WO2024087113A1 - 电路、电路的控制方法及控制装置、车辆 - Google Patents

电路、电路的控制方法及控制装置、车辆 Download PDF

Info

Publication number
WO2024087113A1
WO2024087113A1 PCT/CN2022/128040 CN2022128040W WO2024087113A1 WO 2024087113 A1 WO2024087113 A1 WO 2024087113A1 CN 2022128040 W CN2022128040 W CN 2022128040W WO 2024087113 A1 WO2024087113 A1 WO 2024087113A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
battery pack
circuit
battery
voltage
Prior art date
Application number
PCT/CN2022/128040
Other languages
English (en)
French (fr)
Inventor
沈天越
王德源
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/128040 priority Critical patent/WO2024087113A1/zh
Publication of WO2024087113A1 publication Critical patent/WO2024087113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Embodiments of the present application relate to the field of electronic and electrical technology, and more specifically, to a circuit, a circuit control method and a control device, and a vehicle.
  • the battery charge and discharge interface potential can be changed by changing its series and parallel modes to be compatible with high-low voltage power supply devices or high-low voltage power consumption devices.
  • battery circuits that can switch between series and parallel modes have been widely used in vehicles, terminal products, household products and other fields.
  • the battery circuit when the battery circuit is switched to series connection, the battery can be charged by a high-voltage power supply device, or discharged to a high-voltage power device through the battery; when the battery circuit is switched to parallel connection, the battery can be charged by a low-voltage power supply device, or discharged to a low-voltage power device through the battery.
  • battery circuits that can switch between series and parallel connection have problems such as circulating current that affect the performance of the battery circuit.
  • the embodiments of the present application provide a circuit, a circuit control method and a control device, and a vehicle, which can significantly improve circuit performance.
  • a circuit comprising: a first battery group, a second battery group, a first switch, a second switch, a third switch, a fourth switch and a first branch, the first branch comprising a first resistor and a fifth switch connected in series; wherein the positive electrode of the first battery group is electrically connected to the positive electrode of the second battery group through the first switch and the second switch; the negative electrode of the first battery group is electrically connected to the negative electrode of the second battery group through the third switch and the fourth switch; and the first branch is connected in parallel with the first switch, the second switch, the third switch or the fourth switch.
  • the first switch, the second switch, the third switch and the fourth switch are closed, the first battery pack and the second battery pack can be connected in parallel.
  • a voltage difference between the first battery pack and the second battery pack a circulating current problem will occur when they are connected in parallel, affecting the safety and performance of the circuit.
  • the circuit provided in the embodiment of the present application also includes a first branch, which is connected in parallel with the first switch, the second switch, the third switch or the fourth switch.
  • the first branch can achieve voltage balance between the two battery packs, thereby solving the circulation problem when the battery packs are connected in parallel and significantly improving the circuit performance.
  • the circuit is configured to, when the voltage of the first battery group is not equal to the voltage of the second battery group, close the fifth switch, and close the switches among the first switch, the second switch, the third switch, and the fourth switch that are not connected in parallel with the first branch, and disconnect the switches among the first switch, the second switch, the third switch, and the fourth switch that are connected in parallel with the first branch (i.e., the circuit is configured to balance the voltages of the first battery group and the second battery group).
  • the switches and the fifth switch of the first, second, third and fourth switches that are not connected in parallel with the first branch are closed, and the switches of the first, second, third and fourth switches that are connected in parallel with the first branch are opened.
  • the balancing current of the voltages of the first battery group V1 and the second battery group V2 can be controlled within a safe range, thereby solving the circulation problem of the circuit when the battery groups are connected in parallel and significantly improving the circuit performance.
  • the circuit is configured to, when the difference between the voltages of the first battery group and the second battery group is greater than a first threshold, close the fifth switch, and close the switches among the first switch, the second switch, the third switch, and the fourth switch that are not connected in parallel with the first branch, and disconnect the switches among the first switch, the second switch, the third switch, and the fourth switch that are connected in parallel with the first branch (i.e., the circuit is configured to balance the voltages of the first battery group and the second battery group).
  • the first threshold value can be a value such as 5V, 10V, 20V, etc.
  • the specific value can be determined based on the actual situation, and this application does not limit this.
  • the first branch when the voltage difference between the first battery pack and the second battery pack is greater than the first threshold, the first branch can be used to balance the voltages of the first battery pack and the second battery pack, thereby avoiding frequent balancing and reducing waiting time during user use.
  • the circuit also includes a first interface and a sixth switch, the negative electrode of the first battery pack is electrically connected to the positive electrode of the second battery pack through the sixth switch, the first end of the first interface is connected between the first switch and the second switch, the second end of the first interface is connected between the third switch and the fourth switch, and the first interface is used to connect a first device, which includes a first power supply device or a first power-consuming device.
  • the first battery pack and the second battery pack can be configured in series, parallel or independent working mode by closing or opening the switch.
  • the circuit can be compatible with first devices with different voltage ranges in different working modes, which can improve the wide application of the circuit.
  • the first device includes a first power supply device, which is used to charge the first battery pack and/or the second battery pack; the circuit is configured to close the first switch, the second switch, the third switch and the fourth switch, and open the fifth switch and the sixth switch (that is, the circuit is configured to charge the first battery pack and the second battery pack in parallel) when the sum of the voltages of the first battery pack and the second battery pack is less than twice the maximum output voltage of the first power supply device.
  • the circuit can also be configured to close the first switch, the fourth switch and the sixth switch, and open the second switch, the third switch and the fifth switch when the sum of the voltages of the first battery pack and the second battery pack is less than the maximum output voltage of the first power supply device (that is, the circuit is configured to charge the first battery pack and the second battery pack in series).
  • the circuit provided in the embodiment of the present application can be configured such that when the sum of the voltages of the first battery group and the second battery group is less than the maximum output voltage of the first power supply device, the first battery group and the second battery group are charged in series. Compared with charging in parallel, the current in the series circuit is smaller and the loss to the circuit is also smaller.
  • the circuit also includes: when the difference between the voltages of the first battery group and the second battery group is greater than a second threshold, the fifth switch is closed, and the switches of the first switch, the second switch, the third switch and the fourth switch that are not connected in parallel with the first branch are closed, and the switches of the first switch, the second switch, the third switch and the fourth switch that are connected in parallel with the first branch and the sixth switch are opened (i.e., the circuit is configured to balance the voltages of the first battery group and the second battery group); and/or, when the difference between the voltages of the first battery group and the second battery group is less than or equal to the second threshold, the first switch, the second switch, the third switch and the fourth switch are closed, and the fifth switch and the sixth switch are opened (i.
  • the second threshold value can also be a value such as 5V, 10V, 20V, etc.
  • the specific value can be determined based on the actual situation, and this application does not limit this.
  • the circuit can be flexibly configured into operating modes such as series charging, parallel charging or voltage equalization according to the relationship between the voltages of the first battery group and the second battery group and the maximum output voltage of the first power supply device, so that the battery can be more widely compatible with power supply devices with more different supply voltage ranges, thereby improving the user's charging experience.
  • the circuit may also be configured to charge the first battery pack and the second battery pack separately using the first power supply device.
  • the circuit may be configured to close the first switch and the third switch and disconnect the second switch and the fourth switch when the voltage of the first battery pack is less than the voltage of the second battery pack; and/or, the circuit may be configured to close the second switch and the fourth switch and disconnect the first switch and the third switch when the voltage of the first battery pack is greater than the voltage of the second battery pack.
  • the embodiment of the present application can balance the voltages of the first battery group and the second battery group by charging the first battery group and the second battery group separately.
  • the first switch and the third switch can be closed, and the second switch and the fourth switch can be opened to charge the first battery group independently until the voltage of the first battery group is equal to that of the second battery group (or the difference between the voltage of the first battery group and the second battery group is less than or equal to the second threshold), and then stop charging the first battery group separately;
  • the second switch and the fourth switch can be closed, and the first switch and the third switch can be opened to charge the second battery group independently until the voltage of the first battery group is equal to that of the second battery group (or the difference between the voltage of the first battery group and the second battery group is less than or equal to the second threshold), and then stop charging the second battery group separately.
  • an independent charging mode i.e. charging the first battery pack or the second battery pack separately
  • the independent charging mode can ensure higher charging voltage, charging power and charging speed.
  • the first device includes the first electrical device, and the first battery group and the second battery group are used to discharge the first electrical device; the circuit is configured to close the first switch, the second switch, the third switch, and the fourth switch, and open the fifth switch and the sixth switch (i.e., the circuit is configured to discharge the first battery group and the second battery group in parallel) when the sum of the voltages of the first battery group and the second battery group is less than or equal to twice the maximum input voltage of the first electrical device.
  • the circuit can also be configured to close the first switch, the fourth switch and the sixth switch, and open the second switch, the third switch and the fifth switch when the sum of the voltages of the first battery group and the second battery group is less than or equal to the maximum input voltage of the first electrical device (i.e., the circuit is configured to discharge the first battery group and the second battery group in series).
  • the circuit provided in the embodiment of the present application can be configured so that when the sum of the voltages of the first battery pack and the second battery pack is less than or equal to the maximum input voltage of the first electrical device, the first battery pack and the second battery pack are discharged in series. Compared with discharging in parallel, the current in the series circuit is smaller and the loss to the circuit is also smaller.
  • the circuit also includes: when the difference between the voltages of the first battery group and the second battery group is greater than a third threshold, the fifth switch is closed, and the switches of the first switch, the second switch, the third switch and the fourth switch that are not connected in parallel with the first branch are closed, and the switches of the first switch, the second switch, the third switch and the fourth switch that are connected in parallel with the first branch and the sixth switch are opened (i.e., the circuit is configured to balance the voltages of the first battery group and the second battery group); and/or, when the difference between the voltages of the first battery group and the second battery group is less than or equal to the third threshold, the first switch, the second switch, the third switch and the fourth switch are closed, and the fifth switch and the sixth switch are opened (
  • the third threshold value can also be a value such as 5V, 10V, 20V, etc.
  • the specific value can be determined based on the actual situation, and this application does not limit this.
  • the circuit can be flexibly configured into modes such as series discharge, parallel discharge or balanced voltage according to the relationship between the voltages of the first battery group and the second battery group and the maximum input voltage of the first electrical device, thereby enabling the battery to be more widely compatible with electrical devices with different input voltages, thereby improving the user experience of using the battery to supply power to external devices.
  • the circuit may also be configured to discharge the first electrical device separately through the first battery pack or the second battery pack.
  • the first electrical device includes a capacitor
  • the circuit further includes a second branch
  • the second branch includes a second resistor and a seventh switch connected in series
  • the second branch is connected in parallel with the first switch, the second switch, the third switch, the fourth switch, or the sixth switch.
  • the second branch is used for precharging the capacitor of the first electrical device.
  • the first electrical device may include a capacitor
  • the circuit may further include a second branch, the second branch being mainly used for precharging the capacitor of the first electrical device, thereby avoiding the impact on components such as loads and switches caused by excessive circuit current when the switch is directly closed, so as to protect circuit components, improve circuit safety, and extend circuit service life.
  • the first resistor and the second resistor are a common resistor
  • the fifth switch and the seventh switch are a common switch.
  • the first resistor and the second resistor, as well as the fifth switch and the seventh switch can be shared, so as to achieve the functions of balancing and pre-charging through one resistor and one switch (i.e., one branch), thereby saving devices, reducing the size of the circuit, and reducing costs.
  • the circuit also includes a second interface and an eighth switch, the first end of the second interface is connected to the positive pole of the first battery pack through the eighth switch, the second end of the second interface is connected to the negative pole of the second battery pack through the fourth switch, and the second interface is used to connect a second device, which includes a second power supply device or a second power-consuming device.
  • the circuit may include a second interface while including the first interface, so that the circuit can be connected to the second device while connecting to the first device, thereby improving the flexibility and breadth of circuit application.
  • the second device includes the second power supply device; the circuit is configured to close the fourth switch, the sixth switch and the eighth switch when the sum of the voltages of the first battery group and the second battery group is less than the maximum output voltage of the second power supply device (i.e., the circuit is configured to close the fourth switch, the sixth switch and the eighth switch when the first battery group and the second battery group need to be charged in series.
  • the second device includes the second electrical device; the circuit is configured to close the fourth switch, the sixth switch, and the eighth switch when the sum of the voltages of the first battery group and the second battery group is less than or equal to the maximum input voltage allowed by the second electrical device (i.e., the circuit is configured to close the fourth switch, the sixth switch, and the eighth switch when it is necessary to discharge the second electrical device in series through the first battery group and the second battery group).
  • the second electrical device includes a capacitor
  • the circuit further includes a third branch
  • the third branch includes a third resistor and a ninth switch connected in series
  • the third branch is connected in parallel with the fourth switch, the sixth switch, or the eighth switch.
  • the third branch is used for precharging the capacitor of the second electrical device.
  • the second electrical device may include a capacitor
  • the circuit may also include a third branch, which is mainly used to pre-charge the capacitor of the second electrical device, thereby avoiding the impact on components such as loads and switches caused by excessive circuit current when the switch is directly closed, thereby protecting circuit components.
  • the first resistor and the third resistor are a common resistor
  • the fifth switch and the ninth switch are a common switch.
  • the first resistor and the third resistor, as well as the fifth switch and the ninth switch can be shared, so as to achieve the functions of balancing and pre-charging through one resistor and one switch (i.e., one branch), thereby saving devices, reducing the size of the circuit, and reducing costs.
  • the first resistor, the second resistor and the third resistor may be a common resistor
  • the fifth switch, the seventh switch and the ninth switch may be a common switch.
  • the eighth switch is located between the first battery pack and the first switch, and the first branch is connected in parallel with the first switch, the second switch, the third switch, the fourth switch or the eighth switch.
  • a control method of a circuit comprising: a first battery pack, a second battery pack, a first switch, a second switch, a third switch, a fourth switch and a first branch, the first branch comprising a first resistor and a fifth switch connected in series; wherein the positive electrode of the first battery pack is electrically connected to the positive electrode of the second battery pack through the first switch and the second switch; the negative electrode of the first battery pack is electrically connected to the negative electrode of the second battery pack through the third switch and the fourth switch; the first branch is connected in parallel with the first switch, the second switch, the third switch or the fourth switch; the control method comprises: obtaining the voltage of the first battery pack and the second battery pack; and controlling the fifth switch in the first branch to close or open according to the voltage difference between the first battery pack and the second battery pack. wherein controlling the fifth switch in the first branch to close can be used to balance the voltage of the first battery pack and the second battery pack.
  • the voltages of the first battery group and the second battery group can be balanced by controlling the closing of the fifth switch, closing the switches among the first switch, the second switch, the third switch and the fourth switch that are not connected in parallel with the first branch, and controlling the disconnection of the switches among the first switch, the second switch, the third switch and the fourth switch that are connected in parallel with the first branch.
  • the fifth switch in the first branch can be controlled to close according to the voltage difference between the first battery group and the second battery group to achieve voltage balance of the two battery groups, thereby solving the circulation problem when the battery groups are connected in parallel and significantly improving circuit performance.
  • controlling the closing or opening of the fifth switch in the first branch according to the voltage difference between the first battery group and the second battery group includes: when the voltage difference between the first battery group and the second battery group is greater than a first threshold, controlling the closing of the fifth switch, and closing the switches among the first switch, the second switch, the third switch, and the fourth switch that are not connected in parallel with the first branch, and controlling the opening of the switches among the first switch, the second switch, the third switch, and the fourth switch that are connected in parallel with the first branch.
  • the first branch when the voltage difference between the first battery group and the second battery group is greater than a first threshold, the first branch can be used to balance the voltages of the first battery group and the second battery group, thereby avoiding frequent balancing and reducing waiting time during user use.
  • the circuit also includes a first interface and a sixth switch, the negative electrode of the first battery pack is electrically connected to the positive electrode of the second battery pack through the sixth switch, the first end of the first interface is connected between the first switch and the second switch, the second end of the first interface is connected between the third switch and the fourth switch, and the first interface is used to connect a first device, which includes a first power supply device or a first power-consuming device.
  • the first device includes the first power supply device; the control method also includes: when the sum of the voltages of the first battery group and the second battery group is less than twice the maximum output voltage of the first power supply device, controlling the closing of the first switch, the second switch, the third switch and the fourth switch, and controlling the opening of the fifth switch and the sixth switch (i.e., controlling the first battery group and the second battery group to be charged in parallel).
  • control method also includes: when the sum of the voltages of the first battery group and the second battery group is less than the maximum output voltage of the first power supply device, controlling the closing of the first switch, the fourth switch, and the sixth switch, and controlling the opening of the second switch, the third switch, and the fifth switch (i.e., controlling the first battery group and the second battery group to be charged in series).
  • the control also includes: when the voltage difference between the first battery group and the second battery group is greater than the second threshold, the fifth switch is controlled to be closed, and the switches in the first switch, the second switch, the third switch and the fourth switch that are not connected in parallel with the first branch are closed, and the switches in the first switch, the second switch, the third switch and the fourth switch that are connected in parallel with the first branch and the sixth switch are controlled to be opened (i.e., the voltages of the first battery group and the second battery group are balanced); and/or, when the voltage difference between the first battery group and the second battery group is less than or equal to the second threshold, the first switch, the second switch, the third switch and the fourth switch are controlled
  • the first device includes the first power supply device; the control method also includes: when the voltage of the first battery group is less than the voltage of the second battery group, controlling the closing of the first switch and the third switch, and controlling the opening of the second switch and the fourth switch; and/or, when the voltage of the first battery group is greater than the voltage of the second battery group, controlling the closing of the second switch and the fourth switch, and controlling the opening of the first switch and the third switch.
  • the first device includes the first electrical device; the control method also includes: when the sum of the voltages of the first battery group and the second battery group is less than or equal to twice the maximum input voltage of the first electrical device, controlling the closing of the first switch, the second switch, the third switch and the fourth switch, and controlling the opening of the fifth switch and the sixth switch (i.e., controlling the first battery group and the second battery group to discharge in parallel).
  • control method also includes: when the sum of the voltages of the first battery group and the second battery group is less than or equal to the maximum input voltage of the first electrical device, controlling the closing of the first switch, the fourth switch, and the sixth switch, and controlling the opening of the second switch, the third switch, and the fifth switch (i.e., controlling the first battery group and the second battery group to discharge in series).
  • the control also includes: when the voltage difference between the first battery group and the second battery group is greater than a third threshold value, the fifth switch is controlled to be closed, and the switches in the first switch, the second switch, the third switch and the fourth switch that are not connected in parallel with the first branch are closed, and the switches in the first switch, the second switch, the third switch and the fourth switch that are connected in parallel with the first branch and the sixth switch are controlled to be opened (i.e., the voltages of the first battery group and the second battery group are balanced); and/or, when the voltage difference between the first battery group and the second battery group is less than or equal to the third threshold value, the first switch, the second switch, the third switch and
  • a control method for a circuit includes a first battery group and a second battery group, the circuit is used to be connected to a power supply device and charge the first battery group and/or the second battery group through the power supply device, and the working modes of the circuit include a first mode and a second mode; the control method includes: obtaining the voltages of the first battery group and the second battery group; when the sum of the voltages of the first battery group and the second battery group is greater than or equal to the maximum output voltage of the power supply device, controlling the circuit to switch to the second mode; wherein, in the first mode, the first battery group is connected in series with the second battery group; and in the second mode, the first battery group is connected in parallel with the second battery group.
  • the voltages of the first battery pack and the second battery pack can be dynamically identified and the charging mode can be dynamically updated.
  • the control circuit switches from other charging modes to a parallel charging mode.
  • the battery pack voltage when it no longer supports the charging mode actually used, it can be adjusted to a more suitable charging mode for charging in a timely manner, thereby avoiding charging stagnation and improving the reliability of charging; on the other hand, it can make full use of the capacity of the power supply device and improve the compatibility of the power supply device.
  • the method further includes: when the sum of the voltages of the first battery group and the second battery group is less than the maximum output voltage of the power supply device, controlling the circuit to switch to the first mode.
  • the charging can be controlled to be performed in a series charging mode first.
  • the circuit can be controlled to switch from the series charging mode to the parallel charging mode, thereby avoiding charging stagnation on the one hand and improving charging reliability; on the other hand, it can make full use of the capacity of the power supply device and improve the compatibility of the power supply device.
  • the operating mode of the circuit also includes a third mode, and when the sum of the voltages of the first battery group and the second battery group is greater than or equal to the maximum output voltage of the power supply device, controlling the circuit to switch to the second mode includes: when the sum of the voltages of the first battery group and the second battery group is greater than or equal to the maximum output voltage of the power supply device, obtaining the difference between the voltages of the first battery group and the second battery group; when the difference between the voltages of the first battery group and the second battery group is less than or equal to a first threshold, controlling the circuit to switch to the second mode; when the difference between the voltages of the first battery group and the second battery group is greater than the first threshold, controlling the circuit to switch to the third mode; wherein, in the third mode, the circuit is configured to charge the first battery group or the second battery group.
  • the above-mentioned charging to the first battery group or charging to the second battery group can be charging of the high-voltage battery group to the low-voltage battery group (i.e. corresponding to the balancing through the first branch above); or it can be directly charging the battery group with lower voltage through the power supply device until the voltage difference between the two battery groups is less than or equal to the threshold value, so as to achieve voltage balancing of the two battery groups, thereby solving the circulation problem when the battery groups are connected in parallel and significantly improving the circuit performance.
  • a control device for a circuit comprising: a processing module for executing a control method as in the second aspect or any possible implementation of the second aspect; and/or, for executing a control method as in the third aspect or any possible implementation of the third aspect.
  • a control device for a circuit comprising at least one processor, wherein the at least one processor is used to couple with a memory, read and execute instructions in the memory, so as to implement a control method for executing the second aspect or any possible implementation of the second aspect; and/or, to implement a control method for executing the third aspect or any possible implementation of the third aspect.
  • a computer-readable storage medium includes instructions, which, when executed on a computer, enable the computer to execute a control method for executing the second aspect or any possible implementation of the second aspect; and/or, to execute a control method for executing the third aspect or any possible implementation of the third aspect.
  • a computer program product comprising instructions.
  • the control method in the second aspect or any possible implementation of the second aspect is executed; or the control method in the third aspect or any possible implementation of the third aspect is executed.
  • a computing device comprising: at least one processor and a memory, wherein the at least one processor is coupled to the memory, and is used to read and execute instructions in the memory to execute a control method as in the second aspect or any possible implementation of the second aspect; and/or, to execute a control method as in the third aspect or any possible implementation of the third aspect.
