasermaterials zu dem inkompressiblen Fluid zugegeben wird.
Ergänzend oder alternativ kann vorgesehen sein, dass das Bindemittel zu der Faser-Dispersion gegeben wird, insbesondere um eine Viskosität anzupassen und/oder Scherkräfte des inkompressiblen Fluids zu erhöhen.
Durch das Dispergiermittel werden die Fasern der Faser-Dispersion vorzugs weise in der Schwebe gehalten und/oder eine Sedimentation vermieden und/oder erschwert.
Es kann vorgesehen sein, dass das Bindemittel ein Klebstoff ist, welcher den resultierenden endkonturnahen Faserkörper weiter verfestigt.
Vorzugsweise weist die Faser-Dispersion eine Faser-Konzentration von circa 0,1 g/l bis circa 10 g/l, insbesondere von circa 1 g/l bis circa 5 g/l, auf.
Vorzugsweise ist das inkompressible Fluid Wasser oder ein Alkohol oder ein Gemisch daraus.
Es kann vorgesehen sein, dass inkompressible Fluid Polywolframat enthält.
Bevorzugte Alkohole sind Ethanol und/oder Isopropanol.
Günstig kann es sein, wenn die Fasern des Fasermaterials aus einem
keramischen Material sind. Alternativ sind aber - je nach Anwendung - auch Fasern aus anderen
Materialien geeignet.
Vorzugsweise sind einige oder sämtliche Fasern des Fasermaterials aus einem oder mehreren der folgenden Materialien : oxidische Keramikmaterialien, Kohlenstoff, Siliziumcarbid, Aramid, Glas.
Ein oxidisches Keramikmaterial ist beispielsweise Aluminiumoxid.
Beispielsweise bei Glasfasern kann vorgesehen sein, dass mittels des Binde mittels und/oder der Auswahl des inkompressiblen Fluids eine Oberflächen ladung der Fasern beeinflusst wird.
Vorzugsweise wird die Oberflächenladung der Fasern dahingehend beeinflusst, dass sie sich gegenseitig abstoßen. So kann eine Agglomeration von Fasern vermieden werden.
Es kann vorgesehen sein, dass ein elektrisches Feld an die Faser-Dispersion angelegt wird, und so - je nach Fasermaterial - eine Orientierung der Fasern ausgebildet wird.
Insbesondere können Faserkörper mit unterschiedlichen Fasern hergestellt werden, indem eine Faser-Dispersion, welche unterschiedliche Fasern enthält, hergestellt wird.
Es kann vorgesehen sein, dass in den endkonturnahen Faserkörper eine Gradierung von Fasern eingebracht wird.
Günstig kann es sein, wenn das Fasermaterial recycelte Fasern umfasst oder daraus gebildet ist. So kann eine wertschöpfende Verarbeitung, beispielsweise von recycelten Glasfasern oder recycelten Kohlenstofffasern, erfolgen. Vorzugsweise umfasst das Fasermaterial Kurzfasern oder ist aus Kurzfasern gebildet. Insbesondere umfasst das Fasermaterial Fasern mit einer mittleren Länge von circa 2 mm bis circa 40 mm oder ist im Wesentlichen aus Fasern mit einer mittleren Länge von circa 2 mm bis circa 40 mm gebildet.
Die mittlere Länge ist insbesondere als arithmetisches Mittel der Längen definiert.
Vorzugsweise wird eine Orientierung der Fasern im endkonturnahen Faser körper durch eine Einhüllende der Siebform vorgegeben, wobei sich die Fasern insbesondere im Wesentlichen längs einer Fläche orientieren, die parallel zu der Einhüllenden der Siebform angeordnet ist.
Die Einhüllende der Siebform wird vorzugsweise durch abgelagerte Fasern abgebildet, wobei insbesondere auch Krümmungen ebenso wie eben ausge bildete Bereiche der Einhüllenden durch abgelagerte Fasern abgebildet werden.
Die Einhüllende der Siebform ist vorzugsweise eine Einhüllende einer
Außenseite der Siebform und/oder eine Einhüllende einer Innenseite der Siebform.
Bei der Einhüllenden handelt es sich insbesondere um eine geometrische Oberfläche der Siebform.
Vorzugsweise weist der endkonturnahe Faserkörper einen Faseranteil in Z- Richtung von höchstens circa 7 Vol.-%, insbesondere von höchstens circa 3 Vol.-%, beispielsweise von circa 1 Vol.-% auf, wobei die Z-Richtung jeweils quer zu einer Fläche angeordnet ist, längs welcher die Fasern im endkontur nahen Faserkörper im Wesentlichen orientiert sind. Fasern in Z-Richtung führen, beispielsweise bei einem Verpressen des Faser körpers, zu Rückstellkräften. Aufgrund der verringerten Rückstellkräfte kann eine Delaminationsneigung in dem endkonturnahen Faserkörper reduziert sein.
Die jeweilige Z-Richtung ist vorzugsweise in einem Punkt auf der Oberfläche des Faserkörpers insbesondere senkrecht zu der entsprechenden Tangential ebene angeordnet.
Vorzugsweise wird der Faserkörper im Wesentlichen unter Erhalt einer
Faserbündelstruktur gebildet. Beispielsweise ist ein Faserauflösungsgrad gering.
