WO2020244441A1 - 传感器以及移动体 - Google Patents

传感器以及移动体 Download PDF

Info

Publication number
WO2020244441A1
WO2020244441A1 PCT/CN2020/092969 CN2020092969W WO2020244441A1 WO 2020244441 A1 WO2020244441 A1 WO 2020244441A1 CN 2020092969 W CN2020092969 W CN 2020092969W WO 2020244441 A1 WO2020244441 A1 WO 2020244441A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide member
light guide
mobile body
housing
Prior art date
Application number
PCT/CN2020/092969
Other languages
English (en)
French (fr)
Inventor
长屋豪
中辻达也
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080003310.2A priority Critical patent/CN112334738B/zh
Publication of WO2020244441A1 publication Critical patent/WO2020244441A1/zh
Priority to US17/306,949 priority patent/US20210255034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/40Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light specially adapted for use with infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0219Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0474Diffusers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0263Diffusing elements; Afocal elements characterised by the diffusing properties with positional variation of the diffusing properties, e.g. gradient or patterned diffuser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/22RF wavebands combined with non-RF wavebands, e.g. infrared or optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/15Aircraft landing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the invention relates to a sensor and a mobile body.
  • Patent Document 1 discloses an unmanned aerial vehicle including a multi-band sensor and an illuminance sensor.
  • Patent Document 1 US Patent Application Publication No. 2017/0356799 Specification
  • the moving body may include a housing having a light-transmitting part.
  • the moving body may include a light-receiving element arranged inside the housing.
  • the moving body may include a light guide member, which is arranged inside the housing and guides the light passing through the part to the light receiving element.
  • the above-mentioned portion of the housing may have a first diffusion plate that diffuses light from outside the housing.
  • the moving body may include a second diffusion plate arranged between the light guide member and the light receiving element to diffuse the light from the light guide member.
  • the first transmittance may be less than the second transmittance, the first transmittance represents a transmittance ratio of light in the first wavelength region in the thickness direction of the first diffusion plate, and the second transmittance represents longer than the first wavelength region The transmittance ratio of light in the second wavelength region in the thickness direction of the first diffuser.
  • the first wavelength region may include a blue region
  • the second wavelength region may include a red region
  • the difference between the first transmittance and the second transmittance may be greater than the difference between the third transmittance and the fourth transmittance.
  • the third transmittance represents the transmittance ratio of light in the first wavelength region in the thickness direction of the second diffusion plate.
  • Four transmittance represents the transmittance ratio of light in the second wavelength region in the thickness direction of the second diffusion plate.
  • the moving body may include an antenna arranged inside the housing to surround the light guide member.
  • the antenna can be a hollow antenna.
  • the light guide member may be arranged in the cavity of the antenna.
  • the antenna may be a coil antenna.
  • the moving body may include a circuit that measures the position of the moving body based on the signal received by the antenna.
  • the moving body may include a hollow cover covering the outer surface of the light guide member.
  • the outer side of the light guide member and the inner side of the cover can be separated.
  • the moving body may include a plurality of light receiving elements, a plurality of light guide members, and a plurality of covers.
  • the moving body may include a holding member arranged inside the housing and holding the plurality of covers inside.
  • the cover can be a white part.
  • the holding part may be a black part.
  • the holding member may have a plurality of through holes that accommodate a plurality of covers.
  • the housing may be arranged on the top of the moving body.
  • the light guide member may be rod-shaped.
  • the central axis of the light receiving surface of the light receiving element and the central axis of the light guide member may be on the same straight line.
  • the sensor unit may include a housing having a light-transmitting part.
  • the sensor unit may include a light-receiving element arranged inside the housing.
  • the sensor unit may include a light guide member, which is arranged inside the housing, and guides the light passing through the part to the light receiving element.
  • the sensor unit may include an antenna arranged inside the housing and surrounding the light guide member.
  • the above-mentioned portion of the housing may have a first diffusion plate that diffuses light from outside the housing.
  • the sensor unit may include a second diffusion plate arranged between the light guide member and the light receiving element and diffuses light from the light guide member.
  • the sensor unit may include a housing having a first diffusion plate that transmits and diffuses light from the outside.
  • the sensor unit may include a light-receiving element arranged inside the housing.
  • the sensor unit may include a light guide member which is arranged inside the housing and guides the light transmitted through the first diffusion plate to the light receiving element.
  • the sensor unit may include a second diffusion plate arranged between the light guide member and the light receiving element and diffuses light from the light guide member.
  • the light receiving element usable for the illuminance sensor in a limited space without reducing the measurement accuracy.
  • FIG. 1 is a diagram showing an example of the appearance of an unmanned aerial vehicle (UAV) and a remote operation device.
  • UAV unmanned aerial vehicle
  • Fig. 2 is a diagram showing an example of the appearance of an imaging system mounted on a UAV.
  • FIG. 3 is a diagram showing another example of the appearance of the imaging system mounted on the UAV.
  • FIG. 4 is a diagram showing an example of functional blocks of UAV.
  • Figure 5 is a perspective view showing the appearance of the sensor unit
  • Fig. 6 is an exploded perspective view showing the sensor unit.
  • Fig. 7 is a cross-sectional view showing the sensor unit.
  • Fig. 8 is a partially enlarged view showing a cross section of the sensor unit.
  • Fig. 9 is a diagram for describing the incident angle.
  • Fig. 10A is a diagram showing an example of the relationship between the illuminance measured by the illuminance sensor and the wavelength when the incident angle is 0 degrees.
  • 10B is a diagram showing an example of the relationship between the illuminance measured by the illuminance sensor and the wavelength when the incident angle is 0 degrees or more.
  • FIG. 11 is a diagram showing an example of the relationship between the transmittance of the diffuser plate and the wavelength.
  • FIG. 12 is a graph showing an example of the relationship between the transmittance of the diffuser plate and the wavelength.
  • Fig. 13 is a diagram showing a combination mode of the first diffuser plate and the second diffuser plate.
  • FIG. 14 is a graph showing the deviation width (%) of each of the combination mode of the first diffuser plate and the second diffuser plate of FIG. 13.
  • Fig. 15 is a diagram showing a combination mode of the first diffuser plate and the second diffuser plate.
  • Fig. 16 is a graph showing the deviation width (%) of each of the combination mode of the first diffuser plate and the second diffuser plate of Fig. 15.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 10 and a remote operation device 300.
  • the UAV 10 includes a UAV main body 20, a universal joint 50, a plurality of camera devices 60, a camera system 100, and a sensor unit 600.
  • UAV10 is an example of a moving body.
  • the so-called moving body refers to a concept including a flying body that moves in the air, a vehicle that moves on the ground, and a ship that moves on the water.
  • the concept of flying objects moving in the air includes not only UAVs, but also other aircraft, airships, helicopters, etc., moving in the air.
  • the UAV main body 20 includes a plurality of rotors. Multiple rotors are an example of a propulsion section.
  • the UAV main body 20 makes the UAV 10 fly by controlling the rotation of a plurality of rotors.
  • the UAV main body 20 uses, for example, four rotors to fly the UAV 10. The number of rotors is not limited to four.
  • UAV10 can also be a fixed-wing aircraft without rotors.
  • the sensor unit 600 includes an illuminance sensor and an RTK.
  • the imaging system 100 is a multispectral camera for imaging that captures an object within a desired imaging range in each of a plurality of wavelength bands.
  • the universal joint 50 rotatably supports the camera system 100.
  • the universal joint 50 is an example of a supporting mechanism.
  • the gimbal 50 uses an actuator to rotatably support the camera system 100 around the pitch axis.
  • the universal joint 50 uses an actuator to further rotatably support the camera system 100 around the roll axis and the yaw axis, respectively.
  • the gimbal 50 can change the posture of the camera system 100 by rotating the camera system 100 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the plurality of imaging devices 60 are sensing cameras that photograph the surroundings of the UAV 10 in order to control the flight of the UAV 10.
  • the two camera devices 60 can be installed on the nose of the UAV 10, that is, on the front side.
  • the other two camera devices 60 may be provided on the bottom surface of the UAV 10.
  • the two imaging devices 60 on the front side may be paired to function as a so-called stereo camera.
  • the two imaging devices 60 on the bottom side may also be paired to function as a stereo camera.
  • the imaging device 60 can measure the existence of an object included in the imaging range of the imaging device 60 and the distance to the object.
  • the imaging device 60 is an example of a measuring device that measures an object existing in the imaging direction of the imaging system 100.
  • the measuring device may be another sensor such as an infrared sensor or an ultrasonic sensor that measures an object existing in the imaging direction of the imaging system 100.
  • the three-dimensional spatial data around the UAV 10 can be generated based on the images taken by the plurality of camera devices 60.
