WO2020244038A1 - 一种基于工位组划分的物料配送方法 - Google Patents

一种基于工位组划分的物料配送方法 Download PDF

Info

Publication number
WO2020244038A1
WO2020244038A1 PCT/CN2019/097474 CN2019097474W WO2020244038A1 WO 2020244038 A1 WO2020244038 A1 WO 2020244038A1 CN 2019097474 W CN2019097474 W CN 2019097474W WO 2020244038 A1 WO2020244038 A1 WO 2020244038A1
Authority
WO
WIPO (PCT)
Prior art keywords
materials
distribution
division
product
station group
Prior art date
Application number
PCT/CN2019/097474
Other languages
English (en)
French (fr)
Inventor
李美燕
黄俊杰
种家欣
聂瑞爱
韩鑫鹏
罗川
王庆文
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US16/966,660 priority Critical patent/US20220092537A1/en
Publication of WO2020244038A1 publication Critical patent/WO2020244038A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • G06Q10/0875Itemisation or classification of parts, supplies or services, e.g. bill of materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • the invention relates to the field of material distribution in a mixed-flow assembly workshop, in particular to a material distribution method based on division of workstation groups.
  • the mixed-flow assembly line is a flexible production system that mixes and continuously produces different types of products on the same production line. It can not only improve production efficiency and expand production capacity, but also meet the assembly requirements of multiple varieties and specifications. It has a certain flexibility and adaptability. , But also increase the difficulty of just-in-time material distribution. For modern complex mixed-flow assembly lines, a reasonable material scheduling plan is the key to ensuring that materials are delivered on time.
  • the existing distribution mode is to store the materials needed for production on the day in the internal temporary storage area of the factory according to the production plan, and then the factory distribution staff will send the materials to the side of the production line.
  • the distribution staff choose the order and quantity of material distribution based on experience. When there is an emergency shortage of material, the material is urged through the mobile phone to ensure normal production.
  • the storage area material storage rules are simple, divided according to categories.
  • the delivered materials may not be required for actual production, and the required materials may not be delivered in place. This results in excessive accumulation of line-side materials and delayed delivery of materials required by the line-side.
  • the work tasks of the distribution staff are extremely uncoordinated.
  • the distribution personnel are busy, and when there is no urgent distribution demand, the distribution personnel are idle.
  • the distribution staff cannot know the consumption of the materials at the side of the line. When there are multiple emergency shortage notifications at the same time, the distribution staff may not deliver in time and cause the production line to stop due to lack of materials.
  • the purpose of the present invention is to solve the above shortcomings and propose a material distribution method based on the division of workstation groups.
  • the distribution method optimizes the design and optimization of the distribution scheduling plan to make the types and quantities of materials to be distributed more reasonable, and to ensure that the production process of the mixed assembly line is not The situation of production outage occurred.
  • a material distribution method based on the division of workstation groups including the following steps:
  • Step 1 Set up an RFID scanner at the product launch, count the number and model of the product launched, and use the number of product launches as an indicator of the production process;
  • Step 2 Obtain the material requirements of each product according to the product's BOM, and correspond the station to the required materials, and calculate the material consumption of each station when the i-th product is produced;
  • Step 3 According to the bill of materials, check the specific information of each material and transportation tool, establish a mathematical model based on the specific information and the number of materials consumed, and plan the material distribution.
  • the material consumption station The composed workstation group Z j performs delivery.
  • Step 4 Plan the distribution route of each station group according to the station group division
  • Step 5 According to the division of workstation groups, the distribution frequency of each material is obtained, and the mathematical model is established according to the material attribute analysis, the selection frequency analysis, the correlation between the materials, and the storage method of the materials, and the warehouse location is optimized;
  • Step 6 Divide the staff into warehouse preparation staff and delivery staff, and deliver according to the work process.
  • the specific information of each material and transportation means includes the information of the storage material container, the type and size of the material box, the combination mode between the material boxes, the number of stored materials, and the transportation of the transportation means. ability.
  • the particular station set is divided by the product of the consumed material quantity, calculated to produce the i-th product, the n-th stations material consumption required amount of material lack in, then in accordance with the n kinds of materials
  • the amount of materials required per unit product Co n , the number of materials in the unit material box Ca n , the volume of the material box V n , and the maximum carrying capacity Q of the transportation means are planned.
