WO2020244465A1 - 一种车辆的电池系统、充放电方法及车辆 - Google Patents

一种车辆的电池系统、充放电方法及车辆 Download PDF

Info

Publication number
WO2020244465A1
WO2020244465A1 PCT/CN2020/093411 CN2020093411W WO2020244465A1 WO 2020244465 A1 WO2020244465 A1 WO 2020244465A1 CN 2020093411 W CN2020093411 W CN 2020093411W WO 2020244465 A1 WO2020244465 A1 WO 2020244465A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
battery
switch
charging
inter
Prior art date
Application number
PCT/CN2020/093411
Other languages
English (en)
French (fr)
Inventor
蒋观峰
王彬
隋涛
Original Assignee
宁波吉利汽车研究开发有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波吉利汽车研究开发有限公司, 浙江吉利控股集团有限公司 filed Critical 宁波吉利汽车研究开发有限公司
Priority to EP20818980.3A priority Critical patent/EP3978307B1/en
Priority to JP2021571780A priority patent/JP7322187B2/ja
Priority to KR1020217039482A priority patent/KR20220005071A/ko
Priority to US17/616,182 priority patent/US20220314833A1/en
Publication of WO2020244465A1 publication Critical patent/WO2020244465A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/11Passenger cars; Automobiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of batteries, in particular to a vehicle battery system, a charging and discharging method, and a vehicle.
  • a high-voltage battery system for example, an 800V platform
  • the electrical device is a low-voltage platform (for example, a 400V platform)
  • a partial voltage (for example, 400V) discharge is required.
  • the present invention proposes a vehicle battery system, which includes: an energy storage device and a DC charging and discharging interface connected to each other;
  • An energy storage device the energy storage device includes at least a first battery pack and a second battery pack, and an inter-battery switch is arranged between adjacent battery packs;
  • the first electrode of the DC charging and discharging interface is respectively connected with the first electrode of the energy storage device and one end of the switch between the batteries, and the second electrode of the DC charging and discharging interface is respectively connected with the The second electrode of the energy storage device is connected to the other end of the switch between batteries.
  • the switch between batteries includes: a first switch between batteries and a second switch between batteries, and both the first switch between batteries and the second switch between batteries are single pole double throw switches;
  • the incoming terminal of the first inter-battery switch is connected to the first electrode of the first battery pack, and the first outgoing terminal of the first inter-battery switch is connected to the first electrode of the DC charging and discharging interface, and the first battery
  • the second outlet terminal of the inter-battery switch is connected to the first outlet end of the second inter-battery switch; the second outlet end of the second inter-battery switch is connected to the second electrode of the DC charging and discharging interface, and the second battery
  • the inlet end of the intermediate switch is connected to the second electrode of the second battery pack.
  • it also includes a first relay
  • One end of the first relay is connected to the second electrode of the DC charging and discharging interface, and the other end of the first relay is respectively connected to the second electrode of the energy storage device and the second electrode of each group of the second battery switch.
  • one end of the first relay is respectively connected to the second electrode of the DC charging and discharging interface and the second outlet terminal of each group of the second inter-battery switch, and the other end of the first relay is connected to the storage battery.
  • the second electrode of the energy device is connected.
  • One end of the second relay is connected to the first electrode of the DC charging and discharging interface, and the other end of the second relay is respectively connected to the first electrode of the energy storage device and the first electrode of each group of the first battery switch.
  • one end of the second relay is respectively connected to the first electrode of the DC charging and discharging interface and the first outlet terminal of each group of the first inter-battery switch, and the other end of the second relay is connected to the storage battery.
  • the first electrode of the energy device is connected.
  • One end of the third relay is connected to one end of the second relay, and the other end of the third relay is connected to the first outlet terminal of the first inter-battery switch;
  • one end of the third relay is connected to the other end of the second relay, and the other end of the third relay is connected to the first outlet terminal of the first inter-battery switch.
  • One end of the fourth relay is connected to one end of the first relay, and the other end of the fourth relay is connected to the second outlet terminal of the second inter-battery switch;
  • one end of the fourth relay is connected to the other end of the first relay, and the other end of the fourth relay is connected to the second outlet terminal of the second inter-battery switch.
  • the DC charging and discharging interface includes: a discharging interface and a charging interface;
  • the first electrode of the discharge interface is connected to the first electrode of the charging interface
  • the second electrode of the discharge interface is connected to the second electrode of the charging interface.
  • the DC charging and discharging interface further includes: a fifth relay;
  • One end of the fifth relay is connected to the second electrode of the charging interface, and the other end of the fifth relay is respectively connected to the second electrode of the discharge interface and the second electrode of the energy storage device.
  • the DC charging and discharging interface further includes: a sixth relay;
  • One end of the sixth relay is connected to the first electrode of the charging interface, and the other end of the sixth relay is respectively connected to the first electrode of the discharge interface and the first electrode of the energy storage device.
  • control unit also includes: a control unit;
  • the control unit is respectively connected to the energy storage device, the first switch between batteries, the second switch between batteries, the first relay, the second relay, the third relay, the fourth relay, the fifth relay and/or
  • the sixth relay connection used to control the first inter-battery switch, the second inter-battery switch, the first relay, the second relay, the third relay, the fourth relay, the fifth relay and/or the sixth relay Open or close to realize that the energy storage device is charged or discharged according to one of a high-voltage charge-discharge mode, a low-voltage charge-discharge mode, and a protective charge-discharge mode.
  • control unit includes a battery detection device
  • the battery detection device is connected to each group of the battery pack, and is used to detect the working state of the battery pack;
  • the control unit is configured to receive charge and discharge parameter information sent by an external charge and discharge device and the working state information sent by the battery detection device, and control the first battery according to the charge and discharge parameter information and the working state information
  • the opening or closing of the switch between the batteries, the second switch between batteries, the first relay, the second relay, the third relay, the fourth relay, the fifth relay, and/or the sixth relay so as to realize the Charge and discharge in one of the charge and discharge mode, low voltage charge and discharge mode, and protection charge and discharge mode.
  • the battery detection device is also used to detect the state of charge information of the battery pack
  • the control unit is configured to detect whether the battery pack is fully charged according to the state of charge information fed back by the battery detection device, and after determining that the battery pack is fully charged, control the fifth relay and/or the second relay Six relays are off.
  • the present invention provides a method for charging and discharging a battery system applied to a vehicle, the method including:
  • the switch between the batteries is controlled to open or close, so as to realize that the battery pack is charged according to one of the high-voltage charge-discharge mode, the low-voltage charge-discharge mode, and the protective charge-discharge mode Or discharge.
  • the switch between batteries includes: a first switch between batteries and a second switch between batteries, both of the first switch between batteries and the second switch between batteries are single-pole double-throw switches, and according to the received Charge and discharge parameter information and working status, control the switch between the batteries to open or close, so that the battery pack is charged or discharged according to one of the high-voltage charge-discharge mode, the low-voltage charge-discharge mode, and the protection charge-discharge mode. Also includes:
  • the first inter-battery switch, the second inter-battery switch, the first relay, and the second relay are controlled. Open or close to realize that the battery pack is charged or discharged according to one of a high-voltage charge-discharge mode, a low-voltage charge-discharge mode, and a protection charge-discharge mode.
  • the working status information includes: a fault status message;
  • the charge and discharge parameter information includes: a charging pile identification message;
  • the control When the voltage characterized by the received charging pile identification message is equal to the rated voltage of each group of the battery pack, and the obtained working state of a certain group of the battery pack is a fault state message, the control The first inter-cell switch and the second inter-cell switch of the battery pack corresponding to the fault state message are opened, the first relay and the second relay are controlled to be closed, and the remaining battery packs are controlled The corresponding first inter-battery switch is closed to the first outlet terminal and the second inter-battery switch is closed to the second outlet end, so that each group of the battery packs that have not failed are connected in parallel with the DC charging and discharging interface, Enter the protection charging mode for charging.
  • the voltage characterized by the received charging pile identification message is equal to the sum of the rated voltages of all the battery packs, and the working state of a certain group of the battery packs that has not been acquired is a fault state message , Control the first relay and the second relay to close, and control the first inter-battery switch corresponding to the remaining battery packs to close to the second outlet terminal and the second inter-battery switch to close to the first outlet terminal , So that each group of the battery pack is connected to the DC charging and discharging interface in series, and enters the high-voltage charging mode for charging.
  • the voltage represented by the received charging pile identification message is equal to the rated voltage of each group of the battery pack, and the working state of a certain group of the battery pack that has not been acquired is a fault state message, Then control the first relay and the second relay to close, and control the first inter-battery switch to close to the first outlet terminal and the second inter-battery switch to close to the second outlet terminal, so that each group of the The battery pack is connected to the DC charging and discharging interface in parallel, and enters the low-voltage charging mode for charging.
  • the present invention provides a vehicle provided with the above-mentioned battery system of the vehicle.
  • Fig. 1 is a schematic diagram of a single-pole double-throw switch provided by an embodiment of the present invention
  • Fig. 2 is a structural diagram of a vehicle battery system provided by an embodiment of the present invention.
  • FIG. 3 is a structural diagram of another vehicle battery system provided by an embodiment of the present invention.