  • a chip comprising a processor and a data interface, wherein the processor reads instructions stored in a memory through the data interface to execute a control method as in the second aspect or any possible implementation of the second aspect; and/or executes a control method as in the third aspect or any possible implementation of the third aspect.
  • the chip may also include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory.
  • the processor is used to execute a control method such as the second aspect or any possible implementation method of the second aspect; and/or, execute a control method such as the third aspect or any possible implementation method of the third aspect.
  • an electronic device in a tenth aspect, characterized in that it includes a circuit as in the first aspect or any possible implementation of the first aspect.
  • a vehicle characterized by comprising a circuit as in the first aspect or any possible implementation of the first aspect.
  • FIG. 1 is an exemplary diagram of a vehicle provided in an embodiment of the present application.
  • FIG. 2 is a diagram showing an example of a battery circuit.
  • FIG. 3 is an exemplary diagram of a circuit provided in an embodiment of the present application.
  • FIG. 4 is an example diagram of a circuit provided in an embodiment of the present application configured in a parallel working mode.
  • FIG. 5 is an example diagram of a circuit provided in an embodiment of the present application configured in a balanced working mode.
  • FIG. 6 is an exemplary diagram of another circuit provided in an embodiment of the present application.
  • FIG. 7 is an example diagram of another circuit provided by an embodiment of the present application configured in a series operation mode.
  • FIG. 8 is an example diagram of another circuit provided in an embodiment of the present application configured in a parallel working mode.
  • FIG. 9 is an example diagram of another circuit provided in an embodiment of the present application configured in a balanced working mode.
  • FIG. 10 is an example diagram of another circuit provided in an embodiment of the present application configured in an independent working mode.
  • FIG. 11 is an example diagram of another circuit provided in an embodiment of the present application configured in an independent working mode.
  • FIG. 12 is an example diagram of another circuit provided in an embodiment of the present application configured in a series operation mode.
  • FIG. 13 is an example diagram of another circuit provided in an embodiment of the present application.
  • FIG. 14 is an example diagram of another circuit provided in an embodiment of the present application.
  • FIG. 15 is an example diagram of a circuit control method provided in an embodiment of the present application.
  • FIG. 16 is an example diagram of another circuit control method provided in an embodiment of the present application.
  • FIG. 17 is an example diagram of another circuit control method provided in an embodiment of the present application.
  • FIG. 18 is a specific flow chart of another circuit control method provided in an embodiment of the present application.
  • FIG. 19 is an example diagram of a control device of a circuit provided in an embodiment of the present application.
  • FIG. 20 is an exemplary block diagram of the hardware structure of a control device of a circuit provided in an embodiment of the present application.
  • the present application scheme can be applied to the fields of vehicles, terminal products, household products, etc.
  • it can be applied to smart phones, desktop computers, laptops, tablet computers, wearable devices, household robots or mobile vehicles, etc., which include batteries.
  • the mobile carrier may include road vehicles, water vehicles, air vehicles, industrial equipment, agricultural equipment, or entertainment equipment, etc.
  • the mobile carrier may be a vehicle, which is a vehicle in a broad sense, and may be a vehicle (such as a commercial vehicle, a passenger car, a motorcycle, a flying car, a train, etc.), an industrial vehicle (such as a forklift, a trailer, a tractor, etc.), an engineering vehicle (such as an excavator, a bulldozer, a crane, etc.), agricultural equipment (such as a lawn mower, a harvester, etc.), amusement equipment, a toy vehicle, etc.
  • the embodiment of the present application does not specifically limit the type of vehicle.
  • the mobile carrier may be a vehicle such as an airplane or a ship.
  • FIG1 is an example diagram of a vehicle provided in an embodiment of the present application.
  • the vehicle 10 may be a pure electric vehicle, a hybrid electric vehicle, an extended-range vehicle, a fuel cell vehicle, or the like including a battery 11.
  • the vehicle 10 may charge the battery 11 through a power supply device, and the power supply device may include a wired charging pile 20, a wireless charging device, a power supply vehicle, or the like.
  • the power supply device is a wired charging pile 20
  • the power supply device includes a charging pile body 21 and a charging gun 22, and the charging gun 22 is used to connect to the charging interface 12 of the vehicle 10 to charge the battery 11, wherein the charging interface 12 is electrically connected to the battery 11 inside the vehicle 10.
  • the positions of the battery 11 and the charging interface 12 shown in the figure are only examples.
  • FIG2 is an example diagram of a battery circuit.
  • the battery circuit mainly includes a battery pack V, a switch (S1' to S4'), a resistor R, a shunt A, and a circuit breaker QF.
  • the battery circuit can be connected to a charging pile or a load. When connected to a charging pile, the battery can be charged by the charging pile, or the battery can be powered by the grid through the charging pile; when connected to a load, the load can be powered.
  • the battery pack V is composed of a plurality of battery cells connected in series.
  • the charging pile can only charge batteries or vehicles whose charging voltage is within the output voltage range of the charging pile, and when the charging voltage of the battery exceeds the output voltage range of the charging pile, it is difficult for the charging pile to meet the battery's higher charging voltage requirements.
  • the output voltage range of the charging pile is 200V-500V and the required charging voltage of the battery or vehicle is 800V
  • the voltage of the battery or vehicle can only reach 500V, which is difficult to meet the high voltage requirements of the battery or vehicle, and the user experience is poor.
  • the charging voltage of new energy vehicles is constantly increasing, for example, from 500V to 750V, 800V, 850V, 900V and other higher voltages.
  • most of the current charging piles use a voltage standard of 500V or a similar range, which cannot support the charging needs of batteries with higher charging voltages.
  • the potential of the battery's external charge and discharge interface can be changed by adjusting the series or parallel connection between the battery packs, so that it can be compatible with power supply devices with different output voltages, or power devices with different input voltages.
  • the battery circuit includes two battery packs, when the two battery packs are connected in series, the battery's overall external output voltage is higher, and the battery can be charged by a high-voltage power supply device, or the battery can be discharged to a high-voltage power device; when the two battery packs are connected in parallel, the battery can be charged by a low-voltage power supply device, or the battery can be discharged to a low-voltage power device.
  • the above high and low voltages are only relative values, not absolute voltage ranges.
  • the battery includes 200 battery cells, or cells
  • the first battery pack includes 100 cells
  • the second battery pack includes 100 cells (assuming that the battery voltage of each cell is 4V).
  • the overall external output or input voltage of the battery can reach 800V, which can be compatible with higher voltage charging and discharging requirements.
  • the overall external output or input voltage of the battery can reach 400V, which can be compatible with lower voltage charging and discharging requirements.
  • an embodiment of the present application provides a circuit (i.e., a battery circuit) which designs a first branch in the circuit to achieve voltage balance between two battery packs, thereby solving the circulation problem when the battery packs are connected in parallel and significantly improving circuit performance.
  • a circuit i.e., a battery circuit
  • Fig. 3 is an example diagram of a circuit provided in an embodiment of the present application.
  • the circuit shown in Fig. 3 and the structure and number of each device in the circuit are only used as an example of an embodiment of the present application and do not constitute a limitation on the present application.
  • the circuit includes: a first battery pack V1 , a second battery pack V2 , a first switch S1 , a second switch S2 , a third switch S3 , a fourth switch S4 and a first branch, wherein the first branch includes a first resistor R1 and a fifth switch S5 connected in series.
  • the positive electrode of the first battery pack V1 is electrically connected to the positive electrode of the second battery pack V2 through the first switch S1 and the second switch S2; the negative electrode of the first battery pack V1 is electrically connected to the negative electrode of the second battery pack V2 through the third switch S3 and the fourth switch S4.
  • the embodiment provided by the circuit shown in FIG3 is used for illustration, and the first branch is connected in parallel with the fourth switch S4.
  • the first branch can also be connected in parallel with any one of the first switch S1, the second switch S2, the third switch S3 or the fourth switch S4; and in the circuit, one or more first branches can be included, and one or more first branches can be connected in parallel with different switches respectively.
  • the embodiment of the present application does not limit the position and number of the first branch, but for the convenience of description, it is introduced as an example including one first branch.
  • the circuit can be configured to close the fifth switch S5, and close the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch (e.g., S1, S2, S3 in FIG5 ), and disconnect the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch (e.g., S4 in FIG5 ).
  • the balancing current of the voltages of the first battery pack V1 and the second battery pack V2 can be controlled within a safe range, thereby solving the circulation problem when the battery packs are connected in parallel and significantly improving the circuit performance.
  • the first resistor in the first branch can reduce the current in the circuit, reduce the impact on the switch, and ensure the safety of the voltage balancing process.
  • the circuit can be configured to close the fifth switch S5, and close the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch (for example, S1, S2, S3 in Figure 5), and disconnect the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch (for example, S4 in Figure 5), so as to balance the voltages of the first battery pack V1 and the second battery pack V2, thereby avoiding frequent balancing and reducing waiting time during user use.
  • the first threshold value can be a value such as 5V, 10V, 20V, etc.
  • the specific value can be determined based on the actual situation, and this application does not limit this.
  • the voltages of the two battery packs can be equalized after the battery is charged or discharged or when it is ready to be stationary, or the voltages of the two battery packs can be equalized before the next charge or discharge, and this application does not limit this.
  • a vehicle including a battery as an example, in one implementation, when the vehicle is stationary and powered off, the voltages of the two battery packs are obtained.
  • the equalization function is not activated; if the voltage difference between the two battery packs is greater than the first threshold, the equalization function is activated, the equalization mode is entered, and then the voltages of the two battery packs are obtained in real time until the voltage difference between the two battery packs is less than or equal to the first threshold, and then the equalization is terminated.
  • the voltages of the two battery packs can be obtained when the vehicle is started or the vehicle is connected to a charging pile to prepare for charging, and whether equalization is required can be determined based on the voltage difference between the two battery packs.
  • the circuit may further include a first interface O1 and a sixth switch S6, and the negative electrode of the first battery pack V1 is electrically connected to the positive electrode of the second battery pack V2 through the sixth switch S6.
  • the positive electrode of the first battery pack V1 is connected to the positive electrode of the second battery pack V2 through the first switch S2 and the second switch S2.
  • the negative electrode of the first battery pack V1 is connected to the negative electrode of the second battery pack V2 through the third switch S3 and the fourth switch S4.
  • the first end of the first interface O1 is connected between the first switch S1 and the second switch S2, and the second end of the first interface O1 is connected between the third switch S3 and the fourth switch S4.
  • the first interface O1 can be used to connect the first device, and the first device can be a first power supply device or a first power consumption device.
  • the first battery pack V1 and the second battery pack V2 can be configured as a series, parallel or independent working mode by closing or opening the switch.
  • the circuit can be compatible with first devices with different voltage ranges in different working modes, which can improve the wide application of the circuit.
  • the first device may include a first power supply device, and the first power supply device is used to charge the first battery pack V1 and/or the second battery pack V2.
  • the circuit can be configured to close the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4, and open the fifth switch S5 and the sixth switch S6, so that the first battery group V1 and the second battery group V2 can be charged in parallel through the first power supply device.
  • the circuit can be configured to close the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4, and open the fifth switch S5 and the sixth switch S6, so that the first battery group V1 and the second battery group V2 can be charged in parallel through the first power supply device.
  • the circuit can be configured to close the fifth switch S5, and close the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch (for example, S1, S2, S3 in FIG9 ), and disconnect the sixth switch S6, and disconnect the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch (for example, S4 in FIG9 ), so as to balance the voltages of the first battery group V1 and the second battery group V2.
  • the circuit can also be configured to close the first switch S1, the fourth switch S4 and the sixth switch S6, and disconnect the second switch S2, the third switch S3 and the fifth switch S5, so that the first battery group V1 and the second battery group V2 can be charged in series through the first power supply device.
  • the circuit when the sum of the voltages of the first battery pack V1 and the second battery pack V2 is less than the maximum output voltage of the first power supply device, the circuit is configured to charge the first battery pack V1 and the second battery pack V2 in series. Compared with being configured for parallel charging, the current in the series circuit is smaller and the loss to the circuit is also smaller.
  • the power supply device involved in the embodiment of the present application is a device that can charge the first battery pack V1 and the second battery pack V2.
  • the power supply device can be a fixed charging device or a mobile charging device, for example, it can include a charger, a charging pile, a charging vehicle, etc., and the present application does not limit this.
  • the circuit can also be configured to use the first power supply device to charge the first battery pack V1 and the second battery pack V2 separately.
  • switch closing and opening conditions see Figures 10 and 11.
  • Figure 10 when charging the second battery pack V2 separately, the second switch S2 and the fourth switch S4 are closed, the first switch S2 and the third switch S3 are opened, and the fifth switch S5 is opened.
  • Figure 11 when charging the first battery pack V1 separately, the first switch S1 and the third switch S3 are closed, and the second switch S2 and the fourth switch S4 are opened.
  • the circuit can be configured to close the first switch S1 and the third switch S3, disconnect the second switch S2 and the fourth switch S4, and disconnect the fifth switch S5 when the voltage of the first battery pack V1 is lower than the voltage of the second battery pack V2; and/or, the circuit can be configured to close the second switch S2 and the fourth switch S4, and disconnect the first switch S2 and the third switch S3 when the voltage of the first battery pack V1 is higher than the voltage of the second battery pack V2.
  • the circuit can also be configured to close the first switch S1 and the third switch S3, disconnect the second switch S2 and the fourth switch S4, and disconnect the fifth switch S5 when the voltage of the first battery pack V1 is lower than the voltage of the second battery pack V2, and the voltage difference is greater than a preset value; and/or, the circuit can also be configured to close the second switch S2 and the fourth switch S4, and disconnect the first switch S2 and the third switch S3 when the voltage of the first battery pack V1 is higher than the voltage of the second battery pack V2, and the voltage difference is greater than a preset value.
  • the voltages of the first battery pack V1 and the second battery pack V2 can be balanced by charging the first battery pack V1 and the second battery pack V2 separately.
  • the first switch S1 and the third switch S3 can be closed, and the second switch S2 and the fourth switch S4 can be opened to charge the first battery pack V1 separately until the voltages of the first battery pack V1 and the second battery pack V2 are equal (or the difference between the voltages of the first battery pack V1 and the second battery pack V2 is less than or equal to the second threshold), and then the separate charging of the first battery pack V1 is stopped; for another example, when the voltage of the first battery pack V1 is greater than the voltage of the second battery pack V2, the second switch S2 and the fourth switch S4 can be closed, and the first switch S1 and the third switch S3 can be opened to charge the second battery pack V2 separately until the voltages of the first battery pack V1 and the second
  • an independent charging mode i.e., charging the first battery pack V1 and the second battery pack V2 separately
  • the independent charging mode can ensure higher charging voltage, charging power and charging speed.
  • the second threshold value may also be a value such as 5V, 10V, 20V, etc.
  • the specific value may be determined based on actual conditions, and this application does not impose any limitation on this.
  • the output voltage range of the power supply device mentioned in the embodiment of the present application refers to the output voltage capability range of the power supply device.
  • the output voltage capability range of a power supply device with a maximum output voltage of 500 V can be set to 200-500 V
  • the output voltage capability range of a power supply device with a maximum output voltage of 800 V can be set to 400-800 V.
  • the above-mentioned output voltage range that satisfies the first power supply device refers to falling within the output voltage range of the first power supply device.
  • the circuit can be flexibly configured into operating modes such as series charging, parallel charging or voltage balancing according to the relationship between the voltages of the first battery pack V1 and the second battery pack V2 and the maximum output voltage (or output voltage range) of the first power supply device, so that the battery can be more widely compatible with more power supply devices with different supply voltages, thereby improving the user's charging experience.
  • operating modes such as series charging, parallel charging or voltage balancing according to the relationship between the voltages of the first battery pack V1 and the second battery pack V2 and the maximum output voltage (or output voltage range) of the first power supply device, so that the battery can be more widely compatible with more power supply devices with different supply voltages, thereby improving the user's charging experience.
  • the first device may include a first electrical device, and the first battery pack V1 and the second battery pack V2 are used to discharge the first electrical device.
  • the circuit can be configured to close the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4, and open the fifth switch S5 and the sixth switch S6, so that the first battery pack V1 and the second battery pack V2 discharge in parallel.
  • the circuit can be configured to close the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4, and open the fifth switch S5 and the sixth switch S6, so that the first battery group V1 and the second battery group V2 discharge in parallel.
  • the circuit can be configured to close the fifth switch S5, and close the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch, disconnect the sixth switch S6, and disconnect the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch, so as to balance the voltages of the first battery group V1 and the second battery group V2.
  • the circuit can be configured to close the first switch S1, the fourth switch S4 and the sixth switch S6, and disconnect the second switch S2, the third switch S3 and the fifth switch S5, so that the first battery pack V1 and the second battery pack V2 discharge in series.
  • the circuit when the sum of the voltages of the first battery group and the second battery group is less than or equal to the maximum input voltage of the first electrical device, the circuit is configured to discharge the first battery group and the second battery group in series. Compared with configuring them to discharge in parallel, the current in the series circuit is smaller and the loss to the circuit is also smaller.
  • the electrical devices involved in the embodiments of the present application may include other vehicles and camping appliances (such as lighting equipment, induction cookers, heating equipment, electric ovens, etc.).
  • the third threshold value can also be a value such as 5V, 10V, 20V, etc.
  • the specific value can be determined based on the actual situation, and this application does not limit this.
  • the circuit can also be configured to discharge the first electrical device separately through the first battery pack V1 and the second battery pack V2.
  • the specific switch closing and opening conditions can be found in Figures 10 and 11 and the description of other embodiments, which will not be repeated here.
  • the input voltage range of the electrical device mentioned in the embodiments of the present application refers to the input voltage capability range of the electrical device.
  • the circuit can be flexibly configured into series discharge, parallel discharge or voltage balance modes based on the relationship between the voltages of the first battery pack V1 and the second battery pack V2 and the maximum input voltage (or input voltage range) of the first electrical device. This allows the battery to be more widely compatible with electrical devices with different input voltages, thereby improving the user experience of using the battery to supply power to external devices.
  • the first electrical device may include a capacitor
  • the circuit may further include a second branch, the second branch including a second resistor R2 and a seventh switch S7 connected in series, and the second branch is connected in parallel with one of the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, or the sixth switch S6 (for example, see FIGS. 6 to 13).
  • the second branch is used for precharging the capacitor of the first electrical device, so as to avoid the impact on components such as loads and switches caused by excessive circuit current when the switch is directly closed, so as to protect circuit components, improve circuit safety, and extend the service life of the circuit.
  • the implementation of pre-charging the capacitor of the first electrical device can be achieved by closing the switch of the second branch and the switch in the pre-charging circuit that is not connected in parallel with the second branch, and disconnecting the switch connected in parallel with the second branch and other switches.
  • the pre-charging circuit only includes the second battery pack V2
  • the implementation of pre-charging the capacitor of the first electrical device can be achieved by closing the second switch S2 and the seventh switch S7, and disconnecting the fourth switch S4 and other switches
  • the pre-charging circuit includes the first battery pack V1 and the second battery pack V2
  • the implementation of pre-charging the capacitor of the first electrical device can be achieved by closing the first switch S1, the sixth switch S6 and the seventh switch S7, and disconnecting the fourth switch S4 and other switches.
  • one or more second branches may be included, and one or more second branches may be connected in parallel with different switches, respectively.
  • the embodiment of the present application does not limit the position and number of the second branches.
  • the specific setting position and the opening and closing conditions of the second branch may be determined in combination with the specific working mode to ensure that the capacitor pre-charging can be achieved during series discharge, parallel discharge, and independent discharge.
  • the first resistor R1 and the second resistor R2 can be a shared resistor
  • the fifth switch S5 and the seventh switch S7 can be a shared switch (for example, Figures 6 to 13), so as to achieve the effects of balancing and pre-charging through one resistor and one switch (i.e., one branch), thereby saving devices, reducing the size of the circuit, and reducing costs.
  • the circuit may further include a second interface O2 and an eighth switch S8, wherein the first end of the second interface O2 is connected to the positive electrode of the first battery pack V1 through the eighth switch S8, and the second end of the second interface O2 is connected to the negative electrode of the second battery pack V2 through the fourth switch S4, wherein the second interface O2 is used to connect to a second device, and the second device includes a second power supply device or a second power consumption device.
  • the circuit can be connected to the second device while connecting to the first device, thereby improving the flexibility and extensiveness of the circuit application.
  • the second device may include a second power supply device.
  • the circuit may be configured to close the fourth switch S4, the sixth switch S6 and the eighth switch S8 when the sum of the voltages of the first battery pack V1 and the second battery pack V2 is less than the maximum output voltage of the second power supply device (i.e., the circuit may be configured to close the fourth switch S4, the sixth switch S6 and the eighth switch S8 when it is necessary to charge the first battery pack V1 and the second battery pack V2 in series.
  • the second device may include a second electrical device.
  • the circuit may be configured to close the fourth switch S4, the sixth switch S6 and the eighth switch S8 when the sum of the voltages of the first battery pack V1 and the second battery pack V2 is less than or equal to the maximum input voltage allowed by the second electrical device (i.e., the circuit may be configured to close the fourth switch S4, the sixth switch S6 and the eighth switch S8 when it is necessary to discharge the second electrical device in series through the first battery pack V1 and the second battery pack V2).
  • the first interface O1 can be connected to a first power supply device or a first power consumption device
  • the second interface O2 can be connected to a second power supply device or a second power consumption device.
  • the battery can be connected to multiple power supply devices and/or power consumption devices at the same time, and the flexibility is significantly improved.
  • the second electrical device may include a capacitor
  • the circuit may further include a third branch, the third branch including a third resistor R3 and a ninth switch S9 connected in series, the third branch being connected in parallel with the fourth switch S4, the sixth switch S6, or the eighth switch S8 (for example, see FIGS. 6 to 13 ), and the third branch being used for precharging the capacitor of the second electrical device.
  • This can avoid the impact on components such as loads and switches caused by excessive circuit current when the switch is directly closed, so as to protect the circuit components.
  • the capacitor pre-charging of the second electrical device can be achieved by closing the switch of the third branch and the switch in the pre-charging loop that is not connected in parallel with the third branch, and disconnecting the switch connected in parallel with the third branch and other switches.
  • the capacitor pre-charging of the second electrical device can be achieved by closing the eighth switch S8, the sixth switch S6 and the ninth switch S9, and disconnecting the fourth switch S4 and other switches.
  • the first resistor R1 and the third resistor R3 can be a shared resistor
  • the fifth switch S5 and the ninth switch S9 can be a shared switch (for example, Figures 6 to 12), so as to achieve the effects of balancing and pre-charging through one resistor and one switch (i.e., one branch), thereby saving devices, reducing the size of the circuit, and reducing cost.
  • first resistor R1, the second resistor R2 and the third resistor R3 can be a shared resistor
  • the fifth switch S5, the seventh switch S7 and the ninth switch S9 can be a shared switch (for example, see Figures 6 to 12) to further save devices, reduce the size of the circuit and reduce costs.
  • resistors can realize the pre-charging function and the equalizing function at the same time after being shared, and can also be recorded as a pre-charging-equalizing shared resistor in this application.
  • the above circuit may have a variety of different presentation forms.
  • the eighth switch S8 may also be located between the first battery pack V1 and the first switch S1.
  • the first branch and/or the second branch may also be connected in parallel with the eighth switch S8.
  • the specific position of the eighth switch S8 is not limited in the present embodiment.
  • the switches involved in the embodiments of the present application may include any of the devices capable of switching a circuit on and off, such as a metal oxide semiconductor field effect transistor (MOSFET), an insulated gate bipolar transistor (IGBT), a bipolar junction transistor (BJT), a relay, and a contactor.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • BJT bipolar junction transistor
  • the above-mentioned battery circuit may also include more or fewer switches.
  • a switch may also be provided at the negative electrode of the first interface O1, and the present application does not limit this.
  • the circuit provided in the embodiment of the present application may further include a first ammeter A1 and a second ammeter A2.
  • the first ammeter A1 is used to detect the current of the branch where the first battery pack V1 is located
  • the first ammeter A2 is used to detect the current of the branch where the first battery pack V2 is located.
  • the positions of the ammeters in Figures 3 to 14 are only examples, and the present application does not limit this.
  • the circuit provided in the embodiment of the present application may further include a circuit breaker (also referred to as a fuse) so that when a circuit fault occurs (for example, switch failure, battery short circuit, etc.), the circuit can be disconnected to prevent damage to the device.
  • a circuit fault for example, switch failure, battery short circuit, etc.
  • the positions and numbers of the first circuit breakers QF1 and QF2 shown in Figures 6 to 14 are only examples, and more or fewer circuit breakers may be included in practice, and may be arranged according to actual needs.