  • the transportation stations form a transportation station group. After the distribution is completed, the missing material quantity is updated. A round of material missing stations is divided into a station group.
  • the delivery task is arranged even if the loading rate is low.
  • the formula (1) indicates that the total picking distance of all materials in a fixed period is minimized
  • dab is the travel distance from the b-th shelf to the picking table in the a-th area
  • f n is the average picking frequency of material n in a fixed period
  • St: x nab 1 means that the nth part is placed on the bth shelf of the ath area, otherwise it is 0, which means that a material can only be placed in one location.
  • the mathematical model established based on the material attribute analysis, the selection frequency analysis, the correlation between the materials, and the storage method of the materials is shown in formula (2),
  • the more times the two materials are in the same station group the greater the correlation.
  • the relevant materials are clustered and the material correlation coefficient is defined Is formula (3),
  • P mn represents the number of times that the material m and n are in the same station group
  • r mn represents the correlation between the materials
  • f n is the average picking frequency of material n in a fixed period.
  • the material distribution method based on the division of workstation groups optimizes the design and optimization of the distribution scheduling plan, so that the types and quantities of materials to be distributed are more reasonable.
  • the distribution staff is more coordinated, rationally planning the warehouse location, and improving the efficiency of picking materials.
  • Figure 1 is a flow chart of station group division of the material distribution method
  • Figure 2 is the work flow chart of the warehouse staff of the material distribution method
  • Figure 3 is a work flow chart of the distribution staff of the material distribution method.
  • a material distribution method based on workstation group division includes the following steps:
  • Step 1 Set up an RFID scanner at the product launch, count the number and model of the product launched, and use the number of product launches as an indicator of the production process;
  • Step 2 Obtain the material requirements of each product according to the product's BOM, and correspond the station to the required materials, and calculate the consumption of materials at each station when the i-th product is produced;
  • Step 3 According to the bill of materials, check the specific information of each material and transportation tool, establish a mathematical model based on the specific information and the number of materials consumed, and plan the material distribution.
  • the material consumption station The composed workstation group Z j performs delivery.
  • the specific information of each material and transportation means includes the information of the storage material container, the type and size of the material box, the combination method between the material boxes, the number of stored materials, and the transportation capacity of the transportation means.
  • station group is divided by the number of material consumption products, is calculated to produce the i-th product, the n-th stations material consumption required amount of materials lack in, then according to the n kinds of materials required per unit of product material Plan with the information of the quantity Co n , the quantity of materials in the unit material box Ca n , the volume of the material box V n , and the maximum carrying capacity Q of the transportation means.
  • the material For distribution the transportation stations this time form a transportation station group. After the distribution is completed, the missing material quantity is updated. A round of missing material stations is divided into a station group.
  • Step 4 Plan the distribution route of each station group according to the station group division
  • Step 5 According to the division of workstation groups, the distribution frequency of each material is obtained, and the mathematical model is established according to the material attribute analysis, the selection frequency analysis, the correlation between the materials, and the storage method of the materials, and the warehouse location is optimized;
  • the traditional path planning problem is based on time. Now it is based on the number of products produced. As the assembly time of the factory is unstable, it is more accurate based on the number of products.
  • the distribution path of each station group is reasonably planned according to the divided station groups and the existing factory distribution channels.
  • step 5 according to the analysis of the picking frequency of materials, formula (1) indicates that the total picking distance of all materials in a fixed period is minimized.
  • d ab is the travel distance from the b-th shelf to the picking table in the a-th area
  • f n is the average picking frequency of material n in a fixed period.
  • x nab 1 means that the nth part is placed on the bth shelf of the ath area, otherwise it is 0, which means that a material can only be placed in one location.
  • step 5 the mathematical model established based on material attribute analysis, picking frequency analysis, material relevance, and material storage method is shown in formula (2).
  • the relevant materials are clustered and the material correlation coefficient is defined as the formula ( 3),
  • P mn represents the number of times that the material m and n are in the same station group
  • r mn represents the correlation between the materials
  • f n is the average picking frequency of material n in a fixed period.
  • Step 6 Divide the staff into warehouse preparation staff and delivery staff, and deliver according to the work process.
  • the distribution of the freezer assembly line of an enterprise uses daily distribution tasks according to the daily production plan, without designing and optimizing the material distribution scheduling plan, and the materials distributed may not be required for actual production.