  • the number of imaging devices 60 included in the UAV 10 is not limited to four.
  • the UAV 10 may include at least one camera device 60.
  • the UAV 10 may also include at least one camera 60 on the nose, tail, side, bottom and top surfaces of the UAV 10, respectively.
  • the viewing angle that can be set in the camera device 60 may be larger than the viewing angle that can be set in the camera system 100.
  • the imaging device 60 may have a single focus lens or a fisheye lens.
  • the remote operation device 300 communicates with the UAV 10 to remotely operate the UAV 10.
  • the remote operation device 300 can wirelessly communicate with the UAV 10.
  • the remote operation device 300 transmits to the UAV 10 instruction information indicating various commands related to the movement of the UAV 10 such as ascending, descending, accelerating, decelerating, forwarding, retreating, and rotating.
  • the instruction information includes, for example, instruction information for raising the height of the UAV 10.
  • the indication information may indicate the height at which the UAV10 should be located.
  • the UAV 10 moves to be located at the height indicated by the instruction information received from the remote operation device 300.
  • the instruction information may include an ascending instruction to raise the UAV10. UAV10 rises while receiving the rise command. When the height of UAV10 has reached the upper limit height, even if the ascending instruction is accepted, the ascent of UAV10 can be restricted.
  • FIG. 2 is a diagram showing an example of the appearance of the imaging system 100 mounted on the UAV 10.
  • the imaging system 100 is a multispectral camera that separately captures image data of each of a plurality of preset wavelength bands.
  • the imaging system 100 includes an imaging device 110 for R, an imaging device 120 for G, an imaging device 130 for B, an imaging device 140 for RE, and an imaging device 150 for NIR.
  • the imaging system 100 can record each image data captured by the imaging device 110 for R, the imaging device 120 for G, the imaging device 130 for B, the imaging device 140 for RE, and the imaging device 150 for NIR as a multispectral image.
  • multispectral images can be used to predict the health and vitality of crops.
  • NDVI standard vegetation index
  • IR represents the reflectance in the near infrared region
  • R represents the reflectance of red in the visible light region
  • the imaging device 110 for R has a filter that transmits light in the red region, and outputs an R image signal that is an image signal in the red region.
  • the wavelength band of the red region is 620 nm to 750 nm.
  • the wavelength band of the red region may be a specific wavelength band in the red region, for example, it may be 663 nm to 673 nm.
  • the imaging device for G 120 has a filter that transmits light in the green region, and outputs a G image signal that is an image signal in the green region.
  • the wavelength band of the green region is 500 nm to 570 nm.
  • the wavelength band of the green region may be a specific wavelength band in the green region, for example, it may be 550 nm to 570 nm.
  • the imaging device 130 for B has a filter that transmits light in the blue region, and outputs a B image signal that is an image signal in the blue region.
  • the wavelength band of the blue region is 450 nm to 500 nm.
  • the wavelength band of the blue region may be a specific wavelength band in the blue region, for example, it may be 465 nm to 485 nm.
  • the imaging device for RE 140 has a filter that transmits light in the red edge region, and outputs an RE image signal that is an image signal in the red edge region.
  • the wavelength band of the red edge region is 705 nm to 745 nm.
  • the wavelength band of the red edge region may be 712 nm to 722 nm.
  • the NIR imaging device 150 has a filter that transmits light in the near-infrared region, and outputs an image signal in the near-infrared region, that is, an NIR image signal.
  • the wavelength band of the near infrared region is 800 nm to 2500 nm.
  • the wavelength band of the near infrared region may be 800 nm to 900 nm.
  • FIG. 3 is a diagram showing another example of the appearance of the imaging system 100 mounted on the UAV 10.
  • the imaging system 100 also includes an imaging device 160 for RGB, which is similar to the imaging system 100 shown in FIG. different.
  • the RGB imaging device 160 may be the same as a normal camera and includes an optical system and an image sensor.
  • the image sensor may include a filter that is arranged in a Bayer array and transmits light in the red region, a filter that transmits light in the green region, and a filter that transmits light in the blue region.
  • the RGB imaging device 160 can output RGB images.
  • the wavelength band of the red region may be 620 nm to 750 nm.
  • the wavelength band of the green region may be 500 nm to 570 nm.
  • the wavelength band of the blue region is 450 nm to 500 nm.
  • FIG. 4 shows an example of the functional blocks of UAV10.
  • UAV10 includes UAV control unit 30, memory 32, communication interface 36, propulsion unit 40, GPS receiver 41, inertial measurement device 42, magnetic compass 43, barometric altimeter 44, temperature sensor 45, humidity sensor 46, universal joint 50, camera The device 60 and the camera system 100.
  • the communication interface 36 communicates with other devices such as the remote operation device 300.
  • the communication interface 36 can receive instruction information including various instructions to the UAV control unit 30 from the remote operation device 300.
  • the memory 32 stores the UAV control unit 30 to the propulsion unit 40, GPS receiver 41, inertial measurement unit (IMU) 42, magnetic compass 43, barometric altimeter 44, temperature sensor 45, humidity sensor 46, universal joint 50, camera 60 and
  • the imaging system 100 performs programs and the like necessary for control.
  • the memory 32 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 32 may be provided inside the UAV main body 20. It can be configured to be detachable from the UAV main body 20.
  • the UAV control unit 30 controls the flight and shooting of the UAV 10 according to a program stored in the memory 32.
  • the UAV control unit 30 may be constituted by a microprocessor such as a CPU or an MPU, and a microcontroller such as an MCU.
  • the UAV control unit 30 controls the flight and shooting of the UAV 10 in accordance with instructions received from the remote operation device 300 via the communication interface 36.
  • the propulsion unit 40 propels the UAV10.
  • the propulsion unit 40 has a plurality of rotors and a plurality of drive motors that rotate the plurality of rotors.
  • the propulsion unit 40 rotates a plurality of rotors by a plurality of drive motors in accordance with an instruction from the UAV control unit 30 to cause the UAV 10 to fly.
  • the GPS receiver 41 receives multiple signals representing time transmitted from multiple GPS satellites.
  • the GPS receiver 41 calculates the position (latitude and longitude) of the GPS receiver 41, that is, the position (latitude and longitude) of the UAV 10 based on the received signals.
  • the IMU42 detects the posture of the UAV10.
  • the IMU 42 detects the acceleration of the UAV 10 in the three-axis directions of front and rear, left and right, and up and down, and the angular velocities of the pitch axis, the roll axis, and the yaw axis as the posture of the UAV 10.
  • the magnetic compass 43 detects the position of the nose of the UAV 10.
  • the barometric altimeter 44 detects the flying altitude of the UAV10.
  • the barometric altimeter 44 detects the air pressure around the UAV 10 and converts the detected air pressure to altitude to detect the altitude.
  • the temperature sensor 45 detects the temperature around the UAV 10.
  • the humidity sensor 46 detects
  • the UAV10 also includes a sensor unit 600.
  • the sensor unit 600 includes an MCU 70, an RTK 80, and an illuminance sensor 500.
  • the MCU70 is a control circuit that controls the RTK80 and the illuminance sensor 500.
  • RTK80 is a real-time dynamic GPS.
  • the RTK80 uses RTK positioning to locate the UAV10 based on the location information of the base station set in the predetermined location.
  • the illuminance sensor 500 measures the surrounding illuminance.
  • the imaging system 100 may perform imaging control based on the illuminance measured by the illuminance sensor 500.
  • the imaging system 100 may perform exposure control of each color based on the illuminance of each color measured by the illuminance sensor 500.
  • the imaging system 100 can perform exposure control of the R imaging device 110, the G imaging device 120, the B imaging device 130, the RE imaging device 140, and the NIR imaging device 150 based on the illuminance of each color measured by the illuminance sensor 500.
  • the illuminance sensor 500 is arranged on the top of the UAV10.
  • the top is the upper part of the UAV10 housing.
  • the upper part of the housing of the UAV 10 is a part located on the upper side in the vertical direction when the UAV 10 is hovering.
  • the top is the part opposite to the cavity of the UAV10 housing when the UAV10 is hovering.
  • the top part is the part opposite to the bottom of the shell facing the ground when the UAV10 is in the landing state.
  • RTK80 is also preferably arranged on the top of UAV10.
  • the space on the top of UAV10 is limited. Therefore, in this embodiment, the illuminance sensor 500 and the RTK 80 are arranged in the head space of the UAV 10 in such a way that the illuminance sensor 500 and the RTK 80 do not interfere with each other.
  • FIG. 5 is an external perspective view of the sensor unit 600 including the illuminance sensor 500 and the RTK80.
  • the housing 502 of the sensor unit 600 is shown in a translucent manner to visualize the inside.
  • FIG. 6 shows an exploded perspective view of the sensor unit 600.
  • the sensor unit 600 has a first diffuser 510, a housing 502, a cylinder 524, a plurality of rod covers 522, a plurality of light guide members 520, a plurality of second diffusers 512, a plurality of light receiving elements 504, an antenna 82, and a base 501.
  • the cylinder 524, the rod cover 522, the second diffuser 512, the light receiving element 504 and the antenna 82 are arranged inside the housing 502.
  • the housing of the UAV main body 20 of the UAV 10 and the housing of the sensor unit 600 may be formed integrally.
  • the sensor unit 600 may be built in the housing of the UAV main body 20.
  • the antenna 82 serves as the antenna of the RTK80.
  • the antenna 82 may be a hollow antenna.
  • the antenna 82 may be a coil antenna.
  • the antenna 82 may be arranged spirally along the side surface of the inner side of the housing 502.
  • the antenna 82 may receive position information from a base station and a GPS satellite arranged at a predetermined position, respectively.