  • FIG. 4 is a structural diagram of another vehicle battery system provided by an embodiment of the present invention.
  • Fig. 5 is a structural diagram of another vehicle battery system provided by an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for charging and discharging a battery system of a vehicle according to an embodiment of the present invention
  • FIG. 7 is a flowchart of another method for charging and discharging a battery system of a vehicle according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another method for charging and discharging a battery system of a vehicle according to an embodiment of the present invention.
  • 1-energy storage device 2-DC charge and discharge interface
  • Fig. 1 is a schematic diagram of a single-pole double-throw switch provided by an embodiment of the present invention; as shown in Fig. 1, a single-pole double-throw switch: refers to the device has three states: on position N, on position P, and off.
  • the throw switch may include an incoming terminal, a first terminal N, and a second terminal P.
  • Single-pole double-throw switches may include but are not limited to: double-throw contactors, double-throw relays, semiconductor power devices with the same function, including but not limited to multiplexers, triode combination circuits, mosfet combination circuits, IGBT combination circuits, SiC combination circuit.
  • the first relay, the second relay, the third relay, the fourth relay, the fifth relay and the sixth relay of the present invention only have two states of closed and open, which can include but are not limited to: contactor, relay, semiconductor power
  • the device can also be a three-stage tube, mosfet, IGBT, SiC and other electronic components.
  • Fig. 2 is a structural diagram of a vehicle battery system provided by an embodiment of the present invention
  • Fig. 3 is a structural diagram of another vehicle battery system provided by an embodiment of the present invention
  • Fig. 4 is a further vehicle battery system provided by an embodiment of the present invention Structure diagram
  • FIG. 5 is a structure diagram of another vehicle battery system provided by an embodiment of the present invention.
  • the vehicle battery system provided by the present invention includes: an energy storage device 1 and a DC charging and discharging interface 2 connected to each other;
  • An energy storage device 1 which includes at least a first battery pack 17 and a second battery pack 18, and an inter-battery switch is arranged between adjacent battery packs;
  • the first electrode of the DC charging and discharging interface 2 is respectively connected to the first electrode of the energy storage device 1 and one end of the inter-battery switch, and the second electrode of the DC charging and discharging interface 2 They are respectively connected to the second electrode of the energy storage device 1 and the other end of the switch between batteries.
  • the switch between batteries includes: a first switch between batteries 11 and a second switch between batteries 12, the first switch between batteries 11 and the second battery
  • the intermediate switches 12 are single-pole double-throw switches
  • the incoming terminal 111 of the first inter-battery switch 11 is connected to the first electrode of the first battery pack 17, and the first outgoing terminal 112 of the first inter-battery switch 11 is connected to the first electrode of the DC charging and discharging interface 2 ,
  • the second outlet terminal 113 of the first inter-battery switch 11 is connected to the first outlet terminal 112 of the second inter-battery switch 12; the second outlet terminal 113 of the second inter-battery switch 12 is connected to the DC charger
  • the second electrode of the discharge interface 2 and the inlet 111 of the second inter-battery switch 12 is connected to the second electrode of the second battery pack 18.
  • the energy storage device 1 may include at least a first battery pack 17 and a second battery pack 18. It is understood that the rated voltages of the first battery pack 17 and the second battery pack 18 may be the same or different. Preferably, the first The rated voltages of the battery pack 17 and the second battery pack 18 are the same.
  • the first battery pack 17 may include multiple sets of batteries connected in series, and each set of batteries may also include multiple single cells connected in series.
  • the energy storage device 1 can be used to provide electrical energy for a vehicle.
  • the rated voltage of the single battery is not specifically limited in the embodiments of this specification, and can be set according to actual needs.
  • the energy storage device 1 may include three or more battery packs, and every two battery packs are connected by an inter-battery switch in the present invention.
  • the energy storage device 1 includes: a first battery pack 17, a second battery pack 18, and a third battery pack that are placed side by side and have a rated voltage of 400V
  • the negative electrode of the first battery pack 17 and the second battery pack 18 An inter-battery switch A is provided between the positive electrode of the second battery pack 18 and an inter-battery switch B is provided between the negative electrode of the second battery pack 18 and the positive electrode of the third battery pack.
  • the positive electrode of the first battery pack 17 is connected to the positive electrode of the DC charging and discharging interface.
  • the negative pole of the three battery pack is connected to the negative pole of the DC charging and discharging interface; when the external charging device is 400V, the first battery pack 17, the second battery pack 18, and the third battery can be realized by controlling the battery switch A and the battery switch B
  • the groups are in a parallel state and are connected to external charging equipment through a DC charging and discharging interface, so that the first battery pack 17, the second battery pack 18, and the third battery pack are simultaneously charged at a voltage of 400V.
  • the DC charging and discharging interface 2 can be used to connect an external charging and discharging device or a power consumption device.
  • the external charging and discharging device can be used for charging and discharging the battery system.
  • the external charging and discharging device can be a charging pile or other
  • the charging and discharging device, the electrical energy consuming device can be an engine, a lighting device, etc.
  • the DC charging and discharging interface 2 can be matched with the plug-in mode of the external charging and discharging device.
  • the specific implementation form of the DC charge and discharge interface 2 is not restrictive.
  • the DC charge and discharge interface 2 can be set as a charge and discharge gun, which can be inserted into the charge and discharge interface of an electric vehicle. connection.
  • the DC charging and discharging interface 2 can be connected to a load or a DC charger.
  • first inter-battery switch 11 and the second inter-battery switch 12 may be used to switch the connection or disconnection relationship between battery packs.
  • the specific connection mode can be series or parallel.
  • first electrode and the second electrode are opposite electrodes.
  • first electrode is a negative electrode
  • second electrode is a positive electrode.
  • it further includes a first relay 13;
  • One end of the first relay 13 is connected to the second electrode of the DC charging and discharging interface 2, and the other end of the first relay 13 is respectively connected to the second electrode of the energy storage device 1 and each group of the second battery
  • the second outlet terminal 113 of the intermediate switch 12 is connected;
  • one end of the first relay 13 is respectively connected to the second electrode of the DC charging and discharging interface 2 and the second outlet terminal 113 of each group of the second inter-battery switch 12, and the other end of the first relay 13 One end is connected to the second electrode of the energy storage device 1.
  • the first relay 13 may be used to open or close the circuit between the second electrode of the energy storage device 1 and the second electrode of the DC charging and discharging interface 2. Or the first relay 13 can be used to open or close the circuit between the second electrode of the first battery pack 17 and the second electrode of the DC charging and discharging interface 2.
  • a second relay 14 is further included;
  • One end of the second relay 14 is connected to the first electrode of the DC charging and discharging interface 2, and the other end of the second relay 14 is respectively connected to the first electrode of the energy storage device 1 and each group of the first battery.
  • the first outlet terminal 112 of the intermediate switch 11 is connected;
  • one end of the second relay 14 is respectively connected to the first electrode of the DC charging and discharging interface 2 and the first outlet terminal 112 of each group of the first inter-battery switch 11, and the other of the second relay 14 One end is connected with the first electrode of the energy storage device 1.
  • the second relay 14 may be used to open or close the circuit between the first electrode of the energy storage device 1 and the first electrode of the DC charging and discharging interface 2. Or the second relay 14 can be used to open or close the circuit between the first electrode of the first battery pack 17 and the first electrode of the DC charging and discharging interface 2.
  • a third relay 15 is further included;
  • One end of the third relay 15 is connected to one end of the second relay 14, and the other end of the third relay 15 is connected to the first outlet terminal 112 of the first inter-battery switch 11;
  • one end of the third relay 15 is connected to the other end of the second relay 14, and the other end of the third relay 15 is connected to the first outlet terminal 112 of the first inter-battery switch 11.
  • the third relay 15 may be used to open or close the circuit between the first electrode of the first battery pack 17 and the first electrode of the DC charging and discharging interface 2. Or the third relay 15 can be used to open or close the circuit between the first electrode of the first battery pack 17 and the second relay 14.
  • a fourth relay 16 is further included;
  • One end of the fourth relay 16 is connected to one end of the first relay 13, and the other end of the fourth relay 16 is connected to the second outlet terminal 113 of the second inter-battery switch 12;
  • one end of the fourth relay 16 is connected to the other end of the first relay 13, and the other end of the fourth relay 16 is connected to the second outlet terminal 113 of the second inter-battery switch 12.
  • the fourth relay 16 may be used to open or close the circuit between the second electrode of the second battery pack 18 and the second electrode of the DC charging and discharging interface 2. Or the fourth relay 16 can be used to open or close the circuit between the second electrode of the second battery pack 18 and the first relay 13.
  • the DC charging and discharging interface 2 includes: a discharging interface and a charging interface;
  • the first electrode of the discharge interface is connected to the first electrode of the charging interface
  • the second electrode of the discharge interface is connected to the second electrode of the charging interface.
  • the discharge interface and the charge interface may be connected in parallel, and the first electrode of the discharge interface is connected to the first electrode of each battery pack.
  • the second electrode of the discharge interface is connected to the second electrode of each battery pack.
  • the DC charging and discharging interface 2 further includes: a fifth relay 21;
  • One end of the fifth relay 21 is connected to the second electrode of the charging interface, and the other end of the fifth relay 21 is connected to the second electrode of the discharging interface and the second electrode of the energy storage device 1 respectively.