Vorzugsweise bleibt die Faserbündelstruktur in der Faser-Dispersion im
Wesentlichen erhalten. Insbesondere bleibt bei 80 % des Fasermaterials oder mehr, beispielsweise bei 90 % oder mehr, die Faserbündelstruktur erhalten.
Vorzugsweise lösen sich weniger als 20 %, insbesondere weniger als 10 %, der Faserbündel auf.
Unter einer "Faserauflösung" ist insbesondere eine Trennung einzelner Be standteile eines Faserbündels zu verstehen.
Beispielsweise lässt sich der Anteil an Kohlenstoff und Carbid in einem auf Grundlage des entsprechenden endkonturnahen Faserkörpers hergestellten keramischen Bauteils über den Faserauflösungsgrad steuern. Eine starke Auf lösung einer Faserbündelstruktur zu Einzelfilamenten führt zu einem hohen Carbidanteil in dem keramischen Bauteil. Eine geringe Auflösung der Faser bündelstruktur führt zu einem hohen Anteil an Kohlenstoff im Bauteil, wobei dieser Kohlenstoffanteil sich zusammensetzt aus Kohlenstoff in Kohlenstoff fasern und aus Kohlenstoff in einer amorphen Kohlenstoffmatrix. Um beispiels weise die Faserbündelauflösung gering zu halten, kann es vorgesehen sein, dass längere Fasern, insbesondere im Bereich zwischen 15 mm und 40 mm, verwendet werden. Für eine verbesserte Ablagerung der Fasern kann es günstig sein, wenn eine oder mehrere Längsmittelachsen der einen oder mehreren Durchtrittsöff nungen der Siebform bezüglich radialer Richtungen der Längsmittelachse der Siebform quer angeordnet ist.
So kann vermieden werden, dass parallel zur Strömungsrichtung ausgerichtete Fasern durch die Durchtrittsöffnungen hindurchtreten.
Vorzugsweise wird in einem Behälter, in welchem die Faser-Dispersion aufge nommen ist, mittels einer Fördereinrichtung die Siebform mit Unterdrück beaufschlagt. Insbesondere wird mittels einer Leitungsvorrichtung inkom- pressibles Fluid durch einen Fluidauslass aus dem Behälter abgeleitet und das inkompressible Fluid mittels einer Fördereinrichtung durch einen Fluideinlass wieder in den Behälter eingeleitet.
Insbesondere wird ein Sog innerhalb der Siebform erzeugt.
Die Erfindung betrifft ferner einen Faserkörper, insbesondere einen endkontur nahen Faserkörper, welcher nach einem erfindungsgemäßen Verfahren herge stellt ist.
Der Faserkörper ist vorzugsweise ein Bauteil, insbesondere ein CFK-Bauteil.
Einen Anwendungsbereich für das genannte Bauteil stellt beispielsweise die Automobilindustrie und dort verwendete Faser- verstärkte Bauteile dar.
Der erfindungsgemäße Faserkörper weist vorzugsweise eines oder mehrere der im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen Merkmale und/oder einen oder mehrere der im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen Vorteile auf. Der erfindungsgemäße Faserkörper eignet sich insbesondere zur Verwendung als Grünkörper in einem nachfolgend beschriebenen Verfahren zur Kerami- sierung.
Die Erfindung betrifft ferner ein Verfahren zu Herstellung eines keramischen Bauteils, umfassend:
Herstellung eines endkonturnahen Faserkörpers gemäß einem
erfindungsgemäßen Verfahren;
Durchführen einer Pyrolyse an dem endkonturnahen Faserkörper, wobei ein offenporöser Kohlenstoff körper hergestellt wird; und
Durchführen einer Keramisierung an dem entstandenen offenporösen Ko h I e n Stoff kö rpe r .
Günstigerweise wird die Keramisierung durch Infiltrieren des offenporösen Kohle nstoffkörpers mit flüssigem Carbidbildner durchgeführt, wobei der Carbidbildner insbesondere Silizium ist.
Das flüssige Silizium reagiert mit Kohlenstoff im offenporösen Kohlenstoff körper und bildet Siliziumcarbid. Die Offen porös ität des Kohlenstoffkörpers ermöglicht die Infiltrierung des Kohle nstoffkörpers mit Carbidbildner.
Die Faserstruktur bleibt dabei im Wesentlichen erhalten. Dies stellt insbeson dere einen Unterschied zu mittels Faserspritzen hergestellten Bauteilen dar, bei welchen die Fasern während der Infiltrierung mit Silizium in der Regel vollständig zu Siliziumcarbid reagieren.
Alternativ zu einer Infiltrierung mit einem, insbesondere flüssigen, Carbid bildner, kann vorgesehen sein, dass zur Keramisierung ein Polymerinfiltra tions- und Pyrolyse-Verfahren durchgeführt wird.
Hierzu kann vorgesehen sein, dass die Keramisierung durch Infiltrierung des offenporösen Kohlenstoffkörpers mit einem Polymermaterial, insbesondere einem metallorganischen oder siliziumorganischen Polymermaterial, und anschließender Pyrolyse durchgeführt wird.
Erfindungsgemäß wird ein keramisches Bauteil bereitgestellt, welches gemäß dem erfindungsgemäßen Verfahren hergestellt wird.
