WO2020244567A1 - 柔性基板、显示面板及显示装置 - Google Patents

柔性基板、显示面板及显示装置 Download PDF

Info

Publication number
WO2020244567A1
WO2020244567A1 PCT/CN2020/094304 CN2020094304W WO2020244567A1 WO 2020244567 A1 WO2020244567 A1 WO 2020244567A1 CN 2020094304 W CN2020094304 W CN 2020094304W WO 2020244567 A1 WO2020244567 A1 WO 2020244567A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
electrode
display panel
flexible substrate
capacitor
Prior art date
Application number
PCT/CN2020/094304
Other languages
English (en)
French (fr)
Inventor
田宏伟
牛亚男
李栋
刘明
刘政
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/281,420 priority Critical patent/US11974493B2/en
Publication of WO2020244567A1 publication Critical patent/WO2020244567A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a flexible substrate, a display panel and a display device.
  • Organic electroluminescent display panel (Organic Electro Luminescent Display, OLED) is a display device that can realize flexible display. With its excellent performance such as low power consumption, high color saturation, wide viewing angle, and thin thickness, it has gradually become the display field. Mainstream products can be widely used in smart phones, tablet computers, TVs and other terminals.
  • a flexible substrate has at least one bendable area.
  • the flexible substrate includes a flexible substrate, a first electrode layer, a first insulating layer, and a second electrode layer.
  • the first electrode layer is disposed on the substrate, and the first electrode layer includes at least one first detection electrode.
  • the first insulating layer is disposed on a side of the first electrode layer away from the substrate.
  • the second electrode layer is disposed on a side of the first insulating layer away from the substrate, and the second electrode layer includes at least one second detection electrode.
  • the orthographic projection of a first detection electrode on the substrate and the orthographic projection of a second detection electrode on the substrate at least partially overlap, the first detection electrode, the second detection electrode and the two Between the first insulating layer, a detection capacitor is formed.
  • the orthographic projection of the detection capacitor on the substrate overlaps the bendable area.
  • the flexible substrate further has at least one non-bendable area.
  • the first electrode layer also includes at least one first reference electrode.
  • the at least one first reference electrode is insulated from the at least one first detection electrode.
  • the second electrode layer also includes at least one second reference electrode.
  • the at least one second reference electrode is insulated from the at least one second detection electrode.
  • the orthographic projection of a first reference electrode on the substrate and the orthographic projection of a second reference electrode on the substrate at least partially overlap, and the first reference electrode, the second reference electrode and the two The first insulating layer between forms a reference capacitor.
  • the orthographic projection of the reference capacitor on the substrate is located in the non-bendable area.
  • the first detection electrode and the second detection electrode are both strip electrodes; the extension direction of the first detection electrode and the extension direction of the second detection electrode forming the same detection capacitor are the same or substantially the same.
  • the first electrode layer includes at least one first reference electrode and the second electrode layer includes at least one second reference electrode, both the first reference electrode and the second reference electrode are strip electrodes ;
  • the extension direction of the first reference electrode and the extension direction of the second reference electrode forming the same reference capacitor are the same or substantially the same.
  • the shape of the bendable area is a strip.
  • the extension direction of the bendable area crosses the extension direction of the first detection electrode.
  • the extension direction of the bendable region is the same as that of the first reference electrode forming the same reference capacitor.
  • the extending directions of the electrode and the second reference electrode are the same or substantially the same.
  • the angle between the extension direction of the bendable area and the extension direction of the first detection electrode is 70° ⁇ 130°.
  • the flexible substrate includes a plurality of detection capacitors, and one of the bendable regions overlaps an orthographic projection of at least two detection capacitors on the substrate.
  • the extension directions of the at least two detection capacitors are the same or substantially the same, and the at least two detection capacitors are arranged at intervals. In the at least two detection capacitors, the length of the detection capacitor relatively far from the center of the flexible substrate in its extension direction is greater than the length of the detection capacitor relatively close to the center of the flexible substrate in its extension direction.
  • the extension directions of the plurality of reference capacitors are the same or substantially the same, and the plurality of reference capacitors are arranged at intervals.
  • the length of the reference capacitor relatively far from the center of the flexible substrate in its extension direction is greater than the length of the reference capacitor relatively close to the center of the flexible substrate in its extension direction.
  • the flexible substrate has a plurality of bendable regions arranged at intervals, and the extension directions of the plurality of bendable regions are the same or substantially the same.
  • the flexible substrate includes a plurality of detection capacitors, and each of the bendable regions overlaps an orthographic projection of at least one detection capacitor on the substrate.
  • the number of the plurality of reference capacitors is the same as the number of the plurality of detection capacitors.
  • the plurality of reference capacitors are respectively located on opposite sides of the plurality of bendable regions along an extension direction perpendicular to the bendable region as a whole.
  • the first detection electrode and the second detection electrode have multiple perforations.
  • the first electrode layer includes at least one first reference electrode and the second electrode layer includes at least one second reference electrode
  • the first reference electrode and the second reference electrode have a plurality of perforations.
  • the first insulating layer has flexibility.
  • the material of the first insulating layer is the same as the material of the substrate.
  • the flexible substrate further includes a barrier layer and a buffer layer.
  • the barrier layer is disposed on a side of the second electrode layer away from the substrate.
  • the buffer layer is disposed on a side of the barrier layer away from the second electrode layer.
  • a display panel includes the flexible substrate as described in any of the above embodiments, a common signal interface, and a detection signal interface.
  • the common signal interface and the detection signal interface are arranged on the flexible substrate.
  • One of the first detection electrode and the second detection electrode of the detection capacitor of the flexible substrate is coupled to the detection signal interface, and the other is coupled to the common signal interface.
  • one of the first reference electrode and the second reference electrode of the reference capacitor is coupled to the detection signal interface, and the other Coupled with the common signal interface; and, the electrodes in the same electrode layer are coupled with the same interface.
  • the display panel further includes at least one detection trace provided on the flexible substrate.
  • the detection trace is configured to connect the detection signal interface and the first detection electrode or the second detection electrode of the detection capacitor.
  • the display panel further includes at least one reference trace provided on the flexible substrate.
  • the reference wiring is configured to connect the detection signal interface and the first reference electrode or the second reference electrode of the reference capacitor.
  • the display panel further includes at least one thin film transistor disposed on the flexible substrate.
  • the thin film transistor includes an active layer, a gate, a source, a drain, and at least one second insulating layer.
  • the detection wiring is arranged in the same layer and made of the same material as the source and drain of the thin film transistor.
  • the detection trace is coupled to the first detection electrode or the second detection electrode through a first via; wherein the first via penetrates through the film layer where the source electrode and the drain electrode are located and the The film layer between the first electrode layer or the second electrode layer.
  • the reference trace is provided in the same layer and the same material as the source and drain of the thin film transistor.
  • the reference trace is coupled to the first reference electrode or the second reference electrode through a second via; wherein the second via penetrates through the film layer where the source and drain are located and the The film layer between the first electrode layer or the second electrode layer.
  • the display panel further includes at least one signal amplifying circuit.
  • the at least one signal amplifying circuit is arranged on the flexible substrate or bound with the flexible substrate.
  • the detection wiring is coupled to the detection signal interface through the signal amplifying circuit.
  • the display panel includes at least one reference trace, the reference trace is coupled to the detection signal interface through the signal amplifying circuit.
  • the display panel includes a signal amplifying circuit.
  • Each of the detection wires is coupled to the signal amplifying circuit; the signal amplifying circuit is configured to sequentially amplify the signals from each of the detection wires in a time-sharing manner.
  • the signal amplifying circuit is also coupled to each of the reference traces; the signal amplifying circuit is also configured to sequentially perform time-sharing analysis of the signals from each reference trace. The signal of the reference trace is amplified.
  • the display panel includes a plurality of signal amplifying circuits. Each of the detection wires is connected to a signal amplifier circuit. In the case that the display panel includes at least one reference wiring, each reference wiring is connected to a signal amplifying circuit; the signal amplifying circuit is configured to perform a signal or a signal from the detection wiring to which it is coupled The signal of the reference trace is amplified.
  • a display device in another aspect, includes: the display panel and the signal processor as described in any of the above embodiments.
  • the signal processor is coupled to a detection signal interface in the display panel.
  • the signal processor is configured to receive the detection signal transmitted by the detection signal interface, obtain the capacitance change of at least one detection capacitor in the display panel according to the detection signal, and obtain the capacitance change according to the capacitance change. Describe the bending angle of the display panel.
  • the display panel has multiple bendable regions.
  • the display panel includes a plurality of detection capacitors, and each of the bendable regions overlaps an orthographic projection of at least one detection capacitor on the substrate.
  • the signal processor is further configured to obtain the bending position of the display panel according to the capacitance change of each detection capacitor and the position information of each detection capacitor.
  • the display device further includes a display controller and a line of sight collector.
  • the display controller is coupled with the signal processor and the display panel.
  • the line of sight collector is coupled to the signal processor.
  • the line of sight collector is configured to collect information about the direction of the user's line of sight, and send the collected information about the direction of the line of sight to the signal processor.
  • the signal processor is further configured to receive information about the line of sight direction, and obtain display position control information or display brightness control information according to the information about the bending angle, the bending position, and the line of sight direction of the display panel.
  • the display controller is configured to obtain the display position control information, and control the display panel to display an image at a position indicated by the display position control information; or, obtain the display brightness control information, and control the display panel The image having the brightness indicated by the display brightness control information is displayed.
  • the display device further includes a command recognition component and a bending drive mechanism.
  • the bending drive mechanism is coupled with the instruction recognition component.
  • the instruction recognition component is configured to recognize user instructions.
  • the bending drive mechanism is configured to drive the display panel to bend according to the user instruction; and, when the bending angle of the display panel reaches a preset angle, control the display panel to stop bending fold.
  • FIG. 1 is a structural diagram of a display device according to some embodiments.
  • FIG. 2 is a structural diagram of sub-pixels according to some embodiments.
  • FIG. 3 is a structural diagram of a flexible substrate according to some embodiments.
  • FIG. 4 is a cross-sectional view of the flexible substrate in FIG. 3 along the A-A' direction;
  • Figure 5 is another structural diagram of a flexible substrate according to some embodiments.
  • FIG. 6 is another structural diagram of a flexible substrate according to some embodiments.
  • FIG. 7 is a diagram of various structures of the first detection electrode and the second detection electrode according to some embodiments.
  • FIG. 8 is a structural diagram of a display panel according to some embodiments.
  • FIG. 9 is another structural diagram of a display panel according to some embodiments.
  • FIG. 10 is another structural diagram of a display panel according to some embodiments.
  • FIG. 11 is another structural diagram of a display panel according to some embodiments.
  • FIG. 12 is another structural diagram of a display device according to some embodiments.
  • FIG. 13 is a diagram of a bent state of the display panel according to some embodiments.
  • FIG. 14 is another structural diagram of a display device according to some embodiments.
  • FIG. 15 is still another structural diagram of a display device according to some embodiments.
  • FIG. 16 is a flow chart of preparing a display panel according to some embodiments.
  • FIG. 17 is another flow chart of preparing a display panel according to some embodiments.
  • FIG. 18 is a diagram of a bent state of the detection capacitor according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content herein.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviation due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • An embodiment of the present disclosure provides a display device 300. As shown in FIG. 1, the display device 300 includes a display panel 100.
  • the display panel 100 adopts an OLED display panel.
  • the display panel 100 has a display area (Active Area, AA) and a frame area S at least on one side of the AA area.
  • AA Active Area
  • the display device 300 further includes a scan driving circuit 2101, a data driving circuit 2102, a frame memory controller 2103, a graphics processing unit (GPU), a timing controller 211, a video memory 2104, and a central processing unit ( Central Processing Unit, CPU).
  • a scan driving circuit 2101 a data driving circuit 2102
  • a frame memory controller 2103 a graphics processing unit (GPU)
  • a timing controller 211 a timing controller 211
  • video memory 2104 a central processing unit
  • CPU Central Processing Unit
  • the scan driving circuit 2101 may be arranged in the frame area S of the display panel 100.
  • the frame memory controller 2103 is coupled to the video memory 2104, the CPU is coupled to the frame memory controller 2103, the GPU is coupled to the frame memory controller 2103, the GPU is coupled to the timing controller 211, the timing controller 211 is coupled to the scan driving circuit 2101 and The data driving circuit 2102 is coupled.
  • the CPU writes the frame video debugging signals included in the received image data into the video memory 2104 through the frame memory controller 2103, and the GPU fetches a frame of video debugging signals written into the video memory 2104 through the frame memory controller 2103.
  • the CPU writes the next frame of video debugging signal into the video memory 2104 through the frame memory controller 2103.
  • the GPU decodes, zooms, and renders a frame of video debugging signal to obtain display data.
  • the timing controller 211 performs further processing such as gray-scale modulation on the display data, generates synchronization signals, clock signals, and processed data signals and clock signal synchronization signals, and transmits them to the scan driving circuit 2101 and the data driving circuit 2102 to control the display panel
  • the 100 scan driving circuit 2101 and the data driving circuit 2102 display images.
  • timing controller 211 may not only generate timing control signals, but also process video signals.
  • the display panel 100 further includes a plurality of sub-pixels P arranged in the AA area.
  • the above-mentioned multiple sub-pixels P are arranged in an array as an example for illustration, but the embodiment of the present disclosure is not limited to this, and the above-mentioned multiple sub-pixels P may also be arranged in other ways.
  • the sub-pixels P arranged in a row along the horizontal direction X are called sub-pixels in the same row
  • the sub-pixels P arranged in a row along the vertical direction Y are called sub-pixels in the same column.
  • each sub-pixel P is provided with a pixel circuit 201.
  • the pixel circuit 201 is generally composed of electronic devices such as a thin film transistor (TFT for short) and a capacitor (C for short).
  • the pixel circuit 201 may be a 2T1C structure pixel circuit 201 composed of two thin film transistors (a switching transistor and a driving transistor) and a capacitor, or it may be composed of three thin film transistors (two switching transistors and a driving transistor).
  • FIG. 2 shows only one TFT in the pixel circuit 201.
  • TFTs there are many types of TFTs, which may be NMOS thin film transistors or PMOS thin film transistors, and the difference lies only in the conduction conditions.
  • NMOS type thin film transistors high level is turned on and low level is turned off; for PMOS type thin film transistors, low level is turned on and high level is turned off.
  • the TFT includes an active layer ACT, a gate G, a source S, and a drain D.
  • a gate insulating layer GI is provided between the active layer ACT and the gate G.
  • the capacitor C in the pixel circuit 201 includes a first electrode arranged in the same layer as the gate G of the TFT, a second electrode located above the first electrode, and an insulating layer between the first electrode and the second electrode.
  • the material and the material of the first electrode are the same as the material of the gate G. Therefore, in the process, when the gate G of the TFT is formed, the first electrode of the capacitor C will be formed. Before the source S and the drain D of the TFT are formed, the capacitor C will be formed above the gate G. Second pole.
  • each sub-pixel P further includes a light emitting device EL coupled with the pixel circuit 201.
  • the light emitting device EL may be coupled with one of the source S and the drain D of the TFT in the pixel circuit 201.
  • a flat layer PLN is also provided on the TFT to ensure that the film surface of the light emitting device EL is flat.
  • a pixel defining layer PDL is also provided on the flat layer PLN to isolate two adjacent sub-pixels.
  • the light emitting device EL includes a cathode layer CA and an anode layer AN, and a light emitting function layer LFU located between the cathode layer CA and the anode layer AN.
  • the light-emitting functional layer LFU may include, for example, a light-emitting layer LU, a hole transport layer HTL between the light-emitting layer LU and the anode layer AN, and an electron transport layer ETL between the light-emitting layer LU and the cathode layer CA.
  • a hole injection layer HIL may be provided between the hole transport layer HTL and the anode layer AN, and an electron injection layer EIL may be provided between the electron transport layer ETL and the cathode layer CA.
  • the arrangement of the film layers in the light-emitting functional layer LFU can be determined according to the positions of the anode layer AN and the cathode layer CA.
  • the anode layer AN injects holes into the hole injection layer HIL, and is transported to the light emitting layer LU through the hole transport layer HTL.
  • the cathode layer CA injects electrons into the electron injection layer EIL, and is transported to the light emitting layer LU through the electron transport layer ETL.
  • the electrons and holes recombine into excitons in the light-emitting layer LU, and the energy of the excitons is transferred and released in the form of light, so that the light-emitting device EL realizes light emission.
  • the scan driving circuit 2101 may be coupled to the gate G of the TFT in the pixel circuit 201.
  • the data driving circuit 2102 may be coupled to one of the source S and the drain D of the TFT in the pixel circuit 201 to drive the light emitting device EL to emit light through a scan signal and a data signal, thereby displaying an image.
  • a capacitor substrate can be added outside the display panel.
  • the capacitor substrate is used to monitor the capacitance change of the light emitting device in the display panel during the bending process, so as to obtain the bending of the display panel. Fold information.
  • this will result in a larger thickness of the display panel, making it difficult to achieve lightness and thinness.
  • the embodiment of the present disclosure provides a flexible substrate 10. As shown in FIGS. 3 and 4, the flexible substrate 10 has at least one bendable area Q1.
  • the flexible substrate 10 includes a substrate 1001, a first electrode layer 1010 disposed on the substrate 1001, a first insulating layer 1002 disposed on the side of the first electrode layer 1010 away from the substrate 1001, and a first insulating layer 1002 disposed away from the substrate.
  • the second electrode layer 1020 on the bottom 1001 side.
  • the substrate 1001 has flexibility.
  • the material of the substrate 1001 may be an organic polymer including polyimide (PI) and other materials.