  • FIG15 is an example diagram of a control method for a circuit provided in an embodiment of the present application.
  • the control method 1500 can be applied to any circuit provided in an embodiment of the present application.
  • the control method includes steps S1510 and S1520, which are described below.
  • the voltages of the first battery group V1 and the second battery group V2 can be balanced by controlling the closing of the fifth switch S5, closing the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch, and controlling the disconnection of the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch.
  • the fifth switch S5 in the first branch can be controlled to close according to the voltage difference between the first battery pack V1 and the second battery pack V2 to achieve voltage balance between the two battery packs, thereby solving the circulation problem caused by voltage differences between different battery packs when the battery packs are connected in parallel, and significantly improving the circuit performance.
  • the fifth switch S5 can be controlled to be closed, and the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch can be closed, and the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch can be controlled to be disconnected to balance the voltages of the first battery group V1 and the second battery group V2, thereby avoiding frequent balancing, avoiding the problem of users having to wait for a long time during use, and improving user experience.
  • the circuit may also include a first interface O1 and a sixth switch S6.
  • the negative electrode of the first battery pack V1 is electrically connected to the positive electrode of the second battery pack V2 through the sixth switch S6.
  • the first end of the first interface O1 is connected between the first switch S1 and the second switch S2.
  • the second end of the first interface O1 is connected between the third switch S3 and the fourth switch S4.
  • the first interface O1 can be used to connect the first device.
  • the first device may include a first power supply device, and the first power supply device is used to charge the first battery pack V1 and/or the second battery pack V2.
  • the control method 1500 may also include: when the sum of the voltages of the first battery group V1 and the second battery group V2 is less than twice the maximum output voltage of the first power supply device (that is, the parallel voltage of the first battery group V1 and the second battery group V2 meets the output voltage range of the first power supply device), as shown in FIG8, controlling the closing of the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4, and controlling the opening of the fifth switch S5 and the sixth switch S6, so that the first battery group V1 and the second battery group V2 are charged in parallel.
  • the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 are controlled to be closed, and the fifth switch S5 and the sixth switch S6 are controlled to be disconnected, so that the first battery group V1 and the second battery group V2 are charged in parallel.
  • the fifth switch S5 is controlled to be closed, and the switches that are not connected in parallel with the first branch among the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 are controlled to be disconnected, and the switches that are connected in parallel with the first branch among the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 and the sixth switch S6 are controlled to be disconnected, so as to balance the voltages of the first battery group V1 and the second battery group V2.
  • the first switch S1, the fourth switch S4 and the sixth switch S6 are controlled to be closed, and the second switch S2, the third switch S3 and the fifth switch S5 are controlled to be opened, so that the first battery group V1 and the second battery group V2 can be charged in series through the first power supply device.
  • control method 1500 may also include: when the voltage of the first battery group V1 is less than the voltage of the second battery group V2, controlling the closing of the first switch S1 and the third switch S3, and controlling the opening of the second switch S2 and the fourth switch S4; and/or, when the voltage of the first battery group V1 is greater than the voltage of the second battery group V2, controlling the closing of the second switch S2 and the fourth switch S4, and controlling the opening of the first switch S1 and the third switch S3.
  • the first device may include a first electrical device, and the first battery pack V1 and the second battery pack V2 are used to discharge the first electrical device.
  • the control method 1500 may also include: when the sum of the voltages of the first battery group V1 and the second battery group V2 is less than or equal to twice the maximum input voltage of the first electrical device (i.e., the parallel voltage of the first battery group V1 and the second battery group V2 meets the input voltage range of the first electrical device), as shown in FIG8 , controlling the closing of the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4, and controlling the opening of the fifth switch S5 and the sixth switch S6, so that the first battery group V1 and the second battery group V2 discharge in parallel.
  • the maximum input voltage of the first electrical device i.e., the parallel voltage of the first battery group V1 and the second battery group V2 meets the input voltage range of the first electrical device
  • the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 are controlled to be closed, and the fifth switch S5 and the sixth switch S6 are controlled to be opened, so that the first battery group V1 and the second battery group V2 are discharged in parallel.
  • the fifth switch S5 is controlled to be closed, and the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are not connected in parallel with the first branch are closed, and the switches in the first switch S1, the second switch S2, the third switch S3 and the fourth switch S4 that are connected in parallel with the first branch and the sixth switch S6 are controlled to be disconnected to balance the voltages of the first battery group V1 and the second battery group V2.
  • the control method 1500 may also include: when the sum of the voltages of the first battery group V1 and the second battery group V2 is less than or equal to the maximum input voltage of the first electrical device (i.e., when the series voltage of the first battery group V1 and the second battery group V2 meets the input voltage range of the first electrical device), as shown in FIG7 , controlling the closing of the first switch S1, the fourth switch S4 and the sixth switch S6, and controlling the opening of the second switch S2, the third switch S3 and the fifth switch S5, so that the first battery group V1 and the second battery group V2 are discharged in series.
  • the maximum input voltage of the first electrical device i.e., when the series voltage of the first battery group V1 and the second battery group V2 meets the input voltage range of the first electrical device
  • FIG 16 is an example diagram of a control method for another circuit provided in an embodiment of the present application.
  • the method 1600 can be applied to a circuit including a first battery pack and a second battery pack, the circuit being used to connect to a power supply device, through which the first battery pack and/or the second battery pack can be charged, and the working mode of the circuit includes a first mode and a second mode.
  • the first mode the first battery pack is connected in series with the second battery pack (that is, the first mode can be understood as a series charging mode); in the second mode, the first battery pack is connected in parallel with the second battery pack (that is, the second mode can be understood as a parallel charging mode).
  • the present application scheme does not limit the specific structure of the circuit.
  • the circuit can be, for example, a part of the circuit shown in Figure 6 that can realize series-parallel charging.
  • the method 1600 includes steps S1610 and S1620.
  • the voltages of the first battery group and the second battery group can be monitored during the charging process, and the voltages of the first battery group and the second battery group can be obtained in real time.
  • the voltages of the first battery pack and the second battery pack can be dynamically identified and the charging mode can be dynamically updated. Specifically, during the charging process, when it is monitored that the sum of the voltages of the first battery pack and the second battery pack is greater than or equal to the maximum output voltage of the power supply device, the control circuit switches from other charging modes to parallel charging mode.
  • the battery pack voltage when it no longer supports the charging mode actually used, it can be adjusted to a more suitable charging mode for charging in a timely manner, thereby avoiding charging stagnation and improving the reliability of charging; on the other hand, it can make full use of the capacity of the power supply device and improve the compatibility of the power supply device.
  • the method 1600 may further include: when the sum of the voltages of the first battery pack and the second battery pack is less than the maximum output voltage of the power supply device, the control circuit switches to the first mode.
  • the charging can be controlled to be performed in a series charging mode first.
  • the circuit can be controlled to switch from the series charging mode to the parallel charging mode, thereby avoiding charging stagnation on the one hand and improving charging reliability; on the other hand, it can make full use of the capacity of the power supply device and improve the compatibility of the power supply device.
  • the working mode of the circuit may further include a third mode, in which the circuit may be configured to charge the first battery pack or the second battery pack.
  • the circuit may be configured to charge the first battery pack or the second battery pack.
  • the control circuit switches to the second mode; when the voltage difference between the first battery pack and the second battery pack is greater than the first threshold, the control circuit switches to the third mode.
  • the above-mentioned charging to the first battery group or charging to the second battery group can be charging of the high-voltage battery group to the low-voltage battery group (i.e. corresponding to the balancing through the first branch above); it can also be directly charging the battery group with lower voltage through the power supply device to reduce the voltage difference between the two battery groups and achieve voltage balancing of the two battery groups, thereby solving the circulation problem when the battery groups are connected in parallel and significantly improving the circuit performance.
  • the above control method 1600 is also applicable to the battery discharge process, so as to adjust the discharge mode in real time according to the voltage of the first battery group, the voltage of the second battery group and the maximum input voltage of the electrical device during the discharge process (the discharge mode may include any one or more of a series discharge mode, a parallel discharge mode or an independent discharge mode) to ensure the reliability of the discharge operation.
  • Figure 17 is an example diagram of another circuit control method provided in an embodiment of the present application.
  • the method can be applied to a circuit including more than two battery packs (for example, including a first battery pack and a second battery pack), and the circuit can be configured in multiple charging modes, for example, including one or more of a series charging mode, a parallel charging mode, and an independent charging mode.
  • the method can be applied to any circuit provided in an embodiment of the present application.
  • control method 1700 includes steps 1 to 3, and these steps are described in detail below in conjunction with the accompanying drawings.
  • Step 1 determining a charging mode according to a current voltage of the first battery pack, a current voltage of the second battery pack, and an output voltage of a power supply device.
  • Step 2 charging according to the charging mode to obtain a current charging result, where the current charging result includes an updated voltage of the first battery pack and an updated voltage of the second battery pack.
  • Step 3 if the current charging result meets the charging termination condition, then end the charging; if the current charging result does not meet the charging termination condition, then re-execute steps 1 to 3 according to the current charging result until the obtained charging result meets the charging termination condition.
  • the output voltage of the power supply device may refer to the maximum output voltage of the power supply device, or may refer to other values within the output voltage range of the power supply device, without limitation.
  • the voltages of the first battery pack and the second battery pack can be dynamically identified during the charging process and the charging mode can be dynamically updated. Therefore, when the battery pack voltage no longer supports the charging mode, it can be adjusted to a more suitable charging mode in time to avoid charging stagnation and improve charging reliability; on the other hand, it can fully utilize the capacity of the power supply device and improve the compatibility of the power supply device.
  • the power supply circuit Before executing step 1, the power supply circuit may be connected to the power supply device, and the output voltage of the power supply device may be obtained.
  • charging can be performed according to the preset charging time and charging mode.
  • the preset charging time can be 1s, 2s, 5s, 10s, etc., which is not limited in this application. This means that the embodiment of the present application can monitor in real time at a certain frequency whether the current charging result meets the charging end condition, and respond in time when the charging end condition is not met, thereby further improving the reliability of charging.
  • the above-mentioned charging end condition may be that the voltage of the first battery pack and the second battery pack reaches a target charging voltage, wherein the target charging voltage may be a numerical value or a voltage range, without limitation.
  • the charging end condition may be that the remaining power of the battery reaches a target power.
  • the above-mentioned charging end condition may also be an interrupt operation by the user. This application does not limit the type of charging end condition.
  • determining the charging mode based on the current voltage of the first battery group, the current voltage of the second battery group and the output voltage of the power supply device may include: if the series voltage or the sum of the current voltages of the first battery group and the second battery group is less than the output voltage of the power supply device, determining that the charging mode is a series charging mode.
  • the above-mentioned determination of the charging mode based on the current voltage of the first battery group, the current voltage of the second battery group and the output voltage of the power supply device may include: if the sum of the series voltage or the current voltage of the first battery group and the second battery group is greater than or equal to the output voltage of the power supply device and less than twice the output voltage of the power supply device, obtaining the difference between the current voltages of the first battery group and the second battery group; if the difference between the current voltages of the first battery group and the second battery group is less than or equal to a first threshold value, determining that the charging mode is a parallel charging mode; if the difference between the current voltages of the first battery group and the second battery group is greater than the first threshold value, determining that the charging mode is an independent charging mode.
  • the first threshold can be a value such as 5V, 10V, 20V, etc., which needs to be determined in combination with actual conditions, and this application does not limit this.
  • the sum of the series voltage or current voltage of the first battery pack and the second battery pack is greater than or equal to twice the output voltage of the power supply device, it is recommended to end the charging.
  • the charging according to the charging mode includes: determining the battery pack with a lower current voltage between the first battery pack and the second battery pack; and charging the battery pack with a lower current voltage according to the independent charging mode.
  • the battery pack with a lower current voltage can be charged independently to reduce the voltage difference between the two battery packs.
  • the voltage difference between the two battery packs is less than or equal to a first threshold, charging is stopped, and the charging mode is re-determined based on the updated voltages of the two battery packs.
  • the above charging mode may also include: balanced voltage mode (in this balanced mode, the high-voltage battery pack can charge the low-voltage battery pack). If the sum of the current voltages of the first battery pack and the second battery pack is greater than or equal to the output voltage of the power supply device and less than or equal to twice the output voltage of the power supply device, and the difference between the current voltages of the first battery pack and the second battery pack is greater than the second threshold, the charging mode can be determined to be a balanced voltage mode.
  • the second threshold can also be a value such as 5V, 10V, 20V, etc., which needs to be determined in combination with actual conditions, and this application does not limit this.
  • the independent charging mode can be used to reduce the voltage difference between the two battery packs, or the high-voltage battery pack can be used to charge the low-voltage battery pack (corresponding to the above balancing through the first branch) to reduce the voltage difference between the two battery packs. It should be understood that compared with balancing the voltage through the first branch, the independent charging mode can ensure a higher charging voltage, charging power and charging speed.
  • the above control method 1700 is also applicable to the battery discharge process, so as to update and adjust the discharge mode in real time according to the current voltage of the first battery group, the current voltage of the second battery group and the input voltage of the electrical device during the discharge process (for example, the discharge mode is any one of the series discharge mode, parallel discharge mode or independent discharge mode) to ensure the reliability of the discharge operation.
  • FIG18 is a specific flow chart of another circuit control method provided by an embodiment of the present application.
  • the circuit can refer to the description of the circuit involved in the above method 1700, and will not be repeated here.
  • the process 1800 includes steps S1801 to S1812, and these steps are introduced below in conjunction with the accompanying drawings.
  • step S1801 connect the power supply circuit to the power supply device, and continue to execute step S1802.
  • step S1802 obtaining the output voltage (eg, maximum output voltage) of the power supply device, and then proceeding to step S1803.
  • the output voltage eg, maximum output voltage
  • the battery voltage can be the series voltage of the first battery group and the second battery group, or the sum of the current voltages of the first battery group and the second battery group. If the current battery voltage is less than twice the output voltage of the power supply device, continue to step S1804; if the current battery voltage is greater than or equal to twice the output voltage of the power supply device, execute step S1812.
  • step S1804 determine whether the current battery voltage is less than the output voltage of the power supply device. If the current battery voltage is less than the output voltage of the power supply device, execute step S1805; if the current battery voltage is greater than or equal to the output voltage of the power supply device, execute step S1806.
  • step S1805 determine to use the series charging mode, and continue to execute step S1810.
  • step S1807 obtaining the difference between the current voltages of the first battery pack and the second battery pack, and continuing to execute step S1807.
  • step S1807 determine whether the current battery voltage difference is less than or equal to a first threshold. If the previous battery voltage difference is less than or equal to the first threshold, execute step S1808; if the previous battery voltage difference is greater than the first threshold, execute step S1809.
  • step S1808 determine to use the parallel charging mode, and continue to execute step S1810.
  • step S1809 determine to use the independent charging mode, and continue to execute step S1810.
  • step S1810 charging is performed. After charging for a preset time, an updated voltage is obtained, and step S1811 is continued.
  • step S1811 judging whether the charging end condition is met according to the updated voltage. If the charging end condition is not met, returning to step S1804, continuing to repeat the above steps until the obtained updated voltage meets the charging end condition; if the charging end condition is met, executing step S1812.
  • steps S1801 to S1812 can be found in the relevant description of the above-mentioned control method 1700 and will not be repeated here.
  • the vehicle includes a battery circuit, which includes a first battery pack and a second battery pack, and the configurable modes of the battery circuit include a series charging mode, a parallel charging mode, and an independent charging mode.
  • the current voltage of the first battery pack is 200V
  • the current voltage of the second battery pack is 220V
  • the current total voltage of the two battery packs is 420V
  • the target charging voltage is 600V
  • the preset charging time is 1s
  • the first threshold is 10V
  • the output voltage range of the charging pile used is 200V-500V.
  • the charging process is as follows:
  • the charging mode is determined to be the series charging mode.
  • Step S1810 is executed to charge the battery in series according to the preset charging time of 1 second to obtain the current charging result, that is, the voltage of the first battery pack is updated to 200.5V and the voltage of the second battery pack is updated to 220.5V.
  • step S1811 It is determined by judgment that the updated battery voltage (i.e., the updated total voltage of the first battery group and the second battery group is 421V) has not reached the target charging voltage of 600V, that is, the charging end condition is not met, then return to step S1804, and re-execute S1804, S1805, S1810 and S1811 based on the current updated total battery voltage until the sum of the updated voltage of the first battery group and the voltage of the second battery group reaches the output voltage of the charging pile of 500V, that is, the current voltage of the first battery group is updated to 240V, and the voltage of the second battery group is updated to 260V.
  • the updated battery voltage i.e., the updated total voltage of the first battery group and the second battery group is 421V
  • Step S1806 is executed to obtain a voltage difference of 20V between the first battery pack and the second battery pack after update.
  • Steps S1807 and S1809 are executed. By judging that the difference of the updated voltages of the first battery pack and the second battery pack, 20V, is greater than the first threshold value 10V, it is determined that parallel charging is not possible at present, and the charging mode is switched to the independent charging mode.
  • Execute step 1810 use the independent charging mode to independently charge the first battery pack according to the preset charging time of 1s, and obtain the charging result, that is, the voltage of the first battery pack is updated to 241V, and the voltage of the second battery pack is still 260V.
  • Execute step 1811 It is determined by judgment that the current updated battery voltage (i.e., the updated total voltage of the first battery group and the second battery group is 501V) has not reached the target charging voltage of 600V, that is, the charging end condition is not met, then return to step S1804, and re-execute S1804, S1806, S1807, S1809 to S1811 based on the updated first battery group voltage and the second battery group voltage until the voltage of the first battery group is updated to 250V and the voltage of the second battery group is still 260V.
  • the current updated battery voltage i.e., the updated total voltage of the first battery group and the second battery group is 501V
  • step S1804 determines through judgment that the sum of the voltage of the first battery group and the voltage of the second battery group after the current update, 510V, is greater than the output voltage of the charging pile, 500V.
  • Step S1806 is executed to obtain a difference between the updated voltages of the first battery pack and the second battery pack, which is 10V.
  • Steps S1807 and S1808 are executed. If it is determined that the difference 10V between the voltage of the first battery pack and the voltage of the second battery pack after the current update is equal to the first threshold 10V, it is determined that the parallel charging mode can be used currently.
  • Execute step S1810 use the parallel charging mode to charge according to the preset charging time of 1s, and obtain the charging result.
  • the voltage of the first battery group is updated to 251V
  • the voltage of the second battery group is updated to 261V
  • the total current voltage is updated to 512V.
  • step S1811 and determine that the total voltage of the first battery group and the second battery group after the current update is 512V, which does not reach the target charging voltage of 600V, that is, the charging end condition is still not met, then return to step S1804, and re-execute S1804, S1806 to S1808, S1810, and S1811 based on the current updated battery voltage until the voltage of the first battery group is updated to 295V, the voltage of the second battery group is updated to 305V, and the total voltage is updated to 600V. And determine that the total voltage of the first battery group and the second battery group after the update is equal to the charging target voltage of 600V, that is, the charging end condition is met, then execute S1812 to end charging.
  • FIG19 is an example diagram of a control device of a circuit provided in an embodiment of the present application.
  • the device 1900 includes a processing module 1910, and the processing module 1910 is used to execute the control method 1500; and/or, to execute the control method 1600; and/or, to execute the control method 1700; and/or, to execute the control method 1800.
  • FIG20 is an exemplary block diagram of the hardware structure of a control device for a circuit provided in an embodiment of the present application.
  • the device 2000 may be a computer device.
  • the device 2000 includes a memory 2010, a processor 2020, and a communication interface 2030.
  • the memory 2010, the processor 2020, and the communication interface 2030 may be connected to each other through a bus.
  • the memory 2010 may be a read-only memory (ROM), a static storage device, a dynamic storage device or a random access memory (RAM).
  • the memory 2010 may store a program.
  • the processor 2020 is used to execute the various steps of the control method 1500 of the embodiment of the present application and/or the various steps of the control method 1600 of the embodiment of the present application and/or the various steps of the control method 1700 of the embodiment of the present application and/or the various steps of the control method 1800 of the embodiment of the present application.
  • the processor 220 can adopt a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a graphics processing unit (GPU) or one or more integrated circuits to execute relevant programs to implement the control method 1500 of the embodiment of the method of the present application and/or implement the control method 1600 of the embodiment of the method of the present application and/or implement the control method 1700 of the embodiment of the method of the present application and/or implement the control method 1800 of the embodiment of the method of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • GPU graphics processing unit
  • the processor 220 may also be an integrated circuit chip having signal processing capabilities.
  • the control method 1500 and/or the control method 1600 and/or the control method 1700 and/or the control method 1800 of the present application may be implemented by hardware integrated logic circuits in the processor 220 or by software instructions.
  • the processor 2020 may also be a general-purpose processor, a digital signal processor (DSP), an ASIC, a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware decoding processor, or may be executed by a combination of hardware and software modules in a decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, or the like.
  • the storage medium is located in the memory 2010, and the processor 2020 reads the information in the memory 2010, and combines its hardware to complete the functions required to be performed by the modules included in the device of the embodiment of the present application, or executes the control method 1500 and/or control method 1600 and/or control method 1700 and/or control method 1800 of the method embodiment of the present application.
  • the communication interface 2030 uses a transceiver device such as but not limited to a transceiver to implement communication between the apparatus 2000 and other devices or a communication network.
  • a transceiver device such as but not limited to a transceiver to implement communication between the apparatus 2000 and other devices or a communication network.
  • An embodiment of the present application also provides a computer-readable storage medium, comprising instructions, which, when executed on a computer, enable the computer to execute the control method 1500; and/or, to execute the control method 1600; and/or, to execute the control method 1700; and/or, to execute the control method 1800.
  • An embodiment of the present application further provides a computer program product, comprising instructions.
  • the control method 1500 is executed; or the control method 1600 is executed; or the control method 1700 is executed; or the control method 1800 is executed.
  • An embodiment of the present application also provides a computing device, including: at least one processor and a memory, wherein the at least one processor is coupled to the memory and is used to read and execute instructions in the memory to execute the above-mentioned control method 1500; and/or, execute the above-mentioned control method 1600; and/or, execute the above-mentioned control method 1700; and/or, execute the above-mentioned control method 1800.
  • An embodiment of the present application also provides a chip, which includes a processor and a data interface, and the processor reads instructions stored in a memory through the data interface to execute the above-mentioned control method 1500; and/or, execute the above-mentioned control method 1600; and/or, execute the above-mentioned control method 1700; and/or, execute the above-mentioned control method 1800.
  • the chip may also include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory.
  • the processor is used to execute the above-mentioned control method 1500; and/or, to execute the above-mentioned control method 1600; and/or, to execute the above-mentioned control method 1700; and/or, to execute the above-mentioned control method 1800.
  • An embodiment of the present application also provides an electronic device, characterized in that it includes any circuit provided in the embodiment of the present application.
  • An embodiment of the present application also provides a vehicle, characterized in that it includes any circuit provided in the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application or the part that contributes to the technology or the part of the technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供了一种电路、电路的控制方法及装置、车辆,可以应用于车辆、终端产品、家居产品等领域。其中,电路包括:第一电池组、第二电池组、第一开关、第二开关、第三开关、第四开关和第一支路,该第一支路包括串联的第一电阻和第五开关;其中,第一电池组的正极通过第一开关和第二开关与第二电池组的正极电连接;第一电池组的负极通过第三开关和第四开关与第二电池组的负极电连接;第一支路与第一开关、第二开关、第三开关或第四开关并联。本申请实施例利用第一支路来均衡第一电池组和第二电池组的电压,从而能够显著改善电路性能。