Ein Faseranteil des keramischen Bauteils beträgt vorzugsweise circa 50 Vol.-% oder weniger, insbesondere circa 25 Vol.-% bis circa 35 Vol.-%, bezogen auf ein Gesamtvolumen des keramischen Bauteils.
Durch die vergleichsweise hohen Faseranteile weisen die jeweiligen
keramischen Bauteile vorzugsweise eine verbesserte Schadenstoleranz auf.
Die Fasern können eine Stützfunktion erfüllen.
Bei dem keramischen Bauteil handelt es sich vorzugsweise um ein CMC (Ceramic Matrix Composites)-Bauteil.
Das keramische Bauteil findet beispielsweise in Leitungen für korrosive
Heißgase Verwendung.
Weitere bevorzugte Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung und der zeichnerischen Darstellung von
Ausführungsbeispielen.
Es zeigen :
Figur 1 eine schematische Darstellung einer Ausführungsform eines
erfindungsgemäßen Verfahrens zur Herstellung eines endkontur nahen Faserkörpers;
Figur 2 eine schematische Darstellung einer weiteren Ausführungsform eines erfindungsgemäßen Verfahrens zur Herstellung eines endkonturnahen Faserkörpers; Figur 3 eine schematische Seitenansicht eines Kerns einer Siebform, welche sich zur Verwendung in dem Verfahren gemäß Figur 1 oder gemäß Figur 2 eignet;
Figur 4 eine schematische Querschnittsansicht des Kerns der Siebform aus Figur 3 durch die in Figur 3 mit IV bezeichneten Ebene;
Figur 5 ein Ausschnitt einer Computer-Tomographieaufnahme eines
endkonturnahen Faserkörpers, welcher mit einem erfindungs gemäßen Verfahren hergestellt wurde, wobei der Faserkörper eine im Wesentlichen hohlzylindrische Form aufweist; und
Figur 6 eine schematische Darstellung eines Ablaufs einer Ausführungs form eines Verfahrens zur Keramisierung, bei welchem ein endkonturnaher Faserkörper als Grünkörper dient.
Gleiche oder funktional äquivalente Elemente sind in sämtlichen Figuren mit denselben Bezugszeichen bezeichnet.
In Figur 1 ist eine erste Ausführungsform eines Verfahrens zur Herstellung eines endkonturnahen Faserkörpers 100 schematisch dargestellt. Es ist ein Pumpenkreislauf zu sehen, mittels welchem sich eine Strömungsführung erzeugen lässt, sodass sich an einer Außenseite einer Siebform 110 Fasern zu einem endkonturnahen Faserkörper 100 ablagern.
Ein so entstandener endkonturnaher Faserkörper 100 ist beispielhaft in Figur 5 gezeigt.
Gemäß der ersten Ausführungsform des Verfahrens wird ein Fasermaterial 102 in einem Behälter 104 in einem inkompressiblen Fluid 106 dispergiert, wobei sich eine Faser-Dispersion 108 bildet. Einzelne Fasern des Fasermaterials 102 sind vorliegend in einer bereits dispergierten Form in der Faser-Dispersion 108 durch Striche schematisch angedeutet.
Die Fasern des Fasermaterials 102 sind vorzugsweise aus einem keramischen Material.
Als Fasermaterial 102 eignen sich insbesondere Fasern aus einem der folgen den Materialien : oxidisches Keramikmaterial, insbesondere Aluminiumoxid, Kohlenstoff, Siliziumcarbid, Aramid, Glas.
Vorteilhaft kann es sein, wenn ein Fasermaterial 102 eingesetzt wird, welches eine Mischung der genannten Fasern umfasst.
Vorliegend werden Glasfasern und Aluminiumoxidfasern mit einer mittleren Länge in einem Bereich von circa 6 mm bis circa 25 mm eingesetzt.
Als inkompressibles Fluid 106 wird vorliegend Wasser verwendet.
Je nach Faserauswahl kann es jedoch vorteilhaft sein, wenn als inkompres sibles Fluid ein Alkohol, beispielsweise Ethanol oder Isopropanol, oder eine Mischung aus Alkohol und Wasser verwendet wird.
Insbesondere, wenn Fasern aus Aluminiumoxid eingesetzt werden, kann die Verwendung von Polywolframat als Bestandteil des inkompressiblen Fluids 106 vorteilhaft sein. Auch bei anderen Fasermaterialien 102 kann die Verwendung von Polywolframat in dem inkompressiblen Fluid 106 vorteilhaft sein.
Je nach Auswahl des Fasermaterials 102 und des inkompressiblen Fluids kann es günstig sein, wenn eine Orientierung der Fasern durch Anlegen eines elektrischen Feldes beschleunigt und/oder verstärkt wird.
Der Behälter 104 ist vorliegend eine Bütte. Die Faser-Dispersion 108 umfasst vorliegend ferner Carboxymethylcellulose (CMC), welche als Bindemittel wirkt und eine Viskosität der Faser-Dispersion 108 erhöht, sodass sie sich besser verarbeiten lässt. Das Bindemittel dient vorliegend auch als Dispergiermittel zur Unterstützung der Dispergierung des Fasermaterials 102.
Alternativ oder ergänzend zu CMC kann auch Xanthan oder ein anderes Bindemittel und/oder Dispergiermittel eingesetzt werden.
Das Bindemittel dient vorliegend auch als Klebstoff zur Verfestigung der Struktur des resultierenden endkonturnahen Faserkörpers 100.