  • it may be considered to arrange the illuminance sensor 500 on the top of the housing 502.
  • electromagnetic noise generated by the illuminance sensor 500 may interfere with the signal received by the antenna 82.
  • the illuminance sensor 500 is arranged in the cavity of the antenna 82. This prevents electromagnetic noise generated by the illuminance sensor 500 from interfering with the signal received by the antenna 82.
  • the housing 502 has a portion that transmits light.
  • the light-transmitting part has a first diffusion plate 510 that diffuses light from outside the casing 502.
  • the light receiving element 504 is used as a light receiving part of the illuminance sensor 500.
  • the light receiving element 504 receives light and converts the received light into an electric signal.
  • the illuminance sensor 500 measures the illuminance based on the electrical signal output from the light receiving element 504.
  • Each of the plurality of light receiving elements 504 can receive a different range of wavelengths.
  • the first light receiving element in the plurality of light receiving elements 504 can receive a wavelength in the range of 400 nm or more and 700 nm or less.
  • the second light receiving element of the plurality of light receiving elements 504 can receive a wavelength in the range of 700 nm or more and 900 nm or less.
  • the third light receiving element among the plurality of light receiving elements 504 can receive a wavelength in the range of 900 nm or more and 1500 nm or less.
  • the light guide member 520 guides the light transmitted through the first diffusion plate 510 to the light receiving element 504.
  • the second diffusion plate 512 is arranged between the light guide member 520 and the light receiving element 504 and diffuses the light from the light guide member 520.
  • the light guide member 520 has a rod shape.
  • the light guide member 520 may be arranged in a direction from the top of the housing 502 toward the bottom.
  • the light guide member 520 may be arranged to stand on the base 501.
  • the first diffusion plate 510, the second diffusion plate 512, and the light guide member 520 may be composed of resins such as polycarbonate, polystyrene, Teflon (registered trademark), acrylic, and the like.
  • the antenna 82 is arranged in a manner surrounding the light guide member 520.
  • the light guide member 520 may be arranged in the cavity of the antenna 82.
  • the antenna 82 is a coil-shaped antenna.
  • the antenna 82 may be composed of, for example, a plurality of rod antennas, and the plurality of rod antennas may be arranged around the periphery of the plurality of light guide members 520.
  • the rod cover 522 is a hollow cover covering the outer surface of the light guide member 520.
  • the outer side surface of the light guide member 520 and the inner side surface of the rod cover 522 may be separated.
  • the cylinder 524 is a holding member that holds the plurality of rod covers 522 inside.
  • the cylinder 524 has a plurality of through holes 525 for receiving a plurality of rod covers 522.
  • the rod cover 522 may be made of resin.
  • the rod cover 522 is preferably made of white parts. Therefore, the light guided to the light guide member 520 may be efficiently reflected by the rod cover 522 and may travel inside the light guide member 520.
  • the cylinder 524 may be made of resin.
  • the cylinder 524 is preferably made of black parts. Thus, it is possible to prevent excess light from entering the light guide member 520 from the outside.
  • FIG. 7 shows a cross-sectional view of the sensor unit 600.
  • the sensor unit 600 further includes a substrate 530 on which the MCU 70 is mounted, and a substrate 532 which is arranged on the substrate 530 and on which the antenna 82 and the light receiving element 504 are mounted.
  • FIG. 8 is an enlarged cross-sectional view of the light receiving element 504 and the light guide member 520. As shown in FIG. 8, the central axis of the light receiving surface of the light receiving element 504 and the central axis of the light guide member 520 are on the same straight line 508. Therefore, the light guide element 504 can efficiently receive the light guided by the light guide member 520.
  • the illuminance sensor 500 when the illuminance sensor 500 is used on a sunny day, due to the influence of Rayleigh scattering, the illuminance in the short wavelength range such as blue and green is greater than the illuminance in the long wavelength range such as red.
  • the illuminance sensor 500 even when the illuminance sensor 500 is used on a sunny day, when direct sunlight hits the illuminance sensor 500, the influence of Rayleigh scattering can be ignored, and the illuminance difference of each wavelength is small. That is, according to the posture of the illuminance sensor 500, the angle of sunlight irradiation changes, and the illuminance of each wavelength changes. For example, as shown in FIG.
  • FIG. 10A shows the illuminance of each wavelength measured by the illuminance sensor 500 when the incident angle ⁇ is 0 degrees.
  • FIG. 10B shows the illuminance of each wavelength measured by the illuminance sensor 500 when the incident angle ⁇ is greater than 0 degrees.
  • the illuminance ratio (spectral ratio) of each wavelength is preferably fixed.
  • the ratio VB/VNIR of the blue illuminance VB to the near-infrared illuminance VNIR is preferably constant.
  • the first diffusion plate 510 is arranged on the incident surface side of the light guide member 520 and the second diffusion plate 512 is arranged on the exit surface side of the light guide member 520.
  • the first diffusion plate 510 diffuses the short-wavelength light more than the long-wavelength light. Therefore, more short-wavelength light is introduced into the light guide member 520 than long-wavelength light. Therefore, even when direct sunlight hits the sensor unit 600, the illuminance in the short wavelength range such as blue and green is greater than the illuminance in the long wavelength range such as red.
  • the second diffusion plate 512 diffuses the light traveling in the light guide member 520 and uniformly irradiates the light receiving surface of the light receiving element 504. Therefore, the light traveling inside the light guide member 520 can be efficiently received on the light receiving surface of the light receiving element 504.
  • the applicant also found that the difference between the first transmittance and the second transmittance of the first diffusion plate 510 is greater than the difference between the third transmittance and the fourth transmittance, and therefore, the change in the illuminance ratio of each wavelength is reduced, where,
  • the third transmittance indicates the transmittance of light in the first wavelength region in the thickness direction of the second diffusion plate 512
  • the fourth transmittance indicates the transmittance of light in the second wavelength region in the thickness direction of the second diffusion plate 512. rate.
  • the transmittance in the thickness direction of the diffuser plate when the transmittance in the thickness direction of the diffuser plate is small, compared with when the transmittance in the thickness direction of the diffuser plate is large, light diffuses in directions other than the thickness direction. That is, when the transmittance in the thickness direction of the diffuser plate is small, the degree of light diffusion of the diffuser plate is larger than when the transmittance in the thickness direction of the diffuser plate is large.
  • the deviation of the illuminance ratio for each incident angle ⁇ is measured based on the following equation.
  • X G ( ⁇ n ) represents the deviation of the illuminance ratio of the green region G to the illuminance ratio of the near-infrared region NIR at the incident angle ⁇ n .
  • V NIR ( ⁇ n )/V G ( ⁇ n ) represents the ratio of the illuminance in the green region G to the illuminance in the near-infrared region NIR at the incident angle ⁇ n .
  • n represents a natural number.
  • the value range of n is 1-8.
  • the incident angle ⁇ 1 is 0 degrees
  • the incident angle ⁇ 2 is 10 degrees
  • the incident angle ⁇ 3 is 20 degrees
  • the incident angle ⁇ 4 is 30 degrees
  • the incident angle ⁇ 5 is 40 degrees
  • the incident angle ⁇ 6 is 50 degrees
  • ⁇ 7 represents 60 degrees
  • angle ⁇ 8 represents 70 degrees.
  • V NIR ( ⁇ n )/V G ( ⁇ n ) at the incident angle ⁇ n of the 8-mode and derive the maximum V NIR ( ⁇ n )/V G ( ⁇ n ) selected from the incident angle ⁇ n of the 8-mode
  • This difference is referred to as a deviation width (%).
  • the small deviation amplitude (%) means that the deviation of the illuminance ratio corresponding to the incident angle ⁇ is small.
  • the combination of the first diffusion plate 510 and the second diffusion plate 512 in which the deviation width (%) is 6% or less is "good".
  • 11 and 12 show the transmittance characteristics of the diffuser plates used for the first diffuser plate 510 and the second diffuser plate 512 at each wavelength.
  • FIG. 13 shows a combination mode of the first diffusion plate 510 and the second diffusion plate 512.
  • FIG. 13 shows a case where the diffusion plate J is used as the first diffusion plate 510, and any one of the diffusion plates A, B, C, and D is used as the second diffusion plate 512.
  • FIG. 14 shows the respective deviation widths (%) of the combination pattern of the first diffusion plate 510 and the second diffusion plate 512 in FIG. 13.
  • FIG. 15 shows a combination mode of the first diffusion plate 510 and the second diffusion plate 512.
  • 15 shows the use of diffuser C as the first diffuser 510, diffuser C, diffuser A, diffuser E, diffuser F, diffuser G, diffuser H, diffuser I, diffuser J, diffuser Any one of the plate K and the diffusion plate L is used as the second diffusion plate 512.
  • FIG. 16 shows the respective deviation widths (%) of the combination mode of the first diffusion plate 510 and the second diffusion plate 512 in FIG. 15.
  • the applicant found that by using a diffuser with a wavelength of 830 nm or more and 890 nm or less, and a transmittance of 30% or more and 40% or less, and a wavelength of 430 nm or more and 490 nm or less, the transmittance of 12% or more and As the first diffusion plate 510, a diffusion plate of 22% or less can obtain a "good" result.
  • the applicant found that by using a diffuser with a wavelength of 830 nm or more and 890 nm or less, and a transmittance of 48% or more and 60% or less, and a diffusion plate having a wavelength of 430 nm or more and 490 nm or less, and a transmittance of 55% or more and 70% or less The plate is used as the second diffusion plate 512, and the result of "good" can be obtained.
  • the illuminance sensor 500 can be arranged in a limited space without reducing the measurement accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Details Of Aerials (AREA)