Description

电路、电路的控制方法及控制装置、车辆 技术领域
本申请实施例涉及电子电气技术领域,并且更具体地,涉及一种电路、电路的控制方法及控制装置、车辆。
背景技术
对于可切换串并联方式的电池电路,可以通过改变其串并联方式实现电池充放电接口电位变化,以兼容高-低压供电装置或高-低压用电装置。目前,可切换串并联方式的电池电路在车辆、终端产品、家居产品等领域已获得了广泛的应用。
具体地,在电池电路切换为串联时,可以通过高压供电装置给电池充电,或者通过电池向高压用电装置放电;在电池电路切换为并联时,可以通过低压供电装置给电池充电,或者通过电池向低压用电装置放电。然而,可切换串并联方式的电池电路存在环流等影响着电池电路使用性能的问题。
发明内容
本申请实施例提供一种电路、电路的控制方法及控制装置、车辆,能够显著改善电路性能。
第一方面,提供了一种电路,包括:第一电池组、第二电池组、第一开关、第二开关、第三开关、第四开关和第一支路,该第一支路包括串联的第一电阻和第五开关;其中,该第一电池组的正极通过该第一开关和该第二开关与该第二电池组的正极电连接;该第一电池组的负极通过该第三开关和该第四开关与该第二电池组的负极电连接;该第一支路与该第一开关、该第二开关、该第三开关或该第四开关并联。
基于上述电路,若闭合第一开关、第二开关、第三开关和第四开关,第一电池组和第二电池组可以呈并联状态。然而,若第一电池组和第二电池组存在电压差,并联时就会产生环流问题,影响着电路的安全与性能。
本申请实施例所提供的电路还包括了第一支路,该第一支路与第一开关、第二开关、第三开关或第四开关并联,该第一支路能够实现两个电池组电压的均衡,从而能够解决电池组并联状态下的环流问题,显著改善电路性能。
结合第一方面,在第一方面的某些实现方式中,该电路被配置为,在该第一电池组的电压和该第二电池组的电压不相等时,闭合该第五开关,并闭合该第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关(即电路被配置为均衡第一电池组和第二电池组的电压)。
在本申请实施例中,当第一电池组的电压和第二电池组的电压不相等时,闭合第一开关、第二开关、第三开关和第四开关中未与第一支路并联的开关和第五开关,以及断开第 一开关、第二开关、第三开关和第四开关中与第一支路并联的开关,第一电池组V1和第二电池组V2电压的均衡电流可控制在安全范围内,从而能够解决该电路在电池组并联时的环流问题,显著改善电路性能。
结合第一方面,在第一方面的某些实现方式中,该电路被配置为,在该第一电池组和该第二电池组电压之差大于第一阈值时,闭合该第五开关,并闭合该第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关(即电路被配置为均衡第一电池组和第二电池组的电压)。
其中,第一阈值可以是5V、10V、20V等数值,具体数值可以结合实际情况确定,本申请对此不做限定。
在本申请实施例中,可以在第一电池组和第二电池组电压之差大于第一阈值时,再利用第一支路均衡第一电池组和第二电池组的电压,避免频繁均衡,减少在用户使用过程中的等待时间。
结合第一方面,在第一方面的某些实现方式中,该电路还包括第一接口和第六开关,该第一电池组的负极通过该第六开关与该第二电池组的正极电连接,该第一接口的第一端接于该第一开关和该第二开关之间,该第一接口的第二端接于该第三开关和该第四开关之间,该第一接口用于连接第一装置,该第一装置包括第一供电装置或第一用电装置。
基于该电路,可以通过开关的闭合或断开将第一电池组和第二电池组配置为串联、并联或独立工作模式。电路在不同工作模式下可以兼容不同电压范围的第一装置,能够提高该电路应用的广泛性。
结合第一方面,在第一方面的某些实现方式中,该第一装置包括该第一供电装置,该第一供电装置用于为该第一电池组和/或该第二电池组充电;该电路被配置为在该第一电池组和该第二电池组的电压之和小于该第一供电装置的最大输出电压的二倍时,闭合该第一开关、该第二开关、该第三开关和该第四开关,断开该第五开关和该第六开关(即该电路被配置为第一电池组和第二电池组并联充电)。
可选地,该电路还可以被配置为在该第一电池组和该第二电池组的电压之和小于该第一供电装置的最大输出电压时,闭合该第一开关、该第四开关和该第六开关,断开该第二开关、该第三开关和该第五开关(即该电路被配置为第一电池组和第二电池组串联充电)。
本申请实施例所提供的电路可以被配置为在第一电池组和第二电池组的电压之和小于第一供电装置的最大输出电压时,第一电池组和第二电池组以串联的形式充电,相较于以并联的形式充电而言,串联电路中的电流更小,对电路的损耗也更小。
可选地,该在该第一电池组和该第二电池组的电压之和小于该第一供电装置的最大输出电压的二倍时,闭合该第一开关、该第二开关、该第三开关和该第四开关,断开该第五开关和该第六开关,还包括:在该第一电池组和该第二电池组的电压之差大于第二阈值时,闭合该第五开关,并闭合该第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关和该第六开关(即该电路被配置为均衡第一电池组和第二电池组的电压);和/或,在该第一电池组和该第二电池组的电压之差小于或等于该第二阈值时,闭合该第一开关、该第二开关、该第三开关和该第四开关,断开该第五开关和该第六开关(即该电 路被配置为第一电池组和第二电池组并联充电)。
第二阈值同样可以是5V、10V、20V等数值,具体数值可以结合实际情况确定,本申请对此不做限定。
在本申请实施例中,可以根据第一电池组和第二电池组的电压与第一供电装置的最大输出电压的之间的关系,灵活性地将电路配置为串联充电、并联充电或均衡电压等工作模式,使电池能够更广泛地兼容更多不同供电电压范围的供电装置,改善用户的充电体验。
可选地,该电路也可以被配置为利用第一供电装置分别为第一电池组和第二电池组单独充电。具体地,该电路可以被配置为在该第一电池组的电压小于该第二电池组的电压时,闭合该第一开关和该第三开关,断开该第二开关和该第四开关;和/或,该电路被配置为在该第一电池组的电压大于该第二电池组的电压时,闭合该第二开关和该第四开关,断开该第一开关和该第三开关。
可选地,本申请实施例可以通过第一电池组和第二电池组的单独充电,来均衡第一电池组和第二电池组的电压。例如,在第一电池组的电压小于第二电池组的电压时,可以闭合第一开关和第三开关,断开第二开关和第四开关,为第一电池组独立充电,直至第一电池组与第二电池组的电压相等(或者第一电池组与第二电池组的电压之差小于或等于第二阈值)时,停止对第一电池组的单独充电;又例如,在第一电池组的电压大于第二电池组的电压时,闭合第二开关和第四开关,断开第一开关和第三开关,为第二电池组独立充电,直至第一电池组与第二电池组的电压相等(或者第一电池组与第二电池组的电压之差小于或等于第二阈值)时,停止对第二电池组的单独充电。
在本申请实施例中,在第一电池组和第二电池组存在电压差或者电压差较大时,可以采用独立充电模式(即为第一电池组或第二电池组单独充电)来降低两个电池组的电压差,以实现两个电池组电压的均衡,从而能够解决电池组并联状态下的环流问题,显著改善电路性能。相较于通过第一支路来均衡电压而言,独立充电模式能够保证较高的充电电压、充电功率以及充电速度。
结合第一方面,在第一方面的某些实现方式中,该第一装置包括该第一用电装置,该第一电池组和该第二电池组用于为该第一用电装置放电;该电路被配置为在该第一电池组和该第二电池组的电压之和小于或等于该第一用电装置的最大输入电压的二倍时,闭合该第一开关、该第二开关、该第三开关和该第四开关,断开该第五开关和该第六开关(即该电路被配置为第一电池组和第二电池组并联放电)。
可选地,该电路还可以被配置为在该第一电池组和该第二电池组的电压之和小于或等于该第一用电装置的最大输入电压时,闭合该第一开关、该第四开关和该第六开关,断开该第二开关、该第三开关和该第五开关(即该电路被配置为第一电池组和第二电池组串联放电)。
本申请实施例所提供的电路可以被配置为在第一电池组和第二电池组的电压之和小于或等于第一用电装置的最大输入电压时,第一电池组和第二电池组以串联的形式放电,相较于以并联的形式放电而言,串联电路中的电流更小,对电路的损耗也更小。
可选地,该在该第一电池组和该第二电池组的电压之和小于或等于该第一用电装置的最大输入电压的二倍时,闭合该第一开关、该第二开关、该第三开关和该第四开关,断开该第五开关和该第六开关,还包括:在该第一电池组和该第二电池组的电压之差大于第三 阈值时,闭合该第五开关,并闭合该第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关和该第六开关(即该电路被配置为均衡第一电池组和第二电池组的电压);和/或,在该第一电池组和该第二电池组的电压之差小于或等于该第三阈值时,闭合该第一开关、该第二开关、该第三开关和该第四开关,断开该第五开关和该第六开关(即该电路被配置为第一电池组和第二电池组并联放电)。
第三阈值同样可以是5V、10V、20V等数值,具体数值可以结合实际情况确定,本申请对此不做限定。
在本申请实施例中,可以根据第一电池组和所述第二电池组的电压与第一用电装置的最大输入电压之间的关系,灵活性地将电路配置为串联放电、并联放电或均衡电压等模式,能够使电池更广泛地兼容不同输入电压的用电装置,改善用户使用电池对外供电的体验。
同样地,实际操作中,该电路也可以被配置为通过第一电池组或第二电池组分别单独为第一用电装置放电。
结合第一方面,在第一方面的某些实现方式中,该第一用电装置包括电容,该电路还包括第二支路,该第二支路包括串联的第二电阻和第七开关,该第二支路与该第一开关、该第二开关、该第三开关、该第四开关或该第六开关并联。其中,该第二支路用于该第一用电装置的电容预充。
在本申请实施例中,该第一用电装置可以包括电容,该电路还可以包括第二支路,该第二支路主要用于第一用电装置的电容预充,从而能够避免直接闭合开关时由于电路电流过大所带来的对负载和开关等器件的冲击,以保护电路器件,提高电路安全性,延长电路使用寿命。结合第一方面,在第一方面的某些实现方式中,该第一电阻和该第二电阻为共用的电阻,该第五开关和该第七开关为共用的开关。
在本申请实施例中,可以共用第一电阻和第二电阻,以及共用第五开关和第七开关,以通过一个电阻和一个开关(即一个支路)来实现均衡和预充的作用,从而能够节省器件,减小电路的体积,降低成本。
结合第一方面,在第一方面的某些实现方式中,该电路还包括第二接口和第八开关,该第二接口的第一端通过该第八开关接于该第一电池组的正极,该第二接口的第二端通过该第四开关接于该第二电池组的负极,该第二接口用于连接第二装置,该第二装置包括第二供电装置或第二用电装置。
在本申请实施例中,该电路在包括第一接口的同时还可以包括第二接口,使得该电路在连接第一装置的同时还可以连接第二装置,从而能够提高电路应用的灵活性和广泛性。
结合第一方面,在第一方面的某些实现方式中,该第二装置包括该第二供电装置;该电路被配置为在该第一电池组和该第二电池组的电压之和小于该第二供电装置的最大输出电压时(即该电路被配置为在需要为该第一电池组和该第二电池组进行串联充电时),闭合该第四开关、该第六开关和该第八开关。
结合第一方面,在第一方面的某些实现方式中,该第二装置包括该第二用电装置;该电路被配置为在该第一电池组和该第二电池组的电压之和小于或等于该第二用电装置允许的最大输入电压时(即该电路被配置为在需要通过该第一电池组和该第二电池组为该第二用电装置串联放电时),闭合该第四开关、该第六开关和该第八开关。
结合第一方面,在第一方面的某些实现方式中,该第二用电装置包括电容,该电路还包括第三支路,该第三支路包括串联的第三电阻和第九开关,该第三支路与该第四开关、该第六开关或该第八开关并联。其中,该第三支路用于该第二用电装置的电容预充。
在本申请实施例中,该第二用电装置可以包括电容,该电路还可以包括第三支路,该第三支路主要用于第二用电装置的电容预充,从而能够避免直接闭合开关时由于电路电流过大所带来的对负载和开关等器件的冲击,以保护电路器件。
结合第一方面,在第一方面的某些实现方式中,该第一电阻和该第三电阻为共用的电阻,该第五开关和该第九开关为共用的开关。
在本申请实施例中,可以共用第一电阻和第三电阻,以及共用第五开关和第九开关,以通过一个电阻和一个开关(即一个支路)来实现均衡和预充的作用,从而能够节省器件,减少电路的体积,降低成本。
综上,第一电阻、第二电阻和第三电阻可以为共用的电阻,第五开关、第七开关和第九开关可以为共用的开关。
结合第一方面,在第一方面的某些实现方式中,该第八开关位于该第一电池组和该第一开关之间,该第一支路与该第一开关、该第二开关、该第三开关、该第四开关或该第八开关并联。
第二方面,提供了一种电路的控制方法,该电路包括:第一电池组、第二电池组、第一开关、第二开关、第三开关、第四开关和第一支路,该第一支路包括串联的第一电阻和第五开关;其中,该第一电池组的正极通过该第一开关和该第二开关与该第二电池组的正极电连接;该第一电池组的负极通过该第三开关和该第四开关与该第二电池组的负极电连接;该第一支路与该第一开关、该第二开关、该第三开关或该第四开关并联;该控制方法包括:获取该第一电池组和该第二电池组的电压;根据该第一电池组和该第二电池组的电压之差控制该第一支路中的第五开关闭合或断开。其中,控制第一支路中的第五开关闭合能够用于均衡第一电池组和第二电池组的电压。
可选地,当第一电池组的电压与第二电池组的电压不相等时,可以通过控制闭合第五开关,并闭合第一开关、第二开关、第三开关和第四开关中未与第一支路并联的开关,控制断开第一开关、第二开关、第三开关和第四开关中与第一支路并联的开关,来均衡第一电池组和第二电池组的电压。
在本申请实施例中,基于上述电路,可以根据第一电池组和第二电池组的电压之差控制第一支路中的第五开关闭合,以实现两个电池组电压的均衡,从而能够解决电池组并联状态下的环流问题,显著改善电路性能。
结合第二方面,在第二方面的某些实现方式中,该根据该第一电池组和该第二电池组的电压之差控制该第一支路中的第五开关闭合或断开包括:在该第一电池组和该第二电池组的电压之差大于第一阈值时,控制闭合该第五开关,并闭合该第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,控制断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关。
在本申请实施例中,可以在第一电池组和第二电池组电压之差大于第一阈值时,再利用第一支路均衡第一电池组和该第二电池组的电压,避免频繁均衡,减少在用户使用过程中的等待时间。
结合第二方面,在第二方面的某些实现方式中,该电路还包括第一接口和第六开关,该第一电池组的负极通过该第六开关与该第二电池组的正极电连接,该第一接口的第一端接于该第一开关和该第二开关之间,该第一接口的第二端接于该第三开关和该第四开关之间,该第一接口用于连接第一装置,该第一装置包括第一供电装置或第一用电装置。
结合第二方面,在第二方面的某些实现方式中,该第一装置包括该第一供电装置;该控制方法还包括:在该第一电池组和该第二电池组的电压之和小于该第一供电装置的最大输出电压的二倍时,控制闭合该第一开关、该第二开关、该第三开关和该第四开关,控制断开该第五开关和该第六开关(即控制第一电池组和第二电池组并联充电)。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:在该第一电池组和该第二电池组的电压之和小于该第一供电装置的最大输出电压时,控制闭合该第一开关、该第四开关和该第六开关,控制断开该第二开关、该第三开关和该第五开关(即控制第一电池组和第二电池组串联充电)。
结合第二方面,在第二方面的某些实现方式中,该在该第一电池组和该第二电池组的电压之和小于该第一供电装置的最大输出电压的二倍时,控制闭合该第一开关、该第二开关、该第三开关和该第四开关,控制断开该第五开关和该第六开关,还包括:在该第一电池组和该第二电池组的电压之差大于第二阈值时,控制闭合该第五开关,并闭合该第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,控制断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关和该第六开关(即控制均衡第一电池组和第二电池组的电压);和/或,在该第一电池组和该第二电池组的电压之差小于或等于该第二阈值时,控制闭合该第一开关、该第二开关、该第三开关和该第四开关,控制断开该第五开关和该第六开关(即控制第一电池组和第二电池组并联充电)。
结合第二方面,在第二方面的某些实现方式中,该第一装置包括该第一供电装置;该控制方法还包括:在该第一电池组的电压小于该第二电池组的电压时,控制闭合该第一开关和该第三开关,控制断开该第二开关和该第四开关;和/或,在该第一电池组的电压大于该第二电池组的电压时,控制闭合该第二开关和该第四开关,控制断开该第一开关和该第三开关。
结合第二方面,在第二方面的某些实现方式中,该第一装置包括该第一用电装置;该控制方法还包括:在该第一电池组和该第二电池组的电压之和小于或等于该第一用电装置的最大输入电压的二倍时,控制闭合该第一开关、该第二开关、该第三开关和该第四开关,控制断开该第五开关和该第六开关(即控制第一电池组和该第二电池组并联放电)。
结合第二方面,在第二方面的某些实现方式中,该控制方法还包括:在该第一电池组和该第二电池组的电压之和小于或等于该第一用电装置的最大输入电压时,控制闭合该第一开关、该第四开关和该第六开关,控制断开该第二开关、该第三开关和该第五开关(即控制第一电池组和第二电池组串联放电)。
结合第二方面,在第二方面的某些实现方式中,该在该第一电池组和该第二电池组的电压之和小于或等于该第一用电装置的最大输入电压的二倍时,控制闭合该第一开关、该第二开关、该第三开关和该第四开关,控制断开该第五开关和该第六开关,还包括:在该第一电池组和该第二电池组的电压之差大于第三阈值时,控制闭合该第五开关,并闭合该 第一开关、该第二开关、该第三开关和该第四开关中未与该第一支路并联的开关,控制断开该第一开关、该第二开关、该第三开关和该第四开关中与该第一支路并联的开关和该第六开关(即控制均衡第一电池组和第二电池组的电压);和/或,在该第一电池组和该第二电池组的电压之差小于或等于该第三阈值时,控制闭合该第一开关、该第二开关、该第三开关和该第四开关,控制断开该第五开关和该第六开关(即控制第一电池组和该第二电池组并联放电)。
第三方面,提供了一种电路的控制方法,该电路包括第一电池组和第二电池组,该电路用于与供电装置连接,并通过该供电装置为该第一电池组和/或该第二电池组充电,该电路的工作模式包括第一模式和第二模式;该控制方法包括:获取该第一电池组和该第二电池组的电压;在该第一电池组和该第二电池组的电压之和大于或等于该供电装置的最大输出电压时,控制该电路切换为该第二模式;其中,在该第一模式下,该第一电池组与该第二电池组串联;在该第二模式下,该第一电池组与该第二电池组并联。
在本申请实施例中,基于包括第一电池组和第二电池组,且工作模式包括的串联充电模式(即第一模式)和并联充电模式(即第二模式)的电路,在充电过程中,可以动态识别第一电池组和第二电池组的电压且可以动态更新充电模式。具体地,在充电过程中,可以在监测到第一电池组和第二电池组的电压之和大于或等于供电装置的最大输出电压时,控制电路由其他充电模式切换为并联充电模式。从而在一方面使得在电池组电压不再支持实际所使用的充电模式时,能够及时调整为更为适合的充电模式进行充电,避免出现充电停滞的情况,能够提高充电的可靠性;在另一方面,能够充分利用供电装置的能力,提高供电装置的兼容程度。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:在该第一电池组和该第二电池组的电压之和小于该供电装置的最大输出电压时,控制该电路切换为该第一模式。
基于本申请方案,在充电过程中,在监测到第一电池组和第二电池组的电压之和小于供电装置的最大输出电压时,可以控制先按照串联充电模式充电,随着第一电池组和第二电池组的电压的升高,在监测到第一电池组和第二电池组的电压之和大于或等于供电装置的最大输出电压时,可以控制电路由串联充电模式切换为并联充电模式,从而在一方面避免出现充电停滞的情况,能够提高充电的可靠性;在另一方面,能够充分利用供电装置的能力,提高供电装置的兼容程度。
结合第三方面,在第三方面的某些实现方式中,该电路的工作模式还包括第三模式,该在该第一电池组和该第二电池组的电压之和大于或等于该供电装置的最大输出电压时,控制该电路切换为该第二模式包括:在该第一电池组和该第二电池组的电压之和大于或等于该供电装置的最大输出电压时,获取该第一电池组和该第二电池组的电压之差;在该第一电池组和该第二电池组的电压之差小于或等于第一阈值时,控制该电路切换为该第二模式;在该第一电池组和该第二电池组的电压之差大于该第一阈值时,控制该电路切换为该第三模式;其中,在该第三模式下,该电路被配置为向该第一电池组充电或向该第二电池组充电。
可选地,上述向第一电池组充电或向第二电池组充电,可以是高电压电池组向低电压电池组充电(即对应上文通过第一支路均衡);也可以是通过供电装置直接为电压较低的 电池组充电,直到两个电池组的电压差小于或等于阈值,以实现两个电池组电压的均衡,从而能够解决电池组并联状态下的环流问题,显著改善电路性能。
第四方面,提供了一种电路的控制装置,包括:处理模块,用于执行如第二方面或第二方面中任一可能实现方式中的控制方法;和/或,用于执行如第三方面或第三方面中任一可能实现方式中的控制方法。
第五方面,提供了一种电路的控制装置,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现用于执行如第二方面或第二方面中任一可能实现方式中的控制方法;和/或,以实现用于执行如第三方面或第三方面中任一可能实现方式中的控制方法。