Eine Faserkonzentration in der Faser-Dispersion 108 beträgt vorliegend circa 0,1 g/l Faser-Dispersion bis circa 10 g/l Faser-Dispersion, insbesondere circa 1 g/l Faser-Dispersion bis circa 5 g/l Faser-Dispersion.
Die Siebform 110 ist innerhalb des Behälters 104 angeordnet. Die Siebform 110 dient vorliegend als Positivform für den aus dem Verfahren resultierenden endkonturnahen Faserkörper 100.
Die Siebform 110 umfasst homogen über die Siebform 110 verteilte Durch trittsöffnungen 112, welche eine Absaugseite 114 und eine Anlagerungsseite 116 der Siebform fluidwirksam miteinander verbinden. In den Figuren 1 und 2 sind die Durchtrittsöffnungen 112 durch ein Gittermuster angedeutet.
Die Absaugseite 114 ist vorliegend durch eine Innenseite einer Mantelfläche einer im Wesentlichen hohlzylinderförmig ausgebildeten Siebform 110 gebildet. Die Ablagerungsseite 116 ist von einer Außenseite der Mantelfläche der Siebform 110 gebildet (vergleich Figuren 3 und 4).
An der Absaugseite 114 der Siebform 110 ist eine Leitungsvorrichtung 118 angeordnet. Die Leitungsvorrichtung 118 dient der Leitung des inkompressiblen Fluids 106 und umfasst vorliegend mehrere Leitungsabschnitte 120, welche sich anein ander anschließen.
Ein Abfuhrleitungsabschnitt 120a bildet vorliegend einen Fluidauslass 121, durch welchen inkompressibles Fluid 106 aus dem Behälter 104 abgeleitet wird.
Ein Zufuhrleitungsabschnitt 120b bildet vorliegend einen Fluideinlass 123, durch welchen inkompressibles Fluid 106 dem Behälter 104 wieder zugeführt wird.
Der Abfuhrleitungsabschnitt 120a und der Zufuhrleitungsabschnitt 120b sind mittels weiterer Leitungsabschnitte 120 über eine Pumpe 122 miteinander verbunden.
Die Pumpe 122 dient einer Förderung von inkompressiblem Fluid 106 und der Erzeugung einer Strömung von der Ablagerungsseite 116 zur Absaugseite 114.
Die Leitungsvorrichtung 118 und die Pumpe 122 bilden jeweils Bestandteile einer Fördereinrichtung 124, welche vorliegend als Pumpeneinrichtung 126 ausgebildet ist.
Mittels der Pumpe 122 wird eine Strömung von dem Fluidauslass 121 zu dem Fluideinlass 123 erzeugt.
Die Strömung des inkompressiblen Fluids 106 vom Fluidauslass 121 zum Fluideinlass 123 ist durch Pfeile angedeutet.
Es entsteht eine Strömung der Faser-Dispersion 108 von der Ablagerungsseite 116 zur Absaugseite 114. Die Fasern der Faser-Dispersion 108 lagern sich an der Ablagerungsseite 116 an, während das inkompressible Fluid 106 die Durchtrittsöffnungen 112 durchströmt und mittels der Pumpe 122 durch die Leitungsabschnitte 120 der Leitungsvorrichtung 118 gefördert wird.
Die Strömung innerhalb des Behälters 104 wird so lange aufrechterhalten, bis sich genug Fasern abgelagert haben, sodass ein endkonturnaher Faserkörper 100 mit ausreichender Dicke entstanden ist.
Die Fasern orientieren sich dabei überwiegend längs einer Fläche, welche parallel zu einer Einhüllenden der Siebform 110 angeordnet ist.
Dabei weist der Faserkörper 100 auch gekrümmte Bereiche auf, wenn die Einhüllende der Siebform 110 gekrümmte Bereiche aufweist. Die gekrümmten Bereiche der Siebform werden einstückig in dem endkonturnahen Faserkörper 100 abgebildet.
Während die Strömung weiter strömt, wird die Siebform 110 zusammen mit dem Faserkörper 100 entnommen und anschließend in einem Trockenofen bei circa 80°C für mindestens 2 Stunden getrocknet. Alternativ können auch andere Trocknungsverfahren verwendet werden.
Nach der Trocknung des endkonturnahen Faserkörpers 100 wird dieser ent- formt.
Ein Faserauflösungsgrad ist vorzugsweise gering, sodass eine Bündelstruktur der Fasern des Fasermaterials 102 im Wesentlichen erhalten bleibt.
Insbesondere bleibt bei 80 % der Fasern des Fasermaterials 102 oder mehr, beispielsweise 90 % oder mehr, die Faserbündelstruktur erhalten.
Vorzugsweise lösen sich weniger als 20 %, insbesondere weniger als 10 %, der Faserbündel auf. Es ist ein Faserkörper 100 entstanden, dessen Form der Form der Siebform 110 im Wesentlichen entspricht. Durch Auswahl von unterschiedlichen
Siebformen können also unterschiedlich geformte Faserkörper 100 hergestellt werden.
Wie in Figur 6 schematisch dargestellt ist, wird der Faserkörper 100
anschließend einer Keramisierung unterzogen.