  • the first electrode layer 1010 includes at least one first detection electrode 1011.
  • the second electrode layer 1020 includes at least one second detection electrode 1021.
  • the orthographic projection of a first detection electrode 1011 on the substrate 1001 and the orthographic projection of a second detection electrode 1021 on the substrate 1001 at least partially overlap.
  • the first detection electrode 1011, the second detection electrode 1021, and the first insulating layer 1002 located between the two form a detection capacitor C DE .
  • the number of the first detection electrodes 1011 and the number of the second detection electrodes 1021 are equal.
  • first detection electrode 1011 and the second detection electrode 1021 of the same detection capacitor C DE are formed.
  • the orthographic projections of the two on the substrate 1001 may overlap or overlap.
  • the orthographic projection of the detection capacitor C DE on the substrate 1001 overlaps the bendable area Q1.
  • each bendable area Q1 there is at least one detection capacitor C DE .
  • the thickness of the substrate 1001 may be 0.1 ⁇ m to 10 ⁇ m, or 0.1 ⁇ m to 0.95 ⁇ m.
  • the substrate 1001 may be one layer or two layers, of course, it may also be multiple layers.
  • the number of layers of the substrate 1001 can be set according to the flexibility of the substrate 1001.
  • the thickness of the first electrode layer 1010, the first insulating layer 1002 and the second electrode layer 1020 can be designed according to actual conditions, and is not limited here.
  • the thickness of the first electrode layer 1010 and the second electrode layer 1020 can be as small as possible.
  • the flexible substrate 10 has a bendable area Q1 that overlaps with the orthographic projection of a detection capacitor C DE on the substrate 1001.
  • the capacitance detected by the detection capacitor C DE is C 0
  • the capacitance detected by the detection capacitor C DE is C t .
  • the detection capacitor C DE is approximately regarded as a cylindrical capacitor
  • the larger the angle at which the cylindrical capacitor is bent the smaller the radius of the cylindrical capacitor, for example, as shown in Figure 18.
  • the greater the angle ⁇ at which the detection capacitor C DE is bent the smaller the radius of the first detection electrode 1011 is R1 and the radius of the second detection electrode 1021 is R2, where the detection capacitor C DE It is bent angle ⁇ for the detection of the capacitor C DE bent portion and the probe is not where the capacitor C DE plane angle when bent. Therefore, the capacitance of the detection capacitor C DE is related to the bending angle of the bendable area Q1.
  • the capacitance change of the bendable area Q1 before and after bending can be obtained, and according to the bendable area Q1 in The amount of capacitance change before and after bending obtains the bending angle of the bendable area Q1.
  • each bendable region can be obtained by detecting the capacitance change of the capacitor C DE in each bendable region Q1 before and after the flexible substrate 10 is bent.
  • the capacitance of the detection capacitor C DE that overlaps the orthographic projection on the substrate 1001 and the bendable area Q1 will change during the bending process of the flexible substrate 10, it can be detected according to detecting capacitance variation of the capacitor C DE of the first detecting electrode 1011 and a second capacitor C DE detecting probe electrode 1021, the capacitor C DE obtain orthographic projection of the probe on the substrate 1001 overlap the bendable region Q1
  • the bending information (for example, the bending angle, etc.) of the at least one bendable area Q1 is detected when the flexible substrate 10 is bent.
  • the embodiment of the present disclosure when applied to a display panel, compared to the case where a capacitor coupled to the flexible substrate is added outside the flexible substrate, the embodiment of the present disclosure provides the detection capacitor C DE in the flexible substrate 10, so that the display panel can be reduced.
  • the thickness of the display panel is thin and light.
  • the detection capacitor C DE is arranged at the edge position of the flexible substrate 10 (ie, at the edge position of the display panel) to avoid affecting the normal display of the display panel.
  • the flexible substrate 10 in the embodiment of the present disclosure has at least one bendable area Q1, the first detection electrode 1011, the second detection electrode 1021, and the first insulating layer 1002 between them, forming a detection capacitor C DE , the first detection electrode 1011, the second detection electrode 1021 and the first insulating layer 1002 located between the two form a detection capacitor C DE .
  • the probe capacitor C DE obtain the orthogonal projection on the substrate 1001
  • the bending information (for example, the bending angle, etc.) of the overlapped bendable area Q1 can be used to detect the bending information of at least one bendable area Q1 when the flexible substrate 10 is bent. Therefore, when the flexible substrate 10 is applied to a display panel, the display panel can not only perform flexible display, but also detect bending information, so that the display panel realizes diversified functions, and the detection capacitor C DE is provided on the flexible substrate 10 Above, the thickness of the display panel can be reduced, making the display panel thinner and lighter.
  • the flexible substrate 10 further has at least one non-bendable area Q2.
  • the first electrode layer 1010 also includes at least one first reference electrode 1012.
  • At least one reference electrode 1012 is insulated from at least one first detection electrode 1011.
  • the second electrode layer 1020 also includes at least one second reference electrode 1022.
  • At least one second reference electrode 1022 is insulated from at least one second detection electrode 1021.
  • the orthographic projection of a first reference electrode 1012 on the substrate 1001 and the orthographic projection of a second reference electrode 1022 on the substrate 1001 at least partially overlap.
  • the first reference electrode 1012, the second reference electrode 1022, and the first insulating layer 1002 between them form a reference capacitor C RE .
  • the orthographic projection of the first reference electrode 1012 on the substrate 1001 and the orthographic projection of the second reference electrode 1022 on the substrate 1001 forming the same reference capacitor C RE may overlap or overlap.
  • the number of the first reference electrodes 1012 and the number of the second reference electrodes 1022 are equal.
  • the orthographic projection of the reference capacitor C RE on the substrate 1001 is located in the non-bendable area Q2.
  • the orthographic projection of the first reference electrode 1012 on the substrate 1001 and the orthographic projection of the second reference electrode 1022 on the substrate 1001 constituting the same reference capacitor C RE are both located in the same non-bendable area Q2.
  • a reference capacitor C RE is provided in a part of the inflexible area Q2, and at least one reference capacitor C RE is provided in a part of the inflexible area Q2.
  • the capacitance detected by the reference capacitor C RE is the capacitance of the unbendable area Q2, which can be used as the reference capacitance.
  • the detection capacitor C DE can be used to detect the capacitance of the bendable region Q1
  • the reference capacitor C RE can be used to detect the capacitance of the non-bendable region Q2.
  • the flexible substrate 10 has a bendable area Q1, and the bendable area Q1 has a detection capacitor C DE .
  • the flexible substrate 10 has two non-bendable regions Q2, and one of the non-bendable regions Q2 has a reference capacitor C RE . After the flexible substrate 10 is bent, the capacitance detected by the detection capacitor C DE is C t , and the capacitance detected by the reference capacitor C RE after the flexible substrate 10 is bent is C d .
  • the bendable area is obtained according to C t and C d
  • the capacitance change amount of Q1 before and after bending, and the bending information of the bendable area Q1 is obtained according to the capacitance change amount of the bendable area Q1 before and after bending.
  • the capacitance of the non-bendable area Q2 may fluctuate due to the influence of the bendable area Q1. If the flexible substrate 10 is not bent, the bendable area Q1
  • the capacitance detected by the detection capacitor C DE inside is used as a reference, and the accuracy of the capacitance change of the detection capacitor C DE obtained by the flexible substrate 10 before and after bending will be affected. Therefore, the capacitance detected by the reference capacitor C RE after the flexible substrate 10 is bent as a reference is compared with the capacitance detected by the detection capacitor C DE after the flexible substrate 10 is bent, so that the detected capacitance change can be more accurate, thereby improving The accuracy of bending information.
  • the reference capacitor C RE is provided at the edge position of the flexible substrate 10 (ie, at the edge position of the display panel) to avoid affecting the normal display of the display panel.
  • the first detection electrode 1011 and the second detection electrode 1021 are both strip electrodes.
  • the extension direction of the first detection electrode 1011 and the extension direction of the second detection electrode 1021 forming the same detection capacitor C DE are the same or substantially the same.
  • the extension direction of the detection capacitor C DE is the vertical direction Y in FIG. 3, the extension direction of the first detection electrode 1011 and the extension direction of the second detection electrode 1021 forming the same detection capacitor C DE are both the vertical direction Y .
  • the overlap area of the orthographic projection of the first detection electrode 1011 on the substrate 1001 and the orthographic projection of the second detection electrode 1021 on the substrate 1001 forming the same detection capacitor C DE is relatively large, which can increase the detection capacitor.
  • the capacitance of C DE is relatively large, which can increase the detection capacitor.
  • first electrode layer 1010 includes at least one first reference electrode 1012 and the second electrode layer 1020 includes at least one second reference electrode 1022
  • first reference electrode 1012 and the second reference electrode 1022 are both strip-shaped electrodes.
  • extension direction of the first reference electrode 1012 and the extension direction of the second reference electrode 1022 forming the same reference capacitor C RE are the same or substantially the same.
  • the extension direction of the reference capacitor C RE is the horizontal direction X in FIG. 3, the extension direction of the first reference electrode 1012 and the extension direction of the second reference electrode 1022 forming the same reference capacitor C RE are both the horizontal direction X.
  • the overlap area of the orthographic projection of the first reference electrode 1012 on the substrate 1001 and the orthographic projection of the second reference electrode 1022 on the substrate 1001 forming the same reference capacitor C RE is relatively large, which can improve the reference capacitor.
  • the capacitance of C RE is relatively large, which can improve the reference capacitor.
  • the shape of the bendable area Q1 is a strip.
  • the extension direction of the bendable area Q1 crosses the extension direction of the first detection electrode 1011.
  • the deformation of the detection capacitor C DE including the first detection electrode 1011 is relatively large, and the degree of change in the capacitance of the detection capacitor C DE is also relatively large, which can improve The sensitivity of the detection capacitor C DE .
  • the angle between the extension direction of the bendable area Q1 and the extension direction of the first detection electrode 1011 is 70° ⁇ 130°.
  • the angle at which the extension direction of the bendable region Q1 intersects the extension direction of the first detection electrode 1011 is approximately 90°, that is, the extension direction of the detection capacitor C DE that includes the first detection electrode 1011 is similar to the extension direction of the bendable region Q1.
  • the angle at which the extension direction of the region Q1 intersects (the included angle ⁇ in FIG. 3) is approximately 90°.
  • the detection capacitor C DE containing the first detection electrode 1011 is generated during the bending process of the flexible substrate 10 The deformation is relatively large, and the degree of change in the capacitance of the detection capacitor C DE is relatively large.
  • the angle at which the extension direction of the bendable area Q1 crosses the extension direction of the first detection electrode 1011 that is, the angle at which the bendable area Q1 overlaps the orthographic projection of the first detection electrode 1011 on the substrate 1001
  • It is approximately 90°, and the sensitivity of the detection capacitor C DE including the first detection electrode 1011 is relatively high.
  • the extension direction of the bendable region Q1 is the same as that of forming the same reference electrode.
  • the extension directions of the first reference electrode 1012 and the second reference electrode 1022 of the capacitor C RE are the same or substantially the same.
  • the stress on the first reference electrode 1012 and the second reference electrode 1022 forming the same reference capacitor C RE parallel to the extension direction of the bendable region Q1 It is smaller than the stress experienced by the first reference electrode 1012 and the second reference electrode 1022 forming the same reference capacitor C RE that intersect (for example, perpendicularly) with the extension direction of the bendable region Q1. Therefore, the stress experienced by the reference capacitor C RE Is relatively small. Moreover, the magnitude of the stress received by the first reference electrode 1012 and the second reference electrode 1022 of the same reference capacitor C RE is approximately the same.
  • the size of the bendable area Q1 and the size of the non-bendable area Q2 of the flexible substrate 10 are limited.
  • the first detection electrode 1011 and the second detection electrode 1021 included in the detection capacitor C DE The extension length of is also within a certain range, subject to the capacitance that can detect the bendable area Q1, without excessive extension.
  • the extension lengths of the first reference electrode 1012 and the second reference electrode 1022 included in the reference capacitor C RE are also within a certain range, subject to the capacitance of the non-bendable area Q2 that can be collected, without excessive extension.
  • the flexible substrate 10 includes a plurality of detection capacitors C DE .
  • the capacitances of multiple detection capacitors C DE located in the same bendable area Q1 can be averaged to obtain the capacitance of the bendable area Q1, thereby reducing the capacitance error of the bendable area Q1 .
  • a bendable area Q1 overlaps the orthographic projection of at least two detection capacitors C DE on the substrate 1001.
  • the extension directions of at least two detection capacitors C DE are the same or substantially the same, and at least two detection capacitors C DE are arranged at intervals.
  • the interval between two adjacent detection capacitors C DE is not completely equal.
  • At least two detection capacitors C DE the capacitor C DE probe relatively far from the center of the flexible substrate 10 extending in the longitudinal direction, than the length of the flexible substrate 10 relatively close to the center of the probe capacitor C DE in the extending direction thereof .
  • the bendable area Q1 is located between the two non-bendable areas Q2.
  • the flexible substrate 10 includes four detection capacitors C DE .
  • the extension direction of the four detection capacitors C DE is perpendicular to the extension direction of the bendable area Q1.
  • the four detection capacitors C DE are respectively a first detection capacitor C DE1 , a second detection capacitor C DE2 , a third detection capacitor C DE3 and a fourth detection capacitor C DE4 .
  • the first detection capacitor C DE1 , the second detection capacitor C DE2 and the third detection capacitor C DE3 are all located on one of the opposite sides of the bendable area Q1 along the extending direction thereof.
  • the fourth detection capacitor C DE4 is located on the other side of the opposite sides of the bendable region Q1 in the extending direction thereof.
  • the first detection capacitor C DE1 is close to the edge of the flexible substrate 10 relative to the second detection capacitor C DE2
  • the third detection capacitor C DE3 is close to the center of the flexible substrate 10 relative to the second detection capacitor C DE2
  • the fourth detection capacitor C DE4 is closer to the edge of the flexible substrate 10 than the first detection capacitor C DE1 .
  • the bending area Q1 near the center of the flexible substrate 10 receives relatively large stress. Therefore, the first detection capacitor C DE1 and the second detection capacitor C DE2
  • the sensitivity of the detection capacitor relatively close to the center of the flexible substrate 10 in the third detection capacitor C DE3 and the fourth detection capacitor C DE4 is relatively high, and the sensitivity of the detection capacitor relatively close to the edge of the flexible substrate 10 is relatively low.
  • the first The length of the detection capacitor C DE1 is greater than the length of the second detection capacitor C DE2
  • the length of the second detection capacitor C DE2 is greater than the length of the third detection capacitor C DE3
  • the length of the fourth detection capacitor C DE4 is greater than that of the first detection capacitor C DE1 Length, which can ensure the sensitivity of each detection capacitor.
  • the flexible substrate 10 includes a plurality of reference capacitors C RE .
  • the capacitances of multiple reference capacitors C RE located in the same non-bendable area Q2 can be averaged to obtain the capacitance of the non-bendable area Q2, thereby avoiding the stress on the non-bendable area Q2
  • the influence on the capacitance of the reference capacitor C RE reduces the error of the capacitance of the non-bendable area Q2.
  • the extension directions of the multiple reference capacitors C RE are the same or substantially the same.
  • a plurality of reference capacitors C RE are arranged at intervals.
  • the length of the reference capacitor C RE relatively far from the center of the flexible substrate 10 in its extension direction is greater than the length of the reference capacitor C RE relatively close to the center of the flexible substrate 10 in its extension direction.
  • the bendable area Q1 is located in two non-bendable areas. Between area Q2.
  • the multiple reference capacitors C RE are located in one of the two non-bendable areas Q2, or the multiple reference capacitors C RE are located in the two non-bendable areas Q2, and the two non-bendable areas
  • the number of reference capacitors C RE in Q2 is not necessarily equal.
  • the flexible substrate 10 includes three reference capacitors C RE , and the three reference capacitors C RE are all located in an unbendable area Q2, the three reference capacitors C RE are respectively the first reference capacitor C RE1 and the second reference capacitor C RE The capacitor C RE2 and the third reference capacitor C RE3 .
  • the first reference capacitor C RE1 is closer to the edge of the flexible substrate 10 than the second reference capacitor C RE2
  • the third reference capacitor C RE3 is closer to the center of the flexible substrate 10 than the second reference capacitor C RE2 .
  • the non-bendable area Q2 is relatively close to the bendable area Q1, and the greater the stress received at the position, the bendable area Q1 is closer to the flexible substrate 10 relative to the non-bendable area Q2. center.
  • the sensitivity of the reference capacitor relatively close to the center of the flexible substrate 10 is higher, and the sensitivity of the reference capacitor relatively far from the center of the flexible substrate 10 is lower.
  • the length of the first reference capacitor C RE1 is greater than the length of the second reference capacitor C RE2
  • the length of the second reference capacitor C RE2 It is greater than the length of the third reference capacitor C RE3 , so that the sensitivity of each reference capacitor can be guaranteed.
  • the shielding of the center position of the flexible substrate 10 by the reference capacitor C RE can be avoided.
  • the flexible substrate 10 has a plurality of bendable regions Q1 arranged at intervals, and the extension directions of the plurality of bendable regions Q1 are the same or substantially the same, for example, a plurality of bendable regions Q1 All extend along the horizontal direction X in FIG. 6.
  • the flexible substrate 10 includes a plurality of detection capacitors C DE , and each bendable area Q1 overlaps an orthographic projection of at least one detection capacitor C DE on the substrate 10.
  • the flexible substrate 10 has three bendable regions Q1 arranged at intervals, and the flexible substrate 10 includes three detection capacitors C DE .