  • the fifth relay 21 may be used to close or disconnect the circuit connection between the second electrode of the charging interface and the second electrode of the energy storage device 1 or each battery pack.
  • the fifth relay 21 may also be arranged between the second electrode of the discharge interface and the second electrode of the energy storage device 1 or each battery.
  • the DC charging and discharging interface 2 further includes: a sixth relay 22;
  • One end of the sixth relay 22 is connected to the first electrode of the charging interface, and the other end of the sixth relay 22 is connected to the first electrode of the discharge interface and the first electrode of the energy storage device 1 respectively.
  • the sixth relay 22 may be used to close or disconnect the circuit connection between the first electrode of the charging interface and the first electrode of the energy storage device 1 or each battery pack.
  • the sixth relay 22 may also be arranged between the first electrode of the discharge interface and the energy storage device 1 or the first electrode of each battery.
  • control unit in an embodiment of this specification, it further includes: a control unit;
  • the control unit is connected to the energy storage device 1, the first inter-battery switch 11, the second inter-battery switch 12, the first relay 13, the second relay 14, the third relay 15, and the fourth relay 16.
  • the fifth relay 21 and/or the sixth relay 22 are connected to control the first inter-battery switch 11, the second inter-battery switch 12, the first relay 13, the second relay 14, and the third relay 15,
  • the fourth relay 16, the fifth relay 21, and/or the sixth relay 22 are opened or closed to realize that the energy storage device 1 performs in one of the high-voltage charging and discharging mode, the low-voltage charging and discharging mode, and the protective charging and discharging mode. Charge or discharge.
  • the control unit can respectively communicate with the energy storage device 1, the first inter-battery switch 11, the second inter-battery switch 12, the first relay 13, the second relay 14, the third relay 15, and the fourth relay 16 through the CAN line. ,
  • the fifth relay 21 and/or the sixth relay 22 control the connection.
  • the control unit can control the first inter-battery switch 11, the second inter-battery switch 12, and the first inter-battery switch according to the working state of the energy storage device 1 and user requirements.
  • the opening or closing controlled by the relay 13, the second relay 14, the third relay 15, the fourth relay 16, the fifth relay 21 and/or the sixth relay 22 realizes the battery pack according to the high-voltage charging and discharging mode, the low-voltage charging and discharging mode, and the protection
  • One of the charging and discharging modes performs charging or discharging, and the control unit can be set on the driver side or on the battery side.
  • control unit includes a battery detection device
  • the battery detection device is connected to each group of the battery pack, and is used to detect the working state of the battery pack;
  • the control unit is configured to receive charge and discharge parameter information sent by an external charge and discharge device and the working state information sent by the battery detection device, and control the first battery according to the charge and discharge parameter information and the working state information
  • the opening or closing of the intermediate switch 11, the second battery switch 12, the first relay 13, the second relay 14, the third relay 15, the fourth relay 16, the fifth relay 21 and/or the sixth relay 22, In order to realize that the battery pack is charged and discharged according to one of a high voltage charge and discharge mode, a low voltage charge and discharge mode, and a protection charge and discharge mode.
  • the battery detection device can be used to monitor the communication protocol version, battery pack type, battery pack capacity, battery pack voltage, and vehicle identification code (VIN, Vehicle Identification Number) of each battery pack.
  • the control unit may perform charging handshake identification with the BMS handshake identification message BRM sent by the charging pile according to the above information, and realize the charging handshake after identification.
  • the battery detection device is also used to detect the state of charge information of the battery pack
  • the control unit is configured to detect whether the battery pack is fully charged according to the state of charge information fed back by the battery detection device, and after determining that the battery pack is fully charged, control the fifth relay 21 and/or the The sixth relay 22 is turned off.
  • the battery system of the vehicle is composed of a first battery pack 17, a second battery pack 18, a first battery switch 11, a second battery switch 12, a first relay 13, and a second relay 14.
  • the third relay 15, the fourth relay 16, the fifth relay 21, the sixth relay 22, the charging interface and the discharging interface; the rated voltage of the first battery pack 17, the second battery pack 18 are both 400V;
  • the first inter-battery switch 11 When the system encounters a low-voltage discharge of 400V from the outside, close the first inter-battery switch 11 to the first outlet terminal 112, close the second inter-battery switch 12 to the second outlet terminal 113, and close the first relay 13, the The second relay 14, the third relay 15 and the fourth relay 16, at this time, are equivalent to two low-voltage platform battery packs connected in parallel, and the total voltage is equivalent to the voltage of each battery pack 400V. At this time, the voltage of the battery pack is matched with the external low-voltage electrical device, and the discharge requirement can be fulfilled.
  • the control unit When encountering internal problems of the battery pack, such as local insulation problems or battery cell problems, when the control unit recognizes that the problem belongs to the first battery pack 17 or the second battery pack 18, then the system can be converted to 400V low voltage platform for protection of charge and discharge mode, for example:
  • FIG. 6 is a flowchart of a method for charging and discharging a vehicle battery system according to an embodiment of the present invention
  • FIG. 7 is a flowchart of another method for charging and discharging a vehicle battery system according to an embodiment of the present invention
  • 8 A flowchart of another method for charging and discharging a vehicle battery system provided by an embodiment of the present invention.
  • the present invention provides a method for charging and discharging a vehicle battery system described above. , The method includes:
  • the switch between the batteries is controlled to open or close, so as to realize that the battery pack is charged according to one of the high-voltage charge-discharge mode, the low-voltage charge-discharge mode, and the protective charge-discharge mode Or discharge.
  • the switch between batteries includes: a first switch between batteries (11) and a second switch between batteries (12), the first switch between batteries (11) and
  • the second inter-battery switch (12) is a single-pole double-throw switch. According to the received charge and discharge parameter information and working status, the inter-battery switch is controlled to open or close, so that the battery pack is Charge or discharge in one of the charge-discharge mode, low-voltage charge-discharge mode, and protection charge-discharge mode, which also includes:
  • controlling the first inter-battery switch 11, the second inter-battery switch 12, the first relay 13, and the second inter-battery switch according to the received charge and discharge parameter information, the working status information and the current position status information.
  • the relay 14, the third relay 15, and the fourth relay 16 are opened or closed to realize that the battery pack is charged or discharged according to one of the high-voltage charging and discharging mode, the low-voltage charging and discharging mode, and the protective charging and discharging mode.
  • the working status information includes: a fault status message;
  • the charging and discharging parameter information includes: a charging pile identification message;
  • the control The first inter-battery switch 11 and the second inter-battery switch 12 of the battery pack corresponding to the fault state message are turned off, and the first relay 13 and the second relay 14, and the third relay 15 are controlled.
  • the fourth relay 16 are closed, and control the first inter-battery switch 11 corresponding to the remaining battery packs to close to the first outlet terminal 112 and the second inter-battery switch 12 to close to the second outlet terminal 113, so that each The battery packs that have not failed are connected in parallel with the DC charging and discharging interface 2 and enter the protection charging mode for charging.
  • control The first relay 13 and the second relay 14 are closed, the third relay 15 and the fourth relay 16 are controlled to be opened, and the first inter-battery switches 11 corresponding to the remaining battery packs are controlled to be closed to the first
  • the second outlet terminal 113 and the second battery switch 12 are closed to the first outlet terminal 112, so that each battery pack is connected to the DC charging and discharging interface 2 in series to enter the high-voltage charging mode for charging.
  • the control unit can monitor the working status of each switch, each relay and each battery pack;
  • the charging pile After it is determined that the insulation detection is normal, the charging pile sends a charger handshake message CHM (Charger Handshake message) to the control unit every 250ms.
  • CHM Charge Handshake message
  • the content of the message may be the version number of the charging pile communication protocol.
  • BHM handshake message
  • the content of the message is the maximum allowable total charging voltage of the control unit, of which the highest allowable total charging voltage is the energy storage device 1 The rated voltage.
  • the handshake is completed when the maximum allowable total charging voltage (800V) is less than or equal to the output voltage of the charging pile (400V);
  • the control unit can control the first inter-battery switch 11 and the second inter-battery switch 12 according to the voltage output by the charging pile, the working status information of the first battery pack 17 and the second battery pack 18, and the position of each relay or switch between batteries.
  • the opening or closing of the first battery pack 17, the second battery pack 18, the first relay 13, the second relay 14, the fifth relay 21, and the sixth relay 22 realize low-voltage charging according to the output voltage of the charging pile;
  • the first inter-battery switch 11 is at the first outlet terminal 112
  • the second inter-battery switch 12 is at the second outlet terminal 113
  • the first relay 13, the second relay 14 are closed
  • the fifth relay 21 and the sixth relay 22 are all closed status;
  • the charging pile can periodically send a charging pile identification message to the control unit every 250ms to confirm that the communication link between the charging pile and the control unit is correct.
  • the content of the message can be the version number of the charging station communication protocol;
  • control unit may periodically send a BMS handshake identification message BRM to the charging pile every 250ms;
  • control unit After the control unit detects that the charging of each battery pack or energy storage device 1 is completed, it controls the fifth relay 21 and/sixth relay 22 to turn off to complete the charging.
  • the present invention provides a vehicle provided with the battery system of any one of the above-mentioned vehicles.
  • the vehicle Since the vehicle is provided with the battery system of the vehicle, the vehicle has the technical effect of the battery system of the vehicle, which is not repeated here.