Der Faserkörper 100 weist jedoch auch ohne Keramisierung eine ausreichende Stabilität auf, um ohne Keramisierung verwendet zu werden und stellt ohne Weiterverarbeitung ein Bauteil dar. Beispielsweise kann der Faserkörper 100 in der Automobilindustrie eingesetzt werden.
Alternativ sind auch Anwendungen des Faserkörpers 100 in der Textilindustrie möglich. Der Faserkörper 100 kann beispielsweise einen Bestandteil eines Körbchens eines Büstenhalters bilden.
In einem Verfahren zur Keramisierung stellt der endkonturnahe Faserkörper 100 insbesondere einen Grünkörper dar.
Zur nachfolgend beschriebenen Keramisierung wird der Faserkörper 100 zunächst bei Temperaturen von 1.000°C bis 1.600°C pyrolysiert, wodurch ein offenporöser Kohlenstoffkörper 140 entsteht.
Vorzugsweise wird die Pyrolyse unter Ausschluss von Sauerstoff durchgeführt, sodass eine Oxidation vermieden oder minimiert werden kann.
Der offenporöse Kohlenstoffkörper 140 wird anschließend mit einem
Carbidbildner, vorliegend Silizium (Si), infiltriert, wobei das Silizium in flüssiger Form durch die Poren des offenporösen Kohle nstoffkörpers 140 in dessen Inneres gelangt und dort mit Kohlenstoff zu Siliziumcarbid reagiert. Durch die Reaktion mit Silizium zu Siliziumcarbid entsteht ein keramisches Bauteil 150.
Alternativ zu dem zuvor beschriebenen sogenannten LSI (liquid Silicon infiltration)-Verfahren kann die Keramisierung des endkonturnahen
Faserkörpers 100 auch mittels eines PIP (Polymerinfiltrations- und Pyrolyse)- Verfahrens durchgeführt werden.
Hierzu wird vorzugsweise der offenporöse Kohlenstoffkörper 140, häufig auch in mehreren Schritten, mit einem Polymermaterial, beispielsweise einem metallorganischen oder einem siliziumorganischen Material, infiltriert.
Anschließend wird der infiltrierte offenporöse Kohlenstoffkörpers 140 pyrolysiert, beispielsweise in einer Festphasen-Thermolyse.
Ein Faseranteil des keramischen Bauteils 150 liegt in einem Bereich von circa 25 Vol.-% bis circa 35 Vol.-% bezogen auf ein Gesamtvolumen des
keramischen Bauteils 150.
Das keramische Bauteil 150 eignet sich insbesondere zur Verwendung in Leitrohren für korrosive Heißgase.
Die in Figur 2 dargestellte zweite Ausführungsform eines Verfahrens zur Herstellung eines endkonturnahen Faserkörpers 100 unterscheidet sich im Wesentlichen dadurch von der in Figur 1 dargestellten ersten Ausführungs form, dass die Siebform 110 in einem unteren Bereich - nahe einer Boden wandung - des Behälters 104 angeordnet ist und dass eine Strömungsrichtung entgegengesetzt zur Strömungsrichtung gemäß der ersten Ausführungsform verläuft.
Der Abfuhrleitungsabschnitt 120a ist an der Bodenwandung 142 des Behälters 104 angeordnet. Der Zufuhrleitungsabschnitt 120b ist in einem bezüglich der Schwerkraftrichtung oberen Bereich des Behälters 104 angeordnet und ragt in die Faser-Dispersion 108 hinein.
Im Übrigen stimmt die in Figur 2 dargestellte zweite Ausführungsform eines Verfahrens mit der in Figur 1 dargestellten ersten Ausführungsform überein, sodass auf deren Beschreibung insoweit Bezug genommen wird.
Die Keramisierung wird bevorzugt wie zuvor beschrieben durchgeführt.
Alternativ zu den dargestellten Ausführungsformen kann auch vorgesehen sein, dass die Absaugseite 114 von einer Außenfläche der Siebform 110 gebildet ist und die Ablagerungsseite 116 in einem Innenraum und/oder an einer Innenseite der Siebform 110 angeordnet ist. Hierbei wird eine Strömung von dem Innenraum und/oder der Innenseite zu einer Umgebung der Siebform 110 erzeugt und die Fasern lagern sich an einer Innenseite der Siebform 110 ab.
Wie insbesondere in den Figuren 3 und 4 zu sehen ist, weist die Siebform 110 vorzugsweise einen zumindest näherungsweise hohlzylinderförmigen
Grundkörper auf, welcher durch regelmäßig angeordnete Durchtrittsöffnungen 112 durchbrochen ist.
In den Figuren 3 und 4 ist ein stützender Kern einer Siebform 110 gezeigt, welcher die Stabilität der Siebform 110 erhöht.
Über den stützenden Kern wird vor der Verwendung ein Siebgitter, vorzugs weise aus Metall, beispielsweise Metall-Gaze, gestülpt.
Eine Einhüllende der Siebform 110 ist vorliegend zumindest näherungsweise hohlzylinderförmig ausgebildet.
An den zumindest näherungsweise hohlzylinderförmig ausgebildeten Grund körper schließt sich vorliegend ein Verbindungsabschnitt 144 an, welcher in montiertem Zustand mit Leitungsabschnitten 120 der Leitungsvorrichtung 118 verbunden ist. Durch den Verbindungsabschnitt 144 wird die Strömung von der Siebform 110 in die Leitungsvorrichtung 118 geführt.