  • the extension direction of the detection capacitor C DE is perpendicular to the extension direction of the bendable area Q1, and the orthographic projection of a detection capacitor C DE on the substrate 1001 overlaps a bendable area Q1.
  • the lengths of the three detection capacitors C DE are approximately equal.
  • the flexible substrate 10 includes a plurality of reference capacitors C RE , and the number of the plurality of reference capacitors C RE is the same as the number of the plurality of detection capacitors C DE .
  • the plurality of reference capacitors C RE are respectively located on opposite sides of the plurality of bendable regions Q1 along the extension direction perpendicular to the bendable region Q1.
  • the flexible substrate 10 has three bendable areas Q1 and four non-bendable areas Q2 arranged at intervals, the bendable areas Q1 and the non-bendable areas Q2 are alternately distributed, and two adjacent non-bendable areas Q2 are arranged alternately.
  • a bendable area Q1 is provided in between.
  • the flexible substrate 10 includes three reference capacitors C RE .
  • the extension direction of the reference capacitor C RE is parallel to the extension direction of the bendable area Q1.
  • the extension direction of the two reference capacitors C RE in the same non-bendable area Q2 is the same straight line.
  • the first detection electrode 1011 and the second detection electrode 1021 have multiple perforations.
  • the orthographic projection of the perforation of the first detection electrode 1011 on the substrate 1001 coincides with the orthographic projection of the perforation of the second detection electrode 1021 on the substrate 1001.
  • the first electrode layer 1010 includes at least one first reference electrode 1012 and the second electrode layer 1020 includes at least one second reference electrode 1022
  • the first reference electrode 1012 and the second reference electrode 1022 have a plurality of perforations.
  • the orthographic projection of the perforation of the first reference electrode 1012 on the substrate 1001 coincides with the orthographic projection of the perforation of the second reference electrode 1022 on the substrate 1001.
  • first detection electrode 1011, the second detection electrode 1021, the first reference electrode 1012, and the second reference electrode 1022 are all patterned electrodes.
  • the perforated structure can buffer the force received by the first detection electrode 1011, the second detection electrode 1021, the first reference electrode 1012, and the second reference electrode 1022, thereby improving the first detection
  • the bending resistance of the electrodes 1011, the second detection electrode 1021, the first reference electrode 1012, and the second reference electrode 1022 improves the bending resistance of the detection capacitor C DE and the reference capacitor C RE .
  • each electrode and the shape of the perforation can be designed according to the actual situation, which is not limited here.
  • the shape enclosed by the edges of the first detection electrode 1011, the second detection electrode 1021, the first reference electrode 1012, and the second reference electrode 1022 may be as shown in (a), (b) and (c) in FIG.
  • the irregular pattern shown can also be the quadrilateral shown in (d), (e) and (f) in Figure 7, and the shape of the perforation 1 can be the quadrilateral shown in (a) and (d) in Figure 7 ,
  • the first insulating layer 1002 has flexibility. In this way, the flexible first insulating layer 1002 can buffer the forces received by the first detection electrode 1011, the second detection electrode 1021, the first reference electrode 1012, and the second reference electrode 1022, thereby improving the detection capacitor C DE and the reference capacitor C.
  • the bending resistance of RE The bending resistance of RE .
  • the material of the first insulating layer 1002 is the same as the material of the substrate 1001. In this way, while the first insulating layer 1002 buffers the forces received by the electrodes, it can avoid cracks in the first insulating layer 1002 and prevent damage to the first insulating layer 1002, thereby ensuring the detection capacitor C DE and the reference capacitor C RE Stability, to ensure the sensitivity of the detection capacitor C DE and the reference capacitor C RE , and improve the signal-to-noise ratio of the capacitor.
  • the first insulating layer 1002 can be regarded as a part of the substrate 1001.
  • the first electrode layer 1010 is equivalent to being embedded in the substrate 1001 so that the substrate 1001 can protect the first detection electrode 1011 and the first reference electrode 1012 in the first electrode layer 1010. In this way, the force received by the first detection electrode 1011 and the first reference electrode 1012 during the bending process can be buffered, and the interference of the first detection electrode 1011 and the first reference electrode 1012 by other traces can be avoided.
  • the orthographic projection of the first electrode layer 1010 on the substrate 1001 is located within the orthographic projection of the first insulating layer 1002 on the substrate 1001, and the first electrode layer 1010 is covered by the first insulating layer 1002. In this way, the capacitance signals transmitted by the first detection electrode 1011 and the first reference electrode 1012 in the first electrode layer 1010 can be prevented from being interfered by other wirings.
  • the flexible substrate 10 further includes a barrier layer 1003 disposed on the side of the second electrode layer 1020 away from the substrate 1001.
  • the flexible substrate 10 further includes a buffer layer 1004 disposed on the side of the barrier layer 1003 away from the second electrode layer 1020.
  • the thickness of the barrier layer 1003 and the thickness of the buffer layer 1004 can be set according to actual conditions and are not limited.
  • the thickness of the barrier layer 1003 is 100 nm to 900 nm, such as 300 nm, 500 nm, or 750 nm.
  • both the barrier layer 1003 and the buffer layer 1004 can ensure that the surface of the flexible substrate 10 is flattened and improve the film layers formed on the surface of the flexible substrate 10 (for example, the film layers of the pixel circuit and the film layers of the light-emitting device) The uniformity.
  • An embodiment of the present disclosure provides a display panel 100. As shown in FIG. 8, the display panel 100 includes the flexible substrate 10 in any of the foregoing embodiments.
  • the display panel 100 further includes a common signal interface 101 and a detection signal interface 102 provided on the flexible substrate 10.
  • the common signal interface 101 is configured to transmit common signals.
  • the electrode coupled to the common signal interface 101 can be a plate of the detection capacitor or the reference capacitor in the flexible substrate, and the electrode receives the common signal so as to form a capacitance with the other plate of the detection capacitor or the reference capacitor.
  • one of the first detection electrode 1011 and the second detection electrode 1021 of the detection capacitor C DE of the flexible substrate 10 is coupled to the detection signal interface 102, and the other is coupled to the common signal interface 101.
  • the first detection electrode 1011 of the detection capacitor C DE is coupled to the detection signal interface 102, and the second detection electrode 1021 is coupled to the common signal interface 101; or, the first detection electrode 1011 of the detection capacitor C DE and the common signal The interface 101 is coupled, and the second detection electrode 1021 is coupled to the detection signal interface 102.
  • the detection capacitor C DE detects the capacitance signal of the bendable area Q1 and transmits the capacitance signal to the detection signal interface 102.
  • the display panel 100 of the present disclosure has the same beneficial effects as the above-mentioned flexible substrate 10, and will not be repeated here.
  • the flexible substrate 10 includes at least one reference capacitor C RE , one of the first reference electrode 1012 and the second reference electrode 1022 of the reference capacitor C RE and the detection signal
  • the interface 102 is coupled, and the other is coupled to the common signal interface 101.
  • the electrodes in the same electrode layer are coupled to the same interface.
  • the first detection electrode 1011 is coupled to the detection signal interface 102 and the second detection electrode 1021 is coupled to the common signal interface 101
  • the first reference electrode 1012 is coupled to the detection signal interface 102
  • the second The reference electrode 1022 is coupled to the common signal interface 101
  • the first detection electrode 1011 is coupled to the common signal interface 101
  • the second detection electrode 1021 is coupled to the detection signal interface 102
  • the first reference electrode 1012 is coupled to the common signal interface 101 is coupled
  • the second reference electrode 1022 is coupled to the detection signal interface 102.
  • the display panel 100 further includes at least one detection trace 103 provided on the flexible substrate 10.
  • the detection trace 103 is configured to connect the detection signal interface 102 and the first detection electrode 1011 or the second detection electrode 1021 of the detection capacitor C DE .
  • the display panel 100 further includes at least one reference wiring 104 provided on the flexible substrate 10.
  • the reference trace 104 is configured to connect the detection signal interface 102 and the first reference electrode 1012 or the second reference electrode 1022 of the reference capacitor C RE .
  • the number of detection wires 103 is related to the number of first detection electrodes 1011 or second detection electrodes 1021
  • the number of reference wires 104 is related to the number of first reference electrodes 1012 or second reference electrodes 1022.
  • the display panel 100 further includes at least one TFT provided on the flexible substrate 10.
  • the TFT includes an active layer ACT, a gate G, a source S, a drain D, and at least one second insulating layer 1005.
  • At least one TFT is located in the AA area.
  • the TFT may be a TFT in the pixel circuit 201 in the display panel 100, or may be an additional TFT in the display panel 100.
  • the detection wiring 103 and the source S and drain D in the TFT are arranged in the same layer and have the same material.
  • the detection wiring 103 is formed synchronously with the source S and drain D in the TFT, thereby simplifying the production process.
  • the detection trace 103 is coupled to the first detection electrode 1011 or the second detection electrode 1021 through the first via 1006.
  • the first via hole 1006 penetrates the film layer between the film layer where the source electrode S and the drain electrode D are located and the first electrode layer 1010 or the second electrode layer 1020.
  • the second insulating layer 1005 may include a gate insulating layer GI disposed between the active layer ACT and the gate G, and a gate insulating layer GI disposed on the gate G The interlayer dielectric layer ILD between the source S and the drain D.
  • the second insulating layer 1005 may include a gate insulating layer GI disposed between the active layer ACT and the gate G.
  • the first via 1006 penetrates the film layer between the source electrode S and the drain electrode D and the first electrode layer 1010.
  • the film The layers may include an interlayer dielectric layer ILD, a gate insulating layer GI, a buffer layer 1004, a barrier layer 1003, and a first insulating layer 1002, which is shown in FIG. 9.
  • the detection trace 103 is coupled to the second detection electrode 1021
  • the first via 1006 penetrates the film layer between the source electrode S and the drain electrode D and the second electrode layer 1020.
  • the film layer may include interlayer The dielectric layer ILD, the gate insulating layer GI, the buffer layer 1004 and the barrier layer 1003.
  • the reference trace 104 and the source S and drain D in the TFT are arranged in the same layer and have the same material.
  • the reference trace 104 is formed synchronously with the source S and drain D in the TFT, thereby simplifying the production process.
  • the reference trace 104 is coupled to the first reference electrode 1012 or the second reference electrode 1022 through the second via 1007.
  • the second via hole 1007 penetrates the film layer between the film layer where the source electrode S and the drain electrode D are located and the first electrode layer 1010 or the second electrode layer 1020.
  • the second via 1007 penetrates the film layer between the source electrode S and the drain electrode D and the first electrode layer 1010;
  • the second via hole 1007 penetrates the film layer between the source electrode S and the drain electrode D and the second electrode layer 1020.
  • the second via hole 1007 penetrates the film layer between the source electrode S and the drain electrode D and the first electrode layer 1010.
  • the film The layers may include an interlayer dielectric layer ILD, a gate insulating layer GI, a buffer layer 1004, a barrier layer 1003, and a first insulating layer 1002, which is shown in FIG. 9.
  • the second via hole 1007 penetrates the film layer between the source electrode S and the drain electrode D and the second electrode layer 1020.
  • the film layer may include interlayer The dielectric layer ILD, the gate insulating layer GI, the buffer layer 1004 and the barrier layer 1003.
  • the detection wiring 103 and the reference wiring 104 are arranged on the same layer as the source S and drain D of the TFT, and the detection wiring 103 and the reference wiring 104 are far away from the substrate 1001, which can avoid signal interference and improve the reliability. Noise ratio.
  • the display panel 100 further includes a common wiring, the common wiring is coupled to the common signal interface 101, and the common wiring is configured to transmit a common signal.
  • the common wiring is coupled to the common signal interface 101, and the common wiring is configured to transmit a common signal.
  • one electrode in the detection capacitor C DE is coupled to the detection trace 103
  • the other electrode is coupled to the common trace
  • one electrode in the reference capacitor C RE is coupled to the reference trace 104
  • the other electrode is coupled to the common trace. ⁇ Line coupling.
  • the common wiring may be arranged in the same layer and the same material as the detection wiring 103 and the reference wiring 104.
  • the common trace can pass through the film via hole between the film layer where the source electrode S and the drain electrode D are located and the first electrode layer 1010 or the second electrode layer 1020, and the first detection electrode 1011 or the second electrode layer 1020 in the detection capacitor C DE
  • the two detection electrodes 1021 are coupled to the first reference electrode 1012 or the second reference electrode 1022 in the reference capacitor C RE .
  • the display panel 100 further includes at least one signal amplifying circuit 105.
  • At least one signal amplifying circuit 105 may be provided on the flexible substrate 10. At least one signal amplifying circuit 105 is located in the frame area S of the display panel 100. Moreover, in terms of process, at least one signal amplifying circuit 105 can be prepared simultaneously with the TFT.
  • At least one signal amplifying circuit 105 may also be bound to the flexible substrate 10 (not shown in the figure). In this way, the design of the display panel 100 can be simplified.
  • the detection wiring 103 is coupled to the detection signal interface 102 through the signal amplification circuit 105.
  • the reference wiring 104 is coupled to the detection signal interface 102 through the signal amplifying circuit 105.
  • the signal amplifying circuit 105 amplifies the signal transmitted by the detection wiring 103 and transmits it to the detection signal interface 102, and amplifies the signal transmitted by the reference wiring 104 and transmits it to the detection signal interface 102.
  • the display panel 100 includes a signal amplifying circuit 105.
  • Each detection wire 103 is coupled to the signal amplifying circuit 105.
  • the signal amplifying circuit 105 is configured to sequentially amplify the signals from each detection wiring 103 in a time-sharing manner.
  • the signal amplifying circuit 105 is also coupled to each reference wiring 104.
  • the signal amplifying circuit 105 is configured to sequentially amplify the signals from each reference wiring 104 in a time-sharing manner. In this way, the circuit design of the display panel 100 can be simplified.
  • the display panel 100 includes a plurality of signal amplifying circuits 105.
  • Each detection wiring 103 is connected to a signal amplifying circuit 105.
  • each reference wiring 104 is connected to a signal amplifying circuit 105.
  • the signal amplifying circuit 105 is configured to amplify the signal from the detection trace 103 or the signal from the reference trace 104 to which it is coupled. In this way, it is possible to avoid the interference of the signal amplification circuit 105 in the signal amplification process, and improve the accuracy of the signal amplification process.
  • the wiring manner of the detection wiring 103 and the reference wiring 104 can be designed according to actual conditions, which is not limited in the present disclosure.
  • the display panel 100 further includes a neutral layer.
  • the neutral layer is a film layer that is neither stretched nor compressed during the bending process of the display panel 100, and the stress experienced by the neutral layer during the bending process is approximately zero.
  • the neutral layer may be located in the bendable area Q1.
  • the neutral layer is generally provided with devices that are relatively easily affected by stress or external forces, such as light-emitting devices EL, etc., so as to avoid damage to the devices by stress or external forces.
  • the detection capacitor C DE since the detection capacitor C DE is integrated in the flexible substrate 10, the detection capacitor C DE can be prevented from occupying the neutral layer of the display panel 100.
  • An embodiment of the present disclosure provides a display device 300.
  • the display device 300 includes the display panel 100 and the signal processor 301 in any of the foregoing embodiments.
  • the signal processor 301 is coupled to the detection signal interface 102 in the display panel 100.
  • the signal processor 301 is configured to receive the detection signal transmitted by the detection signal interface 102, obtain the capacitance change of at least one detection capacitor C DE in the display panel 100 according to the detection signal 102, and obtain the bending of the display panel 100 according to the capacitance change angle.
  • the amount of capacitance change detection is the detection of the capacitor C DE capacitance variations of the capacitance of the capacitor C DE bent around.
  • the signal processor 301 can monitor the bending information of at least one bendable area Q1 in the display panel 100.
  • the signal amplifying circuit 105 transmits the amplified signal to the detection signal interface 102, which can simplify the signal processing complexity of the signal processor 301.
  • the display device 300 of the embodiment of the present disclosure through the detection capacitance C DE in the flexible substrate 10 of the display panel 100, during the bending process of the display panel 100, the capacitance of the detection capacitance C DE before and after the bending The amount of change of, obtains the bending angle of the display panel 100, so that the display device 300 can also detect the bending information during the flexible display process, and realize the diversification of the functions of the display device 300. Moreover, since the detection capacitor C DE is provided in the flexible substrate 10, the display device 300 can be made lighter and thinner.
  • the display panel 100 has a plurality of bendable regions Q1.
  • the display panel 100 includes a plurality of detection capacitors C DE .
  • Each bendable area Q1 overlaps with the orthographic projection of at least one detection capacitor C DE on the substrate 1001.
  • the signal processor 301 is further configured according to position information of the sensing capacitance variation of the capacitor C DE, and of the sensing capacitor C DE obtain a position of the display panel 100 is bent.
  • the signal processor 301 obtains the bent detection capacitor C DE in each detection capacitor C DE according to the capacitance change of each detection capacitor C DE , and according to the position information of the bent detection capacitor C DE , The bending position of the display panel 100 is obtained.
  • the signal processor 301 may be integrated in a driving chip, and the interface for receiving the capacitance signal in the driving chip is coupled to the detection signal interface 10 of the display panel 100.
  • the driving chip further includes the data driving circuit 2102, the driving chip can not only drive the display panel 100 to display images, but also detect the bending information of the display panel 100.
  • the display device 300 further includes a display controller 302 and a line of sight collector 303.
  • the display controller 302 is coupled with the signal processor 301 and the display panel 100.
  • the sight line collector 303 is coupled to the signal processor 301.
  • the line of sight collector 303 is configured to collect information about the direction of the user's line of sight, and send the collected information about the direction of the line of sight to the signal processor 301.
  • the gaze collector 303 may include an eye tracker or the like.