Abstract

一种移动体,包括具有透光部分的壳体(502),还包括布置在壳体(502)内部的受光元件(504)以及导光部件(520),导光部件(520)将透光部分的光导引至受光元件(504)。壳体(502)可以具有第一扩散板(510),其使来自壳体(502)外部的光扩散。移动体可以包括第二扩散板(512),其布置在导光部件(520)与受光元件(504)之间,使来自导光部件(520)的光扩散。

Description

传感器以及移动体 技术领域
本发明涉及一种传感器以及移动体。
背景技术
专利文献1中公开了一种包括多频带传感器和照度传感器的无人机。
背景技术文献:
[专利文献]
[专利文献1]美国专利申请公开第2017/0356799号说明书
发明内容
发明所要解决的技术问题:
期望将照度传感器布置在有限的空间中而不降低其测量精度。
用于解决技术问题的手段:
本发明的一个方面所涉及的移动体可以包括具有透光部分的壳体。移动体可以包括布置在壳体内部的受光元件。移动体可以包括导光部件,其布置在壳体内部,并将透过部分的光导引至受光元件。
壳体的上述部分可以具有使来自壳体外部的光扩散的第一扩散板。
移动体可以包括第二扩散板,其布置在导光部件与受光元件之间,使来自导光部件的光扩散。
第一透射率可以小于第二透射率,所述第一透射率表示第一波长区域的光在第一扩散板的厚度方向上的透射比例,所述第二透射率表示比第一波长区域长的第二波长区域的光在第一扩散板的厚度方向上的透射比例。
第一波长区域可以包括蓝色区域,第二波长区域可以包括红色区域。
第一透射率与第二透射率之差可以大于第三透射率与第四透射率之差,第三透射率表示第一波长区域的光在第二扩散板的厚度方向上的透射比例,第四透射率表示第二波长区域的光在第二扩散板的厚度方向上的透射比例。
移动体可以包括布置在壳体内部、以围绕导光部件方式布置的天线。
天线可以为空心天线。导光部件可以布置在天线的空腔内。
天线可以为线圈状天线。
移动体可以包括基于天线接收的信号来测量移动体的位置的电路。
移动体可以包括覆盖导光部件的外侧面的空心罩。导光部件的外侧面和罩的内侧面可以分离。
移动体可以包括多个受光元件、多个导光部件和多个罩。移动体可以包括布置在壳体内部、将多个罩保持在内部的保持部件。
罩可以为白色部件。保持部件可以为黑色部件。
保持部件可以具有收容多个罩的多个通孔。
壳体可以布置在移动体的顶部。
导光部件可以为棒状。受光元件的受光面的中心轴与导光部件的中心轴可以在同一直线上。
本发明的一个方面所涉及的传感器单元可以包括具有透光部分的壳体。传感器单元可以包括布置在壳体内部的受光元件。传感器单元可以包括导光部件,其布置在壳体内部,将透过部分的光导引至受光元件。传感器单元可以包括布置在壳体内部、围绕导光部件周围的天线。
壳体的上述部分可以具有使来自壳体外部的光扩散的第一扩散板。
传感器单元可以包括布置在导光部件与受光元件之间,并使来自导光部件的光扩散的第二扩散板。
本发明的一个方面所涉及的传感器单元可以包括壳体,其具有使来自外部的光透过并扩散的第一扩散板。传感器单元可以包括布置在壳体内部的受光元件。传感器单元可以包括导光部件,其布置在壳体的内部,并将透过第一扩散板的光导引至受光元件。传感器单元可以包括布置在导光部件与受光元件之间,并使来自导光部件的光扩散的第二扩散板。
根据本发明的一个方面,能够将可用于照度传感器的受光元件布置在有限空间内而不降低测量精度。
另外,上述发明内容中并没有穷举本发明所需的所有必要的特征。此外,这些特征组的子组合也可以构成发明。
附图说明
图1是示出无人驾驶航空器(UAV)及远程操作装置的外观的一个示例的图。
图2是示出搭载于UAV上的摄像系统的外观的一个示例的图。
图3是示出搭载于UAV上的摄像系统的外观的另一个示例的图。
图4是示出UAV的功能块的一个示例的图。
图5是示出传感器单元的外观立体图
图6是示出传感器单元的分解立体图。
图7是示出传感器单元的剖面图。
图8是示出传感器单元的剖面的局部放大图。
图9是用于描述入射角的示图。
图10A是示出在入射角为0度时由照度传感器测定的照度与波长的关系的一个示例的图。
图10B是示出在入射角为0度以上时由照度传感器测定的照度与波长的关系的一个示例的图。
图11是示出扩散板的透射率与波长之间的关系的一个示例的图。
图12是示出扩散板的透射率与波长之间的关系的一个示例的图。
图13是示出第一扩散板和第二扩散板的组合模式的图。
图14是示出图13的第一扩散板和第二扩散板的组合模式各自的偏差幅度(%)的图。
图15是示出第一扩散板和第二扩散板的组合模式的图。
图16是示出图15的第一扩散板和第二扩散板的组合模式各自的偏差幅度(%)的图。
符号说明:
10   UAV
20   UAV主体
30   UAV控制部
32   存储器
36   通信接口
40   推进部
41   GPS接收器
42   惯性测量装置
43   磁罗盘
44   气压高度计
45   温度传感器
46   湿度传感器
50   万向节
60   摄像装置
82   天线
100  摄像系统
110  R用摄像装置
120  G用摄像装置
130  B用摄像装置
140  RE用摄像装置
150  NIR用摄像装置
160  RGB用摄像装置
300  远程操作装置
500  照度传感器
501  基座
502  壳体
504  受光元件
510  第一扩散板
512  第二扩散板
520  导光部件
522  杆罩
524  圆柱体
525  通孔
530  基板
532  基板
600  传感器单元
具体实施方式
以下,通过发明的实施方式来对本发明进行说明,但是以下实施方式并非限制权利要求书所涉及的发明。此外,实施方式中说明的特征的所有组合未必是发明的解决方案所必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
在权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人就无法提出异议。但是,在除此以外的情况下,保留一切著作权。
图1表示无人驾驶航空器(UAV)10及远程操作装置300的外观的一个示例。UAV10包括UAV主体20、万向节50、多个摄像装置60、摄像系统100以及传感器单元600。UAV10为移动体的一个示例。所谓移动体,是指包括在空中移动的飞行体、在地面上移动的车辆、在水上移动的船舶等的概念。在空中移动的飞行体的概念不仅包括UAV,还包括在空中移动的其它的飞行器、飞艇、直升机等。
UAV主体20包括多个旋翼。多个旋翼为推进部的一个示例。UAV主体20通过控制多个旋翼的旋转而使UAV10飞行。UAV主体20使用例如四个旋翼来使UAV10飞行。旋翼的数量不限于四个。另外,UAV10也可以是没有旋翼的固定翼机。
传感器单元600包括照度传感器以及RTK。摄像系统100是在多个波段的每一个对所期望的摄像范围内的对象进行拍摄的拍摄用多光谱相机。万向节50可旋转地支撑摄像系统100。万向节50为支撑机构的一个示例。例如,万向节50使用致动器以俯仰轴为中心可旋转地支撑摄像系统100。万向节50使用致动器进一步分别以滚转轴和偏航轴为中心可旋转地支撑摄像系统100。万向节50可通过使摄像系统100以偏航轴、俯仰轴及滚转轴中的至少一个为中心旋转,来变更摄像系统100的姿势。
多个摄像装置60是为了控制UAV10的飞行而对UAV10的周围进行拍摄的传感用相机。两个摄像装置60可以设置于UAV10的机头、即正面。并且,其它两个摄像装置60可以设置于UAV10的底面。正面侧的两个摄像装置60可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置60也可以成对,起到立体相机的作用。摄像装置60可以测量出摄像装置60的摄像范围所包含的对象的存在以及到该对象的距离。摄像装置60为对存在于摄像系统100的摄像方向上的对象进行测量的测量装置的一个示例。测量装置也可以是对存在于摄像系统100的摄像方向上的对象进行测量的红外传感器、超声波传感器等的其它的传感器。可以根据由多个摄像装置60所拍摄的图像来生成UAV10周围的三维空间数据。UAV10所包括的摄像装置60的数量不限于四个。UAV10包括至少一个摄像装置60即可。UAV10也可以在UAV10的机头、机尾、侧面、底面及顶面分别包括至少一个摄像装置60。摄像装置60中可设定的视角可大于摄像系统100中可设定的视角。摄像装置60也可以具有单焦点镜头或鱼眼镜头。