  • the required materials may not be delivered in place, resulting in excessive accumulation of line-side materials, and untimely delivery of line-side materials required, and the warehouse location lacks reasonable planning.
  • Step 1 Paste the RFID code of the corresponding model on each freezer iron sheet, and set up an RFID scanner at the beginning of the assembly line to count the number and models of the products on the line, and use the number of products on the line as the indicator of the production process.
  • Step 2 According to the BOM of the product, know the needs of each material for each product, and correspond the station to the required material, and calculate how much the nth material consumption station consumes when producing the i-th product Pieces of material.
  • Lack in i*Co n
  • Lack in is the total number of n-th materials consumed when the i-th product is produced
  • L n is the number of n materials consumed per unit product. Since the production process is accompanied by distribution, lack in is the actual demand, then j is the station group number, M is the total station group number, and B nj is the delivery quantity of material n in the distribution of station group j.
  • Step 3 According to the principle of full load, when When the corresponding station is divided into a station group. K is the total number of materials, Ca n is the number of material boxes per unit of n kinds of materials, V n is the volume of the material boxes of n kinds of materials, and Q is the maximum loading capacity of the vehicle.
  • K is the total number of materials
  • Ca n is the number of material boxes per unit of n kinds of materials
  • V n is the volume of the material boxes of n kinds of materials
  • Q is the maximum loading capacity of the vehicle.
  • the amount of materials to be delivered is greater than the loading rate of the vehicle
  • the The corresponding stations are divided into the same station group.
  • set the line-side maximum inventory Max n and the minimum inventory Min n In order to prevent too few line-side materials from affecting production, set the line-side maximum inventory Max n and the minimum inventory Min n .
  • the line-side inventory cannot exceed the maximum inventory.
  • the corresponding stations are also formed into station groups. According to the mathematical model,