  • the line-of-sight collector 303 may be arranged on the front of the display device 300, such as the area where the front camera is located, so that the line-of-sight collector 303 can collect information about the direction of the user's line of sight when the user views the display device 300 normally.
  • the signal processor 301 is also configured to receive information about the line of sight direction, and obtain display position control information or display brightness control information according to the information of the bending angle, the bending position, and the line of sight direction of the display panel 100.
  • the signal processor 301 obtains display position control information or display brightness control information according to the information of the user's line of sight direction and the bending position information and the bending angle of the display panel 100.
  • the display controller 302 is configured to obtain display position control information, and control the display panel 100 to display an image at a position indicated by the display position control information; or, obtain display brightness control information, and control the display panel 100 to display information indicated by the display brightness control information. Brightness of the image.
  • the line of sight collector 303 collects the information of the user's line of sight direction, and the signal processor 400 determines that the user's line of sight falls on the display panel according to the collected information of the user's line of sight direction. Which area.
  • the display panel 100 has a bendable area Q1, and the bendable area Q1 divides the display area of the display panel 100 into a first sub-area A1 and a second sub-area A2.
  • the display panel 100 is a flat display, and the display panel 100 is a full-screen display at this time.
  • the display panel 100 As the bending angle increases (for example, the bending angle ⁇ in FIG. 13 increases to 45°), under the condition that the user's viewing angle remains unchanged, the display panel 100
  • the brightness of the image displayed in a part of the area turned up by the bending decreases, causing the user to see the second sub-area A2 when viewing the image displayed in the first sub-area A1.
  • the brightness of the displayed image is relatively low, even invisible.
  • the display controller 302 may control the display panel 100 to perform partial display, so that the screen displayed by the display panel 100 is located in an area of the display panel 100 that is not bent or a part that is not turned up due to bending. In this way, without changing the user's viewing angle (the viewing angle or the direction of the line of sight in the plane display state), the entire image content displayed by the display panel 100 can be viewed completely in a partial display area, and the display panel 100 can be prevented from being bent. The problem that causes users to be unable to watch normally.
  • the display controller 302 can adjust the display brightness of the portion of the display panel 100 that is turned up due to the bending according to the bending angle, so that the display brightness of the turned-up portion follows the bending angle.
  • the increase of the folding angle increases, so as to avoid the problem of the display brightness of the partial display area of the display panel 100 decreasing due to the bending of the display panel 100.
  • the signal processor 301 can obtain the display position control information according to the collected information of the user's line of sight direction and the bending angle and bending position of the display panel 100, so as to control the display panel 100 in the first sub-region A1. Display the image.
  • the user's line of sight falls on the first sub-area A1, it can be ensured that the user can clearly view the image.
  • the signal processor 302 obtains display brightness control information according to the user's line of sight direction and the bending position and bending angle of the display panel to control the brightness of the image displayed in the second sub-region A2, so that the second sub-region A2 The brightness of the displayed image has increased.
  • the user's line of sight is directed to the first sub-area A1
  • the brightness of the image displayed by the user in the second sub-area A2 is equal or approximately equal to the brightness of the image displayed in the first sub-area A1. Therefore, the user can clearly see the image displayed in the second sub-area A2.
  • the display device 300 further includes a command recognition component 304 and a bending drive mechanism 305.
  • the instruction recognition component 304 is configured to recognize user instructions.
  • the bending drive mechanism 305 is coupled with the command recognition component 304.
  • the bending driving mechanism 305 is configured to drive the display panel 100 to bend according to a user instruction; and, when the bending angle of the display panel 100 reaches a preset angle, the display panel 100 is controlled to stop bending.
  • the instruction recognition component 304 may be a voice recognizer for recognizing a user's voice, or a sensor device for recognizing a user's gesture.
  • the speech recognizer may be a Siri (Speech Interpretation & Recognition Interface) speech recognizer to support natural language input. Siri voice recognizer can call display devices such as applications in mobile phones (such as weather forecast, schedule, search information, etc.), and update the voice and intonation of the voice, provide users with conversational responses, realize intelligence, and improve man-machine Interactive experience.
  • the bending drive mechanism 305 may adopt an electronic hinge including an electronic hinge.
  • the instruction recognition component 304 recognizes a user instruction, for example, the user instruction is a voice "Please open to 75°, I need to watch a movie".
  • the bending driving mechanism 305 drives the display panel 100 to bend according to the user's instruction.
  • the signal processor 301 detects the capacitance change of the capacitor C DE according to at least one of the display panel 100 to obtain the bending angle of the display panel 100.
  • the signal processor 301 transmits an instruction to stop bending to the bending drive mechanism 305, and the bending drive mechanism 305 controls the display panel 100 to stop bending.
  • the signal processor 301 obtains display position control information or display brightness control information.
  • the display controller 302 obtains the display position control information and controls the display panel 100 to display an image at the position indicated by the display position control information; or obtains the display brightness control information, and controls the display panel 100 to display an image with the brightness indicated by the display brightness control information , Causing the display panel 100 to play the movie.
  • the above-mentioned bending angle of the display panel 100 refers to the angle between the part that is turned up by the bending and the plane where the part that is not turned up in the display panel 100 is located, such as the display panel 100 in FIG. 13
  • the embodiment of the present disclosure provides a method for manufacturing the display panel 100 as in any of the above embodiments.
  • the display panel 100 has at least one bendable area Q1.
  • the display panel 100 may be prepared by a combination of a film forming process and an etching process.
  • the film forming process may include film forming processes such as magnetron sputtering and vacuum evaporation;
  • the etching process may include etching processes such as wet etching and dry etching.
  • the manufacturing method of the display panel 100 includes the following steps:
  • the substrate 1001 is generally formed on a hard substrate such as glass.
  • the hard substrate can carry the substrate 1001 to ensure the normal production of the display panel 100.
  • the substrate 1001 may be made of one layer of polyimide film, or two layers or more of polyimide film.
  • the first electrode layer 1010 includes at least one first detection electrode 1011; the orthographic projection of the first detection electrode 1011 on the substrate 1001 overlaps the bendable area Q1.
  • a conductive conductive material is deposited on the substrate 1001 to form a conductive thin film, and then the conductive thin film is patterned using a patterning process such as photolithography to form a first electrode layer 1010 including at least one first detection electrode 1011.
  • the material of the first insulating layer 1002 may be an insulating material with no flexibility, or an insulating material with flexibility.
  • the first insulating layer 1002 may cover the first electrode layer 1010, and other circuits interfere with the signal of the first electrode layer 1010.
  • a second electrode layer 1020 is formed on the side of the first insulating layer 1002 away from the substrate 1001.
  • the second electrode layer 1020 includes at least one second detection electrode 1021.
  • the orthographic projection of the second detection electrode 1021 on the substrate 1001 is The orthographic projection of the first detection electrode 1011 on the substrate 1001 at least partially overlap; the first detection electrode 1011, the second detection electrode 1021, and the first insulating layer 1002 located between the two form a detection capacitor C DE ; detection capacitor The orthographic projection of the C DE on the substrate 1001 overlaps the bendable area Q1; the flexible substrate 10 is obtained.