远程操作装置300与UAV10通信,以远程操作UAV10。远程操作装置300可以与UAV10进行无线通信。远程操作装置300向UAV10发送表示上升、下降、加速、减速、前进、后退、旋转等与UAV10的移动有关的各种指令的指示信息。指示信息包括例如使UAV10的高度上升的指示信息。指示信息可以表示UAV10应位于的高度。UAV10进行移动,以位于从远程操作装置300接收的指示信息所表示的高度。指示信息可以包括使UAV10上升的上升指令。UAV10在接受上升指令的期间上升。在UAV10的高度已达到上限高度时,即使接受上升指令,也可以限制UAV10上升。
图2是示出搭载于UAV10上的摄像系统100的外观的一个示例的图。摄像系统100是对预设的多个波段的每个波段的图像数据分别进行拍摄的多光谱照相机。摄像系统100包括R用摄像装置110、G用摄像装置120、B用摄像装置130、RE用摄像装置140以及NIR用摄像装置150。摄像系统100能够将由R用摄像装置110、G用摄像装置120、B用摄像装置130、RE用摄像装置140以及NIR用摄像装置150拍摄的各个图像数据作为多光谱图像进行记录。例如,多光谱图像可用于对农作物的健康状态以及活力进行预测。
多光谱图像例如可以用来计算标准植被指标(NDVI)。NDVI由下式表示。
【式1】
Figure PCTCN2020092969-appb-000001
IR表示近红外线区域反射率,R表示可见光区域中红色的反射率。
R用摄像装置110具有使红色区域波段的光透过的滤波器,并输出红色区域波段的图像信号即R图像信号。例如,红色区域的波段是620nm~750nm。红色区域的波段可以是红色区域中特定的波段,例如可以是663nm~673nm。
G用摄像装置120具有使绿色区域波段的光透过的滤波器,并输出绿色区域波段的图像信号即G图像信号。例如,绿色区域的波段是500nm~570nm。绿色区域的波段可以是绿色区域中特定的波段,例如可以是550nm~570nm。
B用摄像装置130具有使蓝色区域波段的光透过的滤波器,并输出蓝色区域波段的图像信号即B图像信号。例如,蓝色区域的波段是450nm~500nm。蓝色区域的波段可以是蓝色区域中特定的波段,例如可以是465nm~485nm。
RE用摄像装置140具有使红色边缘区域波段的光透过的滤波器,并输出红色边缘区域波段的图像信号即RE图像信号。例如,红色边缘区域的波段是705nm~745nm。红色边缘区域的波段可以是712nm~722nm。
NIR用摄像装置150具有使近红外线区域波段的光透过的滤波器,并输出近红外线区域波段的图像信号即NIR图像信号。例如,近红外线区域的波段是800nm~2500nm。近红外线区域的波段可以是800nm~900nm。
图3是示出搭载于UAV10上的摄像系统100的外观的另一个示例的图。摄像系统100除了G用摄像装置120、B用摄像装置130、RE用摄像装置140以及NIR用摄像 装置150之外还包括RGB用摄像装置160,在这一点上与图2所示的摄像系统100不同。RGB用摄像装置160可与普通的照相机相同,包括光学系统及图像传感器。图像传感器可以包括以拜耳阵列布置且使红色区域波段的光透过的滤波器、使绿色区域波段的光透过的滤波器以及使蓝色区域波段的光透过的滤波器。RGB用摄像装置160可以输出RGB图像。例如,红色区域的波段可以是620nm~750nm。例如,绿色区域的波段可以是500nm~570nm。例如,蓝色区域的波段是450nm~500nm。
图4示出UAV10的功能块的一个示例。UAV10包括UAV控制部30、存储器32、通信接口36、推进部40、GPS接收器41、惯性测量装置42、磁罗盘43、气压高度计44、温度传感器45、湿度传感器46、万向节50、摄像装置60及摄像系统100。
通信接口36与远程操作装置300等的其它装置通信。通信接口36可以从远程操作装置300接收包括对UAV控制部30的各种指令的指示信息。存储器32存储UAV控制部30对推进部40、GPS接收器41、惯性测量装置(IMU)42、磁罗盘43、气压高度计44、温度传感器45、湿度传感器46、万向节50、摄像装置60及摄像系统100进行控制所需的程序等。存储器32可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM以及USB存储器等的闪存中的至少一个。存储器32可以设置于UAV主体20的内部。其可以设置成可从UAV主体20中拆卸下来。
UAV控制部30按照存储在存储器32中的程序来控制UAV10的飞行及拍摄。UAV控制部30可以由CPU或MPU等微处理器以及MCU等微控制器等构成。UAV控制部30按照经由通信接口36从远程操作装置300接收到的指令来控制UAV10的飞行及拍摄。推进部40推进UAV10。推进部40具有多个旋翼和使多个旋翼旋转的多个驱动电机。推进部40按照来自UAV控制部30的指令,通过多个驱动电机使多个旋翼旋转,以使UAV10飞行。
GPS接收器41接收从多个GPS卫星发送的表示时间的多个信号。GPS接收器41根据所接收的多个信号来计算出GPS接收器41的位置(纬度及经度)、即UAV10的位置(纬度及经度)。IMU42检测UAV10的姿势。IMU42检测UAV10的前后、左右以及上下的三轴方向的加速度和俯仰轴、滚转轴以及偏航轴的三轴方向的角速度作为UAV10的姿势。磁罗盘43检测UAV10的机头的方位。气压高度计44检测UAV10的飞行高度。气压高度计44检测UAV10周围的气压,并将检测到的气压换算为高度,以检测高度。温度传感器45检测UAV10周围的温度。湿度传感器46检测UAV10周围的湿度。
UAV10还包括传感器单元600。传感器单元600包括MCU70、RTK80、以及照度传感器500。MCU70是控制RTK80和照度传感器500的控制电路。RTK80是实时动态GPS。RTK80根据设置在预定位置的基站的位置信息,通过RTK定位来定位UAV10的位置。照度传感器500测量周围的照度。
摄像系统100可以基于由照度传感器500测得的照度来执行摄像控制。摄像系统100可以基于由照度传感器500测量的每个颜色的照度来执行每个颜色的曝光控制。 摄像系统100可以基于由照度传感器500测量的各个颜色的照度,执行R用摄像装置110、G用摄像装置120、B用摄像装置130、RE用摄像装置140以及NIR用摄像装置150的曝光控制。
这里,为了照度传感器500能够高精度地测定周围环境的照度,优选地,在照度传感器500的周围不存在障碍物。优选地,照度传感器500布置在UAV10的顶部。顶部是UAV10的壳体的上部。UAV10的壳体的上部是在UAV10悬停时位于垂直方向的上侧的部分。顶部是在UAV10悬停时与UAV10的壳体的空腔相对的部分。顶部是在UAV10着陆状态时与面向地面的壳体底部相反侧的部分。
另外,为了RTK80从基站以及卫星等接收信号,优选地,在RTK80周围不存在障碍物。因此,RTK80也优选地布置在UAV10的顶部。但是,UAV10的顶部的空间有限。故在本实施例中,以照度传感器500和RTK80彼此不干扰的方式将照度传感器500和RTK80布置在UAV10的顶部空间。
图5是包括照度传感器500和RTK80的传感器单元600的外观立体图。在图5中,以半透明的方式示出传感器单元600的壳体502以使内部可视化。图6示出传感器单元600的分解立体图。
传感器单元600具有第一扩散板510、壳体502、圆柱体524、多个杆罩522、多个导光部件520、多个第二扩散板512、多个受光元件504、天线82以及基座501。圆柱体524、杆罩522、第二扩散板512、受光元件504和天线82布置在壳体502的内部。在本实施方式中,对UAV10的UAV主体20的壳体与传感器单元600的壳体分体地构成的示例进行说明。但是,UAV10的UAV主体20的壳体与传感器单元600的壳体也可以一体地构成。传感器单元600可以内置在UAV主体20的壳体内。
天线82用作RTK80的天线。天线82可以是空心天线。天线82可以是线圈状天线。天线82可沿着壳体502的内侧的侧面螺旋状地布置。
天线82可分别从布置在预定位置的基站和GPS卫星接收位置信息。为了将照度传感器500布置在周围没有障碍物的空间中,可以考虑将照度传感器500布置在壳体502的顶部。然而,当照度传感器500布置在壳体502的顶部时,照度传感器500所产生的电磁噪声可能干扰天线82所接收的信号。
因此,在本实施方式中,照度传感器500布置在天线82的空腔中。从而防止照度传感器500产生的电磁噪声干扰天线82接收的信号。