  • Step 4 According to this station group division, make a reasonable plan for the distribution route of each station group, and distribute the materials according to the daily tasks.
  • the distribution process of the distribution staff is shown in Figure 1.
  • Step 5 According to the division of this station group, the distribution frequency of each material can be obtained, and a mathematical model can be established according to the material attribute analysis, the picking frequency analysis, the correlation between the materials, and the material storage mode, and the warehouse location is optimized.
  • Step 6 The staff are divided into warehouse preparation staff and distribution staff.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于工位组划分的物料配送方法,涉及混流装配车间物料配送领域,包括以下步骤:步骤1:对上线产品数量及型号进行统计,并以产品上线件数作为生产进程的指标;步骤2:根据产品的BOM获得每件产品的物料需求;步骤3:根据物料清单,查看每种物料及运输工具的具体信息,根据具体信息及物料消耗的件数建立数学模型,对物料配送进行规划,步骤4:依据工位组划分对每一工位组配送的路线进行规划;步骤5:根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立数学模型,对仓库库位进行优化;步骤6:根据工作流程进行配送。其解决了现有的混流装配线容易因为物料调度不协调影响整个生产进程的不足。

Description

一种基于工位组划分的物料配送方法 技术领域
本发明涉及混流装配车间物料配送领域,具体涉及一种基于工位组划分的物料配送方法。
背景技术
随着市场竞争的日益加剧和科学技术的高速发展,多品种小批量的混流装配生产成为企业快速响应客户多样化和个性化需求的一种有效手段。混流装配线是一种在同一条生产线上混合连续地生产不同型号产品的柔性生产系统,既能提高生产效率、扩大产能,又能满足多品种多规格的装配需求,具有一定的灵活性和适应性,同时也加大了准时制物料配送的难度。对于现代复杂混流装配线而言,合理的物料调度方案是保证实现物料准时配送的关键。在混流装配线正常运行的基础上,最大限度优化配送车辆行驶路径以及缩短配送时间并提高配送车辆利用率,对优化物料调度方案及实现准时制生产方式具有重要意义。
现有配送模式为,根据生产计划将当日生产所需物料存放在厂区内部暂存区,再由厂区配送人员将物料发送至生产线旁,配送人员按经验选择物料配送的先后顺序及数量,若线边出现紧急缺料,通过手机进行催料,保证正常生产。存区物料存放规则简单,按照类别进行划分。
上述方案缺点在于:
没有对物料配送调度方案进行设计优化,所配送的物料不一定为实际生产所需,而所需的物料可能没有配送到位。造成线边物料堆积过度,以及线边所需物料配送不及时。
由于生产节拍不稳定,缺少良好的物料调度设计优化,导致配送人员工作任务极不协调,多种物料发出紧急配送需求时,配送人员较忙,没有紧急配送需求时,配送人员较闲。
配送人员无法得知线边物料消耗情况,当同时有多个紧急缺料通知时,可能导致配送人员配送不及时导致产线因缺少物料而停产。
对仓库没有合理的规划,导致捡料出错、效率低等问题的发生。
发明内容
本发明的目的是针对上述不足,提出了一种基于工位组划分的物料配送方法,该配送方法通过对配送调度方案进行设计优化,使配送物料种类及数量更加合理,保证混流装配线生产过程不发生缺料停产的情况。
本发明具体采用如下技术方案:
一种基于工位组划分的物料配送方法,包括以下步骤:
步骤1:在产品上线处设置RFID扫描器,对上线产品数量及型号进行统计,并以产品上 线件数作为生产进程的指标;
步骤2:根据产品的BOM获得每件产品的物料需求,并将工位与所需物料相对应,据此计算在生产第i件产品时,每个物料消耗工位消耗物料情况;
步骤3:根据物料清单,查看每种物料及运输工具的具体信息,根据具体信息及物料消耗的件数建立数学模型,对物料配送进行规划,在生产到第i件产品时,对物料消耗工位所组成的工位组Z j进行配送。
步骤4:依据工位组划分对每一工位组配送的路线进行规划;
步骤5:依据工位组划分,得出每种物料的配送频率,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立数学模型,对仓库库位进行优化;
步骤6:将工作人员划分为仓库备料人员与配送人员,根据工作流程进行配送。
优选地,所述步骤3中,每种物料及运输工具的具体信息包括存放物料容器的信息,物料盒的种类、大小,及物料盒之间的组合方式、存放物料的件数、运输工具的运输能力。