  • the manufacturing method of the display panel 100 provided by the embodiment of the present disclosure has the same beneficial effects as the above-mentioned display panel 100, and will not be repeated here.
  • the preparation method of the display panel 100 further includes forming a barrier layer 1003 on the side of the second electrode layer 1020 away from the substrate 1001, and forming a buffer on the side of the barrier layer 1003 away from the substrate 1001. ⁇ 1004.
  • the display panel 100 further includes at least one non-bendable region Q2, and forming the first electrode layer 1010 on the substrate 1001 further includes: forming at least one first reference electrode 1012, at least one first reference electrode 1012 and The at least one first detection electrode 1011 is insulated, and the orthographic projection of the at least one first reference electrode 1012 on the substrate 1001 is located in the non-bendable area Q2.
  • Forming the second electrode layer 1020 on the side of the first insulating layer 1002 away from the substrate 1001 further includes: forming at least one second reference electrode 1022, the at least one second reference electrode 1022 is insulated from the at least one second detection electrode 1021, and a first The orthographic projection of the two reference electrodes 1022 and a first reference electrode 1012 on the substrate 1001 at least partially overlap.
  • the first reference electrode 1012, the second reference electrode 1022 and the first insulating layer 1002 located between the two form a reference capacitor C RE , the orthographic projection of the reference capacitor C RE on the substrate 1001 is located in the non-bendable area Q2.
  • the manufacturing method of the display panel 100 further includes:
  • the TFT includes an active layer ACT, a gate G, a source S, a drain D, and at least one second insulating layer 1005; At the same time as the source electrode S and the drain electrode D, at least one detection trace 103 is formed.
  • the detection trace 103 is coupled to the first detection electrode 1011 or the second detection electrode 1021 through the first via 1006; the first via 1006 penetrates The film layer between the film layer where the source electrode S and the drain electrode D are located and the first electrode layer 1010 or the second electrode layer 1020.
  • the first via 1006 penetrates the film layer between the source electrode S and the drain electrode D and the first electrode layer 1010.
  • the films may include an interlayer dielectric layer, a gate insulating layer, a buffer layer, a barrier layer, and a first insulating layer; when the detection trace 103 is coupled to the second detection electrode 1021, the first via 1006 penetrates the source S and the drain A film layer between the film layer where D is located and the second electrode layer 1020.
  • the film layer may include an interlayer dielectric layer ILD, a gate insulating layer GI, a buffer layer 1004 and a barrier layer 1003.
  • the manufacturing method of the display panel 100 further includes: forming at least one reference trace while forming the source S and the drain D of the TFT. 104.
  • the reference trace 104 is coupled to the first reference electrode 1012 or the second reference electrode 1022 through the second via 1007.
  • the second via hole 1007 penetrates the film layer between the film layer where the source electrode S and the drain electrode D are located and the first electrode layer 1010 or the second electrode layer 1020.
  • the second via 1007 penetrates the film layer between the source electrode S and the drain electrode D and the first electrode layer 1010;
  • the second via hole 1007 penetrates the film layer between the source electrode S and the drain electrode D and the second electrode layer 1020.
  • the signal amplifying circuit 700 detects that the wiring 103 and the reference wiring 104 are coupled.
  • the method for manufacturing the display panel 100 further includes forming the light emitting device EL.
  • a flat layer PLN needs to be formed on the side of the TFT away from the flexible substrate 10 to flatten the surface of the side of the TFT away from the flexible substrate 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性基板,具有至少一个可弯折区域,柔性基板包括柔性的衬底、设置于衬底上的第一电极层、设置于第一电极层远离衬底一侧的第一绝缘层和设置于第一绝缘层远离衬底一侧的第二电极层。第一电极层包括至少一个第一探测电极,第二电极层包括至少一个第二探测电极。一个第一探测电极在衬底上的正投影与一个第二探测电极在衬底上的正投影至少部分重叠,第一探测电极、第二探测电极和位于二者之间的第一绝缘层,形成一个探测电容器。探测电容器在衬底上的正投影,与可弯折区域交叠。

Description

柔性基板、显示面板及显示装置
本申请要求于2019年06月06日提交的、申请号为201910493077.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种柔性基板、显示面板及显示装置。
背景技术
有机电致发光显示面板(Organic Electro Luminescent Display,OLED)是一种可实现柔性化显示的显示器件,凭借其低功耗、高色饱和度、广视角、薄厚度等优异性能逐渐成为显示领域的主流产品,可以广泛应用于智能手机、平板电脑、电视等终端。
发明内容
一方面,提供一种柔性基板。所述柔性基板具有至少一个可弯折区域。所述柔性基板包括柔性的衬底、第一电极层、第一绝缘层和第二电极层。所述第一电极层设置于所述衬底上,所述第一电极层包括至少一个第一探测电极。所述第一绝缘层设置于所述第一电极层远离所述衬底的一侧。所述第二电极层设置于所述第一绝缘层远离所述衬底的一侧,所述第二电极层包括至少一个第二探测电极。一个第一探测电极在所述衬底上的正投影与一个第二探测电极在所述衬底上的正投影至少部分重叠,所述第一探测电极、所述第二探测电极和位于二者之间的第一绝缘层,形成一个探测电容器。所述探测电容器在所述衬底上的正投影,与所述可弯折区域交叠。
在一些实施例中,所述柔性基板还具有至少一个不可弯折区域。所述第一电极层还包括至少一个第一参考电极。所述至少一个第一参考电极与所述至少一个第一探测电极绝缘。所述第二电极层还包括至少一个第二参考电极。所述至少一个第二参考电极与所述至少一个第二探测电极绝缘。一个第一参考电极在所述衬底上的正投影与一个第二参考电极在所述衬底上的正投影至少部分重叠,所述第一参考电极、所述第二参考电极和位于二者之间的第一绝缘层形成一个参考电容器。所述参考电容器在所述衬底上的正投影位于所述不可弯折区域内。
在一些实施例中,所述第一探测电极和所述第二探测电极均为条状电极;形成同一探测电容器的第一探测电极的延伸方向和第二探测电极的延伸方向相同或大致相同。在所述第一电极层包括至少一个第一参考电极,所述第 二电极层包括至少一个第二参考电极的情况下,所述第一参考电极和所述第二参考电极均为条状电极;形成同一参考电容器的第一参考电极的延伸方向和第二参考电极的延伸方向相同或大致相同。
在一些实施例中,所述可弯折区域的形状为条状。所述可弯折区域的延伸方向与所述第一探测电极的延伸方向相交叉。在所述第一电极层包括至少一个第一参考电极,所述第二电极层包括至少一个第二参考电极的情况下,所述可弯折区域的延伸方向与形成同一参考电容器的第一参考电极和第二参考电极的延伸方向相同或大致相同。
在一些实施例中,所述可弯折区域的延伸方向与所述第一探测电极的延伸方向之间的夹角的角度为70°~130°。
在一些实施例中,所述柔性基板包括多个探测电容器,一个所述可弯折区域与至少两个探测电容器在所述衬底上的正投影交叠。所述至少两个探测电容器的延伸方向相同或大致相同,所述至少两个探测电容器间隔设置。在所述至少两个探测电容器中,相对远离所述柔性基板的中心的探测电容器在其延伸方向上的长度,大于相对靠近所述柔性基板的中心的探测电容器在其延伸方向上的长度。
在所述柔性基板包括多个参考电容器的情况下,所述多个参考电容器的延伸方向相同或大致相同,所述多个参考电容器间隔设置。在所述多个参考电容器中,相对远离所述柔性基板的中心的参考电容器在其延伸方向上的长度,大于相对靠近所述柔性基板的中心的参考电容器在其延伸方向上的长度。
在一些实施例中,所述柔性基板具有间隔设置的多个可弯折区域,所述多个可弯折区域的延伸方向相同或大致相同。所述柔性基板包括多个探测电容器,每个所述可弯折区域与至少一个探测电容器在所述衬底上的正投影有交叠。
在所述柔性基板包括多个参考电容器的情况下,所述多个参考电容器的数量与所述多个探测电容器的数量相同。所述多个参考电容器分别位于所述多个可弯折区域整体沿垂直于所述可弯折区域的延伸方向上的相对两侧。
在一些实施例中,所述第一探测电极和所述第二探测电极具有多个穿孔。在所述第一电极层包括至少一个第一参考电极,所述第二电极层包括至少一个第二参考电极的情况下,所述第一参考电极和所述第二参考电极具有多个穿孔。
在一些实施例中,所述第一绝缘层具有柔性。
在一些实施例中,所述第一绝缘层的材料与所述衬底的材料相同。
在一些实施例中,所述柔性基板还包括阻挡层和缓冲层。所述阻挡层设置于所述第二电极层远离所述衬底的一侧。所述缓冲层设置于所述阻挡层远离所述第二电极层的一侧。
另一方面,提供一种显示面板。所述显示面板包括:如上述任一实施例所述的柔性基板、公共信号接口和检测信号接口。所述公共信号接口和所述检测信号接口设置于所述柔性基板上。所述柔性基板的探测电容器的第一探测电极和第二探测电极中的一者与所述检测信号接口耦接,另一者与所述公共信号接口耦接。
在一些实施例中,在所述柔性基板包括至少一个参考电容器的情况下,所述参考电容器的第一参考电极和第二参考电极中的一者与所述检测信号接口耦接,另一者与所述公共信号接口耦接;并且,处于同一电极层中的电极与相同的接口耦接。
在一些实施例中,所述显示面板还包括设置于所述柔性基板上的至少一条探测走线。所述探测走线被配置为连接所述检测信号接口与所述探测电容器的第一探测电极或第二探测电极。
在所述柔性基板包括至少一个参考电容器的情况下,所述显示面板还包括设置于所述柔性基板上的至少一条参考走线。所述参考走线被配置为连接所述检测信号接口与所述参考电容器的第一参考电极或第二参考电极。
在一些实施例中,所述显示面板还包括设置于所述柔性基板上的至少一个薄膜晶体管。所述薄膜晶体管包括有源层、栅极、源极、漏极、及至少一层第二绝缘层。所述探测走线与所述薄膜晶体管中的源极和漏极同层设置且材料相同。所述探测走线通过第一过孔与所述第一探测电极或所述第二探测电极耦接;其中,所述第一过孔贯通所述源极和所述漏极所在膜层与所述第一电极层或所述第二电极层之间的膜层。
在所述显示面板包括至少一条参考走线的情况下,所述参考走线与所述薄膜晶体管中的源极和漏极同层设置且材料相同。所述参考走线通过第二过孔与所述第一参考电极或所述第二参考电极耦接;其中,所述第二过孔贯通所述源极和所述漏极所在膜层与所述第一电极层或所述第二电极层之间的膜层。
在一些实施例中,所述显示面板还包括至少一个信号放大电路。所述至少一个信号放大电路设置于所述柔性基板上,或者与所述柔性基板绑定。所述探测走线通过所述信号放大电路与所述检测信号接口耦接。在所述显示面板包括至少一条参考走线的情况下,所述参考走线通过所述信号放大电路与 所述检测信号接口耦接。
在一些实施例中,所述显示面板包括一个信号放大电路。各条所述探测走线与所述信号放大电路耦接;所述信号放大电路被配置为,分时依次对来自各条所述探测走线的信号进行放大处理。在所述显示面板包括至少一条参考走线的情况下,所述信号放大电路还与各条所述参考走线耦接;所述信号放大电路还被配置为,分时依次对来自各条所述参考走线的信号进行放大处理。
在一些实施例中,所述显示面板包括多个信号放大电路。每条所述探测走线连接一个信号放大电路。在所述显示面板包括至少一条参考走线的情况下,每条所述参考走线连接一个信号放大电路;所述信号放大电路被配置为,对来自其所耦接的探测走线的信号或参考走线的信号进行放大处理。
又一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示面板和信号处理器。所述信号处理器与所述显示面板中的检测信号接口耦接。所述信号处理器被配置为,接收所述检测信号接口所传输的检测信号,根据所述检测信号得到所述显示面板中的至少一个探测电容器的电容变化量,根据所述电容变化量得到所述显示面板的弯折角度。
在一些实施例中,所述显示面板具有多个可弯折区域。所述显示面板包括多个探测电容器,每个所述可弯折区域与至少一个探测电容器在所述衬底上的正投影有交叠。所述信号处理器还被配置为,根据各探测电容器的电容变化量,以及各探测电容器的位置信息,得到所述显示面板的弯折位置。
在一些实施例中,所述显示装置还包括显示控制器和视线采集器。所述显示控制器与所述信号处理器和所述显示面板耦接。所述视线采集器与所述信号处理器耦接。所述视线采集器被配置为采集用户的视线方向的信息,并将所采集的视线方向的信息发送至所述信号处理器。所述信号处理器还被配置为,接收所述视线方向的信息,根据所述显示面板的弯折角度、弯折位置和所述视线方向的信息,获得显示位置控制信息或显示亮度控制信息。所述显示控制器被配置为获取所述显示位置控制信息,控制所述显示面板在所述显示位置控制信息所指示的位置显示图像;或,获取所述显示亮度控制信息,控制所述显示面板显示具有所述显示亮度控制信息所指示的亮度的图像。
在一些实施例中,所述显示装置还包括指令识别部件和弯折驱动机构。所述弯折驱动机构与所述指令识别部件耦接。所述指令识别部件被配置为识别用户指令。所述弯折驱动机构被配置为根据所述用户指令,驱动所述显示面板进行弯折;及,在所述显示面板的弯折角度达到预设角度的情况下,控 制所述显示面板停止弯折。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的一种结构图;
图2为根据一些实施例的子像素的一种结构图;
图3为根据一些实施例的柔性基板的一种结构图;
图4为图3中的柔性基板沿A-A’方向的剖视图;
图5为根据一些实施例的柔性基板的另一种结构图;
图6为根据一些实施例的柔性基板的又一种结构图;
图7为根据一些实施例的第一探测电极和第二探测电极的各种结构图;
图8为根据一些实施例的显示面板的一种结构图;
图9为根据一些实施例的显示面板的另一种结构图;
图10为根据一些实施例的显示面板的又一种结构图;
图11为根据一些实施例的显示面板的又一种结构图;
图12为根据一些实施例的显示装置的另一种结构图;
图13为根据一些实施例的显示面板的一种弯折状态图;
图14为根据一些实施例的显示装置的又一种结构图;
图15为根据一些实施例的显示装置的又一种结构图;
图16为根据一些实施例的显示面板的一种制备流程图;
图17为根据一些实施例的显示面板的另一种制备流程图;
图18为根据一些实施例的探测电容器的一种弯折状态图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包 括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起 的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的实施例提供一种显示装置300,如图1所示,显示装置300包括显示面板100。
示例性地,显示面板100采用OLED显示面板。
如图1所示,显示面板100具有显示区域(Active Area,AA)和至少位于AA区一侧的边框区域S。
如图1所示,显示装置300还包括扫描驱动电路2101、数据驱动电路2102、帧存控制器2103、图像处理器(Graphics Processing Unit,GPU)、时序控制器211、显存2104和中央处理器(Central Processing Unit,CPU)。
其中,扫描驱动电路2101可以设置于显示面板100的边框区域S内。
帧存控制器2103与显存2104耦接,CPU与帧存控制器2103耦接,GPU与帧存控制器2103耦接,GPU与时序控制器211耦接,时序控制器211与扫描驱动电路2101和数据驱动电路2102耦接。
可以理解的是,CPU通过帧存控制器2103将接收到的图像数据所包括的帧视频调试信号写入显存2104中,GPU通过帧存控制器2103取出写入显存2104内的一帧视频调试信号,CPU通过帧存控制器2103将下一帧视频调试信号写入显存2104。GPU将取出的一帧视频调试信号进行解码、缩放、渲染等处理,获得显示数据。时序控制器211将显示数据进行灰度调制等进一步处理,生成同步信号、时钟信号以及处理后的数据信号、时钟信号同步信号,并传输至扫描驱动电路2101和数据驱动电路2102,以控制显示面板100扫描驱动电路2101数据驱动电路2102显示图像。
另外,时序控制器211除了可以生成时序控制信号,也可以对视频信号进行处理。