壳体502具有透过光的部分。透过光的部分具有扩散来自壳体502外部光的第一扩散板510。受光元件504用作照度传感器500的受光部。受光元件504接收光并将接收到的光转换成电信号。照度传感器500基于从受光元件504输出的电信号来测量照度。多个受光元件504的每一个可以接收不同范围的波长。多个受光元件504中的第一受光元件可以接收400nm以上且700nm以下范围内的波长。多个受光元件504中的第二光接收元件可以接收700nm以上且900nm以下范围内的波长。多个受光元件504中的第三光接收元件可以接收900nm以上且1500nm以下范围内的波长。
导光部件520将透过第一扩散板510的光导引至受光元件504。第二扩散板512布置在导光部件520与受光元件504之间,并使来自导光部件520的光扩散。导光部件520是棒状。导光部件520可沿从壳体502的顶部朝向底部的方向布置。导光部件520可布置成竖立在基座501上。
第一扩散板510、第二扩散板512以及导光部件520可由诸如聚碳酸酯、聚苯乙烯、特氟隆(注册商标)、丙烯酸等树脂构成。
天线82以围绕导光部件520的方式布置。导光部件520可以布置在天线82的空腔内。通过天线82布置在导光部件520的外侧,可以不受照度传感器500的电磁噪声影响而接收信号。
另外,在本实施例中,天线82是线圈形天线。然而,天线82可以由例如多个杆状天线构成,并且可以将多个杆状天线围绕多个导光部件520的周围布置。
杆罩522是覆盖导光部件520的外表面的空心罩。导光部件520的外侧面和杆罩522的内侧面可以分离。圆柱体524是将多个杆罩522保持在内部的保持部件。圆柱体524具有收容多个杆罩522的多个通孔525。杆罩522可以由树脂制成。杆罩522优选地由白色部件制成。因此,被导引至导光部件520的光可以被杆罩522高效地反射,并且可以在导光部件520内部行进。此外,圆柱体524可以由树脂制成。圆柱体524优选地由黑色部件制成。由此,可以防止多余的光从外部进入导光部件520。
图7示出传感器单元600的剖面图。传感器单元600还包括:基板530,其上搭载有MCU70;以及基板532,其布置在基板530上并且其上搭载有天线82和受光元件504。
图8是受光元件504和导光部件520的放大剖面图。如图8所示,受光元件504的受光面的中心轴与导光部件520的中心轴在同一直线508上。从而导光元件504可以高效地接收由导光部件520导引的光。
只是,当在晴天使用照度传感器500时,由于瑞利散射的影响,在蓝色和绿色等短波长范围内的照度大于红色等长波长范围内的照度。不过,即使在晴天使用照度传感器500的情况下,当阳光直射照度传感器500时,也可以忽略瑞利散射的影响,各波长的照度差异较小。即,根据照度传感器500的姿势,太阳光照射的角度发生变化,各波长的照度发生变化。例如,如图9所示,当入射角θ改变时,即表示太阳光入射的方向507相对于与受光元件504的受光表面505垂直的方向506的角度改变时,照度传感器500所测量的各波长的照度会发生变化。图10A示出了当入射角θ为0度时,照度传感器500测量的各波长的照度。图10B示出了当入射角θ大于0度时,照度传感器500测量的各波长的照度。
如图10A所示,当阳光直射照度传感器500时,可以忽略瑞利散射的影响,各波长的照度变化较小。另一方面,如图10B所示,在阳光不直射在受光元件504的受光面505上,在天晴的情况下,蓝色和绿色等短波长范围的照度大于红色等长波长范围的照度。
然而,即使照度传感器500的姿势改变,各波长的照度比(光谱比)优选地是固定不变的。例如,即使照度传感器500的姿势变化,优选地蓝色照度VB与近红外照度VNIR之比VB/VNIR也固定不变。
因此,在本实施方式中,第一扩散板510布置在导光部件520的入射面侧,第二扩散板512布置在导光部件520的出射面侧。由此使得即使照度传感器500的姿势改变,各波长的照度比也不会改变。
第一扩散板510使短波长的光比长波长的光扩散更多。从而,与长波长光相比,更多的短波长光被导入到导光部件520中。因此,即使当阳光直射在传感器单元600上时,蓝色和绿色等短波长范围内的照度也大于红色等长波长范围内的照度。
另外,第二扩散板512使在导光部件520内行进的光扩散,并且均匀地照射在受光元件504的受光面。因此,可以在受光元件504的受光面上高效地接收在导光部件520内部行进的光。
此外,申请人发现,通过根据波长调整第一扩散板510的厚度方向上的光透射率,可以减小根据入射角θ的各波长的照度比的变化。更具体地,申请人发现,可以通过使得第一透射率即表示包括蓝色波长区域的第一波长区域的光在第一扩散板510的厚度方向上透射的比例小于第二透射率即表示包括红色波长区域的第二波长区域的光在第一扩散板510的厚度方向上的透射比例,来防止根据入射角θ的各波长的照度之比的变化变小。其中,第二波长区域是比第一波长区域长的波长区域。
申请人还发现,第一扩散板510的第一透射率和第二透射率之差比第三透射率与第四透射率之差大,因此,各波长的照度比的变化减小,其中,第三透射率表示第一波长区域的光在第二扩散板512的厚度方向上的透光率,第四透射率表示第二波长区域的光在第二扩散板512的厚度方向上的透光率。
另外,当在扩散板的厚度方向上的透射率较小时,与当在扩散板的厚度方向上的透射率较大时相比,光在厚度方向以外的方向上扩散。即,在扩散板的厚度方向上的透射率小的情况下,与在扩散板的厚度方向上的透射率大的情况相比,扩散板的光的扩散程度较大。
以下,对将厚度方向的透射率不同的多个扩散板分别用于第一扩散板510及第二扩散板512时,测量入射角θ对应的照度比的偏差程度后,对其实验结果进行说明。
基于下式测量每个入射角θ的照度比的偏差。
【式2】
Figure PCTCN2020092969-appb-000002
其中,X Gn)表示入射角θ n下,绿色区域G的照度与近红外区域NIR的照度比的偏差。V NIRn)/V Gn)表示入射角θ n下,绿色区域G中的照度与近红外区域NIR的照度比。n表示自然数。此处,n取值范围是1~8。
入射角θ 1表示0度,入射角θ 2表示10度,入射角θ 3表示20度,入射角θ 4表示30度,入射角θ 5表示40度,入射角θ 6表示50度,入射角θ 7表示60度,角度θ 8表示70度。
在8模式的入射角θn下,测量V NIRn)/V Gn),导出从8模式的入射角θ n中选择的最大V NIRn)/V Gn)与最小V NIRn)/V Gn)的差。在此,将此差称为偏差幅度(%)。偏差幅度幅度(%)较小意味着入射角θ对应的照度比的偏差较小。
在此,将偏差幅度(%)为6%以下的第一扩散板510和第二扩散板512的组合设为“良好”。
图11以及图12表示用于第一扩散板510和第二扩散板512的扩散板的各波长的透射率的特性。测量从扩散板A~L中选择两个扩散板分别用于第一扩散板510和第二扩散板512时的偏差幅度(%)。
图13表示第一扩散板510和第二扩散板512的组合模式。图13表示扩散板J用作第一扩散板510,扩散板A、B、C和D中的任何一个用作第二扩散板512的情形。
图14表示图13中的第一扩散板510和第二扩散板512的组合模式的各个偏差幅度(%)。
图15表示第一扩散板510和第二扩散板512的组合模式。图15表示将扩散板C用作第一扩散板510,将扩散板C、扩散板A、扩散板E、扩散板F、扩散板G、扩散板H、扩散板板I、扩散板J、扩散板K和扩散板L中的任何一个用作第二扩散板512。
图16表示图15中的第一扩散板510和第二扩散板512的组合模式的各个偏差幅度(%)。
根据这些测量的结果,申请人发现,通过使用波长为830nm以上且890nm以下,透射率为30%以上且40%以下的扩散板,以及波长为430nm以上且490nm以下,透射率为12%以上且22%以下的扩散板作为第一扩散板510,可以得到“良好”这一结果。
另外,申请人发现,通过使用波长为830nm以上且890nm以下、透射率为48%以上且60%以下的扩散板,以及波长为430nm以上且490nm以下、透射率55%以上且70%以下的扩散板作为第二扩散板512,可以得到“良好”这一结果。
即,申请人发现,第一扩散板510和第二扩散板512的组合可以通过使用满足上述条件的扩散板的组合来抑制入射角θ对应的照度比的偏差。
如上所述,根据本实施例的传感器单元600,可以在不降低测量精度的情况下将照度传感器500布置在有限的空间中。另外,可以防止当照度传感器500和RTK80在有限的空间中彼此相邻布置时,照度传感器500产生的电磁噪声干扰RTK80的天线82接收的信号。
应该注意的是,权利要求书、说明书以及附图中所示的装置、系统、程序以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所记载的范围。对本领域普通技术人员来说,显然可以对上述实施方式加以各 种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。