第六方面,提供了一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行用于执行如第二方面或第二方面中任一可能实现方式中的控制方法;和/或,执行用于执行如第三方面或第三方面中任一可能实现方式中的控制方法。
第七方面,提供一种计算机程序产品,包含指令,当所述指令在计算机上运行时,如第二方面或第二方面的任一可能的实现方式中的控制方法被执行;或者如第三方面或第三方面的任一可能的实现方式中的控制方法被执行。
第八方面,提供了一种计算设备,包括:至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行如第二方面或者第二方面的任一可能的实现方式中的控制方法;和/或,执行如第三方面或者第三方面的任一可能的实现方式中的控制方法。
第九方面,提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行如第二方面或者第二方面的任一可能的实现方式中的控制方法;和/或,执行如第三方面或者第三方面的任一可能的实现方式中的控制方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行如第二方面或者第二方面的任一可能的实现方式中的控制方法;和/或,执行如第三方面或者第三方面的任一可能的实现方式中的控制方法。
第十方面,提供了一种电子设备,其特征在于,包括如第一方面或第一方面中任一可能实现方式中的电路。
第十一方面,提供了一种车辆,其特征在于,包括如第一方面或第一方面中任一可能实现方式中的电路。
附图说明
图1是本申请实施例提供的一种车辆的示例图。
图2是一种电池电路的示例图。
图3是本申请实施例提供的一种电路的示例图。
图4是本申请实施例提供的一种电路被配置为并联工作模式的示例图。
图5是本申请实施例提供的一种电路被配置为均衡工作模式的示例图。
图6是本申请实施例提供的另一种电路的示例图。
图7是本申请实施例提供的另一种电路被配置为串联工作模式的示例图。
图8是本申请实施例提供的另一种电路被配置为并联工作模式的示例图。
图9是本申请实施例提供的另一种电路被配置为均衡工作模式的示例图。
图10是本申请实施例提供的另一种电路被配置为独立工作模式的示例图。
图11是本申请实施例提供的另一种电路被配置为独立工作模式的示例图。
图12是本申请实施例提供的另一种电路被配置为串联工作模式的示例图。
图13是本申请实施例提供的又一种电路的示例图。
图14是本申请实施例提供的再一种电路的示例图。
图15是本申请实施例提供的一种电路的控制方法的示例图。
图16是本申请实施例提供的另一种电路的控制方法的示例图。
图17是本申请实施例提供的又一种电路的控制方法的示例图。
图18是本申请实施例提供的又一种电路的控制方法的具体流程示例图。
图19是本申请实施例提供的一种电路的控制装置示例图。
图20是本申请实施例提供的一种电路的控制装置的硬件结构示例性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请方案可以应用于车辆、终端产品、家居产品等领域。例如,可以应用于智能手机、台式电脑、笔记本电脑、平板电脑、可穿戴设备、家居机器人或移动载具等等包括电池的产品中。
其中,移动载具可以包括路上交通工具、水上交通工具、空中交通工具、工业设备、农业设备、或娱乐设备等。例如移动载具可以为车辆,该车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。再如,移动载具可以为飞机、或轮船等交通工具。
为便于理解,下面以应用于车辆为例,对本申请实施例所涉及的技术进行介绍。
图1是本申请实施例提供的一种车辆的示例图。如图1所示,该车辆10可以是纯电动汽车、混合动力汽车、增程式汽车、燃料电池汽车等包括电池11的车辆。车辆10可以通过供电装置向电池11充电,供电装置可以包括有线充电桩20、无线充电装置、供电车辆等。例如,当供电装置为有线充电桩20时,该供电装置包括充电桩本体21和充电枪22,该充电枪22用于连接车辆10的充电接口12以为电池11充电,其中,充电接口12与电池11在车辆10的内部电连接。应理解,图示电池11和充电接口12的位置仅为示例。
图2是一种电池电路的示例图。如图2所示,该电池电路主要包括电池组V、开关(S1'至S4')、电阻R、分流器A、断路器QF,该电池电路可以连接充电桩或负载。当与充电桩连接时,可以由充电桩为电池充电,或由电池通过充电桩为电网供电;当与负载连接时,可以为负载供电。其中,电池组V由多个电池单体串联组成。基于该电池电路,充电桩只能为充电电压在充电桩输出电压范围内的电池或车辆进行充电,而当电池的充电电压超出充电桩的输出电压范围时,充电桩难以满足电池更高充电电压的需求。例如,在充电桩的 输出电压范围为200V-500V,电池或车辆的需求充电电压为800V时,基于该充电桩给该电池或车辆进行充电时,电池或车辆的电压只能达到500V,难以满足电池或车辆的高压需求,用户体验不佳。而且,当前新能源车辆的充电电压正在不断提高,例如从500V提高至750V、800V、850V、900V等更高的电压。但当前充电桩大多数使用的是500V或近似范围的电压标准,无法支持更高充电电压电池的充电需求。
当上述电池电路包括两个以上电池组时,可以通过调整电池组之间的串联或并联的连接方式,以改变电池对外充放电接口的电位,使其可以兼容不同输出电压的供电装置,或不同输入电压的用电装置。具体地,若电池电路包括两个电池组,当两个电池组串联时,电池整体对外输出电压较高,可以通过高压供电装置给电池充电,或者通过电池向高压用电装置放电;当两个电池组并联时,可以通过低压供电装置给电池充电,或者通过电池给低压用电装置放电。上述高压和低压仅为相对值,并非绝对的电压范围。示例性地,若电池包括200个电池单体,或称电芯(Cell),其中第一组电池组包括100个电芯,第二电池组包括100个电芯(假设每个单体的电池电压为4V)。当第一电池组和第二电池组串联时,电池整体对外输出或输入电压可达800V,能够兼容较高电压的充电与放电需求。当第一电池组和第二电池组并联时,电池整体对外输出或输入电压可达400V,能够兼容较低电压的充电与放电需求。
然而,当电池电路中的电池组并联时,若不同电池组之间存在电压差,就会产生环流问题,影响着电池电路的使用性能。
基于此,本申请实施例提供了一种电路(即电池电路),通过在电路中设计第一支路以实现两个电池组电压的均衡,从而能够解决电池组并联状态下的环流问题,显著改善电路性能。
图3是本申请实施例提供的一种电路的示例图。图3所示的电路以及电路中的各个器件的结构和数目仅作为本申请实施例的一种示例,不构成对本申请的限定。
如图3所示,该电路包括:第一电池组V1、第二电池组V2、第一开关S1、第二开关S2、第三开关S3、第四开关S4和第一支路,该第一支路包括串联的第一电阻R1和第五开关S5。
其中,该第一电池组V1的正极通过第一开关S1和第二开关S2与第二电池组V2的正极电连接;该第一电池组V1的负极通过第三开关S3和第四开关S4与第二电池组V2的负极电连接。
其中,以图3所示电路提供的实施例进行说明,第一支路与第四开关S4并联。在本申请实施例提供的电路中,该第一支路还可以与第一开关S1、第二开关S2、第三开关S3或第四开关S4中的任一个并联;并且在电路中,可以包括一个或多个第一支路,且一个或多个第一支路可以分别与不同的开关并联。本申请实施例对第一支路的位置及数目不做限定,但为便于描述,以包括一个第一支路为例进行介绍。
基于图3所示电路,若闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,断开第五开关S5,第一电池组V1和第二电池组V2呈并联状态(参见图4)。然而,若第一电池组V1和第二电池组V2存在电压差,并联时就会产生环流问题,此时闭合或断开并联回路,可能会影响开关寿命,严重时会导致开关黏连,加剧电池损耗,影响着电路的安全与性能。
在第一电池组V1的电压和第二电池组V2的电压不相等时(即存在电压差时),参见图5,电路可以被配置为,闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关(例如图5中的S1、S2、S3),以及断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关(例如图5中的S4),第一电池组V1和第二电池组V2电压的均衡电流可控制在安全范围内,从而能够解决在电池组并联时的环流问题,显著改善电路性能。
需要说明的是,在均衡过程中,第一支路中的第一电阻可以降低电路中的电流,减小对开关的冲击,保障电压均衡过程的安全进行。
可选地,在第一电池组V1和第二电池组V2的电压之差大于第一阈值时,该电路可以被配置为,闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关(例如图5中的S1、S2、S3),以及断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关(例如图5中的S4),以均衡第一电池组V1和第二电池组V2的电压,从而能够避免频繁均衡,减少在用户使用过程中的等待时间。
其中,第一阈值可以是5V、10V、20V等数值,具体数值可以结合实际情况确定,本申请对此不做限定。
可选地,可以在电池充放电完成后或准备静置时均衡两个电池组的电压,也可以在下次充放电之前均衡两个电池组的电压,本申请对此不做限定。以包含电池的车辆为例,在一种实现方式中,当车辆静止下电时,获取两个电池组的电压,若两个电池组的电压压差小于或等于第一阈值,则不激活均衡功能;若两个电池组的电压压差大于第一阈值,则激活均衡功能,进入均衡模式,然后实时获取两个电池组的电压,直到满足两个电池组的电压压差小于或等于第一阈值,再结束均衡。在另一种实现方式中,可以在车辆启动或车辆连接充电桩准备充电时,获取两个电池组的电压,并根据两个电池组的电压压差确定是否需要均衡。
一种可能的实施方式,如图6所示,该电路还可以包括第一接口O1和第六开关S6,第一电池组V1的负极通过第六开关S6与第二电池组V2的正极电连接。第一电池组V1的正极通过第一开关S2和第二开关S2与第二电池组V2的正极连接。第一电池组V1的负极通过第三开关S3和第四开关S4与第二电池组V2的负极连接。第一接口O1的第一端接于第一开关S1和第二开关S2之间,该第一接口O1的第二端接于第三开关S3和第四开关S4之间。其中,第一接口O1可以用于连接第一装置,第一装置可以为第一供电装置或第一用电装置。基于该电路,可以通过开关的闭合或断开将第一电池组V1和第二电池组V2配置为串联、并联或独立工作模式。电路在不同工作模式下可以兼容不同电压范围的第一装置,能够提高该电路应用的广泛性。
可选地,该第一装置可以包括第一供电装置,该第一供电装置用于为第一电池组V1和/或第二电池组V2充电。
在第一电池组和第二电池组的电压之和小于第一供电装置的最大输出电压的二倍(即第一电池组V1和第二电池组V2的并联电压满足第一供电装置的输出电压范围)时,如图8所示,该电路可以被配置为闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2可通过第一 供电装置进行并联充电。
可选地,在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压的二倍,且第一电池组V1和第二电池组V2的电压之差小于或等于第二阈值时,如图8所示,该电路可以被配置为闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2可通过第一供电装置进行并联充电。在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压的二倍,且第一电池组V1和第二电池组V2的电压之差大于该第二阈值时,如图9所示,该电路可以被配置为闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关(例如图9中的S1、S2、S3),以及断开第六开关S6,并断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关(例如图9中的S4),以均衡第一电池组V1和第二电池组V2的电压。
可选地,在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压时(即第一电池组V1和第二电池组V2的串联电压满足第一供电装置的输出电压范围时),如图7所示,该电路也可以被配置为闭合第一开关S1、第四开关S4和第六开关S6,断开第二开关S2、第三开关S3和第五开关S5,使得第一电池组V1和第二电池组V2可以通过第一供电装置进行串联充电。
应理解,上述在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压时,将电路配置为第一电池组V1和第二电池组V2串联充电,相较于配置为并联充电而言,串联电路中的电流更小,对电路的损耗也更小。
本申请实施例所涉及的供电装置为可以向第一电池组V1和第二电池组V2充电的装置,该供电装置可以为固定充电装置,也可以为移动充电装置,例如可以包括充电器、充电桩、充电车等,本申请对此不做限定。
该电路也可以被配置为利用第一供电装置分别为第一电池组V1和第二电池组V2单独充电,具体开关闭合断开情况可参见图10和图11。如图10所示,当为第二电池组V2单独充电时,闭合第二开关S2、第四开关S4,断开第一开关S2、第三开关S3,断开第五开关S5。如图11所示,当为第一组电池V1单独充电时,闭合第一开关S1、第三开关S3,断开第二开关S2、第四开关S4。
具体地,该电路可以被配置为在第一电池组V1的电压小于第二电池组V2的电压时,闭合第一开关S1、第三开关S3,断开第二开关S2、第四开关S4,断开第五开关S5;和/或,该电路被配置为在第一电池组V1的电压大于第二电池组V2的电压时,闭合第二开关S2、第四开关S4,断开第一开关S2、第三开关S3。或者,该电路也可以被配置为在第一电池组V1的电压小于第二电池组V2的电压,且电压差大于预设值时,闭合第一开关S1、第三开关S3,断开第二开关S2、第四开关S4,断开第五开关S5;和/或,该电路也可以被配置为在第一电池组V1的电压大于第二电池组V2的电压,且电压差大于预设值时,闭合第二开关S2、第四开关S4,断开第一开关S2、第三开关S3。
本申请实施例可以通过第一电池组V1和第二电池组V2的单独充电,来均衡第一电池组V1和第二电池组V2的电压。例如,在第一电池组V1的电压小于第二电池组V2的电压时,可以闭合第一开关S1和第三开关S3,断开第二开关S2和第四开关S4,为第一 电池组V1独立充电,直至第一电池组V1和第二电池组V2的电压相等(或者第一电池组V1和第二电池组V2的电压之差小于或等于第二阈值)时,再停止对第一电池组V1的单独充电;又例如,在第一电池组V1的电压大于第二电池组V2的电压时,闭合第二开关S2和第四开关S4,断开第一开关S1和第三开关S3,为第二电池组V2独立充电,直至第一电池组V1和第二电池组V2的电压相等(或者第一电池组V1和第二电池组V2的电压之差小于或等于第二阈值)时,停止对第二电池组V2的单独充电。
在本申请实施例中,在第一电池组V1和第二电池组V2存在电压差或者电压差较大时,可以采用独立充电模式(即为第一电池组V1和第二电池组V2单独充电)来降低两个电池组的电压差,以实现两个电池组电压的均衡,从而能够解决电池组并联状态下的环流问题,显著改善电路性能。相较于通过第一支路来均衡电压而言,独立充电模式能够保证较高的充电电压、充电功率以及充电速度。
可选地,第二阈值同样可以是5V、10V、20V等数值,具体数值可以结合实际情况确定,本申请对此不做限定。
本申请实施例所提及的供电装置的输出电压范围是指供电装置的输出电压能力范围,例如,最大输出电压为500V的供电装置的输出电压能力范围可以设置为200-500V,最大输出电压为800V的供电装置的输出电压能力范围可以设置为400-800V。上述满足第一供电装置的输出电压范围是指在落在第一供电装置的输出电压范围之内。
在本申请实施例中,可以根据第一电池组V1和第二电池组V2的电压与第一供电装置的最大输出电压(或输出电压范围)之间的关系,灵活性地将电路配置为串联充电、并联充电或均衡电压等工作模式,使电池能够更广泛地兼容更多不同供电电压的供电装置,改善用户的充电体验。
可选地,第一装置可以包括第一用电装置,第一电池组V1和第二电池组V2用于为第一用电装置放电。
在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压的二倍(即第一电池组V1和第二电池组V2的并联电压满足第一用电装置的输入电压范围)时,如图8所示,该电路可以被配置为闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2并联放电。
可选地,在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压的二倍,且第一电池组V1和第二电池组V2的电压之差小于或等于第三阈值时,如图8所示,该电路可以被配置为闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2并联放电。在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压的二倍,且第一电池组V1和第二电池组V2的电压之差大于所述第三阈值时,如图9所示,该电路可以被配置为闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关,断开第六开关S6,并断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关,以均衡第一电池组V1和第二电池组V2的电压。
可选地,在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的 最大输入电压时(即第一电池组V1和第二电池组V2的串联电压满足第一用电装置的输入电压范围时),如图7所示,该电路可以被配置为闭合第一开关S1、第四开关S4和第六开关S6,断开第二开关S2、第三开关S3和第五开关S5,使得第一电池组V1和第二电池组V2串联放电。
应理解,上述在第一电池组和第二电池组的电压之和小于或等于第一用电装置的最大输入电压时,将电路配置为第一电池组和第二电池组串联放电,相较于配置为并联放电而言,串联电路中的电流更小,对电路的损耗也更小。
本申请实施例所涉及到的用电装置可以包括其他车辆、露营类的电器(例如照明设备、电磁炉、取暖设备、电烤箱等)。
第三阈值同样可以是5V、10V、20V等数值,具体数值可以结合实际情况确定,本申请对此不做限定。
同样地,实际操作中,该电路也可以被配置为通过第一电池组V1和第二电池组V2分别单独为第一用电装置放电,具体开关闭合断开情况可参见图10和图11以及其他实施例的描述,本处不再赘述。
本申请实施例所提及的用电装置的输入电压范围是指用电装置的输入电压能力范围。
在本申请实施例中,可以根据第一电池组V1和第二电池组V2的电压与第一用电装置的最大输入电压(或输入电压范围)之间的关系,灵活性地将电路配置为串联放电、并联放电或均衡电压等模式,能够使电池更广泛地兼容不同输入电压的用电装置,改善用户使用电池对外供电的体验。
可选地,第一用电装置可以包括电容,电路还可以包括第二支路,该第二支路包括串联的第二电阻R2和第七开关S7,该第二支路与第一开关S1、第二开关S2、第三开关S3、第四开关S4或第六开关S6中的一个并联(示例性地,参见图6至图13)。其中,该第二支路用于第一用电装置的电容预充,从而能够避免直接闭合开关时由于电路电流过大所带来的对负载和开关等器件的冲击,以保护电路器件,提高电路安全性,延长电路使用寿命。
第一用电装置电容预充的实现可以通过闭合第二支路的开关及预充回路中未与第二支路并联的开关,并断开与第二支路并联的开关及其他开关实现。示例性地,以图6所示电池回路为例,若预充回路中仅包括第二电池组V2,则第一用电装置电容预充的实现可以通过闭合第二开关S2和第七开关S7,断开第四开关S4及其他开关实现;若预充回路中包括第一电池组V1和第二电池组V2,则第一用电装置电容预充的实现可以通过闭合第一开关S1、第六开关S6和第七开关S7,断开第四开关S4及其他开关实现。
在该电路中,可以包括一个或多个第二支路,且一个或多个第二支路可以分别与不同的开关并联,本申请实施例对第二支路的位置及数目不做限定。另外,第二支路的具体设置位置以及断开闭合情况可以结合具体的工作模式确定,以保证在串联放电、并联放电以及独立放电时都可以实现电容预充。
可选地,第一电阻R1和第二电阻R2可以为共用的同一个电阻,第五开关S5和第七开关S7可以为共用的同一个开关(例如图6至图13),以通过一个电阻和一个开关(即一个支路)来实现均衡和预充的作用,从而能够节省器件,减小电路的体积,降低成本。
可选地,如图6所示,该电路还可以包括第二接口O2和第八开关S8,第二接口O2 的第一端通过第八开关S8接于该第一电池组V1的正极,第二接口O2的第二端通过第四开关S4接于第二电池组V2的负极,其中,该第二接口O2用于连接第二装置,该第二装置包括第二供电装置或第二用电装置。该电路在连接第一装置的同时还可以连接第二装置,从而能够提高该电路应用的灵活性和广泛性。
可选地,第二装置可以包括第二供电装置,如图12所示,该电路可以被配置为在第一电池组V1和第二电池组V2的电压之和小于该第二供电装置的最大输出电压时(即该电路可以被配置为在需要为第一电池组V1和第二电池组V2进行串联充电时),闭合第四开关S4、第六开关S6和第八开关S8。