Abstract

一种车辆的电池系统、充放电方法及车辆,包括:相互连接的储能装置(1)和直流充放电接口(2);储能装置(1)包括第一电池组(17)和第二电池组(18),相邻电池组之间设置有第一电池间开关(11)和第二电池间开关(12);第一电池间开关(11)的进线端(111)连接第一电池组(17)的第一电极,第一电池间开关(11)的第一出线端(112)连接储能装置(1)的第一电极,第一电池间开关(11)的第二出线端(113)连接第二电池间开关(12)的第一出线端(112);第二电池间开关(12)的第二出线端(113)连接储能装置(1)的第二电极,第二电池间开关(12)的进线端(111)连接第二电池组(18)的第二电极;直流充放电接口(2)的第一电极连接储能装置(1)的第一电极,直流充放电接口(2)的第二电极连接储能装置(1)的第二电极。解决高压平台电池组无法通过低压充电桩充电的问题。

Description

一种车辆的电池系统、充放电方法及车辆 技术领域
本发明涉及电池技术领域,具体涉及一种车辆的电池系统、充放电方法及车辆。
背景技术
近年来,随着国家大力推进新能源汽车的发展,也极大的带动了动力电池的发展,动力电池的安全性也越来越重要。为了保证动力电池在使用及售后维修过程中的安全性,手动维护开关(Manual Service Disconnect,MSD)已经成为动力电池的主流配置。
随着电动车的普及,乘用车逐渐开始使用高压平台的电池系统(例如,800V平台),然而市面上存在两种规格的充电桩(例如,低压平台400V和高压平台800V),导致采用高压平台电池的电动车遇到低压充电桩时,无法进行充电,降低了车辆的便捷性,且无法满足用户的使用需求,进而导致产品竞争力下降。
当前乘用车遇到电池系统内部局部故障时(例如单体电池老化,过压欠压等问题),为了车辆及驾驶人员安全,该系统无法进行放电,导致车辆失去动力或者抛锚。只能原地等待救援或者拖车,降低了车辆的安全性,且无法满足用户的使用需求,进而导致产品竞争力下降。
当乘用车上使用的是高压电池系统(例如800V平台),但是用电器件是低电压平台(例如,400V平台)的时候,需要进行部分电压(例如,400V)的放电。
当前其他的类似解决不同电压平台切换的发明中,采用的都是继电器、接触器、或者其他功率继电器的导通与关闭的方法,存在内部短路的风险。
因此,亟需提出一种车辆的电池系统、充放电方法及车辆的技术方案能够在出现局部电池故障时,可以将电池系统切换到无故障的低压模式, 保障电池能够输出部分功率,继续驱动车辆行驶;并且能够在不同用电或充电需求下满足充电或放电。
发明内容
为解决现有技术中存在的问题,本发明提出一种车辆的电池系统,包括:相互连接的储能装置和直流充放电接口;
储能装置,所述储能装置至少包括第一电池组和第二电池组,相邻所述电池组之间设置电池间开关;
直流充放电接口,所述直流充放电接口的第一电极分别与所述储能装置的第一电极和所述电池间开关的一端连接,所述直流充放电接口的第二电极分别与所述储能装置的第二电极和所述电池间开关的另一端连接。
进一步地、所述电池间开关包括:第一电池间开关和第二电池间开关,所述第一电池间开关和所述第二电池间开关均为单刀双掷开关;
所述第一电池间开关的进线端连接第一电池组的第一电极,所述第一电池间开关的第一出线端连接所述直流充放电接口的第一电极,所述第一电池间开关的第二出线端连接所述第二电池间开关的第一出线端;所述第二电池间开关的第二出线端连接所述直流充放电接口的第二电极,所述第二电池间开关的进线端连接第二电池组的第二电极。
进一步地、还包括第一继电器;
所述第一继电器的一端连接所述直流充放电接口的第二电极,所述第一继电器的另一端分别与所述储能装置的第二电极和每组所述第二电池间开关的第二出线端连接;
或,所述第一继电器的一端分别与所述直流充放电接口的第二电极和每组所述第二电池间开关的第二出线端连接,所述第一继电器的另一端与所述储能装置的第二电极连接。
进一步地、还包括第二继电器;
所述第二继电器的一端连接所述直流充放电接口的第一电极,所述第二继电器的另一端分别与所述储能装置的第一电极和每组所述第一电池间开关的第一出线端连接;
或,所述第二继电器的一端分别与所述直流充放电接口的第一电极和每组所述第一电池间开关的第一出线端连接,所述第二继电器的另一端与所述储能装置的第一电极连接。
进一步地、还包括第三继电器;
所述第三继电器的一端连接所述第二继电器的一端,所述第三继电器的另一端连接所述第一电池间开关的第一出线端;
或,所述第三继电器的一端连接所述第二继电器的另一端,所述第三继电器的另一端连接所述第一电池间开关的第一出线端。
进一步地、还包括第四继电器;
所述第四继电器的一端连接所述第一继电器的一端,所述第四继电器的另一端连接所述第二电池间开关的第二出线端;
或,所述第四继电器的一端连接所述第一继电器的另一端,所述第四继电器的另一端连接所述第二电池间开关的第二出线端。
进一步地、所述直流充放电接口包括:放电接口和充电接口;
所述放电接口的第一电极与所述充电接口的第一电极连接;
所述放电接口的第二电极与所述充电接口的第二电极连接。
进一步地、所述直流充放电接口还包括:第五继电器;
所述第五继电器的一端连接所述充电接口的第二电极,所述第五继电器的另一端分别与所述放电接口的第二电极和所述储能装置的第二电极连接。
进一步地、所述直流充放电接口还包括:第六继电器;
所述第六继电器的一端连接所述充电接口的第一电极,所述第六继电器的另一端分别与所述放电接口的第一电极和所述储能装置的第一电极连接。
进一步地、还包括:控制单元;
所述控制单元分别与所述储能装置、所述第一电池间开关、所述第二电池间开关、第一继电器、第二继电器、第三继电器、第四继电器、第五继电器和/或第六继电器连接,用于控制所述第一电池间开关、所述第二电池间开关、第一继电器、第二继电器、第三继电器、第四继电器、第五继 电器和/或第六继电器的断开或闭合,以实现所述储能装置按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
进一步地、所述控制单元包括电池检测装置;
所述电池检测装置与每组所述电池组连接,用于检测所述电池组的工作状态;
所述控制单元用于接收外接充放电装置发送的充放电参数信息和所述电池检测装置发送的所述工作状态信息,根据所述充放电参数信息和所述工作状态信息控制所述第一电池间开关、所述第二电池间开关、第一继电器、第二继电器、第三继电器、第四继电器、第五继电器和/或第六继电器的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充放电。
进一步地、所述电池检测装置还用于检测所述电池组的荷电状态信息;
所述控制单元用于根据所述电池检测装置反馈的荷电状态信息检测所述电池组是否已经充满电,在确定所述电池组充满电后,控制所述第五继电器和/或所述第六继电器断开。
另一方面、本发明提供一种应用在车辆的电池系统进行充放电的方法,所述方法包括:
获取每组所述电池组的工作状态信息;
根据接收到的充放电参数信息和工作状态,控制所述电池间开关断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
进一步地、所述电池间开关包括:第一电池间开关和第二电池间开关,所述第一电池间开关和所述第二电池间开关均为单刀双掷开关,所述根据接收到的充放电参数信息和工作状态,控制所述电池间开关断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电,之前还包括:
获取所述第一电池间开关、所述第二电池间开关、第一继电器和第二继电器的对应的当前位置状态信息;
相应的,根据接收到的充放电参数信息、所述工作状态信息和所述当 前位置状态信息,控制所述第一电池间开关、所述第二电池间开关、第一继电器、第二继电器的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
进一步地、所述工作状态信息包括:故障状态报文;所述充放电参数信息包括:充电桩辨识报文;
当接收到的所述充电桩辨识报文表征的电压等于每组所述电池组的额定电压,且获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述故障状态报文对应的所述电池组的所述第一电池间开关和所述第二电池间开关断开,控制所述第一继电器和所述第二继电器闭合,并控制其余所述电池组对应的第一电池间开关闭合至第一出线端和所述第二电池间开关闭合至第二出线端,使得每组未故障的所述电池组以并联方式与所述直流充放电接口连接,进入所述保护充电模式进行充电。
进一步地、当接收到的所述充电桩辨识报文表征的电压等于全部所述电池组的额定电压之和,且未获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述第一继电器和所述第二继电器闭合,并控制其余所述电池组对应的第一电池间开关闭合至第二出线端和所述第二电池间开关闭合至第一出线端,使得每组所述电池组以串联方式与所述直流充放电接口连接,进入所述高压充电模式进行充电。
进一步地、当接收到的所述充电桩辨识报文表征的电压等于每组所述电池组的额定电压,且未获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述第一继电器和所述第二继电器闭合,并控制所述第一电池间开关闭合至第一出线端和所述第二电池间开关闭合至第二出线端,使得每组所述电池组以并联方式与所述直流充放电接口连接,进入所述低压充电模式进行充电。
再一方面、本发明提供一种车辆,所述车辆设置有上述所述车辆的电池系统。
实施本发明具有以下有益效果:
解决高压/低压平台动力电池无法通过低压/高压充电桩充电的问题;
解决高压/低压平台动力电池无法通过低压/高压放电的问题;
解决了局部电池系统内部局部故障无法使用的问题;
解决了常见的发明方案中容易出现控制短路的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1本发明实施例提供的一种单刀双掷开关示意图;
图2本发明实施例提供的一种车辆的电池系统结构图;
图3本发明实施例提供的另一种车辆的电池系统结构图;
图4本发明实施例提供的又一种车辆的电池系统结构图;
图5本发明实施例提供的再一种车辆的电池系统结构图;
图6本发明实施例提供的一种车辆的电池系统进行充放电方法的流程图;