Claims (20)

  1. 一种移动体,其特征在于,其包括:具有透光部分的壳体;
    布置在所述壳体内部的受光元件;以及
    导光部件,其布置在所述壳体内部,并将透过所述部分的光导引至所述受光元件。
  2. 根据权利要求1所述的移动体,其特征在于,所述部分具有使来自所述壳体外部光扩散的第一扩散板。
  3. 根据权利要求2所述的移动体,其特征在于,还包括第二扩散板,其布置在所述导光部件与所述受光元件之间,使来自所述导光部件的光扩散。
  4. 根据权利要求3所述的移动体,其特征在于,第一透射率小于第二透射率,所述第一透射率表示所述第一波长区域的光在第一扩散板的厚度方向上的透射比例,所述第二透射率表示比所述第一波长区域长的第二波长区域的光在所述第一扩散板的厚度方向上的透射比例。
  5. 根据权利要求4所述的移动体,其特征在于,所述第一波长区域包括蓝色区域,所述第二波长区域包括红色区域。
  6. 根据权利要求4所述的移动体,其特征在于,所述第一透射率与所述第二透射率之差大于第三透射率与第四透射率之差,所述第三透射率表示所述第一波长区域的光在所述第二扩散板的厚度方向上的透射比例,所述第四透射率表示所述第二波长区域的光在所述第二扩散板的厚度方向上的透射比例。
  7. 根据权利要求1所述的移动体,其特征在于,还包括布置在所述壳体内部、以围绕所述导光部件的方式布置的天线。
  8. 根据权利要求7所述的移动体,其特征在于,所述天线为空心天线,
    所述导光部件布置在所述天线的空腔内。
  9. 根据权利要求8所述的移动体,其特征在于,所述天线为线圈状天线。
  10. 根据权利要求7所述的移动体,其特征在于,还包括基于所述天线接收的信号来测量所述移动体的位置的电路。
  11. 根据权利要求1所述的移动体,其特征在于,还包括覆盖所述导光部件的外侧面的空心罩,
    所述导光部件的外侧面和所述罩的内侧面分离。
  12. 根据权利要求11所述的移动体,其特征在于,包括多个所述受光元件;
    多个所述导光部件;以及
    多个所述罩,
    所述移动体还包括:
    保持部件,其布置在所述壳体内部,并将所述多个罩保持在内部。
  13. 根据权利要求12所述的移动体,其特征在于,所述罩为白色部件,所述保持部件为黑色部件。
  14. 根据权利要求13所述的移动体,其特征在于,所述保持部件具有收容所述多个罩的多个通孔。
  15. 根据权利要求1所述的移动体,其特征在于,所述壳体布置在所述移动体的顶部。
  16. 根据权利要求1所述的移动体,其特征在于,
    所述导光部件为棒状,
    所述受光元件的受光面的中心轴与所述导光部件的中心轴在同一直线上。
  17. 一种传感器单元,其特征在于,其包括:
    具有透光部分的壳体;
    受光元件,其布置在所述壳体内部;
    导光部件,其布置在所述壳体内部,并将透过所述部分的光导引至所述受光元件;以及
    天线,其布置在所述壳体内部,并围绕所述导光部件周围。
  18. 根据权利要求17所述的传感器单元,其特征在于,所述部分具有使来自所述壳体外部的光扩散的第一扩散板。
  19. 根据权利要求18所述的传感器单元,其特征在于,还包括第二扩散板,其布置在所述导光部件与所述受光元件之间,使来自所述导光部件的光扩散。
  20. 一种传感器单元,其特征在于,包括:壳体,其具有使来自外部的光扩散并透射的第一扩散板;
    受光元件,其布置在所述壳体的内部;
    导光部件,其布置在所述壳体的内部,并将透过所述第一扩散板的光导引至所述受光元件的;以及
    第二扩散板,其布置在所述导光部件与所述受光元件之间,使来自所述导光部件的光扩散。
PCT/CN2020/092969 2019-06-04 2020-05-28 传感器以及移动体 WO2020244441A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080003310.2A CN112334738B (zh) 2019-06-04 2020-05-28 传感器以及移动体
US17/306,949 US20210255034A1 (en) 2019-06-04 2021-05-04 Sensor unit and mobile object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019104827A JP6798073B2 (ja) 2019-06-04 2019-06-04 移動体、及びセンサユニット
JP2019-104827 2019-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/306,949 Continuation US20210255034A1 (en) 2019-06-04 2021-05-04 Sensor unit and mobile object