Wie insbesondere in Figur 4 zu sehen ist, sind die Durchtrittsöffnungen mit Haupterstreckungsrichtungen quer bezüglich radialen Richtungen einer Längs mittelachse 145 der Siebform 110 angeordnet.
So kann vermieden werden, dass Fasern, welche in Strömungsrichtung ausge richtet sind, durch die Durchtrittsöffnungen 112 hindurchtreten.
In Figur 5 ist ein Ausschnitt einer Computer-Tomographieaufnahme eines endkonturnahen Faserkörpers 100 nach einer Konsolidierung gezeigt. Aus der Aufnahme ist ersichtlich, dass die Fasern als Faserbündel - so genannte Rovings - erhalten bleiben und ein Faseranteil in Z-Richtung gering ist.
Die Z-Richtung ist die jeweilige Richtung, welche quer zur Fläche angeordnet ist, längs derer die Fasern orientiert sind. Diese Fläche ist - wie bereits erwähnt - parallel zu der Einhüllenden der Siebform 110.
Bezugszeichenliste endkonturnaher Faserkörper
Fasermaterial
Behälter
inkompressibles Fluid
Faser-Dispersion
Siebform
Durchtrittsöffnung
Absaugseite
Ablagerungsseite
Leitungsvorrichtung
Leitungsabschnitt
a Abfuhrleitungsabschnitt
b Zufuhrleitungsabschnitt
Fluidauslass
Pumpe
Fluideinlass
Fördereinrichtung
Pumpeneinrichtung
offenporöser Kohle nstoffkörper
Bodenwandung
Verbindungsabschnitt
Längsmittelachse
keramisches Bauteil

Claims

Patentansprüche
1. Verfahren zur Herstellung eines endkonturnahen Faserkörpers (100), wobei das Verfahren umfasst:
Dispergieren eines Fasermaterials (102) in einem inkompressiblen Fluid (106) unter Bildung einer Faser-Dispersion (108); und Fördern der Faser-Dispersion (108) durch eine Siebform (110) mit einer ausgewählten geometrischen Gestalt, wobei das inkompressible Fluid (106) durch eine oder mehrere Durchtritts öffnungen (112) der Siebform (110) hindurchgefördert wird und wobei sich Fasern des Fasermaterials (102) an oder in der
Siebform (110) ablagern und einen Faserkörper bilden, dessen geometrische Gestalt von der geometrischen Gestalt der Siebform (110) vorgegeben wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine
Strömung der Faser-Dispersion (108) von einer Ablagerungsseite der Siebform (110), an welcher sich die Fasern ablagern, zu einer
Absaugseite (114) der Siebform (110) erzeugt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Faser-Dispersion (108) mittels einer Fördereinrichtung (124) längs mindestens einer Förderrichtung gefördert wird, wobei die Förderein richtung (124) eine Pumpeneinrichtung (126) ist, welche eine oder mehrere Pumpen und/oder ein oder mehrere
Strömungsumlenkelemente umfasst.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass die Siebform (110) mit dem darin entstandenen end konturnahen Faserkörper (100) bei Aufrechterhaltung der Förderung der Faser-Dispersion (108) aus der Faser-Dispersion (108) entnommen wird.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass die Faser-Dispersion (108) ein Dispergiermittel und/oder ein Bindemittel umfasst und/oder dass der Faser-Dispersion (108) ein Dispergiermittel und/oder ein Bindemittel zugemischt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass die Faser-Dispersion (108) eine Faserkonzentration von circa 0,1 g/l bis circa 10 g/l, insbesondere von circa 1 g/l bis circa 5 g/l, aufweist.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass das inkompressible Fluid (106) Wasser oder ein Alkohol oder ein Gemisch daraus ist, wobei das inkompressible Fluid (106) insbesondere Polywolframat enthält.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass Fasern des Fasermaterials (102) aus einem oder mehreren der folgenden Materialien sind: oxidisches Keramikmaterial, insbesondere Aluminiumoxid, Kohlenstoff, Siliziumcarbid, Aramid, Glas.
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass das Fasermaterial (102) Kurzfasern umfasst oder daraus gebildet ist und insbesondere Fasern mit einer mittleren Länge von circa 2 mm bis circa 40 mm umfasst oder im Wesentlichen aus Fasern mit einer mittleren Länge von circa 2 mm bis circa 40 mm gebildet ist.
10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass eine Orientierung der Fasern im endkonturnahen Faser körper (100) durch eine Einhüllende der Siebform (110) vorgegeben wird, wobei sich die Fasern insbesondere im Wesentlichen längs einer Fläche orientieren, die parallel zu der Einhüllenden der Siebform (110) angeordnet ist.
11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass der endkonturnahe Faserkörper (100) einen Faseranteil in Z-Richtung von höchstens 7 Vol.-%, insbesondere von höchstens 3 Vol.-% und insbesondere von höchstens 1 Vol.-%, aufweist, wobei die Z-Richtung jeweils quer zu einer Fläche angeordnet ist, längs welcher die Fasern im endkonturnahen Faserkörper (100) im Wesentlichen orientiert sind.
12. Verfahren nach einem der vorangehenden Ansprüche, dadurch
gekennzeichnet, dass der Faserkörper (100) im Wesentlichen unter Erhalt einer Faserbündelstruktur gebildet wird, wobei vorzugsweise bei 80 % oder mehr, insbesondere bei 90 % oder mehr, des Fasermaterials (102) die Faserbündelstruktur erhalten bleibt.