图7本发明实施例提供的另一种车辆的电池系统进行充放电方法的流程图;
图8本发明实施例提供的再一种车辆的电池系统进行充放电方法的流程图;
其中,1-储能装置,2-直流充放电接口;
11-第一电池间开关,12-第二电池间开关,13-第一继电器,14-第二继电器,15-第三继电器,16-第四继电器,17-第一电池组,18-第二电池组,21-第五继电器,22-第六继电器;
111-进线端,112-第一出线端,113-第二出线端。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本 发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是电路连接,也可是通信连接。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
图1本发明实施例提供的一种单刀双掷开关示意图;如图1所示,单刀双掷开关:指该装置有接通位置N,接通位置P和断开三种状态,该单刀双掷开关可以包括进线端、第一出线端N和第二出线端P。单刀双掷开关可以包括但不限于:双掷接触器,双掷继电器,有同样功能的半导体功率器件,包括但不限于多路选择器,三级管组合电路,mosfet组合电路,IGBT组合电路,SiC组合电路。
本发明所述的第一继电器、第二继电器、第三继电器、第四继电器、第五继电器和第六继电器只有闭合和断开两种状态,可以包括但不限于:接触器,继电器,半导体功率器件,也可以是三级管,mosfet,IGBT,SiC等电子元器件。
图2本发明实施例提供的一种车辆的电池系统结构图;图3本发明实施例提供的另一种车辆的电池系统结构图;图4本发明实施例提供的又一种车辆的电池系统结构图;图5本发明实施例提供的再一种车辆的电池系统结构图。如图2-5所示,本发明提供的车辆的电池系统,包括:相互连接的储能装置1和直流充放电接口2;
储能装置1,所述储能装置1至少包括第一电池组17和第二电池组18,相邻所述电池组之间设置电池间开关;
直流充放电接口2,所述直流充放电接口2的第一电极分别与所述储能装置1的第一电极和所述电池间开关的一端连接,所述直流充放电接口2的第二电极分别与所述储能装置1的第二电极和所述电池间开关的另一端连接。
在本上述实施例基础上,本说明书一个实施例中,所述电池间开关包括:第一电池间开关11和第二电池间开关12,所述第一电池间开关11和所述第二电池间开关12均为单刀双掷开关;
所述第一电池间开关11的进线端111连接第一电池组17的第一电极,所述第一电池间开关11的第一出线端112连接所述直流充放电接口2的第一电极,所述第一电池间开关11的第二出线端113连接所述第二电池间开关12的第一出线端112;所述第二电池间开关12的第二出线端113连接所述直流充放电接口2的第二电极,所述第二电池间开关12的进线端111连接第二电池组18的第二电极。
具体的,储能装置1可以至少包括第一电池组17和第二电池组18,可以理解的是第一电池组17和第二电池组18的额定电压可以相同或不同,优选地,第一电池组17和第二电池组18的额定电压相同。第一电池组17可以包括多组串联的电池,每组电池还可以包括多个串联的单体电池。储能装置1可以用于为车辆提供电能。单体电池的额定电压在本说明书实施例中不做具体限定,可以根据实际需要进行设置。在一些实施例中,储能装置1可以包括三个或多个电池组,每两个电池组之间通过本发明中的电池间开关连接。
示例地、当储能装置1包括:并排放置且额定电压均为400V的第一电池组17、第二电池组18和第三电池组时,第一电池组17的负极和第二电池组18的正极之间设置有电池间开关A,第二电池组18的负极和第三电池组的正极之间设置有电池间开关B,第一电池组17的正极连接直流充放电接口的正极,第三电池组的负极连接直流充放电接口的负极;当外接充电设备为400V时,可以通过控制电池间开关A和电池间开关B以实现第一电池组17、第二电池组18和第三电池组处于并联状态且均通过直流充放电接口与外接充电设备连接,实现第一电池组17、第二电池组18和第三电 池组同时处于400V电压下充电。
具体的,直流充放电接口2可以用于连接外接充放电装置也可以用于连接电能消耗装置,外接充放电装置可以用于电池系统充放电,外接充放电装置可以是充电桩,也可以是其他充放电装置,电能消耗装置可以是发动机、照明装置等,直流充放电接口2可以与外接充放电装置的插接方式相匹配。直流充放电接口2的具体实现形式不是限制性的,直流充放电接口2可以设置为充放电枪,该充放电枪可以插入到电动汽车的充放电接口,二者之间完成握手协议后实现正式连接。
具体的,直流充放电接口2可以连接负载也可以连接直流充电器。
具体的,第一电池间开关11和第二电池间开关12可以用于切换电池组之间的连接或断开关系。其具体的连接方式可以是串联或并联。
可以理解的是,第一电极和第二电极为相对的电极,示例地、第一电极为负极,则第二电极为正极。
在上述实施例基础上,本说明书一个实施例中,还包括第一继电器13;
所述第一继电器13的一端连接所述直流充放电接口2的第二电极,所述第一继电器13的另一端分别与所述储能装置1的第二电极和每组所述第二电池间开关12的第二出线端113连接;
或,所述第一继电器13的一端分别与所述直流充放电接口2的第二电极和每组所述第二电池间开关12的第二出线端113连接,所述第一继电器13的另一端与所述储能装置1的第二电极连接。
具体的,第一继电器13可以用于断开或闭合储能装置1的第二电极与直流充放电接口2第二电极之间的电路。或第一继电器13可以用于断开或闭合第一电池组17的第二电极与直流充放电接口2第二电极之间的电路。
在上述实施例基础上,本说明书一个实施例中,还包括第二继电器14;
所述第二继电器14的一端连接所述直流充放电接口2的第一电极,所述第二继电器14的另一端分别与所述储能装置1的第一电极和每组所述第一电池间开关11的第一出线端112连接;
或,所述第二继电器14的一端分别与所述直流充放电接口2的第一电极和每组所述第一电池间开关11的第一出线端112连接,所述第二继电器 14的另一端与所述储能装置1的第一电极连接。
具体的,第二继电器14可以用于断开或闭合储能装置1的第一电极与直流充放电接口2第一电极之间的电路。或第二继电器14可以用于断开或闭合第一电池组17的第一电极与直流充放电接口2第一电极之间的电路。
在上述实施例基础上,本说明书一个实施例中,还包括第三继电器15;
所述第三继电器15的一端连接所述第二继电器14的一端,所述第三继电器15的另一端连接所述第一电池间开关11的第一出线端112;
或,所述第三继电器15的一端连接所述第二继电器14的另一端,所述第三继电器15的另一端连接所述第一电池间开关11的第一出线端112。
具体的,第三继电器15可以用于断开或闭合第一电池组17的第一电极与直流充放电接口2第一电极之间的电路。或第三继电器15可以用于断开或闭合第一电池组17的第一电极与第二继电器14之间的电路。
在上述实施例基础上,本说明书一个实施例中,还包括第四继电器16;
所述第四继电器16的一端连接所述第一继电器13的一端,所述第四继电器16的另一端连接所述第二电池间开关12的第二出线端113;
或,所述第四继电器16的一端连接所述第一继电器13的另一端,所述第四继电器16的另一端连接所述第二电池间开关12的第二出线端113。
具体的,第四继电器16可以用于断开或闭合第二电池组18的第二电极与直流充放电接口2第二电极之间的电路。或第四继电器16可以用于断开或闭合第二电池组18的第二电极与第一继电器13之间的电路。
在上述实施例基础上,本说明书一个实施例中,所述直流充放电接口2包括:放电接口和充电接口;
所述放电接口的第一电极与所述充电接口的第一电极连接;
所述放电接口的第二电极与所述充电接口的第二电极连接。
具体的,放电接口和充电接口可以并联的并且放电接口的第一电极与每个电池组的第一电极连接。放电接口的第二电极与每个电池组的第二电极连接。
在上述实施例基础上,本说明书一个实施例中,所述直流充放电接口2还包括:第五继电器21;
所述第五继电器21的一端连接所述充电接口的第二电极,所述第五继电器21的另一端分别与所述放电接口的第二电极和所述储能装置1的第二电极连接。
具体的,第五继电器21可以用于闭合或断开充电接口第二电极与储能装置1或每个电池组的第二电极的电路连接。
可以理解的是,第五继电器21也可以设置在放电接口的第二电极与储能装置1或每个电池的第二电极之间。
在上述实施例基础上,本说明书一个实施例中,所述直流充放电接口2还包括:第六继电器22;
所述第六继电器22的一端连接所述充电接口的第一电极,所述第六继电器22的另一端分别与所述放电接口的第一电极和所述储能装置1的第一电极连接。
具体的,第六继电器22可以用于闭合或断开充电接口第一电极与储能装置1或每个电池组的第一电极的电路连接。
可以理解的是,第六继电器22也可以设置在放电接口的第一电极与储能装置1或每个电池的第一电极之间。
在上述实施例基础上,本说明书一个实施例中,还包括:控制单元;
所述控制单元分别与所述储能装置1、所述第一电池间开关11、所述第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21和/或第六继电器22连接,用于控制所述第一电池间开关11、所述第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21和/或第六继电器22的断开或闭合,以实现所述储能装置1按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
控制单元可以通过CAN线分别与储能装置1、所述第一电池间开关11、 所述第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21和/或第六继电器22控制连接,控制单元可以根据储能装置1的工作状态和用户需求控制所述第一电池间开关11、所述第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21和/或第六继电器22控制的断开或闭合实现电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电,控制单元可以设置在驾驶员侧,也可以设置在电池侧。
在上述实施例基础上,本说明书一个实施例中,所述控制单元包括电池检测装置;