优选地,所述工位组划分具体为,通过产品的物料消耗数量,计算出生产到第i个产品,第n个物料消耗工位的物料所需量lack in,再根据第n种物料的单位产品所需物料量Co n、单位物料盒内物料数量Ca n、物料盒体积V n、运输工具的最大运载量Q信息进行规划,当物料缺少箱数等于或大于运输工具的最大运载量Q时,进行物料的配送,此次的运输工位组成一个运输工位组,配送完成后更新物料缺失量,一轮的物料缺失工位划分为一个工位组。
优选地,设置线边物料最大库存Max n与最小库存Min n,线边库存量不得超过最大库存量,当线边库存到达最小库存量时,即使车载率较低,也安排配送任务。
优选地,所述步骤5中,根据物料的拣选频次分析,式(1)表示最小化所有物料在固定周期内的拣选总距离,
Figure PCTCN2019097474-appb-000001
其中,d ab为第a个区域中第b个货架到拣选工作台的行程距离,f n为固定周期内物料n的平均拣选频次,S.t:
Figure PCTCN2019097474-appb-000002
x nab=1表示第n种零件置于第a个区域的第b个货架,否则为0,表示一种物料只能放在一个库位中。
优选地,所述步骤5中,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立的数学模型为式(2)所示,
Figure PCTCN2019097474-appb-000003
其中,S.t:F n=f n/R n
Figure PCTCN2019097474-appb-000004
x nab=1表示第n种零件置于第a个区域的第b个货架,否则为0。
优选地,根据物料间关联性及根据划分的工位组,两种物料在同一工位组的次数越多,相关性越大,对具有相关性的物料进行聚类处理,将物料关联系数定义为式(3),
Figure PCTCN2019097474-appb-000005
其中,P mn表示物料m与n在同一工位组的次数,r mn代表物料间的相关性大小,r mn∈[0,1],定义新参数为每种物料修正后的拣选频次F n,F n=f n/R n
Figure PCTCN2019097474-appb-000006
f n为固定周期内物料n的平均拣选频次。
本发明具有如下有益效果:
该基于工位组划分的物料配送方法通过对配送调度方案进行设计优化,使配送物料种类及数量更加合理,保证了混流装配线生产过程不发生缺料停产的情况,减少了线边库存数量,使配送人员工作更为协调,对仓库库位合理规划,提高捡料效率。
附图说明
图1为该物料配送方法的工位组划分流程图;
图2为该物料配送方法的仓储人员工作流程图;
图3为该物料配送方法的配送人员工作流程图。
具体实施方式
下面结合附图和具体实施例对本发明的具体实施方式做进一步说明:
如图1-图3所示,一种基于工位组划分的物料配送方法,包括以下步骤:
步骤1:在产品上线处设置RFID扫描器,对上线产品数量及型号进行统计,并以产品上线件数作为生产进程的指标;
步骤2:根据产品的BOM获得每件产品的物料需求,并将工位与所需物料相对应,据此计算在生产第i件产品时,每个物料消耗工位消耗物料情况;
步骤3:根据物料清单,查看每种物料及运输工具的具体信息,根据具体信息及物料消耗的件数建立数学模型,对物料配送进行规划,在生产到第i件产品时,对物料消耗工位所组成的工位组Z j进行配送。
步骤3中,每种物料及运输工具的具体信息包括存放物料容器的信息,物料盒的种类、大小,及物料盒之间的组合方式、存放物料的件数、运输工具的运输能力。
工位组划分具体为,通过产品的物料消耗数量,计算出生产到第i个产品,第n个物料消耗工位的物料所需量lack in,再根据第n种物料的单位产品所需物料量Co n、单位物料盒内物料数量Ca n、物料盒体积V n、运输工具的最大运载量Q信息进行规划,当物料缺少箱数等于或大于运输工具的最大运载量Q时,进行物料的配送,此次的运输工位组成一个运输工位组, 配送完成后更新物料缺失量,一轮的物料缺失工位划分为一个工位组。
设置线边物料最大库存Max n与最小库存Min n,线边库存量不得超过最大库存量,当线边库存到达最小库存量时,即使车载率较低,也安排配送任务。
步骤4:依据工位组划分对每一工位组配送的路线进行规划;
步骤5:依据工位组划分,得出每种物料的配送频率,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立数学模型,对仓库库位进行优化;
设置线边物料最大库存存Max n与最小库存Min n,线边库存量不得超过最大库存量,当线边库存到达最小库存量时,即使车载率较低,也将安排配送任务。传统路径规划问题以时间为依据,现以生产产品个数为依据,由于工厂装配时间不稳定,所以根据产品个数为依据更为准确。
家电装配生产线当天生产结束后,并不会将产线上的产品装配完成,所以在次日生产时可继续按照此方式进行计数,每天生产前将线边库存补满。
以物料暂存区为中心,根据划分的工位组,以及现有工厂配送通道,对每个工位组的配送路径进行合理规划。
仓库库位优化,首先明确物料的属性,包括其重量、体积、包装形式等,这决定了物料的存储方式及物料选择的存放方式。
步骤5中,根据物料的拣选频次分析,式(1)表示最小化所有物料在固定周期内的拣选总距离,
Figure PCTCN2019097474-appb-000007
其中,d ab为第a个区域中第b个货架到拣选工作台的行程距离,f n为固定周期内物料n的平均拣选频次,模型的约束条件为,对于任意的n,需满足:
Figure PCTCN2019097474-appb-000008
x nab=1表示第n种零件置于第a个区域的第b个货架,否则为0,表示一种物料只能放在一个库位中。