13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass eine oder mehrere Längsmittelachsen der einen oder mehreren Durchtrittsöffnungen (112) der Siebform (110) bezüglich radialer Richtungen einer Längsmittelachse (145) der Siebform (110) quer angeordnet sind.
14. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekenn zeichnet, dass innerhalb eines Behälters (104), in welchem die Faser- Dispersion (108) aufgenommen ist, mittels einer Fördereinrichtung (124) die Siebform (110) mit Unterdrück beaufschlagt wird, wobei insbeson dere mittels einer Leitungsvorrichtung (118) inkompressibles Fluid (106) durch einen Fluidauslass (121) aus dem Behälter (104) abgeleitet und mittels einer Fördereinrichtung (124) durch einen Fluideinlass (123) wieder in den Behälter (104) eingeleitet wird.
15. Faserkörper (100), welcher nach einem Verfahren gemäß einem der Ansprüche 1 bis 14 hergestellt ist.
16. Verfahren zur Herstellung eines keramischen Bauteils (150),
umfassend :
Herstellung eines endkonturnahen Faserkörpers (100) gemäß einem der Ansprüche 1 bis 14;
Durchführen einer Pyrolyse an dem endkonturnahen Faserkörper (100), wobei ein offenporöser Kohlenstoff körper (140) hergestellt wird; und
Durchführen einer Keramisierung an dem entstandenen offenporösen Kohlenstoff körper (140).
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die
Keramisierung durch Infiltrierung des offenporösen Kohlenstoffkörpers (140) mit einem Carbidbildner durchgeführt wird, wobei der Carbid- bildner insbesondere Silizium ist.
18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Kerami sierung durch Infiltrierung des offenporösen Kohlenstoffkörpers (140) mit einem Polymermaterial, insbesondere einem metallorganischen oder siliziumorganischen Polymermaterial, und anschließender Pyrolyse durchgeführt wird.
19. Keramisches Bauteil (150), welches mit einem Verfahren gemäß einem der Ansprüche 16 bis 18 hergestellt ist.
20. Keramisches Bauteil (150) nach Anspruch 19, dadurch gekennzeichnet, dass ein Faseranteil circa 50 Vol.-% oder weniger, insbesondere circa 25 Vol.-% bis circa 35 Vol.-%, bezogen auf ein Gesamtvolumen des keramischen Bauteils (150) beträgt.
Figure imgf000030_0001
PCT/EP2020/064668 2019-06-04 2020-05-27 Verfahren zur herstellung eines endkonturnahen faserkörpers, faserkörper, verfahren zur herstellung eines keramischen bauteils und keramisches bauteil WO2020244984A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20729978.5A EP3980388A1 (de) 2019-06-04 2020-05-27 Verfahren zur herstellung eines endkonturnahen faserkörpers, faserkörper, verfahren zur herstellung eines keramischen bauteils und keramisches bauteil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019115039.6A DE102019115039A1 (de) 2019-06-04 2019-06-04 Verfahren zur Herstellung eines endkonturnahen Faserkörpers, Faserkörper, Verfahren zur Herstellung eines keramischen Bauteils und keramisches Bauteil
DE102019115039.6 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020244984A1 true WO2020244984A1 (de) 2020-12-10

Family

ID=70968919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/064668 WO2020244984A1 (de) 2019-06-04 2020-05-27 Verfahren zur herstellung eines endkonturnahen faserkörpers, faserkörper, verfahren zur herstellung eines keramischen bauteils und keramisches bauteil

Country Status (3)

Country Link
EP (1) EP3980388A1 (de)
DE (1) DE102019115039A1 (de)
WO (1) WO2020244984A1 (de)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840781A1 (de) 1988-12-03 1990-06-07 Hoechst Ag Faserverbundkeramik und verfahren zu ihrer herstellung
EP0555130B1 (de) 1992-02-04 1998-09-23 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Verfahren zur Herstellung von Teilen aus Verbundwerkstoff mit keramischer Matrix
US20040005462A1 (en) 2002-05-24 2004-01-08 Mitsubishi Chemical Functional Products, Inc. Sliding material
US20040132607A1 (en) 2003-01-08 2004-07-08 3M Innovative Properties Company Ceramic fiber composite and method for making the same
WO2011007184A2 (en) 2009-07-17 2011-01-20 Carbon Fibre Preforms Ltd A fibre matrix and a method of making a fibre matrix
DE102011001065A1 (de) 2010-03-04 2011-09-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Carbidkeramischer Werkstoff und Verfahren zur Herstellung eines carbidkeramischen Werkstoffs
EP2415735A2 (de) * 2010-08-04 2012-02-08 Ibiden Co., Ltd. Verbundmaterial aus kohlenstofffaserverstärktem Kohlenstoff und Herstellungsverfahren dafür
DE102013216437A1 (de) 2013-08-20 2015-02-26 Voith Patent Gmbh Verwendung von Faser-Keramik-Verbunden in der Papiermaschine
US20170341004A1 (en) 2016-05-25 2017-11-30 Unifrax I Llc Filter element and method for making the same