如图1所示,显示面板100还包括设置于AA区中的多个子像素P。
需要说明的是,图1中以上述多个子像素P呈阵列排布为例进行示意,但本公开实施例不限于此,上述多个子像素P还可以以其他方式进行排布。在图1中,沿水平方向X排列成一排的子像素P称为同一行子像素,沿竖直方向Y排列成一排的子像素P称为同一列子像素。
如图1所示,每个子像素P内设置有像素电路201。
其中,像素电路201一般由薄膜晶体管(Thin Film Transistor,简称TFT)、电容(Capacitance,简称C)等电子器件组成。例如,像素电路201可以是由 两个薄膜晶体管(一个开关晶体管和一个驱动晶体管)和一个电容构成的2T1C结构的像素电路201,或者有由三个薄膜晶体管(两个开关晶体管和一个驱动晶体管)和一个电容构成的3T1C结构的像素电路201;当然,像素电路201还可以是由两个以上的薄膜晶体管(多个开关晶体管和一个驱动晶体管)和至少一个电容构成的像素电路201。图2仅示出像素电路201中的一个TFT。
需要说明的是,TFT的类型较多,可以为NMOS型薄膜晶体管,也可以为PMOS型薄膜晶体管,其区别仅在于导通条件。对于NMOS型薄膜晶体管来说,高电平导通,低电平关断;对于PMOS型薄膜晶体管来说,低电平导通,高电平关断。
示例性地,如图2所示,TFT包括有源层ACT、栅极G、源极S和漏极D。有源层ACT与栅极G之间设置有栅绝缘层GI。像素电路201中的电容C包括与TFT的栅极G同层设置的第一极、位于第一极上方的第二极和位于第一极与第二极之间的绝缘层,第二极的材料与第一极的材料均与栅极G的材料相同。因此,在工艺上,在形成TFT的栅极G的同时,会形成电容C的第一极,在形成TFT的源极S和漏极D之前,会在栅极G的上方形成电容C中的第二极。
如图2所示,每个子像素P还包括与像素电路201耦接的发光器件EL。示例性地,发光器件EL可以与像素电路201中的TFT的源极S和漏极D中的一者耦接。
此外,TFT上还设置有平坦层PLN,以保证发光器件EL的膜层表面平坦。平坦层PLN上还设置有像素界定层PDL,以隔离相邻两个子像素。
示例性地,发光器件EL包括阴极层CA和阳极层AN,以及位于阴极层CA和阳极层AN之间的发光功能层LFU。其中,发光功能层LFU例如可以包括发光层LU、位于发光层LU和阳极层AN之间的空穴传输层HTL、位于发光层LU和阴极层CA之间的电子传输层ETL。当然,根据需要在一些实施例中,还可以在空穴传输层HTL和阳极层AN之间设置空穴注入层HIL,可以在电子传输层ETL和阴极层CA之间设置电子注入层EIL。
需要说明的是,发光功能层LFU中的各膜层的设置方式可以根据阳极层AN和阴极层CA的位置决定。
在此情况下,阳极层AN向空穴注入层HIL注入空穴,并通过空穴传输层HTL传输至发光层LU。阴极层CA向电子注入层EIL注入电子,并通过电子传输层ETL传输至发光层LU。电子和空穴在发光层LU中复合成激子,激子的能量发生转移并以光的形式释放,使发光器件EL实现发光。
其中,扫描驱动电路2101可以与像素电路201中的TFT的栅极G耦接。数据驱动电路2102可以与像素电路201中的TFT的源极S和漏极D中的一者耦接,以通过扫描信号和数据信号驱动发光器件EL发光,从而显示图像。
相关技术中,可以在显示面板的外部增设电容基板,在显示面板进行弯折的过程中,利用电容基板监控显示面板中的发光器件在弯折过程中的的电容变化,以获取显示面板的弯折信息。但这样会导致显示面板厚度较大,很难实现轻薄化。
本公开的实施例提供一种柔性基板10,如图3和图4所示,柔性基板10具有至少一个可弯折区域Q1。柔性基板10包括衬底1001、设置于衬底1001上的第一电极层1010、设置于第一电极层1010远离衬底1001一侧的第一绝缘层1002和设置于第一绝缘层1002远离衬底1001一侧的第二电极层1020。
其中,衬底1001具有柔性。示例性地,衬底1001的材料可以采用包括聚酰亚胺(Polyimide,PI)等材料的有机聚合物。
第一电极层1010包括至少一个第一探测电极1011。第二电极层1020包括至少一个第二探测电极1021。
一个第一探测电极1011在衬底1001上的正投影与一个第二探测电极1021在衬底1001上的正投影至少部分重叠。第一探测电极1011、第二探测电极1021和位于二者之间的第一绝缘层1002,形成一个探测电容器C DE
其中,第一探测电极1011的数量和第二探测电极1021的数量相等。
可以理解的是,构成同一个探测电容器C DE的第一探测电极1011和第二探测电极1021。二者在衬底1001上的正投影可以交叠或者重合。
探测电容器C DE在衬底1001上的正投影与可弯折区域Q1交叠。
其中,每个可弯折区域Q1内,至少有一个探测电容器C DE
可以理解的是,构成同一个探测电容器C DE的第一探测电极1011和第二探测电极1021在衬底1001上的正投影均与同一个可弯折区域Q1有交叠。
示例性地,衬底1001的厚度可以为0.1μm~10μm,也可以为0.1μm~0.95μm。衬底1001可以为一层,也可以为两层,当然,也可以多层。
需要说明的是,衬底1001的层数可以根据衬底1001的柔软度设定。其中,第一电极层1010、第一绝缘层1002和第二电极层1020的厚度可以根据实际情况进行设计,在此不做限定。而且,在保证第一电极层1010和第二电极层1020的导电性能的前提下,第一电极层1010和第二电极层1020的厚度可以尽可能小。
示例性地,柔性基板10具有一个可弯折区域Q1,该可弯折区域Q1与一 个探测电容器C DE在衬底1001上的正投影有交叠。在柔性基板10未弯折时探测电容器C DE所检测的电容为C 0,柔性基板10发生弯折时探测电容器C DE所检测的电容为C t
在探测电容器C DE近似看作圆柱电容器的情况下,由于圆柱电容器的电容的大小与圆柱电容器的半径有关,圆柱电容器被弯折的角度越大,圆柱电容器的半径越小,例如,如图18所示,在弯折过程中,探测电容器C DE被弯折的角度α越大,第一探测电极1011的半径为R1和第二探测电极1021的半径为R2越小,其中,探测电容器C DE被弯折的角度α为探测电容器C DE被弯折的部分与探测电容器C DE未被弯折时所在平面的夹角。因此,探测电容器C DE的电容与可弯折区域Q1的弯折角度有关,根据C 0和C t可获得可弯折区域Q1在弯折前后的电容变化量,并根据可弯折区域Q1在弯折前后的电容变化量获得可弯折区域Q1的弯折角度。
并且,在柔性基板10具有多个可弯折区域Q1的情况下,可以通过柔性基板10弯折前后,各可弯折区域Q1中的探测电容器C DE的电容变化量,获得各可弯折区域Q1的弯折角度,以及柔性基板10的弯折位置。
在此情况下,由于在柔性基板10在弯折的过程中,在衬底1001上的正投影与可弯折区域Q1有交叠的探测电容器C DE的电容会发生变化,因此,可以根据探测电容器C DE的第一探测电极1011和第二探测电极1021所探测的探测电容器C DE的电容变化量,获得该探测电容器C DE在衬底1001上的正投影所交叠的可弯折区域Q1的弯折信息(例如弯折角度等),从而检测柔性基板10发生弯折时,至少一个可弯折区域Q1的弯折信息。
并且,在应用于显示面板的情况下,相比于在柔性基板外增设与柔性基板耦接电容器的情况,本公开的实施例将探测电容器C DE设置在柔性基板10中,从而可以降低显示面板的厚度,使显示面板实现轻薄化。
示例性地,在柔性基板10应用于显示面板的情况下,探测电容器C DE设置在柔性基板10的边缘位置处(即,显示面板的边缘位置处),避免影响显示面板的正常显示。
因此,本公开的实施例中的柔性基板10,具有至少一个可弯折区域Q1,第一探测电极1011、第二探测电极1021和位于二者之间的第一绝缘层1002,形成一个探测电容器C DE,第一探测电极1011、第二探测电极1021和位于二者之间的第一绝缘层1002,形成一个探测电容器C DE
在此情况下,可以根据探测电容器C DE的第一探测电极1011和第二探测电极1021所探测的探测电容器C DE的电容变化量,获得该探测电容器C DE在 衬底1001上的正投影所交叠的可弯折区域Q1的弯折信息(例如弯折角度等),从而检测柔性基板10发生弯折时,至少一个可弯折区域Q1的弯折信息。因此,在柔性基板10应用于显示面板的情况下,该显示面板既能进行柔性显示,又能检测弯折信息,使得显示面板实现功能多样化,并且,将探测电容器C DE设置在柔性基板10上,可以降低显示面板的厚度,使显示面板轻薄化。
在一些实施例中,如图3和图4所示,柔性基板10还具有至少一个不可弯折区域Q2。
第一电极层1010还包括至少一个第一参考电极1012。
其中,至少一个参考电极1012与至少一个第一探测电极1011绝缘。
第二电极层1020还包括至少一个第二参考电极1022。
其中,至少一个第二参考电极1022与至少一个第二探测电极1021绝缘。
其中,一个第一参考电极1012在衬底1001上的正投影与一个第二参考电极1022在衬底1001上的正投影至少部分重叠。第一参考电极1012、第二参考电极1022和位于二者之间的第一绝缘层1002形成一个参考电容器C RE
可以理解的是,构成同一参考电容器C RE的第一参考电极1012在衬底1001上的正投影和第二参考电极1022在衬底1001上的正投影可以交叠或重合。
其中,第一参考电极1012的数量和第二参考电极1022的数量相等。
参考电容器C RE在衬底1001上的正投影位于不可弯折区域Q2内。
可以理解的是,构成同一参考电容器C RE的第一参考电极1012在衬底1001上的正投影和第二参考电极1022在衬底1001上的正投影,均位于同一不可弯折区域Q2内。
需要说明的是,部分不可弯折区域Q2内设有参考电容器C RE,部分不可弯折区域Q2内设有具有至少一个参考电容器C RE。其中,参考电容器C RE所检测的电容为不可弯折区域Q2的电容,可以作为参考电容。
可以理解的是,可利用探测电容器C DE检测可弯折区域Q1的电容,利用参考电容器C RE检测不可弯折区域Q2的电容。例如,柔性基板10具有一个可弯折区域Q1,该可弯折区域Q1具有一个探测电容器C DE。柔性基板10具有两个不可弯折区域Q2,其中一个不可弯折区域Q2具有一个参考电容器C RE。柔性基板10弯折后探测电容器C DE所检测的电容为C t,柔性基板10弯折后参考电容器C RE所检测的电容为C d,此时,根据C t与C d获得可弯折区域Q1在弯折前后的电容变化量,并根据可弯折区域Q1在弯折前后的电容变化量,获得可弯折区域Q1的弯折信息。
在此情况下,由于柔性基板10在弯折过程中,不可弯折区域Q2的电容可能会受到可弯折区域Q1的影响而波动,若将在柔性基板10未弯折时可弯折区域Q1内的探测电容器C DE所检测的电容为参考,则柔性基板10在弯折前后所获得的探测电容器C DE的电容变化量的准确性会受到影响。因此,将柔性基板10弯折后参考电容器C RE所检测的电容为参考,与柔性基板10弯折后探测电容器C DE所检测的电容进行比较,可以使检测的电容变化量较为准确,从而提高弯折信息的准确性。
此外,在柔性基板10应用于显示面板的情况下,参考电容器C RE设置在柔性基板10的边缘位置处(即,显示面板的边缘位置处),避免影响显示面板的正常显示。
在一些实施例中,第一探测电极1011和第二探测电极1021均为条状电极。其中,形成同一探测电容器C DE的第一探测电极1011的延伸方向和第二探测电极1021的延伸方向相同或大致相同。
例如,探测电容器C DE的延伸方向为图3中的竖直方向Y,则形成同一探测电容器C DE的第一探测电极1011的延伸方向和第二探测电极1021的延伸方向均为竖直方向Y。
在此情况下,形成同一探测电容器C DE的第一探测电极1011在衬底1001上的正投影和第二探测电极1021在衬底1001上的正投影的重叠面积相对较大,可以提高探测电容器C DE的电容量。
在第一电极层1010包括至少一个第一参考电极1012,第二电极层1020包括至少一个第二参考电极1022的情况下,第一参考电极1012和第二参考电极1022均为条状电极。
其中,形成同一参考电容器C RE的第一参考电极1012的延伸方向和第二参考电极1022的延伸方向相同或大致相同。
例如,参考电容器C RE的延伸方向为图3中的水平方向X,则形成同一参考电容器C RE的第一参考电极1012的延伸方向和第二参考电极1022的延伸方向均为水平方向X。
在此情况下,形成同一参考电容器C RE的第一参考电极1012在衬底1001上的正投影和第二参考电极1022在衬底1001上的正投影的重叠面积相对较大,可以提高参考电容器C RE的电容量。
在一些实施例中,可弯折区域Q1的形状为条状。可弯折区域Q1的延伸方向与第一探测电极1011的延伸方向相交叉。
在此情况下,在柔性基板10弯折的过程中,包含该第一探测电极1011 的探测电容器C DE的形变相对较大,探测电容器C DE的电容的变化程度也相对较大,从而可以提高探测电容器C DE的灵敏度。
示例性地,可弯折区域Q1的延伸方向与第一探测电极1011的延伸方向之间的夹角的角度为70°~130°。
例如,在可弯折区域Q1的延伸方向与第一探测电极1011的延伸方向相交叉的角度近似为90°,即,包含该第一探测电极1011的探测电容器C DE的延伸方向与可弯折区域Q1的延伸方向相交叉的角度(如图3中的夹角β)近似为90°,此时,包含该第一探测电极1011的探测电容器C DE在柔性基板10弯折过程中所产生的形变相对较大,探测电容器C DE的电容的变化程度也相对较大。因此,可弯折区域Q1的延伸方向与第一探测电极1011的延伸方向相交叉的角度,即,可弯折区域Q1与第一探测电极1011在衬底1001上的正投影相交叠的角度,近似为90°,包含该第一探测电极1011的探测电容器C DE的灵敏度相对较高。
在一些实施例中,在第一电极层1010包括至少一个第一参考电极1012,第二电极层1020包括至少一个第二参考电极1022的情况下,可弯折区域Q1的延伸方向与形成同一参考电容器C RE的第一参考电极1012和第二参考电极1022的延伸方向相同或大致相同。
可以理解的是,参考电容器C RE在衬底1001上的正投影与可弯折区域Q1无交叠。
在此情况下,在柔性基板10弯折的过程中,与可弯折区域Q1的延伸方向相平行的形成同一参考电容器C RE的第一参考电极1012和第二参考电极1022所受到的应力,小于与可弯折区域Q1的延伸方向相交叉(例如垂直)的形成同一参考电容器C RE的第一参考电极1012和第二参考电极1022所受到的应力,因此,参考电容器C RE所受到的应力的相对较小。并且,同一参考电容器C RE的第一参考电极1012和第二参考电极1022所受到的应力的大小近似相同。
需要说明的是,在实际产品中,柔性基板10的可弯折区域Q1的大小和不可弯折区域Q2的大小均有限,探测电容器C DE所包括的第一探测电极1011和第二探测电极1021的延伸长度也在一定的范围内,以能够探测到可弯折区域Q1的电容为准,无需过度延伸。参考电容器C RE所包括的第一参考电极1012和第二参考电极1022的延伸长度也在一定的范围内,以能够采集到不可弯折区域Q2的电容为准,无需过度延伸。
在一些实施例中,如图5所示,柔性基板10包括多个探测电容器C DE
示例性地,可以将位于同一可弯折区域Q1内的多个探测电容器C DE的电容进行平均化,以获得该可弯折区域Q1的电容大小,从而降低可弯折区域Q1的电容的误差。
一个可弯折区域Q1与至少两个探测电容器C DE在衬底1001上的正投影交叠。
至少两个探测电容器C DE的延伸方向相同或大致相同,至少两个探测电容器C DE间隔设置。
其中,相邻两个探测电容器C DE的间隔不完全相等。
在至少两个探测电容器C DE中,相对远离柔性基板10的中心的探测电容器C DE在其延伸方向上的长度,大于相对靠近柔性基板10的中心的探测电容器C DE在其延伸方向上的长度。
示例性地,如图5所示,在柔性基板10具有一个可弯折区域Q1和两个不可弯折区域Q2的情况下,沿垂直于可弯折区域Q1的延伸方向(即沿竖直方向Y),可弯折区域Q1位于两个不可弯折区域Q2之间。柔性基板10包括四个探测电容器C DE。四个探测电容器C DE的延伸方向与可弯折区域Q1的延伸方向垂直。四个探测电容器C DE分别为第一探测电容器C DE1、第二探测电容器C DE2、第三探测电容器C DE3和第四探测电容器C DE4。为了减少探测电容对显示区域的干扰,第一探测电容器C DE1、第二探测电容器C DE2和第三探测电容器C DE3均位于可弯折区域Q1沿其延伸方向的相对两侧中的一侧,第四探测电容器C DE4位于可弯折区域Q1沿其延伸方向的相对两侧中的另一侧。其中,第一探测电容器C DE1相对于第二探测电容器C DE2靠近柔性基板10的边缘,第三探测电容器C DE3相对于第二探测电容器C DE2靠近柔性基板10的中心。并且,第四探测电容器C DE4相对于第一探测电容器C DE1更靠近柔性基板10的边缘。
在此情况下,在柔性基板10在弯折过程中,可弯折区域Q1靠近柔性基板10中心的位置所受到的应力相对较大,因此,第一探测电容器C DE1、第二探测电容器C DE2、第三探测电容器C DE3和第四探测电容器C DE4中的相对靠近柔性基板10中心的探测电容器的灵敏度相对较高,相对靠近柔性基板10边缘的探测电容器的灵敏度相对较低,因此,第一探测电容器C DE1的长度大于第二探测电容器C DE2的长度,第二探测电容器C DE2的长度大于第三探测电容器C DE3的长度,第四探测电容器C DE4的长度大于第一探测电容器C DE1的长度,从而可以保证各个探测电容器的灵敏度。并且,可以避免探测电容器C DE对柔性基板10中心位置的遮挡。
在一些实施例中,如图5所示,柔性基板10包括多个参考电容器C RE
示例性地,可以将位于同一不可弯折区域Q2内的多个参考电容器C RE的电容进行平均化,以获得该不可弯折区域Q2的电容大小,从而避免不可弯折区域Q2所受到的应力对参考电容器C RE的电容的影响,降低不可弯折区域Q2的电容的误差。
其中,多个参考电容器C RE的延伸方向相同或大致相同。多个参考电容器C RE间隔设置。
在多个参考电容器C RE中,相对远离柔性基板10的中心的参考电容器C RE在其延伸方向上的长度,大于相对靠近柔性基板10的中心的参考电容器C RE在其延伸方向上的长度。
示例性地,在柔性基板10具有一个可弯折区域Q1和两个不可弯折区域Q2的情况下,沿垂直于可弯折区域Q1的延伸方向,可弯折区域Q1位于两个不可弯折区域Q2之间。多个参考电容器C RE位于两个不可弯折区域Q2中的一个不可弯折区域Q2内,或者,多个参考电容器C RE分别位于两个不可弯折区域Q2内,且两个不可弯折区域Q2内的参考电容器C RE的数量不一定相等。
在柔性基板10包括三个参考电容器C RE,且三个参考电容器C RE均位于一个不可弯折区域Q2内的情况下,三个参考电容器C RE分别为第一参考电容器C RE1、第二参考电容器C RE2和第三参考电容器C RE3。第一参考电容器C RE1相比于第二参考电容器C RE2靠近柔性基板10的边缘,第三参考电容器C RE3相比于第二参考电容器C RE2靠近柔性基板10的中心。
在柔性基板10弯折的过程中,不可弯折区域Q2相对靠近可弯折区域Q1,的位置处所受到的应力越较大,可弯折区域Q1相对于不可弯折区域Q2靠近柔性基板10的中心。此时,相对靠近柔性基板10的中心的参考电容器的灵敏度较高,相对远离柔性基板10的中心的参考电容器的灵敏度较低。因此,第一参考电容器C RE1、第二参考电容器C RE2和第三参考电容器C RE3中,第一参考电容器C RE1的长度大于第二参考电容器C RE2的长度,第二参考电容器C RE2的长度大于第三参考电容器C RE3的长度,从而可以保证各个参考电容器的灵敏度。并且,可以避免参考电容器C RE对柔性基板10中心位置的遮挡。
在一些实施例中,如图6所示,柔性基板10具有间隔设置的多个可弯折区域Q1,多个可弯折区域Q1的延伸方向相同或大致相同,例如多个可弯折区域Q1均沿图6中的水平方向X延伸。
柔性基板10包括多个探测电容器C DE,每个可弯折区域Q1与至少一个 探测电容器C DE在衬底10上的正投影有交叠。
示例性地,柔性基板10具有间隔设置的三个可弯折区域Q1,柔性基板10包括三个探测电容器C DE。探测电容器C DE的延伸方向与可弯折区域Q1的延伸方向垂直,一个探测电容器C DE在衬底1001上的正投影与一个可弯折区域Q1交叠。在三个探测电容器C DE与柔性基板10的边缘的距离大致相等的情况下,三个探测电容器C DE的长度大致相等。
在一些实施例中,如图6所示,柔性基板10包括多个参考电容器C RE,多个参考电容器C RE的数量与多个探测电容器C DE的数量相同。
多个参考电容器C RE分别位于多个可弯折区域Q1整体沿垂直于可弯折区域Q1的延伸方向上的相对两侧。
示例性地,柔性基板10具有间隔设置的三个可弯折区域Q1和四个不可弯折区域Q2,可弯折区域Q1和不可弯折区域Q2交替分布,相邻两个不可弯折区域Q2之间设有一个可弯折区域Q1。柔性基板10包括三个参考电容器C RE。参考电容器C RE的延伸方向与可弯折区域Q1的延伸方向平行。沿垂直于可弯折区域Q1的延伸方向上,三个参考电容器C RE中的一个参考电容器C RE位于三个可弯折区域Q1整体的相对两侧中的一侧,即,四个不可弯折区域Q2中靠近柔性基板10边缘的两个不可弯折区域Q2中的一个不可弯折区域Q2内;三个参考电容器C RE中的另外两个参考电容器C RE位于三个可弯折区域Q1整体的相对两侧中的另一侧,即,四个不可弯折区域Q2中靠近柔性基板10边缘的两个不可弯折区域Q2中的另一个不可弯折区域Q2内。并且,同一不可弯折区域Q2内的两个参考电容器C RE的延伸方向所在直线为同一直线。
需要说明的是,领域内技术人员可以根据实际情况,例如可弯折区域Q1和不可弯折区域Q2的数量和位置关系等,对柔性基板10中的探测电容器C DE和参考电容器C RE的数量和分布方式进行设计,在此不做限定。
在一些实施例中,第一探测电极1011和第二探测电极1021具有多个穿孔。示例性地,第一探测电极1011的穿孔在衬底1001上的正投影与第二探测电极1021的穿孔在衬底1001上的正投影重合。
在第一电极层1010包括至少一个第一参考电极1012,第二电极层1020包括至少一个第二参考电极1022的情况下,第一参考电极1012和第二参考电极1022具有多个穿孔。
示例性地,第一参考电极1012的穿孔在衬底1001上的正投影与二参考电极1022的穿孔在衬底1001上的正投影重合。
可以理解的是,第一探测电极1011、第二探测电极1021、第一参考电极1012和第二参考电极1022均为图案化电极。