可选地,第二装置可以包括第二用电装置,如图12所示,该电路可以被配置为在第一电池组V1和第二电池组V2的电压之和小于或等于第二用电装置允许的最大输入电压时(即电路可以被配置为在需要通过第一电池组V1和第二电池组V2为该第二用电装置串联放电时),闭合第四开关S4、第六开关S6和第八开关S8。
第一接口O1可以连接第一供电装置或第一用电装置,第二接口O2可以连接第二供电装置或第二用电装置。电池可以同时与多种供电装置和/或用电装置连接,灵活性有了显著的提升。
可选地,第二用电装置可以包括电容,该电路还可以包括第三支路,该第三支路包括串联的第三电阻R3和第九开关S9,该第三支路与第四开关S4、第六开关S6或第八开关S8并联(示例性地,参见图6至图13),该第三支路用于第二用电装置的电容预充。从而能够避免直接闭合开关时由于电路电流过大所带来的对负载和开关等器件的冲击,以保护电路器件。
第二用电装置电容预充可以通过闭合第三支路的开关及预充回路中未与第三支路并联的开关,并断开与第三支路并联的开关及其他开关来实现。示例性地,以图6所示电池回路为例,第二用电装置电容预充的实现可以通过闭合第八开关S8、第六开关S6和第九开关S9,断开第四开关S4及其他开关来实现。
可选地,第一电阻R1和第三电阻R3可以为共用的同一个电阻,第五开关S5和第九开关S9可以为共用的同一个开关(例如图6至图12),以通过一个电阻和一个开关(即一个支路)来实现均衡和预充的作用,从而能够节省器件,减小电路的体积,降低本。
进一步地,第一电阻R1、第二电阻R2和第三电阻R3可以为共用的同一个电阻,第五开关S5、第七开关S7和第九开关S9可以为共用的同一个开关(示例性地,参见图6至图12),以进一步节省器件,减小电路的体积,降低成本。
应理解,上述电阻共用后能够同时实现预充功能和均衡功能,在本申请中也可以将其记为预充-均衡共用的电阻。
可选地,上述电路可以有多种不同的呈现形式。如图14所示,第八开关S8也可以位于第一电池组V1和第一开关S1之间,在这种情况下,第一支路和/或第二支路也可以与第八开关S8并联。本申请实施例对第八开关S8的具体位置不做限定。
本申请实施例中所涉及的开关可以包括金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET)、绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)、双极结型管(bipolar junction transistor,BJT)、继电器、接触器等所有能够实现电路通断的器件中的任意一种。而且,实际操作中,上述 电池电路也可以包括更多或更少的开关,例如,还可以在第一接口O1的负极处设置开关,本申请对此不做限定。
可选地,本申请实施例所提供的电路中还可以包括第一电流表A1和第二电流表A2。其中,第一电流表A1用于检测第一电池组V1所处支路的电流,第一电流表A2用于检测第一电池组V2所处支路的电流。图3至14中电流表的位置仅为示例,本申请对此不做限定。
可选地,本申请实施例所提供的电路中还可以包括断路器(也可以记为熔断器),以使得在电路出现故障(例如,开关失效、电池短路等)时可以断开电路,防止对器件造成损坏。图6至图14所示的第一断路器QF1和第一断路器QF2的位置和数目仅为示例,实际中也可以包括更多或更少的断路器,且可以根据实际需求进行排布。
图15是本申请实施例提供的一种电路的控制方法的示例图。该控制方法1500可以应用于本申请实施例提供的任意一种电路中。如图15所示,该控制方法包括步骤S1510和S1520,下面对这两个步骤进行介绍。
S1510,获取第一电池组V1和第二电池组V2的电压。
S1520,根据第一电池组V1和第二电池组V2的电压之差控制第一支路中的第五开关S5闭合或断开。其中,控制第一支路中的第五开关S5闭合能够用于均衡第一电池组V1和第二电池组V2的电压。
具体地,当第一电池组V1的电压与第二电池组V2的电压不相等时(即存在电压差时),可以通过控制闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关,控制断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关,来均衡第一电池组V1和第二电池组V2的电压。
在本申请实施例中,基于上述电路,可以根据第一电池组V1和第二电池组V2的电压之差控制第一支路中的第五开关S5闭合,以实现两个电池组电压的均衡,从而能够解决电池组并联状态下不同电池组存在电压差时所产生的环流问题,显著改善电路性能。
可选地,可以在第一电池组V1和第二电池组V2的电压之差大于第一阈值时,再控制闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关,控制断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关,以均衡第一电池组V1和第二电池组V2的电压,从而能够避免频繁进行均衡,避免出现用户在使用过程中等待时间较长的问题,改善用户体验。
可选地,该电路还可以包括第一接口O1和第六开关S6,如图6所示,第一电池组V1的负极通过第六开关S6与第二电池组V2的正极电连接,该第一接口O1的第一端接于第一开关S1和第二开关S2之间,该第一接口O1的第二端接于第三开关S3和第四开关S4之间,其中,第一接口O1可以用于连接第一装置。
可选地,该第一装置可以包括第一供电装置,该第一供电装置用于为第一电池组V1和/或第二电池组V2充电。
该控制方法1500还可以包括:在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压的二倍(即第一电池组V1和第二电池组V2的并联电压满足第一供电装置的输出电压范围)时,如图8所示,控制闭合第一开关S1、第二开关S2、 第三开关S3和第四开关S4,控制断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2并联充电。
可选地,在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压的二倍,且第一电池组V1和第二电池组V2的电压之差小于或等于第二阈值时,如图8所示,控制闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,控制断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2并联充电。在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压的二倍,且第一电池组V1和第二电池组V2的电压之差大于该第二阈值时,如图9所示,控制闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关,控制断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关和第六开关S6,以均衡第一电池组V1和第二电池组V2的电压。
可选地,在第一电池组V1和第二电池组V2的电压之和小于第一供电装置的最大输出电压时(即第一电池组V1和第二电池组V2的串联电压满足第一供电装置的输出电压范围时),如图7所示,控制闭合第一开关S1、第四开关S4和第六开关S6,控制断开第二开关S2、第三开关S3和第五开关S5,使得第一电池组V1和第二电池组V2可通过第一供电装置进行串联充电。
可选地,该控制方法1500还可以包括:在该第一电池组V1的电压小于第二电池组V2的电压时,控制闭合第一开关S1和第三开关S3,控制断开第二开关S2和第四开关S4;和/或,在第一电池组V1的电压大于第二电池组V2的电压时,控制闭合第二开关S2和第四开关S4,控制断开第一开关S1和第三开关S3。
可选地,第一装置可以包括第一用电装置,第一电池组V1和第二电池组V2用于为第一用电装置放电。
该控制方法1500还可以包括:在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压的二倍(即第一电池组V1和第二电池组V2的并联电压满足第一用电装置的输入电压范围)时,如图8所示,控制闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,控制断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2并联放电。
可选地,在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压的二倍,且第一电池组V1和第二电池组V2的电压之差小于或等于第三阈值时,如图8所示,控制闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4,控制断开第五开关S5和第六开关S6,使得第一电池组V1和第二电池组V2并联放电。在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压的二倍,且第一电池组V1和第二电池组V2的电压之差大于所述第三阈值时,如图9所示,控制闭合第五开关S5,并闭合第一开关S1、第二开关S2、第三开关S3和第四开关S4中未与第一支路并联的开关,控制断开第一开关S1、第二开关S2、第三开关S3和第四开关S4中与第一支路并联的开关和第六开关S6,以均衡第一电池组V1和第二电池组V2的电压。
该控制方法1500还可以包括:在第一电池组V1和第二电池组V2的电压之和小于或等于第一用电装置的最大输入电压时(即第一电池组V1和第二电池组V2的串联电压满 足第一用电装置的输入电压范围时),如图7所示,控制闭合第一开关S1、第四开关S4和第六开关S6,控制断开第二开关S2、第三开关S3和第五开关S5,使得第一电池组V1和第二电池组V2串联放电。
图16是本申请实施例提供的另一种电路的控制方法的示例图。该方法1600可以应用于包括第一电池组和第二电池组的电路,该电路用于与供电装置连接,通过该供电装置可以为该第一电池组和/或该第二电池组充电,该电路的工作模式包括第一模式和第二模式。其中,在第一模式下,第一电池组与第二电池组串联(即第一模式可以理解为串联充电模式);在第二模式下,第一电池组与第二电池组并联(即第二模式可以理解为并联充电模式)。本申请方案对该电路的具体结构不做限定,作为一个示例,该电路例如可以是图6所示电路中能够实现串并联充电的部分电路。该方法1600包括步骤S1610和步骤S1620。
S1610,获取第一电池组和第二电池组的电压。
可以在充电过程中对第一电池组和第二电池组的电压进行监测,实时获取第一电池组和第二电池组的电压。
S1620,在第一电池组和第二电池组的电压之和大于或等于供电装置的最大输出电压时,控制电路切换为第二模式。
在本申请实施例中,基于包括第一电池组和第二电池组,且工作模式包括的串联充电模式和并联充电模式的电路,在充电过程中,可以动态识别第一电池组和第二电池组的电压以及动态更新充电模式。具体地,在充电过程中,可以在监测到第一电池组和第二电池组的电压之和大于或等于供电装置的最大输出电压时,控制电路由其他充电模式切换为并联充电模式。从而在一方面使得在电池组电压不再支持实际所使用的充电模式时,能够及时调整为更为适合的充电模式进行充电,避免出现充电停滞的情况,能够提高充电的可靠性;在另一方面,能够充分利用供电装置的能力,提高供电装置的兼容程度。
可选地,该方法1600还可以包括:在第一电池组和第二电池组的电压之和小于供电装置的最大输出电压时,控制电路切换为第一模式。
基于本申请方案,在充电过程中,在监测到第一电池组和第二电池组的电压之和小于供电装置的最大输出电压时,可以控制先按照串联充电模式充电,随着第一电池组和第二电池组的电压的升高,在监测到第一电池组和第二电池组的电压之和大于或等于供电装置的最大输出电压时,可以控制电路由串联充电模式切换为并联充电模式,从而在一方面避免出现充电停滞的情况,能够提高充电的可靠性;在另一方面,能够充分利用供电装置的能力,提高供电装置的兼容程度。
可选地,该电路的工作模式还可以包括第三模式,在第三模式下,该电路可以被配置为向第一电池组充电或向第二电池组充电。具体地,可以在第一电池组和第二电池组的电压之和大于或等于供电装置的最大输出电压时,获取第一电池组和第二电池组的电压之差;在第一电池组和第二电池组的电压之差小于或等于第一阈值时,控制电路切换为该第二模式;在第一电池组和第二电池组的电压之差大于第一阈值时,控制电路切换为第三模式。
上述向第一电池组充电或向第二电池组充电,可以是高电压电池组向低电压电池组充电(即对应上文通过第一支路均衡);也可以是通过供电装置直接为电压较低的电池组充电,以降低两个电池组的电压差,实现两个电池组电压的均衡,从而能够解决电池组并联 状态下的环流问题,显著改善电路性能。
以上控制方法1600同样适用于电池放电流程中,以在放电过程中实时根据第一电池组的电压、第二电池组的电压和用电装置的最大输入电压调整放电模式(该放电模式例如可以包括串联放电模式、并联放电模式或独立放电模式中的任意一种或多种),以保证放电工作的可靠性。
图17是本申请实施例提供的又一种电路的控制方法的示例图。该方法可应用于包括两个以上电池组(例如包括第一电池组和第二电池组)的电路,该电路可被配置为多种充电模式,例如包括串联充电模式、并联充电模式和独立充电模式中的一种或多种。该方法可应用于本申请实施例提供的任意一种电路。
如图17所示,控制方法1700包括步骤1至步骤3,下面结合附图对这些步骤进行详细介绍。
步骤1,根据第一电池组的当前电压、第二电池组的当前电压和供电装置的输出电压确定充电模式。
步骤2,根据该充电模式进行充电,得到当前充电结果,当前充电结果包括第一电池组的更新电压和第二电池组的更新电压。
步骤3,若当前充电结果满足充电结束条件,则结束充电;若当前充电结果不满足充电结束条件,则根据该当前充电结果重新执行步骤1至步骤3,直至所得到的充电结果满足充电结束条件。
其中,供电装置的输出电压可以是指供电装置的最大输出电压,也可以是供电装置的输出电压范围内的其他数值,不做限定。
基于该控制方法,在充电过程中可以动态识别第一电池组和第二电池组的电压且可以动态更新充电模式。从而在一方面使得在电池组电压不再支持充电模式时,能够及时调整为更为适合的充电模式进行充电,避免出现充电停滞的情况,能够提高充电的可靠性;在另一方面,能够充分利用供电装置的能力,提高供电装置的兼容程度。
在执行步骤1之前,可以先将供电电路与供电装置连接,并获取供电装置输出电压。
在步骤2中,可以根据预设充电时长和充电模式进行充电。其中,预设充电时长可以为1s、2s、5s、10s等时长,本申请不做限定。意味着本申请实施例可以按照一定的频率实时监测当前充电结果是否满足充电结束条件,并在不满足该充电结束条件时及时做出响应,从而能够进一步提高充电的可靠性。
可选地,上述充电结束条件可以为第一电池组和第二电池组的电压达到了目标充电电压,其中,该目标充电电压可以是一个数值也可以是一个电压范围,不做限定。又如,充电结束条件可以为电池的剩余电量达到了目标电量。此外,上述充电结束条件还可以为用户的中断操作。本申请对充电结束条件的类型不做限制。
可选地,上述根据第一电池组的当前电压、第二电池组的当前电压和供电装置的输出电压确定充电模式可以包括:若第一电池组和第二电池组的串联电压或当前电压之和小于供电装置的输出电压,确定充电模式为串联充电模式。
可选地,上述根据第一电池组的当前电压、第二电池组的当前电压和供电装置的输出电压确定充电模式可以包括:若第一电池组和第二电池组的串联电压或当前电压之和大于或等于供电装置的输出电压且小于该供电装置的输出电压的二倍,获取第一电池组和第二 电池组的当前电压之差;若第一电池组和第二电池组的当前电压之差小于或等于第一阈值,确定充电模式为并联充电模式;若第一电池组和第二电池组的当前电压之差大于第一阈值,确定充电模式为独立充电模式。
其中,该第一阈值可以是5V、10V、20V等数值,具体需要结合实际情况确定,本申请对此不做限定。
可选地,若第一电池组和第二电池组的串联电压或当前电压之和大于或等于供电装置的输出电压的二倍,建议结束充电。
可选地,若确定充电模式为独立充电模式,上述根据充电模式进行充电包括:确定第一电池组和第二电池组中当前电压较低的电池组;根据独立充电模式对当前电压较低的电池组进行充电。
具体地,可以给当前电压较低的电池组独立充电,以降低两个电池组的电压差,在两个电池组电压差小于或等于第一阈值时,停止充电,再根据两个电池组更新的电压,重新确定充电模式。
上述充电模式还可以包括:均衡电压模式(在该均衡模式下,高压电池组可以向低压电池组充电),若第一电池组和第二电池组的当前电压之和大于或等于供电装置的输出电压且小于或等于供电装置的输出电压的二倍,且第一电池组和第二电池组的当前电压之差大于第二阈值,可以确定充电模式为均衡电压模式。其中,该第二阈值也可以是5V、10V、20V等数值,具体需要结合实际情况确定,本申请对此不做限定。
实际操作中,在第一电池组和第二电池组的当前电压之差较大时,可以采用独立充电模式降低两个电池组的电压差,也可以采用高压电池组向低压电池组充电的方式(即对应上文通过第一支路均衡)降低两个电池组的电压差。应理解,相较于通过第一支路来均衡电压而言,独立充电模式能够保证较高的充电电压、充电功率以及充电速度。
以上控制方法1700同样适用于电池放电流程中,以在放电过程中实时根据第一电池组的当前电压、第二电池组的当前电压和用电装置的输入电压更新调整放电模式(例如,该放电模式为串联放电模式、并联放电模式或独立放电模式中的任意一种),以保证放电工作的可靠性。
基于上述控制方法1700,图18是本申请实施例提供的又一种电路的控制方法的具体流程示例图。该电路可参照上述方法1700所涉及电路的描述,不再赘述。如图18所示,该流程1800包括步骤S1801至S1812,下面结合附图对这些步骤进行介绍。
S1801,将供电电路与供电装置连接,并继续执行步骤S1802。
S1802,获取供电装置输出电压(例如,最大输出电压),并继续执行步骤S1803。
S1803,判断当前电池电压是否小于供电装置输出电压的二倍。该电池电压可以为第一电池组和第二电池组的串联电压,或第一电池组和第二电池组的当前电压之和。若当前电池电压小于供电装置输出电压的二倍,继续执行步骤S1804;若当前电池电压大于或等于供电装置输出电压的二倍,执行步骤S1812。
S1804,判断当前电池电压是否小于供电装置输出电压。若当前电池电压小于供电装置输出电压,则执行步骤S1805;若当前电池电压大于或等于供电装置输出电压,则执行步骤S1806。
S1805,确定使用串联充电模式,并继续执行步骤S1810。
S1806,获取第一电池组和第二电池组的当前电压之差,并继续执行步骤S1807。
S1807,判断当前电池电压之差是否小于或等于第一阈值。若前电池电压之差小于或等于第一阈值,则执行步骤S1808;若前电池电压之差大于第一阈值,则执行步骤S1809。
S1808,确定使用并联充电模式,并继续执行步骤S1810。
S1809,确定使用独立充电模式,并继续执行步骤S1810。
S1810,进行充电。在按照预设时长充电后,得到更新电压,继续执行步骤S1811。
S1811,根据更新电压判断是否满足充电结束条件。若不满足充电结束条件,则返回步骤S1804,继续重复执行上述步骤,直至所得到的更新电压满足充电结束条件;若满足充电结束条件,则执行步骤S1812。
S1812,结束充电
步骤S1801至S1812所涉及到的具体内容可参见上述控制方法1700中的相关描述,不再赘述。
下面结合附图18,以车辆充电场景为例,对车辆电池的充电过程进行介绍。
首先,车辆包括电池回路,该电池回路包括第一电池组和第二电池组,且该电池回路的可配置模式包括串联充电模式、并联充电模式和独立充电模式。再假设第一电池组当前电压为200V,第二电池组的当前电压220V,当前两个电池组的当前总电压420V,目标充电电压为600V,预设充电时长为1s,第一阈值为10V,所使用的充电桩的输出电压范围为200V-500V。充电过程依次如下:
执行步骤S1801,将车辆与充电桩连接。
执行步骤S1802,获取充电桩输出电压。其中,充电桩输出电压在该示例中可以理解为充电桩的最大输出电压500V。
执行步骤S1803,通过判断得出当前电池电压(例如为第一电池组和第二电池组的串联电压,或第一电池组和第二电池组的当前总电压420V)小于充电桩输出电压的二倍1000V。
执行步骤S1804和S1805,通过判断得出当前电池电压420V小于充电桩的最大输出电压500V,则确定充电模式为串联充电模式。
执行步骤S1810,使用串联充电模式按照预设充电时长1s进行充电,得到当前充电结果,即第一电池组的电压更新为200.5V和第二电池组的电压更新为220.5V。
执行步骤S1811,通过判断得出更新后的电池电压(即第一电池组和第二电池组更新后的总电压421V)未达到目标充电电压600V,即不满足充电结束条件,则返回步骤S1804,重新基于当前更新后的总电池电压循环执行S1804、S1805、S1810和S1811,直至更新后的第一电池组的电压和第二电池组的电压之和达到充电桩的输出电压500V,即当前第一电池组的电压更新为240V,第二电池组的电压更新为260V。
继续执行步骤S1804,通过判断得出更新后的第一电池组的电压和第二电池组的电压之和500V等于充电桩的输出电压500V,则无法再继续使用串联充电模式,需要重新确定充电模式。
执行步骤S1806,获取第一电池组和第二电池组更新后的电压之差为20V。
执行步骤S1807和S1809,通过判断得出第一电池组和第二电池组更新后的电压之差20V大于第一阈值10V,确定当前不可以并联充电,并将充电模式切换为独立充电模式。