EP2046700B1 (de) 2006-07-14 2019-09-11 Freni Brembo S.p.A. Bremsband-verbundstruktur
WO2019228683A1 (en) 2018-05-31 2019-12-05 Orkli S. Coop Continuous composite surface and burner surface

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840781A1 (de) 1988-12-03 1990-06-07 Hoechst Ag Faserverbundkeramik und verfahren zu ihrer herstellung
EP0555130B1 (de) 1992-02-04 1998-09-23 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Verfahren zur Herstellung von Teilen aus Verbundwerkstoff mit keramischer Matrix
US20040005462A1 (en) 2002-05-24 2004-01-08 Mitsubishi Chemical Functional Products, Inc. Sliding material
US20040132607A1 (en) 2003-01-08 2004-07-08 3M Innovative Properties Company Ceramic fiber composite and method for making the same
EP2046700B1 (de) 2006-07-14 2019-09-11 Freni Brembo S.p.A. Bremsband-verbundstruktur
WO2011007184A2 (en) 2009-07-17 2011-01-20 Carbon Fibre Preforms Ltd A fibre matrix and a method of making a fibre matrix
DE102011001065A1 (de) 2010-03-04 2011-09-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Carbidkeramischer Werkstoff und Verfahren zur Herstellung eines carbidkeramischen Werkstoffs
EP2415735A2 (de) * 2010-08-04 2012-02-08 Ibiden Co., Ltd. Verbundmaterial aus kohlenstofffaserverstärktem Kohlenstoff und Herstellungsverfahren dafür
DE102013216437A1 (de) 2013-08-20 2015-02-26 Voith Patent Gmbh Verwendung von Faser-Keramik-Verbunden in der Papiermaschine
US20170341004A1 (en) 2016-05-25 2017-11-30 Unifrax I Llc Filter element and method for making the same
WO2019228683A1 (en) 2018-05-31 2019-12-05 Orkli S. Coop Continuous composite surface and burner surface

Also Published As

Publication number Publication date
EP3980388A1 (de) 2022-04-13
DE102019115039A1 (de) 2020-12-10

Similar Documents

Publication Publication Date Title
EP2002056B1 (de) Mit elementarem kohlenstoff angereichertes papier
DE3876732T2 (de) Verfahren zur herstellung eines kohlenstoff-kohlenstoff-verbundkoerpers von hoher festigkeit.
DE69105668T2 (de) Verfahren zur Herstellung einer asymmetrischen, ultradünnen, mineralischen Membran.
DE69219169T2 (de) Verfahren zur Verdichtung eines porösen Substrats mittels einer kohlenstoffhaltigen Matrix
EP1734024B1 (de) Oxidkeramischer Faser-Verbundwerkstoff und ein Verfahren zur Herstellung desselben
DE69828168T2 (de) Kohlenstoffverbundwerkstoffe
EP3984980A1 (de) Verfahren zum herstellen von formkörpern aus reaktionsgebundenem, mit silicium infiltriertem siliciumcarbid
EP1054765A1 (de) Verfahren zur herstellung eines faserverbundwerkstoffs
EP0864548A2 (de) Mit Graphikurzfasern verstärkter Siliciumcarbidkörper
DE19736560A1 (de) Verfahren zur Herstellung eines Körpers mit einer porösen Matrix aus mindestens einem rekristallisierten Werkstoff
DE3741002A1 (de) Form und verfahren zur herstellung eines formkoerpers
DE102017206452B3 (de) Verfahren zur Herstellung eines Faserverbundbauteils
EP1070027A1 (de) Verstärkungsfasern und faserbündel, insbesondere für faserverbundwerkstoffe, verfahren zu deren herstellung sowie faserverbundwerkstoff mit verstärkungsfasern
EP3841076B1 (de) Additive fertigung von bauteilen auf basis von siliziumcarbid mit eingebetteten diamantpartikeln
EP0836931B1 (de) Verfahren zum Herstellen eines Schichtkörpers
EP1876158B1 (de) Verfahren zur Herstellung von Carbidkeramik-Bauteilen
WO2020244984A1 (de) Verfahren zur herstellung eines endkonturnahen faserkörpers, faserkörper, verfahren zur herstellung eines keramischen bauteils und keramisches bauteil
EP2058546B1 (de) Verfahren zur Herstellung von Reibscheiben aus faserverstärkten keramischen Werkstoffen
WO2020002603A1 (de) Verfahren zur herstellung eines grünkörpers und eines keramischen bauteils, grünkörper und keramisches bauteil
EP3640022A1 (de) Verfahren zur herstellung von prepregs für die herstellung faserverstärkter keramikbauteile
DE102020106043A1 (de) Herstellung von (oxid-) keramischen Faserverbundwerkstoffen
EP2053029B1 (de) Verfahren zur Herstellung eines carbidkeramischen Bauteils
DE68905032T2 (de) Herstellung von faserverstaerktem keramischem verbundwerkstoff.
DE102014103836B4 (de) Verfahren zur Herstellung eines carbidkeramischen Bauteils, Verfahren zur Herstellung von Kanälen in einem carbidkeramischen Bauteil und carbidkeramisches Bauteil
DE4123677A1 (de) Faserformkoerper und verfahren zu seiner herstellung sowie verwendung des formkoerpers zur herstellung faserverstaerkter aluminium-gussteile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20729978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020729978

Country of ref document: EP

Effective date: 20220104