在此情况下,在弯折的过程中,通过穿孔结构,可以缓冲第一探测电极1011、第二探测电极1021、第一参考电极1012和第二参考电极1022受到的作用力,提高第一探测电极1011、第二探测电极1021、第一参考电极1012和第二参考电极1022的耐弯折性能,从而提高探测电容器C DE和参考电容器C RE的耐弯折性能。
需要说明的是,可以根据实际情况,对各电极的形状和穿孔的形状进行设计,在此不作限定。例如,第一探测电极1011、第二探测电极1021、第一参考电极1012和第二参考电极1022的边缘所围成的形状可以为图7中的(a)、(b)和(c)所示的不规则图形,也可以为图7中的(d)、(e)和(f)所示的四边形,穿孔1的形状可以为图7中的(a)和(d)所示的四边形、图7中的(c)和(e)所示的六边形或者图7中的(b)和(f)所示的椭圆形。
在一些实施例中,第一绝缘层1002具有柔性。这样,柔性的第一绝缘层1002可以缓冲第一探测电极1011、第二探测电极1021、第一参考电极1012和第二参考电极1022所受到的作用力,从而提高探测电容器C DE和参考电容器C RE的耐弯折性能。
示例性地,第一绝缘层1002的材料与衬底1001的材料相同。这样,第一绝缘层1002在缓冲各电极所受到的作用力的同时,可以避免第一绝缘层1002出现裂痕,避免第一绝缘层1002发生损伤,从而保证探测电容器C DE和参考电容器C RE的稳定性,保证探测电容器C DE和参考电容器C RE的灵敏度,提高电容的信噪比。
并且,在第一绝缘层1002的材料与衬底1001的材料相同的情况下,可将第一绝缘层1002看作衬底1001的一部分。此时,第一电极层1010相当于被嵌入在衬底1001中,使得衬底1001可保护第一电极层1010中的第一探测电极1011和第一参考电极1012。这样,可以在缓冲弯折过程中第一探测电极1011和第一参考电极1012所受到的作用力的同时,避免其他走线对第一探测电极1011和第一参考电极1012的干扰。
在一些实施例中,第一电极层1010在衬底1001上的正投影,位于第一绝缘层1002在衬底1001上的正投影内,第一电极层1010被第一绝缘层1002覆盖。这样,可以避免第一电极层1010中的第一探测电极1011和第一参考电极1012所传输的电容信号受到其他走线的干扰。
在一些实施例中,如图3和图4所示,柔性基板10还包括设置于第二电 极层1020远离衬底1001一侧的阻挡层1003。
如图3和图4所示,柔性基板10还包括设置于阻挡层1003远离第二电极层1020一侧的缓冲层1004。
需要说明的是,阻挡层1003的厚度和缓冲层1004的厚度可以根据实际情况设定,在不做限定。示例性地,阻挡层1003的厚度为100nm~900nm,例如300nm、500nm或者750nm。
在此情况下,阻挡层1003和缓冲层1004均可以保证柔性基板10的表面平坦化,提高在柔性基板10表面上形成的膜层(例如像素电路的各膜层和发光器件的各膜层)的均匀性。
本公开的实施例提供一种显示面板100,如图8所示,显示面板100包括上述任一实施例中的柔性基板10。
显示面板100还包括设置于柔性基板10上的公共信号接口101和检测信号接口102。
其中,公共信号接口101被配置为传输公共信号。
可以理解的是,与公共信号接口101耦接的电极可为柔性基板中探测电容器或参考电容器的一个极板,该电极接收公共信号,以便于与探测电容器或参考电容器的另外一个极板形成电容。
其中,柔性基板10的探测电容器C DE的第一探测电极1011和第二探测电极1021中的一者与检测信号接口102耦接,另一者与公共信号接口101耦接。
示例性地,探测电容器C DE的第一探测电极1011与检测信号接口102耦接,第二探测电极1021与公共信号接口101耦接;或者,探测电容器C DE的第一探测电极1011与公共信号接口101耦接,第二探测电极1021与检测信号接口102耦接。
可以理解的是,探测电容器C DE探测可弯折区域Q1的电容信号,并将该电容信号传输至检测信号接口102。
需要说明的是,本公开的显示面板100与上述的柔性基板10具有相同的有益效果,在此不做赘述。
在一些实施例中,如图8所示,在柔性基板10包括至少一个参考电容器C RE的情况下,参考电容器C RE的第一参考电极1012和第二参考电极1022中的一者与检测信号接口102耦接,另一者与公共信号接口101耦接。
并且,处于同一电极层中的电极与相同的接口耦接。
可以理解的是,在第一探测电极1011与检测信号接口102耦接,第二探 测电极1021与公共信号接口101耦接的情况下,第一参考电极1012与检测信号接口102耦接,第二参考电极1022与公共信号接口101耦接;在第一探测电极1011与公共信号接口101耦接,第二探测电极1021与检测信号接口102耦接的情况下,第一参考电极1012与公共信号接口101耦接,第二参考电极1022与检测信号接口102耦接。这样,可以降低同一电极层中的各电极的信号干扰,并且可以简化显示面板的膜层结构。
在一些实施例中,如图8所示,显示面板100还包括设置于柔性基板10上的至少一条探测走线103。
探测走线103被配置为连接检测信号接口102与探测电容器C DE的第一探测电极1011或第二探测电极1021。
在柔性基板10包括至少一个参考电容器C RE的情况下,如图8所示,显示面板100还包括设置于柔性基板10上的至少一条参考走线104。
参考走线104被配置为连接检测信号接口102与参考电容器C RE的第一参考电极1012或第二参考电极1022。
需要说明的是,探测走线103的数量与第一探测电极1011或第二探测电极1021的数量有关,参考走线104的数量与第一参考电极1012或第二参考电极1022的数量有关。
在一些实施例中,如图1和图2所示,显示面板100还包括设置于柔性基板10上的至少一个TFT。TFT包括有源层ACT、栅极G、源极S、漏极D及至少一层第二绝缘层1005。
其中,至少一个TFT位于AA区。
示例性地,TFT可以为显示面板100中的像素电路201中的TFT,也可以是显示面板100中另外增设的TFT。
如图9所示,探测走线103与TFT中的源极S和漏极D同层设置且材料相同。
在工艺上,探测走线103与TFT中的源极S和漏极D同步形成,从而简化生产工序。
如图9所示,探测走线103通过第一过孔1006与第一探测电极1011或第二探测电极1021耦接。其中,第一过孔1006贯通源极S和漏极D所在膜层与第一电极层1010或第二电极层1020之间的膜层。
其中,在TFT为顶栅型TFT的情况下,如图9所示,第二绝缘层1005可以包括设置于有源层ACT和栅极G之间的栅绝缘层GI、及设置于栅极G与源极S和漏极D之间的层间介质层ILD。在TFT为底栅型TFT的情况下, 第二绝缘层1005可以包括设置于有源层ACT和栅极G之间的栅绝缘层GI。
可以理解的是,在探测走线103与第一探测电极1011耦接时,第一过孔1006贯通源极S和漏极D所在膜层与第一电极层1010之间的膜层,该膜层可以包括层间介质层ILD、栅绝缘层GI、缓冲层1004、阻挡层1003和第一绝缘层1002,图9示出了这种情形。在探测走线103与第二探测电极1021耦接时,第一过孔1006贯通源极S和漏极D所在膜层与第二电极层1020之间的膜层,该膜层可以包括层间介质层ILD、栅绝缘层GI、缓冲层1004和阻挡层1003。
在显示面板100包括至少一条参考走线104的情况下,如图9所示,参考走线104与TFT中的源极S和漏极D同层设置且材料相同。
在工艺上,参考走线104与TFT中的源极S和漏极D同步形成,从而简化生产工序。
如图9所示,参考走线104通过第二过孔1007与第一参考电极1012或第二参考电极1022耦接。其中,第二过孔1007贯通源极S和漏极D所在膜层与第一电极层1010或第二电极层1020之间的膜层。
可以理解的是,在参考走线104与第一参考电极1012耦接时,第二过孔1007贯通源极S和漏极D所在膜层与第一电极层1010之间的膜层;在参考走线104与第二参考电极1022耦接时,第二过孔1007贯通源极S和漏极D所在膜层与第二电极层1020之间的膜层。
可以理解的是,在参考走线104与第一参考电极1012耦接时,第二过孔1007贯通源极S和漏极D所在膜层与第一电极层1010之间的膜层,该膜层可以包括层间介质层ILD、栅绝缘层GI、缓冲层1004、阻挡层1003和第一绝缘层1002,图9示出了这种情形。在参考走线104与第二参考电极1022耦接时,第二过孔1007贯通源极S和漏极D所在膜层与第二电极层1020之间的膜层,该膜层可以包括层间介质层ILD、栅绝缘层GI、缓冲层1004和阻挡层1003。
并且,探测走线103和参考走线104与TFT的源极S和漏极D同层设置,探测走线103和参考走线104均与衬底1001相距较远,可以避免信号干扰,提高信噪比。
此外,显示面板100还包括公共走线,公共走线与公共信号接口101耦接,公共走线被配置为传输公共信号。其中,探测电容器C DE中的一个电极与探测走线103耦接,另一个电极与公共走线耦接,参考电容器C RE中的一个电极与参考走线104耦接,另一个电极与公共走线耦接。
示例性地,公共走线可以与探测走线103和参考走线104同层设置且材料相同。公共走线可以通过贯通源极S和漏极D所在膜层与第一电极层1010或第二电极层1020之间的膜层过孔,与探测电容器C DE中的第一探测电极1011或第二探测电极1021耦接,与参考电容器C RE中的第一参考电极1012或第二参考电极1022耦接。
在一些实施例中,如图10所示,显示面板100还包括至少一个信号放大电路105。
示例性地,至少一个信号放大电路105可以设置于柔性基板10上。至少一个信号放大电路105位于显示面板100的边框区域S。并且,在工艺上,至少一个信号放大电路105可以与TFT同时制备。
示例性地,至少一个信号放大电路105也可以与柔性基板10绑定(图中未示出)。这样,可以简化显示面板100的设计。
探测走线103通过信号放大电路105与检测信号接口102耦接。
在显示面板100包括至少一条参考走线104的情况下,参考走线104通过信号放大电路105与检测信号接口102耦接。
可以理解的是,信号放大电路105将探测走线103传输的信号进行放大处理,并传输至检测信号接口102,及将参考走线104传输的信号进行放大处理,并传输至检测信号接口102。
在一些实施例中,显示面板100包括一个信号放大电路105。各条探测走线103与信号放大电路105耦接。信号放大电路105被配置为分时依次对来自各条探测走线103的信号进行放大处理。并且,在显示面板100包括至少一条参考走线104的情况下,信号放大电路105还与各条参考走线104耦接。信号放大电路105被配置为分时依次对来自各条参考走线104的信号进行放大处理。这样,可以简化显示面板100的电路设计。
在一些实施例中,如图11所示,显示面板100包括多个信号放大电路105。每条探测走线103连接一个信号放大电路105。并且,在显示面板100包括至少一条参考走线104的情况下,每条参考走线104连接一个信号放大电路105。信号放大电路105被配置为对来自其所耦接的探测走线103的信号或参考走线104的信号进行放大处理。这样,可以避免信号放大电路105对信号进行放大处理的干扰,提高信号放大处理的准确度。
需要说明的是,可以根据实际情况,对探测走线103和参考走线104的布线方式进行设计,本公开在此不做限定。
此外,显示面板100还包括中性层。该中性层为显示面板100在弯折的 过程中的既不被拉伸也不被压缩的膜层,中性层在弯折过程中所受的应力近似为零。中性层可以位于可弯折区域Q1中。在此情况下,在中性层一般设置有比较容易受到应力或外力影响的器件,例如发光器件EL等,从而避免应力或外力对器件的破坏。并且,由于探测电容器C DE集成在柔性基板10中,从而可以避免探测电容器C DE占用显示面板100的中性层。
本公开的实施例提供一种显示装置300,如图12所示,显示装置300包括上述任一实施例中的显示面板100和信号处理器301。
信号处理器301与显示面板100中的检测信号接口102耦接。
信号处理器301被配置为接收检测信号接口102所传输的检测信号,根据检测信号102得到显示面板100中的至少一个探测电容器C DE的电容变化量,根据电容变化量得到显示面板100的弯折角度。
可以理解的是,探测电容器C DE的电容变化量即为探测电容器C DE的电容在弯折前后的电容的变化量。这样,可以通过信号处理器301,监控显示面板100中的至少一个可弯折区域Q1的弯折信息。
示例性地,在显示面板100包括信号放大电路105的情况下,信号放大电路105将放大后的信号传输至检测信号接口102,可以简化信号处理器301的信号处理的复杂度。
因此,本公开的实施例的显示装置300,通过显示面板100的柔性基板10中的探测电容C DE,在显示面板100进行弯折的过程中,可以根据探测电容C DE在弯折前后的电容的变化量,获得显示面板100的弯折角度,从而使得显示装置300在进行柔性显示的过程中,还可以探测弯折信息,实现显示装置300的功能多样化。并且,由于探测电容C DE设置在柔性基板10中,可以使得显示装置300实现轻薄化。
在一些实施例中,其中,显示面板100具有多个可弯折区域Q1。显示面板100包括多个探测电容器C DE。每个可弯折区域Q1与至少一个探测电容器C DE在衬底1001上的正投影有交叠。信号处理器301还被配置为根据各探测电容器C DE的电容变化量,以及各探测电容器C DE的位置信息,得到显示面板100的弯折位置。
可以理解的是,信号处理器301根据各探测电容器C DE的电容变化量,获得各探测电容器C DE中发生弯折的探测电容器C DE,并根据发生弯折的探测电容器C DE的位置信息,得到显示面板100的弯折位置。
示例性地,信号处理器301可以集成在驱动芯片中,驱动芯片中的用于接收电容信号的接口与显示面板100的检测信号接口10耦接。在驱动芯片还 包括数据驱动电路2102的情况下,驱动芯片不仅可以驱动显示面板100显示图像,还可以探测显示面板100的弯折信息。
在一些实施例中,如图14所示,显示装置300还包括显示控制器302和视线采集器303。
显示控制器302与信号处理器301和显示面板100耦接。
视线采集器303与信号处理器301耦接。
视线采集器303被配置为采集用户的视线方向的信息,并将所采集的视线方向的信息发送至信号处理器301。
示例性地,视线采集器303可以包括眼球跟踪仪等。视线采集器303可以设置在显示装置300的正面,例如前置摄像头所在区域,使得视线采集器303可以用户在正常观看显示装置300时采集用户视线方向的信息。
信号处理器301还被配置为接收视线方向的信息,根据显示面板100的弯折角度、弯折位置和视线方向的信息,获得显示位置控制信息或显示亮度控制信息。
可以理解的是,在显示面板100弯折过程中,弯折角度与用户相对显示面板100被翻起的部分的视角呈持续变化关系,因此,结合用户视线方向的,以用户视线方向为参考,信号处理器301根据用户视线方向的信息和显示面板100的弯折位置信息和弯折角度,获得显示位置控制信息或显示亮度控制信息。
显示控制器302被配置为获取显示位置控制信息,控制显示面板100在显示位置控制信息所指示的位置显示图像;或,获取显示亮度控制信息,控制显示面板100显示具有显示亮度控制信息所指示的亮度的图像。
可以理解的是,在显示面板100弯折的过程中,视线采集器303采集用户的视线方向的信息,信号处理器400根据所采集的用户的视线方向的信息,判断出用户视线落在显示面板的哪个区域。
如图13所示,显示面板100有一个可弯折区域Q1,该可弯折区域Q1将显示面板100进行显示的区域划分为第一子区域A1和第二子区域A2。在显示面板100未发生弯折的情况下,显示面板100为平面显示,此时显示面板100为全屏显示。在显示面板100弯折的过程中,随着弯折角度的增大(例如图13中的弯折角度θ增大到45°)时,在用户的视角不变的情况下,显示面板100由于弯折所翻起的一部分区域(如图13的第二子区域A2)所显示的图像亮度下降,导致用户在观看第一子区域A1所显示的图像时,看到的第二子区域A2所显示的图像亮度比较低,甚至无法看到。
在此情况下,显示控制器302可控制显示面板100进行局部显示,使得显示面板100所显示的画面位于显示面板100的不发生弯折的区域或者没有因为弯折翻起的部分。这样,在不改变用户的视角(平面显示状态的视角或视线方向)的情况下,可在局部显示区域完整的观看显示面板100所显示的全部图像内容,可以避免因显示面板100发生弯折而导致用户无法正常观看的问题。并且,在显示面板100弯折过程中,显示控制器302可以根据弯折角度,对显示面板100因为弯折所翻起的部分的显示亮度进行调整,使得翻起的部分的显示亮度随着弯折角度的增加上升,从而避免因显示面板100发生弯折而导致显示面板100的部分显示区域的显示亮度下降的问题。
示例性地,如图13所示,在弯折角度θ较大(如弯折角度为钝角)的情况下,用户在可以清楚地观看第一子区域A1所显示的图像,而无法观看第二子区域A2所显示的图像。在此情况下,信号处理器301可根据所采集的用户的视线方向的信息与显示面板100的弯折角度和弯折位置,获得显示位置控制信息,以控制显示面板100在第一子区域A1显示图像。此时,在用户视线落在第一子区域A1时,可保证用户可以清楚地观看图像。
在弯折角度θ较小(如弯折角度为锐角)的情况下,用户虽然能够看到第二子区域A2所显示的图像,但由于用户视线射向第一子区域A1和第二子区域A2的方向不同,因此,用户观看到的第二子区域A2所显示的图像的亮度相比于第一子区域A1所显示的图像的亮度有所下降。在此情况下,信号处理器302根据用户视线方向及显示面板的弯折位置和弯折角度,获得显示亮度控制信息,以控制第二子区域A2所显示的图像亮度,使得第二子区域A2所显示的图像亮度有所提升。此时,在用户视线射向第一子区域A1的情况下,可保证用户看到第二子区域A2所显示的图像的亮度与第一子区域A1所显示的图像的亮度相等或大致相等,从而使得用户能够清楚地看到第二子区域A2所显示的图像。
在一些实施例中,如图15所示,显示装置300还包括指令识别部件304和弯折驱动机构305。
指令识别部件304被配置为识别用户指令。
弯折驱动机构305与指令识别部件304耦接。
弯折驱动机构305被配置为根据用户指令,驱动显示面板100进行弯折;及,在显示面板100的弯折角度达到预设角度的情况下,控制显示面板100停止弯折。
示例性地,指令识别部件304可以为用于识别用户语音的语音识别器, 或者为用于识别用户手势的传感器器。其中,语音识别器可以为Siri(Speech Interpretation&Recognition Interface,语音识别接口)语音识别器,以支持自然语言输入。Siri语音识别器可以调用显示装置例如手机内的应用程序(例如天气预报、日程安排、搜索资料等),并更新语音的声音和语调,为用户提供对话式的应答,实现智能化,提高人机交互体验。
弯折驱动机构305可以采用包括电子合叶等的电子铰链。
在此情况下,指令识别部件304识别用户指令,例如用户指令为语音“请打开至75°,我需要看电影”。弯折驱动机构305根据用户指令,驱动显示面板100进行弯折。信号处理器301根据显示面板100中的至少一个探测电容器C DE的电容变化量,得到显示面板100的弯折角度。在弯折角度达到75°时,信号处理器301向弯折驱动机构305传达停止弯折的指令,则弯折驱动机构305控制显示面板100停止弯折。
在显示面板100停止弯折之后,信号处理器301获得显示位置控制信息或显示亮度控制信息。显示控制器302获取显示位置控制信息,控制显示面板100在显示位置控制信息所指示的位置显示图像;或,获得显示亮度控制信息,控制显示面板100显示具有显示亮度控制信息所指示的亮度的图像,使得显示面板100播放电影。
需要说明的是,上述的显示面板100的弯折角度指的是显示面板100中的因为弯折所翻起的部分与未翻起的部分所在平面的夹角,例如图13中的显示面板100中的第二子区域A2与第一子区域A1所在平面的夹角θ。
本公开的实施例提供了一种如上述任一实施例中的显示面板100的制备方法。其中,显示面板100具有至少一个可弯折区域Q1。
示例性地,显示面板100可以采用成膜工艺和刻蚀工艺相结合的方式制备。其中,成膜工艺可以包括磁控溅射、真空蒸镀等成膜工艺;刻蚀工艺可以包括湿法刻蚀、干法刻蚀等刻蚀工艺。
如图16所示,该显示面板100的制备方法包括如下步骤:
S100、提供柔性的衬底1001。
需要说明的是,衬底1001一般形成在玻璃等硬质基板上。硬质基板可承载衬底1001,以保证显示面板100的正常制作。
示例性地,该衬底1001可以由一层聚酰亚胺膜,也可以两层以及两层以上的聚酰亚胺膜制作而成。
S200:在衬底1001上形成第一电极层1010,第一电极层1010包括至少一个第一探测电极1011;第一探测电极1011在衬底1001上的正投影与可弯 折区域Q1交叠。
示例性地,在衬底1001上沉积导电导电材料,形成导电薄膜,然后采用例如光刻等图案化工艺对导电薄膜进行图案化,形成包括至少一个第一探测电极1011的第一电极层1010。
S300、在第一电极层1010远离衬底1001的一侧形成第一绝缘层1002。
示例性地,第一绝缘层1002的材料可以采用不具有柔性的绝缘材料,也可以采用具有柔性的绝缘材料。
其中,第一绝缘层1002可以覆盖第一电极层1010,其他电路对第一电极层1010的信号干扰。
S400、在第一绝缘层1002远离衬底1001的一侧形成第二电极层1020,第二电极层1020包括至少一个第二探测电极1021,第二探测电极1021在衬底1001上的正投影与第一探测电极1011在衬底1001上的正投影至少部分重叠;第一探测电极1011、第二探测电极1021和位于二者之间的第一绝缘层1002,形成一个探测电容器C DE;探测电容器C DE在衬底1001上的正投影与可弯折区域Q1交叠;得到柔性基板10。
S500、在柔性基板10上形成公共信号接口101和检测信号接口102;第一电极层1010中的第一探测电极1011和第二电极层1020中的第二探测电极1021中的一者与公共信号接口101耦接,另一者与检测信号接口102耦接。
需要说明的是,本公开的实施例提供的显示面板100的制备方法与上述显示面板100的有益效果相同,在此不做赘述。
需要说明的是,在得到柔性基板10之前,显示面板100的制备方法还包括在第二电极层1020远离衬底1001一侧形成阻挡层1003,在阻挡层1003远离衬底1001的一侧形成缓冲层1004。
在一些实施例中,显示面板100还包括至少一个不可弯折区域Q2,在衬底1001上形成第一电极层1010还包括:形成至少一个第一参考电极1012,至少一个第一参考电极1012与至少一个第一探测电极1011绝缘,至少一个第一参考电极1012在衬底1001上的正投影位于不可弯折区域Q2内。