执行步骤1810,使用独立充电模式为第一电池组按照预设充电时长1s进行独立充电,并得到充电结果,即第一电池组的电压更新为241V,第二电池组的电压仍为260V。
执行步骤1811,通过判断得出当前更新后的电池电压(即第一电池组和第二电池组更新后的总电压501V)未达到目标充电电压600V,即还不满足充电结束条件,则返回步骤S1804,重新基于更新后的第一电池组电压和第二电池组电压循环执行S1804,S1806、S1807、S1809至S1811,直至第一电池组的电压更新至250V,第二电池组的电压仍为260V。
继续执行步骤S1804,通过判断得出当前更新后的第一电池组的电压和第二电池组的电压之和510V大于充电桩输出电压500V。
执行步骤S1806,获取第一电池组和第二电池组更新后的电压之差为10V。
执行步骤S1807和S1808,通过判断得出当前更新后的第一电池组的电压和第二电池组的电压之差10V等于第一阈值10V,则确定当前可以使用并联充电模式。
执行步骤S1810,使用并联充电模式按照预设充电时长1s进行充电,得到充电结果,此时第一电池组的电压更新为251V,第二电池组的电压更新为261V,总当前电压更新为512V。
执行步骤S1811,通过判断得出当前更新后的第一电池组和第二电池组的总电压512V未达到目标充电电压600V,即仍不满足充电结束条件,则返回步骤S1804,重新基于当前更新后的电池电压循环执行S1804、S1806至S1808、S1810、S1811,直至第一电池组的电压更新为295V,第二电池组的电压更新为305V,总电压更新为600V。并通过判断得出更新后的第一电池组和第二电池组的总电压等于充电目标电压600V,即满足充电结束条件,则执行S1812结束充电。
图19是本申请实施例提供的一种电路的控制装置示例图。如图19所示,该装置1900包括处理模块1910,该处理模块1910用于执行上述控制方法1500;和/或,用于执行上述控制方法1600;和/或,用于执行上述控制方法1700;和/或,用于执行上述控制方法1800。
图20是本申请实施例提供的一种电路的控制装置的硬件结构示例性框图。可选地,该装置2000具体可以是一种计算机设备。该装置2000包括存储器2010、处理器2020以及通信接口2030。其中,存储器2010、处理器2020、通信接口2030可以通过总线实现彼此之间的通信连接。
存储器2010可以是只读存储器(Read-Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器2010可以存储程序,当存储器2010中存储的程序被处理器2020执行时,处理器2020用于执行本申请实施例的控制方法1500的各个步骤和/或用于执行本申请实施例的控制方法1600的各个步骤和/或用于执行本申请实施例的控制方法1700的各个步骤和/或用于执行本申请实施例的控制方法1800的各个步骤。
处理器2020可以采用通用中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(Ggraphics Processing Unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例的控制方法1500和/或实现本申请方法实施例的控制方法1600和/或实现本申请方法实施例的控制方法1700和/或实现本申请方法实施例的控制方法1800。
处理器2020还可以是一种集成电路芯片,具有信号处理能力。在实现过程中,本申请的控制方法1500和/或控制方法1600和/或控制方法1700和/或控制方法1800可以通过处理器2020中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器2020还可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、ASIC、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2010,处理器2020读取存储器2010中的信息,结合其硬件完成本申请实施例的装置中包括的模块所需执行的功能,或者执行本申请方法实施例的控制方法1500和/或控制方法1600和/或控制方法1700和/或控制方法1800。
通信接口2030使用例如但不限于收发器一类的收发装置,来实现装置2000与其他设备或通信网络之间的通信。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得所述计算机执行用于执行上述控制方法1500;和/或,用于执行上述控制方法1600;和/或,用于执行上述控制方法1700;和/或,用于执行上述控制方法1800。
本申请实施例还提供了一种计算机程序产品,包含指令,当所述指令在计算机上运行时,上述控制方法1500被执行;或者上述控制方法1600被执行;或者上述控制方法1700被执行;或者上述控制方法1800被执行。
本申请实施例还提供了一种计算设备,包括:至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行上述控制方法1500;和/或,执行上述控制方法1600;和/或,执行上述控制方法1700;和/或,执行上述控制方法1800。
本申请实施例还提供了一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述控制方法1500;和/或,执行上述控制方法1600;和/或,执行上述控制方法1700;和/或,执行上述控制方法1800。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行上述控制方法1500;和/或,用于执行上述控制方法1600;和/或,执行上述控制方法1700;和/或,执行上述控制方法1800。
本申请实施例还提供了一种电子设备,其特征在于,包括本申请实施例所提供的任意一种电路。
本申请实施例还提供了一种车辆,其特征在于,包括本申请实施例所提供的任意一种电路。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种电路,其特征在于,包括:第一电池组、第二电池组、第一开关、第二开关、第三开关、第四开关和第一支路,所述第一支路包括串联的第一电阻和第五开关;其中,
    所述第一电池组的正极通过所述第一开关和所述第二开关与所述第二电池组的正极电连接;
    所述第一电池组的负极通过所述第三开关和所述第四开关与所述第二电池组的负极电连接;
    所述第一支路与所述第一开关、所述第二开关、所述第三开关或所述第四开关并联。
  2. 根据权利要求1所述的电路,其特征在于,所述电路被配置为,在所述第一电池组的电压和所述第二电池组的电压不相等时,闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关。
  3. 根据权利要求1所述的电路,其特征在于,所述电路被配置为,在所述第一电池组和所述第二电池组电压之差大于第一阈值时,闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关。
  4. 根据权利要求1至3中任一项所述的电路,其特征在于,
    所述电路还包括第一接口和第六开关,所述第一电池组的负极通过所述第六开关与所述第二电池组的正极电连接,所述第一接口的第一端接于所述第一开关和所述第二开关之间,所述第一接口的第二端接于所述第三开关和所述第四开关之间,所述第一接口用于连接第一装置,所述第一装置包括第一供电装置或第一用电装置。
  5. 根据权利要求4所述的电路,其特征在于,所述第一装置包括所述第一供电装置,所述第一供电装置用于为所述第一电池组和/或所述第二电池组充电;
    所述电路被配置为在所述第一电池组和所述第二电池组的电压之和小于所述第一供电装置的最大输出电压的二倍时,闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,断开所述第五开关和所述第六开关。
  6. 根据权利要求5所述的电路,其特征在于,所述电路被配置为在所述第一电池组和所述第二电池组的电压之和小于所述第一供电装置的最大输出电压时,闭合所述第一开关、所述第四开关和所述第六开关,断开所述第二开关、所述第三开关和所述第五开关。
  7. 根据权利要求5所述的电路,其特征在于,所述在所述第一电池组和所述第二电池组的电压之和小于所述第一供电装置的最大输出电压的二倍时,闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,断开所述第五开关和所述第六开关,还包括:
    在所述第一电池组和所述第二电池组的电压之差大于第二阈值时,闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关和所述第六开关;和/或,
    在所述第一电池组和所述第二电池组的电压之差小于或等于所述第二阈值时,闭合所 述第一开关、所述第二开关、所述第三开关和所述第四开关,断开所述第五开关和所述第六开关。
  8. 根据权利要求4至6任一项所述的电路,其特征在于,所述第一装置包括所述第一供电装置,所述第一供电装置用于为所述第一电池组和/或所述第二电池组充电;
    所述电路被配置为在所述第一电池组的电压小于所述第二电池组的电压时,闭合所述第一开关和所述第三开关,断开所述第二开关和所述第四开关;和/或,
    所述电路被配置为在所述第一电池组的电压大于所述第二电池组的电压时,闭合所述第二开关和所述第四开关,断开所述第一开关和所述第三开关。
  9. 根据权利要求4所述的电路,其特征在于,所述第一装置包括所述第一用电装置;
    所述电路被配置为在所述第一电池组和所述第二电池组的电压之和小于或等于所述第一用电装置的最大输入电压的二倍时,闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,断开所述第五开关和所述第六开关。
  10. 根据权利要求9所述的电路,其特征在于,所述电路被配置为在所述第一电池组和所述第二电池组的电压之和小于或等于所述第一用电装置的最大输入电压时,闭合所述第一开关、所述第四开关和所述第六开关,断开所述第二开关、所述第三开关和所述第五开关。
  11. 根据权利要求9所述的电路,其特征在于,所述在所述第一电池组和所述第二电池组的电压之和小于或等于所述第一用电装置的最大输入电压的二倍时,闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,断开所述第五开关和所述第六开关,还包括:
    在所述第一电池组和所述第二电池组的电压之差大于第三阈值时,闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关和所述第六开关;和/或,
    在所述第一电池组和所述第二电池组的电压之差小于或等于所述第三阈值时,闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,断开所述第五开关和所述第六开关。
  12. 根据权利要求9至11任一项所述的电路,其特征在于,所述第一用电装置包括电容,所述电路还包括第二支路,所述第二支路包括串联的第二电阻和第七开关,所述第二支路与所述第一开关、所述第二开关、所述第三开关、所述第四开关或所述第六开关并联。
  13. 根据权利要求12所述的电路,其特征在于,所述第一电阻和所述第二电阻为共用的电阻,所述第五开关和所述第七开关为共用的开关。
  14. 根据权利要求4至13中任一项所述的电路,其特征在于,所述电路还包括第二接口和第八开关,所述第二接口的第一端通过所述第八开关接于所述第一电池组的正极,所述第二接口的第二端通过所述第四开关接于所述第二电池组的负极,所述第二接口用于连接第二装置,所述第二装置包括第二供电装置或第二用电装置。
  15. 根据权利要求14所述的电路,其特征在于,所述第二装置包括所述第二供电装置;
    所述电路被配置为在所述第一电池组和所述第二电池组的电压之和小于所述第二供电装置的最大输出电压时,闭合所述第四开关、所述第六开关和所述第八开关。
  16. 根据权利要求14所述的电路,其特征在于,所述第二装置包括所述第二用电装置;
    所述电路被配置为在所述第一电池组和所述第二电池组的电压之和小于或等于所述第二用电装置允许的最大输入电压时,闭合所述第四开关、所述第六开关和所述第八开关。
  17. 根据权利要求16所述的电路,其特征在于,所述第二用电装置包括电容,所述电路还包括第三支路,所述第三支路包括串联的第三电阻和第九开关,所述第三支路与所述第四开关、所述第六开关或所述第八开关并联。
  18. 根据权利要求17所述的电路,其特征在于,所述第一电阻和所述第三电阻为共用的电阻,所述第五开关和所述第九开关为共用的开关。
  19. 根据权利要求14至18中任一项所述的电路,其特征在于,所述第八开关位于所述第一电池组和所述第一开关之间,所述第一支路与所述第一开关、所述第二开关、所述第三开关、所述第四开关或所述第八开关并联。
  20. 一种电路的控制方法,其特征在于,所述电路包括:第一电池组、第二电池组、第一开关、第二开关、第三开关、第四开关和第一支路,所述第一支路包括串联的第一电阻和第五开关;其中,所述第一电池组的正极通过所述第一开关和所述第二开关与所述第二电池组的正极电连接;所述第一电池组的负极通过所述第三开关和所述第四开关与所述第二电池组的负极电连接;所述第一支路与所述第一开关、所述第二开关、所述第三开关或所述第四开关并联;
    所述控制方法包括:
    获取所述第一电池组和所述第二电池组的电压;
    根据所述第一电池组和所述第二电池组的电压之差控制所述第一支路中的第五开关闭合或断开。
  21. 根据权利要求20所述的控制方法,其特征在于,所述根据所述第一电池组和所述第二电池组的电压之差控制所述第一支路中的第五开关闭合或断开包括:
    在所述第一电池组和所述第二电池组的电压之差大于第一阈值时,控制闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,控制断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关。
  22. 根据权利要求20或21所述的控制方法,其特征在于,所述电路还包括第一接口和第六开关,所述第一电池组的负极通过所述第六开关与所述第二电池组的正极电连接,所述第一接口的第一端接于所述第一开关和所述第二开关之间,所述第一接口的第二端接于所述第三开关和所述第四开关之间,所述第一接口用于连接第一装置,所述第一装置包括第一供电装置或第一用电装置。
  23. 根据权利要求22所述的控制方法,其特征在于,所述第一装置包括所述第一供电装置;所述控制方法还包括:
    在所述第一电池组和所述第二电池组的电压之和小于所述第一供电装置的最大输出电压的二倍时,控制闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关, 控制断开所述第五开关和所述第六开关。
  24. 根据权利要求23所述的控制方法,其特征在于,所述控制方法还包括:
    在所述第一电池组和所述第二电池组的电压之和小于所述第一供电装置的最大输出电压时,控制闭合所述第一开关、所述第四开关和所述第六开关,控制断开所述第二开关、所述第三开关和所述第五开关。
  25. 根据权利要求23所述的控制方法,其特征在于,所述在所述第一电池组和所述第二电池组的电压之和小于所述第一供电装置的最大输出电压的二倍时,控制闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,控制断开所述第五开关和所述第六开关,还包括:
    在所述第一电池组和所述第二电池组的电压之差大于第二阈值时,控制闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,控制断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关和所述第六开关;和/或,
    在所述第一电池组和所述第二电池组的电压之差小于或等于所述第二阈值时,控制闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,控制断开所述第五开关和所述第六开关。
  26. 根据权利要求22至24任一项所述的控制方法,其特征在于,所述第一装置包括所述第一供电装置;所述控制方法还包括:
    在所述第一电池组的电压小于所述第二电池组的电压时,控制闭合所述第一开关和所述第三开关,控制断开所述第二开关和所述第四开关;和/或,
    在所述第一电池组的电压大于所述第二电池组的电压时,控制闭合所述第二开关和所述第四开关,控制断开所述第一开关和所述第三开关。
  27. 根据权利要求22所述的控制方法,其特征在于,所述第一装置包括所述第一用电装置;所述控制方法还包括:
    在所述第一电池组和所述第二电池组的电压之和小于或等于所述第一用电装置的最大输入电压的二倍时,控制闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,控制断开所述第五开关和所述第六开关。
  28. 根据权利要求27所述的控制方法,其特征在于,所述控制方法还包括:
    在所述第一电池组和所述第二电池组的电压之和小于或等于所述第一用电装置的最大输入电压时,控制闭合所述第一开关、所述第四开关和所述第六开关,控制断开所述第二开关、所述第三开关和所述第五开关。
  29. 根据权利要求27所述的电路,其特征在于,所述在所述第一电池组和所述第二电池组的电压之和小于或等于所述第一用电装置的最大输入电压的二倍时,控制闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,控制断开所述第五开关和所述第六开关,还包括:
    在所述第一电池组和所述第二电池组的电压之差大于第三阈值时,控制闭合所述第五开关,并闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关中未与所述第一支路并联的开关,控制断开所述第一开关、所述第二开关、所述第三开关和所述第四开关中与所述第一支路并联的开关和所述第六开关;和/或,
    在所述第一电池组和所述第二电池组的电压之差小于或等于所述第三阈值时,控制闭合所述第一开关、所述第二开关、所述第三开关和所述第四开关,控制断开所述第五开关和所述第六开关。
  30. 一种电路的控制方法,其特征在于,所述电路包括第一电池组和第二电池组,所述电路用于与供电装置连接,并通过所述供电装置为所述第一电池组和/或所述第二电池组充电,所述电路的工作模式包括第一模式和第二模式;所述控制方法包括:
    获取所述第一电池组和所述第二电池组的电压;
    在所述第一电池组和所述第二电池组的电压之和大于或等于所述供电装置的最大输出电压时,控制所述电路切换为所述第二模式;
    其中,在所述第一模式下,所述第一电池组与所述第二电池组串联;在所述第二模式下,所述第一电池组与所述第二电池组并联。
  31. 根据权利要求30所述的控制方法,其特征在于,所述方法还包括:
    在所述第一电池组和所述第二电池组的电压之和小于所述供电装置的最大输出电压时,控制所述电路切换为所述第一模式。
  32. 根据权利要求30或31所述的控制方法,其特征在于,所述电路的工作模式还包括第三模式,所述在所述第一电池组和所述第二电池组的电压之和大于或等于所述供电装置的最大输出电压时,控制所述电路切换为所述第二模式包括:
    在所述第一电池组和所述第二电池组的电压之和大于或等于所述供电装置的最大输出电压时,获取所述第一电池组和所述第二电池组的电压之差;
    在所述第一电池组和所述第二电池组的电压之差小于或等于第一阈值时,控制所述电路切换为所述第二模式;
    在所述第一电池组和所述第二电池组的电压之差大于所述第一阈值时,控制所述电路切换为所述第三模式;
    其中,在所述第三模式下,所述电路被配置为向所述第一电池组充电或向所述第二电池组充电。
  33. 一种电路的控制装置,其特征在于,包括:处理模块,用于执行如权利要求20至29中任一项所述的控制方法;和/或,用于执行如权利要求30至32中任一项所述的控制方法。
  34. 一种电路的控制装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求20至29中任一项所述的控制方法;和/或,以实现如权利要求30至32中任一项所述的控制方法。
  35. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求20至29中任一项所述的控制方法;和/或,执行如权利要求30至32中任一项所述的控制方法。
  36. 一种电子设备,其特征在于,包括如权利要求1至19中任一项所述的电路。
  37. 一种车辆,其特征在于,包括如权利要求1至19中任一项所述的电路。
PCT/CN2022/128040 2022-10-27 2022-10-27 电路、电路的控制方法及控制装置、车辆 WO2024087113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128040 WO2024087113A1 (zh) 2022-10-27 2022-10-27 电路、电路的控制方法及控制装置、车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128040 WO2024087113A1 (zh) 2022-10-27 2022-10-27 电路、电路的控制方法及控制装置、车辆