所述电池检测装置与每组所述电池组连接,用于检测所述电池组的工作状态;
所述控制单元用于接收外接充放电装置发送的充放电参数信息和所述电池检测装置发送的所述工作状态信息,根据所述充放电参数信息和所述工作状态信息控制所述第一电池间开关11、所述第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21和/或第六继电器22的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充放电。
具体的,电池检测装置可以用于监测每组电池组的通信协议版本、电池组类型、电池组容量、电池组电压和车辆识别代码(VIN,Vehicle Identification Number)等。控制单元可根据上述信息与充电桩发送的BMS握手辨识报文BRM进行充电握手辨识,在通过辨识后实现充电握手。
在上述实施例基础上,本说明书一个实施例中,所述电池检测装置还用于检测所述电池组的荷电状态信息;
所述控制单元用于根据所述电池检测装置反馈的荷电状态信息检测所述电池组是否已经充满电,在确定所述电池组充满电后,控制所述第五继电器21和/或所述第六继电器22断开。
示例地、如图2所示,该车辆的电池系统由第一电池组17、第二电池组18、第一电池间开关11、第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21、第六继电器22、 充电接口和放电接口组成;第一电池组17、第二电池组18的额定电压均为400V;
当该系统遇到外部为高压充电桩800V时,此时闭合第一电池间开关11至第二出线端113,闭合第二电池间开关12至第一出线端112,同时闭合第一继电器13和第二继电器14,断开第三继电器15、第四继电器16、第五继电器21和第六继电器22,此时该系统相当于由第一电池组17、第二电池组18两组电池组串联而成,总电压相当于这两部分的电压之和800V,此时,电池组电压和外部充电桩的电压匹配,可以完成充电需求。此时第三继电器15、第四继电器16、第一电池间开关11和第二电池间开关12如果发生异常的动作,不会造成系统的内部短路。
当该系统遇到外部为低压充电桩400V时,此时闭合第一电池间开关11至第一出线端112,闭合第二电池间开关12至第二出线端113,同时闭合第一继电器13、第二继电器14、第三继电器15、第四继电器16、第五继电器21和第六继电器22,此时相当于两个低压平台的电池组并联在一起,总电压相当于该每组电池组的电压400V。此时,电池组电压和外部充电桩的电压匹配,可以完成充电需求。此时第三继电器15、第四继电器16、第一电池间开关11和第二电池间开关12如果发生异常的动作,不会造成系统的内部短路。
当该系统需要按照高压平台的模式放电时,此时闭合第一电池间开关11至第二出线端113,闭合第二电池间开关12至第一出线端112,同时闭合第一继电器13和第二继电器14,断开第三继电器15和第四继电器16,此时该系统相当于由第一电池组17和第二电池组18两组电池组串联而成,总电压相当于这两部分的电压之和800V;此时第三继电器15和第四继电器16如果发生异常的闭合,不会对系统造成任何影响。
当该系统遇到外部为低压放电400V时,此时闭合第一电池间开关11至第一出线端112,闭合第二电池间开关12至第二出线端113,同时闭合第一继电器13、第二继电器14、第三继电器15和第四继电器16,此时相当于两个低压平台的电池组并联在一起,总电压相当于每组电池组的电压400V。此时,电池组电压和外部低压用电器件匹配,可以完成放电需求。
当遇到电池组内部问题时,例如局部的绝缘问题或者电芯问题,通过控制单元识别出该问题时属于第一电池组17,或者第二电池组18,那么可以相应的将该系统转换成保护充放电模式的低压平台400V,例如:
如果电池组第一电池组17存在问题,那么可以断开第一电池间开关11或闭合至第二出线端113,闭合第二电池间开关12至第二出线端113,闭合第二继电器14和第四继电器16,断开第一继电器13和第三继电器15。因此该系统可以通过第二电池组18完成充电和放电过程。
另一方面、图6本发明实施例提供的一种车辆的电池系统进行充放电方法的流程图;图7本发明实施例提供的另一种车辆的电池系统进行充放电方法的流程图;图8本发明实施例提供的再一种车辆的电池系统进行充放电方法的流程图,如图6-8所示,本发明提供一种应用在上述所述的车辆的电池系统进行充放电的方法,所述方法包括:
获取每组所述电池组的工作状态信息;
根据接收到的充放电参数信息和工作状态,控制所述电池间开关断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
在上述实施例基础上,本说明书一个实施例中,所述电池间开关包括:第一电池间开关(11)和第二电池间开关(12),所述第一电池间开关(11)和所述第二电池间开关(12)均为单刀双掷开关,所述根据接收到的充放电参数信息和工作状态,控制所述电池间开关断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电,之前还包括:
获取每组所述电池组的工作状态信息;
获取所述第一电池间开关11、所述第二电池间开关12、第一继电器13和第二继电器14的对应的当前位置状态信息;或,获取所述第一电池间开关11、所述第二电池间开关12、第一继电器13和第二继电器14、第三继电器15、第四继电器16的对应的当前位置状态信息;
根据接收到的充放电参数信息、所述工作状态信息和所述当前位置状态信息,控制所述第一电池间开关11、所述第二电池间开关12、第一继电器13、第二继电器14的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电;
或,根据接收到的充放电参数信息、所述工作状态信息和所述当前位置状态信息,控制所述第一电池间开关11、所述第二电池间开关12、第一继电器13、第二继电器14、第三继电器15、第四继电器16的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
在上述实施例基础上,本说明书一个实施例中,所述工作状态信息包括:故障状态报文;所述充放电参数信息包括:充电桩辨识报文;
当接收到的所述充电桩辨识报文表征的电压等于每组所述电池组的额定电压,且获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述故障状态报文对应的所述电池组的所述第一电池间开关11和所述第二电池间开关12断开,控制所述第一继电器13和所述第二继电器14,第三继电器15和所述第四继电器16闭合,并控制其余所述电池组对应的第一电池间开关11闭合至第一出线端112和所述第二电池间开关12闭合至第二出线端113,使得每组未故障的所述电池组以并联方式与所述直流充放电接口2连接,进入所述保护充电模式进行充电。
在上述实施例基础上,本说明书一个实施例中,
当接收到的所述充电桩辨识报文表征的电压等于全部所述电池组的额定电压之和,且未获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述第一继电器13和所述第二继电器14闭合,控制所述第三继电器15和所述第四继电器16断开,并控制其余所述电池组对应的第一电池间开关11闭合至第二出线端113和所述第二电池间开关12闭合至第一出线端112,使得每组所述电池组以串联方式与所述直流充放电接口2连接,进入所述高压充电模式进行充电。
在上述实施例基础上,本说明书一个实施例中,
当接收到的所述充电桩辨识报文表征的电压等于每组所述电池组的额 定电压,且未获取到的某一组所述电池组的工作状态为故障状态报文时,控制所述第一继电器13和所述第二继电器14,第三继电器15和所述第四继电器16闭合,并控制所述第一电池间开关11闭合至第一出线端112和所述第二电池间开关12闭合至第二出线端113,使得每组所述电池组以并联方式与所述直流充放电接口2连接,进入所述低压充电模式进行充电。
示例地、当车辆的电池系统设置有第一电池间开关11、第二电池间开关12第一电池组17、第二电池组18、第一继电器13、第二继电器14、第五继电器21、第六继电器22、充电接口、放电接口和控制单元时,控制单元可以监测每个开关、每个继电器和每组电池组的工作状态;
当车辆在充电时,控制单元与充电桩物理连接完成后,可以为控制单元进行低压供电,以实现控制单元的启动;
在确定绝缘检测正常后由充电桩向控制单元每隔250ms定期发送一次充电机握手报文CHM(Charger Handshake message),报文内容可以是充电桩通信协议的版本号。控制单元收到CHM报文后,每隔250ms向充电桩定期发送握手报文BHM(BMS Handshake message),报文内容是控制单元最高允许充电总电压,其中最高允许充电总电压为储能装置1的额定电压。
当最高允许充电总电压(800V)小于等于充电桩的输出电压(400V)时完成握手;
控制单元可以根据充电桩输出的电压、第一电池组17合第二电池组18的工作状态信息及每个继电器或电池间开关的位置进行控制第一电池间开关11、第二电池间开关12第一电池组17、第二电池组18、第一继电器13、第二继电器14、第五继电器21、第六继电器22的断开或闭合,实现按照充电桩的输出电压进行低压充电;此时、第一电池间开关11处于第一出线端112,第二电池间开关12处于第二出线端113,第一继电器13、第二继电器14闭合、第五继电器21和第六继电器22均处于闭合状态;
充电过程中充电桩可以每隔250ms定期向控制单元发送充电桩辨识报文,用于确认充电桩与控制单元之间的通信链路正确。报文的内容可以是 充电桩通信协议的版本号;
控制单元在收到充电桩辨识报文可以每隔250ms定期向充电桩发送BMS握手辨识报文BRM;
控制单元检测到每个电池组或储能装置1的充电完成后,控制第五继电器21和/第六继电器22断开,完成充电。
由于放电过程中不存在充电桩与控制单元的握手并且其他流程是相同的,因此不在赘述。
再一方面、本发明提供一种车辆,所述车辆设置有上述任一项所述的车辆的电池系统。
由于所述车辆设置有车辆的电池系统,因此车辆具有车辆的电池系统的技术效果,不在赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改和变型。