在第一绝缘层1002远离衬底1001的一侧形成第二电极层1020还包括:形成至少一个第二参考电极1022,至少一个第二参考电极1022与至少一个第二探测电极1021绝缘,一个第二参考电极1022与一个第一参考电极1012在衬底1001上的正投影至少部分重叠,第一参考电极1012、第二参考电极1022和位于二者之间的第一绝缘层1002形成一个参考电容器C RE,参考电容器C RE在衬底1001上的正投影位于不可弯折区域Q2内。
在一些实施例中,如图17所示,显示面板100的制备方法还包括:
S600、在柔性基板10上形成至少一个信号放大电路105和至少一个TFT,TFT包括有源层ACT、栅极G、源极S、漏极D及至少一层第二绝缘层1005;在形成TFT的源极S和漏极D的同时,形成至少一条探测走线103,探测走线103通过第一过孔1006与第一探测电极1011或第二探测电极1021耦接;第一过孔1006贯通源极S和漏极D所在膜层与第一电极层1010或第二电极层1020之间的膜层。
可以理解的是,在探测走线103与第一探测电极1011耦接时,第一过孔1006贯通源极S和漏极D所在膜层与第一电极层1010之间的膜层,该膜层可以包括层间介质层、栅绝缘层、缓冲层、阻挡层和第一绝缘层;在探测走线103与第二探测电极1021耦接时,第一过孔1006贯通源极S和漏极D所在膜层与第二电极层1020之间的膜层,该膜层可以包括层间介质层ILD、栅绝缘层GI、缓冲层1004和阻挡层1003。
在一些实施例中,在柔性基板10包括至少一个参考电容器C RE的情况下,显示面板100的制备方法还包括:在形成TFT的源极S和漏极D的同时,形成至少一条参考走线104,参考走线104通过第二过孔1007与第一参考电极1012或第二参考电极1022耦接。其中,第二过孔1007贯通源极S和漏极D所在膜层与第一电极层1010或第二电极层1020之间的膜层。
可以理解的是,在参考走线104与第一参考电极1012耦接时,第二过孔1007贯通源极S和漏极D所在膜层与第一电极层1010之间的膜层;在参考走线104与第二参考电极1022耦接时,第二过孔1007贯通源极S和漏极D所在膜层与第二电极层1020之间的膜层。
在此情况下,在TFT的源极S和漏极D形成完成后,信号放大电路700形成完成,此时,信号放大电路700探测走线103和参考走线104耦接。
需要说明的是,在形成TFT之后,显示面板100的制备方法还包括形成发光器件EL。并且,形成发光器件EL之前,需要对在TFT远离柔性基板10的一侧形成平坦层PLN,以对TFT远离柔性基板10的一侧表面进行平坦化。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种柔性基板,具有至少一个可弯折区域,所述柔性基板包括:
    柔性的衬底;
    设置于所述衬底上的第一电极层;所述第一电极层包括至少一个第一探测电极;
    设置于所述第一电极层远离所述衬底一侧的第一绝缘层;
    设置于所述第一绝缘层远离所述衬底一侧的第二电极层;所述第二电极层包括至少一个第二探测电极;
    其中,一个第一探测电极在所述衬底上的正投影与一个第二探测电极在所述衬底上的正投影至少部分重叠,所述第一探测电极、所述第二探测电极和位于二者之间的第一绝缘层,形成一个探测电容器;
    所述探测电容器在所述衬底上的正投影,与所述可弯折区域交叠。
  2. 根据权利要求1所述的柔性基板,其中,所述柔性基板还具有至少一个不可弯折区域;
    所述第一电极层还包括:
    至少一个第一参考电极;所述至少一个第一参考电极与所述至少一个第一探测电极绝缘;
    所述第二电极层还包括:
    至少一个第二参考电极;所述至少一个第二参考电极与所述至少一个第二探测电极绝缘;
    其中,一个第一参考电极在所述衬底上的正投影与一个第二参考电极在所述衬底上的正投影至少部分重叠,所述第一参考电极、所述第二参考电极和位于二者之间的第一绝缘层形成一个参考电容器;
    所述参考电容器在所述衬底上的正投影位于所述不可弯折区域内。
  3. 根据权利要求1或2所述的柔性基板,其中,所述第一探测电极和所述第二探测电极均为条状电极;
    形成同一探测电容器的第一探测电极的延伸方向和第二探测电极的延伸方向相同或大致相同;
    在所述第一电极层包括至少一个第一参考电极,所述第二电极层包括至少一个第二参考电极的情况下,所述第一参考电极和所述第二参考电极均为条状电极;形成同一参考电容器的第一参考电极的延伸方向和第二参考电极的延伸方向相同或大致相同。
  4. 根据权利要求3所述的柔性基板,其中,所述可弯折区域的形状为条 状;
    所述可弯折区域的延伸方向与所述第一探测电极的延伸方向相交叉;
    在所述第一电极层包括至少一个第一参考电极,所述第二电极层包括至少一个第二参考电极的情况下,所述可弯折区域的延伸方向与形成同一参考电容器的第一参考电极和第二参考电极的延伸方向相同或大致相同。
  5. 根据权利要求4所述的柔性基板,其中,所述可弯折区域的延伸方向与所述第一探测电极的延伸方向之间的夹角的角度为70°~130°。
  6. 根据权利要求4或5所述的柔性基板,其中,所述柔性基板包括多个探测电容器,一个所述可弯折区域与至少两个探测电容器在所述衬底上的正投影交叠;
    所述至少两个探测电容器的延伸方向相同或大致相同,所述至少两个探测电容器间隔设置;
    在所述至少两个探测电容器中,相对远离所述柔性基板的中心的探测电容器在其延伸方向上的长度,大于相对靠近所述柔性基板的中心的探测电容器在其延伸方向上的长度;
    在所述柔性基板包括多个参考电容器的情况下,
    所述多个参考电容器的延伸方向相同或大致相同,所述多个参考电容器间隔设置;
    在所述多个参考电容器中,相对远离所述柔性基板的中心的参考电容器在其延伸方向上的长度,大于相对靠近所述柔性基板的中心的参考电容器在其延伸方向上的长度。
  7. 根据权利要求4或5所述的柔性基板,其中,所述柔性基板具有间隔设置的多个可弯折区域,所述多个可弯折区域的延伸方向相同或大致相同;
    所述柔性基板包括多个探测电容器,每个所述可弯折区域与至少一个探测电容器在所述衬底上的正投影有交叠;
    在所述柔性基板包括多个参考电容器的情况下,
    所述多个参考电容器的数量与所述多个探测电容器的数量相同;
    所述多个参考电容器分别位于所述多个可弯折区域整体沿垂直于所述可弯折区域的延伸方向上的相对两侧。
  8. 根据权利要求1~7中任一项所述的柔性基板,其中,所述第一探测电极和所述第二探测电极具有多个穿孔;
    在所述第一电极层包括至少一个第一参考电极,所述第二电极层包括至少一个第二参考电极的情况下,所述第一参考电极和所述第二参考电极具有 多个穿孔。
  9. 根据权利要求1~8中任一项所述的柔性基板,其中,所述第一绝缘层具有柔性。
  10. 根据权利要求9所述的柔性基板,其中,所述第一绝缘层的材料与所述衬底的材料相同。
  11. 根据权利要求1~10中任一项所述的柔性基板,还包括:
    设置于所述第二电极层远离所述衬底一侧的阻挡层;
    设置于所述阻挡层远离所述第二电极层一侧的缓冲层。
  12. 一种显示面板,包括:
    如权利要求1~11中任一项所述的柔性基板;
    设置于所述柔性基板上的公共信号接口和检测信号接口;
    其中,所述柔性基板的探测电容器的第一探测电极和第二探测电极中的一者与所述检测信号接口耦接,另一者与所述公共信号接口耦接。
  13. 根据权利要求12所述的显示面板,其中,在所述柔性基板包括至少一个参考电容器的情况下,
    所述参考电容器的第一参考电极和第二参考电极中的一者与所述检测信号接口耦接,另一者与所述公共信号接口耦接;并且,处于同一电极层中的电极与相同的接口耦接。
  14. 根据权利要求12或13所述的显示面板,还包括:
    设置于所述柔性基板上的至少一条探测走线,所述探测走线被配置为连接所述检测信号接口与所述探测电容器的第一探测电极或第二探测电极;
    在所述柔性基板包括至少一个参考电容器的情况下,所述显示面板还包括:
    设置于所述柔性基板上的至少一条参考走线,所述参考走线被配置为连接所述检测信号接口与所述参考电容器的第一参考电极或第二参考电极。
  15. 根据权利要求14所述的显示面板,还包括:
    设置于所述柔性基板上的至少一个薄膜晶体管,所述薄膜晶体管包括有源层、栅极、源极、漏极、及至少一层第二绝缘层;
    所述探测走线与所述薄膜晶体管中的源极和漏极同层设置且材料相同;
    所述探测走线通过第一过孔与所述第一探测电极或所述第二探测电极耦接;其中,所述第一过孔贯通所述源极和所述漏极所在膜层与所述第一电极层或所述第二电极层之间的膜层;
    在所述显示面板包括至少一条参考走线的情况下,所述参考走线与所述 薄膜晶体管中的源极和漏极同层设置且材料相同;
    所述参考走线通过第二过孔与所述第一参考电极或所述第二参考电极耦接;其中,所述第二过孔贯通所述源极和所述漏极所在膜层与所述第一电极层或所述第二电极层之间的膜层。
  16. 根据权利要求14或15所述的显示面板,还包括:
    至少一个信号放大电路;所述至少一个信号放大电路设置于所述柔性基板上,或者与所述柔性基板绑定;
    所述探测走线通过所述信号放大电路与所述检测信号接口耦接;
    在所述显示面板包括至少一条参考走线的情况下,所述参考走线通过所述信号放大电路与所述检测信号接口耦接。
  17. 根据权利要求16所述的显示面板,其中,所述显示面板包括一个信号放大电路;
    各条所述探测走线与所述信号放大电路耦接;所述信号放大电路被配置为,分时依次对来自各条所述探测走线的信号进行放大处理;
    在所述显示面板包括至少一条参考走线的情况下,所述信号放大电路还与各条所述参考走线耦接;所述信号放大电路还被配置为,分时依次对来自各条所述参考走线的信号进行放大处理。
  18. 根据权利要求16所述的显示面板,其中,所述显示面板包括多个信号放大电路;
    每条所述探测走线连接一个信号放大电路;
    在所述显示面板包括至少一条参考走线的情况下,每条所述参考走线连接一个信号放大电路;
    所述信号放大电路被配置为,对来自其所耦接的探测走线或参考走线的信号进行放大处理。
  19. 一种显示装置,包括:
    如权利要求12~18中任一项所述的显示面板;
    信号处理器;所述信号处理器与所述显示面板中的检测信号接口耦接;
    所述信号处理器被配置为,接收所述检测信号接口所传输的检测信号,根据所述检测信号得到所述显示面板中的至少一个探测电容器的电容变化量,根据所述电容变化量得到所述显示面板的弯折角度。
  20. 根据权利要求19所述的显示装置,其中,所述显示面板具有多个可弯折区域;所述显示面板包括多个探测电容器,每个所述可弯折区域与至少一个探测电容器在所述衬底上的正投影有交叠;
    所述信号处理器还被配置为,根据各探测电容器的电容变化量,以及各探测电容器的位置信息,得到所述显示面板的弯折位置。
  21. 根据权利要求20所述的显示装置,还包括:
    视线采集器,与所述信号处理器耦接;所述视线采集器被配置为采集用户的视线方向的信息,并将所采集的视线方向的信息发送至所述信号处理器;
    所述信号处理器还被配置为,接收所述视线方向的信息,根据所述显示面板的弯折角度、弯折位置和所述视线方向的信息,获得显示位置控制信息或显示亮度控制信息;
    所述显示装置还包括:
    显示控制器,与所述信号处理器和所述显示面板耦接;
    所述显示控制器被配置为,获取所述显示位置控制信息,控制所述显示面板在所述显示位置控制信息所指示的位置显示图像;或,获取所述显示亮度控制信息,控制所述显示面板显示具有所述显示亮度控制信息所指示的亮度的图像。
  22. 根据权利要求19~21中任一项所述的显示装置,还包括:
    指令识别部件;所述指令识别部件被配置为,识别用户指令;
    弯折驱动机构,与所述指令识别部件耦接;所述弯折驱动机构被配置为,根据所述用户指令,驱动所述显示面板进行弯折;及,在所述显示面板的弯折角度达到预设角度的情况下,控制所述显示面板停止弯折。
PCT/CN2020/094304 2019-06-06 2020-06-04 柔性基板、显示面板及显示装置 WO2020244567A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/281,420 US11974493B2 (en) 2019-06-06 2020-06-04 Flexible substrate, display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910493077.X 2019-06-06
CN201910493077.XA CN110224009B (zh) 2019-06-06 2019-06-06 一种衬底基板、显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020244567A1 true WO2020244567A1 (zh) 2020-12-10

Family

ID=67816105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094304 WO2020244567A1 (zh) 2019-06-06 2020-06-04 柔性基板、显示面板及显示装置

Country Status (3)

Country Link
US (1) US11974493B2 (zh)
CN (1) CN110224009B (zh)
WO (1) WO2020244567A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224009B (zh) 2019-06-06 2021-04-23 京东方科技集团股份有限公司 一种衬底基板、显示面板及其制作方法、显示装置
KR20210044356A (ko) * 2019-10-14 2021-04-23 삼성디스플레이 주식회사 표시 장치
CN112509470B (zh) * 2020-11-30 2022-05-20 合肥维信诺科技有限公司 一种可卷曲的显示面板及可卷曲的显示装置
CN114974121B (zh) * 2022-08-03 2022-11-25 惠科股份有限公司 显示面板及其补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741687A (zh) * 2014-12-26 2016-07-06 乐金显示有限公司 包括弯曲传感器的显示装置
KR20170025870A (ko) * 2015-08-31 2017-03-08 엘지디스플레이 주식회사 연성 표시 장치
US20180114491A1 (en) * 2016-10-21 2018-04-26 Japan Display Inc. Display device
CN108511494A (zh) * 2018-03-30 2018-09-07 京东方科技集团股份有限公司 一种柔性显示面板及其弯曲检测方法
CN109786430A (zh) * 2019-02-22 2019-05-21 京东方科技集团股份有限公司 一种柔性显示面板及显示装置
CN110224009A (zh) * 2019-06-06 2019-09-10 京东方科技集团股份有限公司 一种衬底基板、显示面板及其制作方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104318861B (zh) * 2014-09-24 2017-05-10 京东方科技集团股份有限公司 一种柔性屏及其弯曲识别方法、柔性显示装置
US10585456B2 (en) * 2015-08-26 2020-03-10 Lg Display Co., Ltd. Flexible display device having bending sensing device
US10670429B2 (en) * 2017-02-09 2020-06-02 The University Of British Columbia Capacitive bending sensors
US20190064950A1 (en) * 2017-08-24 2019-02-28 Int Tech Co., Ltd. Foldable electronic device and control method thereof
US20190393278A1 (en) * 2018-06-26 2019-12-26 Innolux Corporation Display device
CN109671355B (zh) * 2018-12-26 2021-02-26 厦门天马微电子有限公司 显示面板及显示装置
CN109616020B (zh) * 2019-01-30 2021-12-03 京东方科技集团股份有限公司 柔性显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741687A (zh) * 2014-12-26 2016-07-06 乐金显示有限公司 包括弯曲传感器的显示装置
KR20170025870A (ko) * 2015-08-31 2017-03-08 엘지디스플레이 주식회사 연성 표시 장치
US20180114491A1 (en) * 2016-10-21 2018-04-26 Japan Display Inc. Display device
CN108511494A (zh) * 2018-03-30 2018-09-07 京东方科技集团股份有限公司 一种柔性显示面板及其弯曲检测方法
CN109786430A (zh) * 2019-02-22 2019-05-21 京东方科技集团股份有限公司 一种柔性显示面板及显示装置
CN110224009A (zh) * 2019-06-06 2019-09-10 京东方科技集团股份有限公司 一种衬底基板、显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN110224009B (zh) 2021-04-23
CN110224009A (zh) 2019-09-10
US20210343954A1 (en) 2021-11-04
US11974493B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2020244567A1 (zh) 柔性基板、显示面板及显示装置
WO2020168821A1 (zh) 柔性显示面板及显示装置
KR102289934B1 (ko) 터치 감지 센서를 포함하는 표시 장치
WO2016179937A1 (zh) 一种触控基板、显示设备及其制造方法和驱动方法
US10732744B2 (en) Display device including touch sensor
WO2016110036A1 (zh) 阵列基板及显示装置
US11960180B2 (en) Display device with conductive structure and perforated light-shielding layer in same layer
US11016625B2 (en) Display panel and deformation sensing method thereof, and display device
WO2020087804A1 (zh) 显示面板、显示屏和显示终端
WO2017031867A1 (zh) 有机发光二极管阵列基板及其制备方法、触控显示装置
JP2007048279A (ja) ディスプレイにデジタイザ入力装置を統合するプロセス
CN109616020B (zh) 柔性显示面板和显示装置
US20170124381A1 (en) Self-capacitive fingerprint recognition touch screen, manufacturing method thereof, and display device
WO2016029564A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
KR20190047554A (ko) 터치 디스플레이 장치 및 터치 디스플레이 패널
WO2020237982A1 (zh) 显示面板及其制备方法、显示装置
US10977471B2 (en) Display apparatus and method of manufacturing the same
WO2021093681A1 (zh) 显示背板及其制作方法和显示装置
WO2020015038A1 (zh) 一种指纹识别oled显示面板及显示装置
US20210193819A1 (en) Thin film transistor array substrate and its manufacturing method and oled touch display device
KR20220128605A (ko) 터치패널 및 이를 포함하는 플렉서블 터치표시장치
TW202034303A (zh) 畫素陣列基板
US20230354659A1 (en) Display panel and display device
US11068114B2 (en) Display panel, manufacturing method thereof, and display device
US20220276742A1 (en) Touch display panel and manufacturing method thereof, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819283

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20819283

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20819283

Country of ref document: EP

Kind code of ref document: A1