Publications (1)

Publication Number Publication Date
WO2020244441A1 true WO2020244441A1 (zh) 2020-12-10

Family

ID=73646849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092969 WO2020244441A1 (zh) 2019-06-04 2020-05-28 传感器以及移动体

Country Status (4)

Country Link
US (1) US20210255034A1 (zh)
JP (1) JP6798073B2 (zh)
CN (1) CN112334738B (zh)
WO (1) WO2020244441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102295A1 (ja) * 2020-11-10 2022-05-19 ソニーグループ株式会社 撮像装置
JP7370023B1 (ja) 2022-08-05 2023-10-27 株式会社レイマック 検査装置及び検査方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967380A (zh) * 2012-12-09 2013-03-13 中国科学院光电技术研究所 一种基于单元光敏探测器阵列的哈特曼波前传感器
US20160149374A1 (en) * 2014-11-22 2016-05-26 Bien Chann Wavelength beam combining laser systems utilizing etalons
JP2016143716A (ja) * 2015-01-30 2016-08-08 三菱電機株式会社 波長制御用モニタ、光モジュール、波長モニタ方法
CN106767751A (zh) * 2016-11-25 2017-05-31 北京航空航天大学 阵列式偏振导航传感器
CN107356248A (zh) * 2017-08-01 2017-11-17 北京航空航天大学 一种具有环境适应性的多光谱偏振导航系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684908B2 (ja) * 1987-02-03 1994-10-26 松下電器産業株式会社 照度計受光部
EP1003237A1 (fr) * 1998-11-17 2000-05-24 Koninklijke Philips Electronics N.V. Antenne destinée à un émetteur récepteur de radiocommunication
JP2001024764A (ja) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd 携帯電話機の着信表示装置
CN1241401C (zh) * 2002-10-08 2006-02-08 佳能株式会社 无线摄象装置及其控制方法
JP2008014939A (ja) * 2006-06-07 2008-01-24 Eko Instruments Trading Co Ltd 日射計測システム、日射計測用のプログラム
JP2011220770A (ja) * 2010-04-07 2011-11-04 Topcon Corp 測光機器の受光装置
KR20150097888A (ko) * 2014-02-18 2015-08-27 삼성디스플레이 주식회사 백라이트 유닛
US9470579B2 (en) * 2014-09-08 2016-10-18 SlantRange, Inc. System and method for calibrating imaging measurements taken from aerial vehicles
EP3108318B1 (en) * 2014-09-30 2019-07-10 SZ DJI Technology Co., Ltd. System and method for data recording and analysis
EP3306683A4 (en) * 2015-06-01 2018-12-19 Mitsubishi Electric Corporation Light emitting device, display unit, and image display device
CN105093795B (zh) * 2015-06-03 2017-06-16 海信集团有限公司 一种双色激光光源
CN106533951B (zh) * 2016-12-07 2020-04-17 上海斐讯数据通信技术有限公司 一种具有触摸屏的路由器
CN110291368A (zh) * 2017-01-17 2019-09-27 迈卡赛斯公司 多传感器辐照度评估
JP2019066563A (ja) * 2017-09-28 2019-04-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、レンズ装置、撮像装置、制御方法、及びプログラム
JP6565071B2 (ja) * 2017-10-26 2019-08-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、飛行体、制御方法、及びプログラム
CN109752090A (zh) * 2017-11-01 2019-05-14 英弘精机株式会社 日射强度计及测光装置
US11153721B2 (en) * 2018-12-27 2021-10-19 Intel Corporation Sensor network enhancement mechanisms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967380A (zh) * 2012-12-09 2013-03-13 中国科学院光电技术研究所 一种基于单元光敏探测器阵列的哈特曼波前传感器
US20160149374A1 (en) * 2014-11-22 2016-05-26 Bien Chann Wavelength beam combining laser systems utilizing etalons
JP2016143716A (ja) * 2015-01-30 2016-08-08 三菱電機株式会社 波長制御用モニタ、光モジュール、波長モニタ方法
CN106767751A (zh) * 2016-11-25 2017-05-31 北京航空航天大学 阵列式偏振导航传感器
CN107356248A (zh) * 2017-08-01 2017-11-17 北京航空航天大学 一种具有环境适应性的多光谱偏振导航系统

Also Published As

Publication number Publication date
CN112334738A (zh) 2021-02-05
JP2020197483A (ja) 2020-12-10
JP6798073B2 (ja) 2020-12-09
CN112334738B (zh) 2022-11-22
US20210255034A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US11649052B2 (en) System and method for providing autonomous photography and videography
US10401872B2 (en) Method and system for collision avoidance
US10901437B2 (en) Unmanned aerial vehicle including an omnidirectional depth sensing and obstacle avoidance aerial system and method of operating same
US20170217571A1 (en) Uav with transformable arms
TWI528989B (zh) Can independently block the light of the aircraft
WO2020244441A1 (zh) 传感器以及移动体
CN203350719U (zh) 一种单旋翼微型无人机多光谱遥感系统
US20110304736A1 (en) Gimbal positioning with target velocity compensation
US10589860B2 (en) Spherical infrared emitter
KR102325501B1 (ko) 무인 비행체와 그의 기상변화 및 장애물 감지 및 회피 방법
US20210215996A1 (en) Low-profile multi-band hyperspectral imaging for machine vision
US20220301303A1 (en) Multispectral imaging for navigation systems and methods
JP7069503B2 (ja) 飛行体、及びセンサユニット
WO2021083049A1 (zh) 图像处理装置、图像处理方法以及程序
WO2021115166A1 (zh) 确定装置、飞行体、确定方法以及程序
JP6896962B2 (ja) 決定装置、飛行体、決定方法、及びプログラム
WO2020192385A1 (zh) 确定装置、摄像系统及移动体
Rodríguez Navarro et al. Using drones under 250 g for documenting the architectural heritage
Retzlaff On the Potential of Small UAS for Multispectral Remote Sensing in Large-Scale Agricultural and Archaeological Applications
US12126942B2 (en) Active camouflage detection systems and methods
US20240314272A1 (en) Active camouflage detection systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818727

Country of ref document: EP

Kind code of ref document: A1