Publications (1)

Publication Number Publication Date
WO2024087113A1 true WO2024087113A1 (zh) 2024-05-02

Family

ID=90829593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128040 WO2024087113A1 (zh) 2022-10-27 2022-10-27 电路、电路的控制方法及控制装置、车辆

Country Status (1)

Country Link
WO (1) WO2024087113A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278635A (ja) * 2007-04-27 2008-11-13 Mitsubishi Motors Corp 電気自動車用バッテリ充電装置及び方法
CN109450047A (zh) * 2018-12-25 2019-03-08 陕西科技大学 一种串联能量密度电池组循环充放电电路与控制方法
CN110316008A (zh) * 2019-06-03 2019-10-11 浙江吉利控股集团有限公司 一种车辆的电池系统及其进行充放电的方法
CN110521080A (zh) * 2017-04-24 2019-11-29 罗伯特·博世有限公司 用于电蓄能系统的电路装置和充电方法
CN111452671A (zh) * 2020-04-20 2020-07-28 苏州科易新动力科技有限公司 电池电路、以及电池电路的控制方法、装置、设备
CN113939970A (zh) * 2019-06-04 2022-01-14 捷豹路虎有限公司 车辆牵引电池电路和控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278635A (ja) * 2007-04-27 2008-11-13 Mitsubishi Motors Corp 電気自動車用バッテリ充電装置及び方法
CN110521080A (zh) * 2017-04-24 2019-11-29 罗伯特·博世有限公司 用于电蓄能系统的电路装置和充电方法
CN109450047A (zh) * 2018-12-25 2019-03-08 陕西科技大学 一种串联能量密度电池组循环充放电电路与控制方法
CN110316008A (zh) * 2019-06-03 2019-10-11 浙江吉利控股集团有限公司 一种车辆的电池系统及其进行充放电的方法
CN113939970A (zh) * 2019-06-04 2022-01-14 捷豹路虎有限公司 车辆牵引电池电路和控制系统
CN111452671A (zh) * 2020-04-20 2020-07-28 苏州科易新动力科技有限公司 电池电路、以及电池电路的控制方法、装置、设备

Similar Documents

Publication Publication Date Title
CN107947330B (zh) 多组电池供电自动切换装置及控制方法
JP5618359B2 (ja) 二次電池パック接続制御方法、および、蓄電システム
CN207116622U (zh) 一种电池保护板
CN105958570A (zh) 一种锂电池电压均衡电路拓扑
CN101826745A (zh) 锂离子动力电池无损充电机
JP7469554B2 (ja) 電池加熱システム、電池パック及び電力消費装置
CN210760284U (zh) 电动汽车驱动系统及驱动电路
CN100541963C (zh) 一种锂动力电池充放电保护模块
CN202616757U (zh) 一种锂离子电池组的保护装置
WO2022262328A1 (zh) 充电电路和终端设备
CN209948703U (zh) 一种锂电池均压控制系统
CN209823441U (zh) 动力电池的电压转换控制装置和电动汽车
CN107681996A (zh) 一种固态继电器
WO2024087113A1 (zh) 电路、电路的控制方法及控制装置、车辆
CN202535104U (zh) 一种可自动切除串联电池组中失效单元的电池管理系统
CN108128173A (zh) 用于超级电容模组的保护电路
CN107508357A (zh) 一种多节并联的锂电池管理系统
JP7430810B2 (ja) 加熱システム、加熱方法及び装置、電力消費機器
WO2018192224A1 (zh) 电池切换的方法和装置以及供电电路的切换系统和方法
CN211957833U (zh) 一种电池均衡修复系统
CN208479208U (zh) 基于h桥串联结构的电池组充电控制电路
CN104767253A (zh) 一种多组电瓶分组同时充电装置
CN209488231U (zh) 动力电池系统和车辆
CN207184039U (zh) 一种电池组保护电路
CN208479209U (zh) 基于电池组h桥串联结构的输出电压可调的放电控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963097

Country of ref document: EP

Kind code of ref document: A1