Claims (18)

  1. 一种车辆的电池系统,其特征在于,包括:相互连接的储能装置(1)和直流充放电接口(2);
    储能装置(1),所述储能装置(1)至少包括第一电池组(17)和第二电池组(18),相邻所述电池组之间设置电池间开关;
    直流充放电接口(2),所述直流充放电接口(2)的第一电极分别与所述储能装置(1)的第一电极和所述电池间开关的一端连接,所述直流充放电接口(2)的第二电极分别与所述储能装置(1)的第二电极和所述电池间开关的另一端连接。
  2. 根据权利要求1所述的车辆的电池系统,其特征在于,所述电池间开关包括:第一电池间开关(11)和第二电池间开关(12),所述第一电池间开关(11)和所述第二电池间开关(12)均为单刀双掷开关;
    所述第一电池间开关(11)的进线端(111)连接第一电池组(17)的第一电极,所述第一电池间开关(11)的第一出线端(112)连接所述直流充放电接口(2)的第一电极,所述第一电池间开关(11)的第二出线端(113)连接所述第二电池间开关(12)的第一出线端(112);所述第二电池间开关(12)的第二出线端(113)连接所述直流充放电接口(2)的第二电极,所述第二电池间开关(12)的进线端(111)连接第二电池组(18)的第二电极。
  3. 根据权利要求2所述的车辆的电池系统,其特征在于,还包括第一继电器(13);
    所述第一继电器(13)的一端连接所述直流充放电接口(2)的第二电极,所述第一继电器(13)的另一端分别与所述储能装置(1)的第二电极和每组所述第二电池间开关(12)的第二出线端(113)连接;
    或,所述第一继电器(13)的一端分别与所述直流充放电接口(2)的第二电极和每组所述第二电池间开关(12)的第二出线端(113)连接,所述第一继电器(13)的另一端与所述储能装置(1)的第二电极连接。
  4. 根据权利要求2或3所述的车辆的电池系统,其特征在于,还包括第二继电器(14);
    所述第二继电器(14)的一端连接所述直流充放电接口(2)的第一电极,所述第二继电器(14)的另一端分别与所述储能装置(1)的第一电极和每组所述第一电池间开关(11)的第一出线端(112)连接;
    或,所述第二继电器(14)的一端分别与所述直流充放电接口(2)的第一电极和每组所述第一电池间开关(11)的第一出线端(112)连接,所述第二继电器(14)的另一端与所述储能装置(1)的第一电极连接。
  5. 根据权利要求4所述的车辆的电池系统,其特征在于,还包括第三继电器(15);
    所述第三继电器(15)的一端连接所述第二继电器(14)的一端,所述第三继电器(15)的另一端连接所述第一电池间开关(11)的第一出线端(112);
    或,所述第三继电器(15)的一端连接所述第二继电器(14)的另一端,所述第三继电器(15)的另一端连接所述第一电池间开关(11)的第一出线端(112)。
  6. 根据权利要求3所述的车辆的电池系统,其特征在于,还包括第四继电器(16);
    所述第四继电器(16)的一端连接所述第一继电器(13)的一端,所述第四继电器(16)的另一端连接所述第二电池间开关(12)的第二出线端(113);
    或,所述第四继电器(16)的一端连接所述第一继电器(13)的另一端,所述第四继电器(16)的另一端连接所述第二电池间开关(12)的第二出线端(113)。
  7. 根据权利要求2所述的车辆的电池系统,其特征在于,所述直流充放电接口(2)包括:放电接口和充电接口;
    所述放电接口的第一电极与所述充电接口的第一电极连接;
    所述放电接口的第二电极与所述充电接口的第二电极连接。
  8. 根据权利要求7所述的车辆的电池系统,其特征在于,所述直流充放电接口(2)还包括:第五继电器(21);
    所述第五继电器(21)的一端连接所述充电接口的第二电极,所述第 五继电器(21)的另一端分别与所述放电接口的第二电极和所述储能装置(1)的第二电极连接。
  9. 根据权利要求7所述的车辆的电池系统,其特征在于,所述直流充放电接口(2)还包括:第六继电器(22);
    所述第六继电器(22)的一端连接所述充电接口的第一电极,所述第六继电器(22)的另一端分别与所述放电接口的第一电极和所述储能装置(1)的第一电极连接。
  10. 根据权利要求9所述的车辆的电池系统,其特征在于,还包括:控制单元;
    所述控制单元分别与所述储能装置(1)、所述第一电池间开关(11)、所述第二电池间开关(12)、第一继电器(13)、第二继电器(14)、第三继电器(15)、第四继电器(16)、第五继电器(21)和/或第六继电器(22)连接,用于控制所述第一电池间开关(11)、所述第二电池间开关(12)、第一继电器(13)、第二继电器(14)、第三继电器(15)、第四继电器(16)、第五继电器(21)和/或第六继电器(22)的断开或闭合,以实现所述储能装置(1)按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
  11. 根据权利要求10所述的车辆的电池系统,其特征在于,所述控制单元包括电池检测装置;
    所述电池检测装置与每组所述电池组连接,用于检测所述电池组的工作状态;
    所述控制单元用于接收外接充放电装置发送的充放电参数信息和所述电池检测装置发送的所述工作状态信息,根据所述充放电参数信息和所述工作状态信息控制所述第一电池间开关(11)、所述第二电池间开关(12)、第一继电器(13)、第二继电器(14)、第三继电器(15)、第四继电器(16)、第五继电器(21)和/或第六继电器(22)的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充放电。
  12. 根据权利要求11所述的车辆的电池系统,其特征在于,所述电池检 测装置还用于检测所述电池组的荷电状态信息;
    所述控制单元用于根据所述电池检测装置反馈的荷电状态信息检测所述电池组是否已经充满电,在确定所述电池组充满电后,控制所述第五继电器(21)和/或所述第六继电器(22)断开。
  13. 一种应用在权利要求1-12任一项所述的车辆的电池系统进行充放电的方法,其特征在于,所述方法包括:
    获取每组所述电池组的工作状态信息;
    根据接收到的充放电参数信息和工作状态,控制所述电池间开关断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
  14. 根据权利要求13所述的车辆的电池系统进行充放电的方法,其特征在于,所述电池间开关包括:第一电池间开关(11)和第二电池间开关(12),所述第一电池间开关(11)和所述第二电池间开关(12)均为单刀双掷开关,所述根据接收到的充放电参数信息和工作状态,控制所述电池间开关断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电,之前还包括:
    获取所述第一电池间开关(11)、所述第二电池间开关(12)、第一继电器(13)和第二继电器(14)的对应的当前位置状态信息;
    相应的,根据接收到的充放电参数信息、所述工作状态信息和所述当前位置状态信息,控制所述第一电池间开关(11)、所述第二电池间开关(12)、第一继电器(13)、第二继电器(14)的断开或闭合,以实现所述电池组按照高压充放电模式、低压充放电模式、保护充放电模式中的一种进行充电或放电。
  15. 根据权利要求14所述的车辆的电池系统进行充放电的方法,其特征在于,所述工作状态信息包括:故障状态报文;所述充放电参数信息包括:充电桩辨识报文;
    当接收到的所述充电桩辨识报文表征的电压等于每组所述电池组的额定电压,且获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述故障状态报文对应的所述电池组的所述第一电池间开关(11)和 所述第二电池间开关(12)断开,控制所述第一继电器(13)和所述第二继电器(14)闭合,并控制其余所述电池组对应的第一电池间开关(11)闭合至第一出线端(112)和所述第二电池间开关(12)闭合至第二出线端(113),使得每组未故障的所述电池组以并联方式与所述直流充放电接口(2)连接,进入所述保护充电模式进行充电。
  16. 根据权利要求15所述的车辆的电池系统进行充放电的方法,其特征在于,
    当接收到的所述充电桩辨识报文表征的电压等于全部所述电池组的额定电压之和,且未获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述第一继电器(13)和所述第二继电器(14)闭合,并控制其余所述电池组对应的第一电池间开关(11)闭合至第二出线端(113)和所述第二电池间开关(12)闭合至第一出线端(112),使得每组所述电池组以串联方式与所述直流充放电接口(2)连接,进入所述高压充电模式进行充电。
  17. 根据权利要求15所述的车辆的电池系统进行充放电的方法,其特征在于,
    当接收到的所述充电桩辨识报文表征的电压等于每组所述电池组的额定电压,且未获取到的某一组所述电池组的工作状态为故障状态报文时,则控制所述第一继电器(13)和所述第二继电器(14)闭合,并控制所述第一电池间开关(11)闭合至第一出线端(112)和所述第二电池间开关(12)闭合至第二出线端(113),使得每组所述电池组以并联方式与所述直流充放电接口(2)连接,进入所述低压充电模式进行充电。
  18. 一种车辆,其特征在于,所述车辆设置有权利要求1-12任一项所述车辆的电池系统。
PCT/CN2020/093411 2019-06-03 2020-05-29 一种车辆的电池系统、充放电方法及车辆 WO2020244465A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20818980.3A EP3978307B1 (en) 2019-06-03 2020-05-29 Battery system of vehicle, charging and discharging method, and vehicle
JP2021571780A JP7322187B2 (ja) 2019-06-03 2020-05-29 車両の電池システム、充放電方法及び車両
KR1020217039482A KR20220005071A (ko) 2019-06-03 2020-05-29 차량의 배터리 시스템, 충방전 방법 및 차량
US17/616,182 US20220314833A1 (en) 2019-06-03 2020-05-29 Battery system of vehicle, charging and discharging method, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910477476 2019-06-03
CN201910477476.7 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020244465A1 true WO2020244465A1 (zh) 2020-12-10

Family

ID=68122718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093411 WO2020244465A1 (zh) 2019-06-03 2020-05-29 一种车辆的电池系统、充放电方法及车辆

Country Status (6)

Country Link
US (1) US20220314833A1 (zh)
EP (1) EP3978307B1 (zh)
JP (1) JP7322187B2 (zh)
KR (1) KR20220005071A (zh)
CN (1) CN110316008B (zh)
WO (1) WO2020244465A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109197A (ko) * 2021-01-28 2022-08-04 (주)모던텍 전기차 충전 장치
EP4243237A4 (en) * 2021-12-30 2023-09-13 Contemporary Amperex Technology Co., Limited BATTERY CONTROL CIRCUIT, BATTERY CONTROL METHOD AND ELECTRICAL DEVICE
JP7396386B2 (ja) 2022-03-23 2023-12-12 いすゞ自動車株式会社 バッテリ管理装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110316008B (zh) * 2019-06-03 2021-12-21 武汉路特斯汽车有限公司 一种车辆的电池系统及其进行充放电的方法
CN111619397A (zh) * 2020-04-10 2020-09-04 吉利汽车研究院(宁波)有限公司 一种充电放电控制方法、装置、电子设备及存储介质
CN111546944B (zh) * 2020-04-10 2022-11-04 吉利汽车研究院(宁波)有限公司 一种充电电压切换装置、控制方法及汽车
US11451071B2 (en) * 2020-06-02 2022-09-20 GM Global Technology Operations LLC Battery electric vehicle energy storage system and method
CN111959332B (zh) * 2020-07-10 2023-01-17 武汉路特斯汽车有限公司 一种充电转换方法、装置、系统、存储介质及计算机设备
CN112688297A (zh) * 2020-12-17 2021-04-20 的卢技术有限公司 一种基于多种电压值的车载储能系统及其电压切换方法
CN113335098A (zh) * 2021-06-03 2021-09-03 优华劳斯汽车设计(上海)有限公司 兼容400v和800v两种充电电压的电动车充电架构及其充电方法
CN113682156A (zh) * 2021-07-06 2021-11-23 北京新能源汽车股份有限公司蓝谷动力系统分公司 充放电电路、电池包以及电动汽车
CN113580941B (zh) * 2021-07-30 2023-06-02 东风华神汽车有限公司 一种自动接入断开动力电池的系统和方法
CN113595201B (zh) * 2021-08-10 2023-12-19 奇瑞商用车(安徽)有限公司 一种动力电池组充电装置及充电控制方法
WO2024087113A1 (zh) * 2022-10-27 2024-05-02 华为技术有限公司 电路、电路的控制方法及控制装置、车辆
CN115723576A (zh) * 2022-12-09 2023-03-03 潍柴动力股份有限公司 一种车辆低压电源的亏电保护系统、控制方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2360295Y (zh) * 1999-02-02 2000-01-26 刘培生 一种电动车调速器
US6967463B1 (en) * 2003-11-24 2005-11-22 Gordon John B Battery charger
JP2010022086A (ja) * 2008-07-08 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> 直流電源システム
CN102437611A (zh) * 2011-12-15 2012-05-02 钱勇 一种超级电容充放电控制电路
CN106374560A (zh) * 2016-09-14 2017-02-01 华为技术有限公司 并联电池组的快速充电方法及相关设备
CN108429307A (zh) * 2018-03-06 2018-08-21 海汇新能源汽车有限公司 一种电池充放电自适应系统及装置
CN208855460U (zh) * 2018-09-27 2019-05-14 周万勇 一种电动汽车以及电动汽车的电池动力系统
CN110316008A (zh) * 2019-06-03 2019-10-11 浙江吉利控股集团有限公司 一种车辆的电池系统及其进行充放电的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3202472B2 (ja) * 1994-03-16 2001-08-27 株式会社東芝 二次電池の充電制御装置
US8330420B2 (en) * 2009-04-10 2012-12-11 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
JP2010273427A (ja) 2009-05-20 2010-12-02 Nissan Motor Co Ltd 電動車両用電源装置および組電池
US8957610B2 (en) * 2009-07-02 2015-02-17 Chong Uk Lee Multi-port reconfigurable battery
KR101392494B1 (ko) * 2012-08-29 2014-05-12 주식회사 이지트로닉스 단일 스위치를 사용한 복합형 충전 장치
CN104092266A (zh) * 2014-07-25 2014-10-08 李晚霞 一种解决动力电池快速安全充放电的方法及装置
CN205097971U (zh) * 2015-10-27 2016-03-23 北京新能源汽车股份有限公司 电机控制器及具有其的电动汽车
DE102016008052A1 (de) * 2016-07-01 2017-02-16 Daimler Ag Energiespeichereinrichtung für einen Kraftwagen
GB2556914A (en) * 2016-11-25 2018-06-13 Dyson Technology Ltd Battery system
FR3064603B1 (fr) * 2017-04-03 2019-04-19 Airbus Group Sas Procede d’interdiction de la propulsion d’un avion electrique connecte a une station sol
DE102017206834A1 (de) * 2017-04-24 2018-10-25 Robert Bosch Gmbh Schaltungsanordnung und Ladeverfahren für ein elektrisches Energiespeichersystem
CN107658925A (zh) * 2017-09-20 2018-02-02 深圳市沃特玛电池有限公司 电池模组的控制系统
US10770908B2 (en) 2017-10-29 2020-09-08 Rivian Ip Holdings, Llc Configurable battery pack for series and parallel charging using switching
CN108110335A (zh) * 2017-11-16 2018-06-01 国机智骏(北京)汽车科技有限公司 电动汽车的电池系统、电动汽车及电池系统的控制方法
US10369896B2 (en) 2017-11-28 2019-08-06 GM Global Technology Operations LLC Apparatus and method for flexible DC fast charging of an electrified vehicle
CN109787329A (zh) * 2019-03-26 2019-05-21 西安电子科技大学芜湖研究院 一种电动汽车快速充电新机制

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2360295Y (zh) * 1999-02-02 2000-01-26 刘培生 一种电动车调速器
US6967463B1 (en) * 2003-11-24 2005-11-22 Gordon John B Battery charger
JP2010022086A (ja) * 2008-07-08 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> 直流電源システム
CN102437611A (zh) * 2011-12-15 2012-05-02 钱勇 一种超级电容充放电控制电路
CN106374560A (zh) * 2016-09-14 2017-02-01 华为技术有限公司 并联电池组的快速充电方法及相关设备
CN108429307A (zh) * 2018-03-06 2018-08-21 海汇新能源汽车有限公司 一种电池充放电自适应系统及装置
CN208855460U (zh) * 2018-09-27 2019-05-14 周万勇 一种电动汽车以及电动汽车的电池动力系统
CN110316008A (zh) * 2019-06-03 2019-10-11 浙江吉利控股集团有限公司 一种车辆的电池系统及其进行充放电的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978307A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109197A (ko) * 2021-01-28 2022-08-04 (주)모던텍 전기차 충전 장치
WO2022164035A1 (ko) * 2021-01-28 2022-08-04 (주)모던텍 전기차 충전 장치
KR102519520B1 (ko) * 2021-01-28 2023-04-10 (주)모던텍 전기차 충전 장치
EP4243237A4 (en) * 2021-12-30 2023-09-13 Contemporary Amperex Technology Co., Limited BATTERY CONTROL CIRCUIT, BATTERY CONTROL METHOD AND ELECTRICAL DEVICE
JP7396386B2 (ja) 2022-03-23 2023-12-12 いすゞ自動車株式会社 バッテリ管理装置

Also Published As

Publication number Publication date
US20220314833A1 (en) 2022-10-06
CN110316008B (zh) 2021-12-21
EP3978307A4 (en) 2022-08-10
JP2022536282A (ja) 2022-08-15
KR20220005071A (ko) 2022-01-12
EP3978307C0 (en) 2024-02-28
JP7322187B2 (ja) 2023-08-07
CN110316008A (zh) 2019-10-11
EP3978307B1 (en) 2024-02-28
EP3978307A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2020244465A1 (zh) 一种车辆的电池系统、充放电方法及车辆
CN111264014B (zh) 蓄电系统
CN107968446B (zh) 分布式电池包供电系统及充放电控制方法
CN103051019A (zh) 一种电池组间串并联切换控制系统及其充放电控制方法
WO2023231491A1 (zh) 一种动力电池充电切换系统、动力车辆
CN106451604A (zh) 一种双电池储能系统
CN112234636A (zh) 储能变流器直流主接触器多并联系统
CN109617193A (zh) 一种锂电池电源管理系统及高空作业平台
CN102832667A (zh) 一种基于电感储能的串联电池组充放电均衡电路
CN2922234Y (zh) 动力锂离子电池的过放电保护电路
CN206099394U (zh) 电动汽车快速充放电系统及电动汽车
CN210608584U (zh) 一种三电平电池组的充放电电路
CN112952968A (zh) 储电装置及包含该储电装置的电动车电源系统
CN220742729U (zh) 一种电池包装置及电池系统
CN111546892A (zh) 一种新能源汽车动力电池系统故障时继电器的控制顺序方法
WO2023142086A1 (zh) 电池管理装置、系统
CN216153589U (zh) 一种交直流充电装置及车辆
CN212435391U (zh) 一种电池双层保护电路以及电池装置
CN218648599U (zh) 新能源车低电压平台直流快充电路
TWI806101B (zh) 具多電池系統之串並聯架構
CN212258505U (zh) 适用于储能柜的bms电池管理设备
CN219554593U (zh) 直流开关闭锁装置及直流系统
CN217435524U (zh) 一种应用于电动汽车的高压架构系统
CN214100911U (zh) 一种电池管理系统及装置
CN214607166U (zh) 一种具有均衡电路结构的共享式储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571780

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217039482

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020818980

Country of ref document: EP

Effective date: 20220103