步骤5中,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立的数学模型为式(2)所示,
Figure PCTCN2019097474-appb-000009
其中,S.t:F n=f n/R n
Figure PCTCN2019097474-appb-000010
x nab=1表示第n种零件置于第a个区域的第b个货架,否则为0。
根据物料间关联性及根据划分的工位组,两种物料在同一工位组的次数越多,相关性越大,对具有相关性的物料进行聚类处理,将物料关联系数定义为式(3),
Figure PCTCN2019097474-appb-000011
其中,P mn表示物料m与n在同一工位组的次数,r mn代表物料间的相关性大小,r mn∈[0,1],定义新参数为每种物料修正后的拣选频次F n,F n=f n/R n
Figure PCTCN2019097474-appb-000012
f n为固定周期内物料n的平均拣选频次。
步骤6:将工作人员划分为仓库备料人员与配送人员,根据工作流程进行配送。
以冰柜生产物料配送为例:某企业的冰柜装配生产线配送采用根据日生产计划制定每日的配送任务,没有对物料配送调度方案进行设计优化,所配送的物料不一定为实际生产所需,而所需的物料可能没有配送到位,造成线边物料堆积过度,以及线边所需物料配送不及时,且仓库库位缺乏合理规划。
步骤1:在每个冰柜铁皮上粘贴相应型号的RFID码,并在装配线起点设置RFID扫描器,对上线产品数量及型号进行统计,并以产品上线件数作为生产进程的指标。
步骤2:根据产品的BOM得知每件产品的每种物料需要,并将工位与所需物料相对应,据此计算在生产第i件产品时,第n个物料消耗工位消耗了多少件物料。Lack in=i*Co n,Lack in为生产到第i个产品时第n种物料总消耗的个数,L n为单位产品消耗n种物料的个数。由于生产过程中伴随着配送,lack in为实际需求量,则
Figure PCTCN2019097474-appb-000013
j为工位组号,M为总工位组数,B nj为工位组j的配送中物料n的配送数量。
步骤3:根据满载即送原则,当
Figure PCTCN2019097474-appb-000014
时,将对应工位划分为一个工位组。K为总物料数,Ca n为n种物料单位物料盒数量,V n为n种物料的物料盒体积,Q为运输工具最大装载能力,当需要配送的物料量大于车的装载率时,将相应工位划分为同一工位组。为防止线边物料过少影响生产,设置线边最大库存量Max n与最小库存Min n,线边库存量不得超过最大库存量,当线边库存到达最小库存量时,即使车载率较低,也将相应工位组成工位组。根据数学模型,利用MATLAB进行求解,得到产品物料工位组划分。程序流程图如图3所示
步骤4:依据此工位组划分对每一工位组配送的路线进行合理规划,并根据每日任务物料配送,配送人员配送流程如图1所示。
步骤5:依据此工位组划分,可以得出每种物料的配送频率,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立数学模型,对仓库库位进行优化设计。
步骤6:工作人员划分为仓库备料人员与配送人员。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (7)

  1. 一种基于工位组划分的物料配送方法,其特征在于,包括以下步骤:
    步骤1:在产品上线处设置RFID扫描器,对上线产品数量及型号进行统计,并以产品上线件数作为生产进程的指标;
    步骤2:根据产品的BOM获得每件产品的物料需求,并将工位与所需物料相对应,据此计算在生产第i件产品时,每个物料消耗工位消耗物料情况;
    步骤3:根据物料清单,查看每种物料及运输工具的具体信息,根据具体信息及物料消耗的件数建立数学模型,对物料配送进行规划,在生产到第i件产品时,对物料消耗工位所组成的工位组Z j进行配送。
    步骤4:依据工位组划分对每一工位组配送的路线进行规划;
    步骤5:依据工位组划分,得出每种物料的配送频率,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立数学模型,对仓库库位进行优化;
    步骤6:将工作人员划分为仓库备料人员与配送人员,根据工作流程进行配送。
  2. 如权利要求1所述的一种基于工位组划分的物料配送方法,其特征在于,所述步骤3中,每种物料及运输工具的具体信息包括存放物料容器的信息,物料盒的种类、大小,及物料盒之间的组合方式、存放物料的件数、运输工具的运输能力。
  3. 如权利要求1所述的一种基于工位组划分的物料配送方法,其特征在于,所述工位组划分具体为,通过产品的物料消耗数量,计算出生产到第i个产品,第n个物料消耗工位的物料所需量lack in,再根据第n种物料的单位产品所需物料量Co n、单位物料盒内物料数量Ca n、物料盒体积V n、运输工具的最大运载量Q信息进行规划,当物料缺少箱数等于或大于运输工具的最大运载量Q时,进行物料的配送,此次的运输工位组成一个运输工位组,配送完成后更新物料缺失量,一轮的物料缺失工位划分为一个工位组。
  4. 如权利要求1所述的一种基于工位组划分的物料配送方法,其特征在于,设置线边物料最大库存Max n与最小库存Min n,线边库存量不得超过最大库存量,当线边库存到达最小库存量时,即使车载率较低,也安排配送任务。
  5. 如权利要求1所述的一种基于工位组划分的物料配送方法,其特征在于,所述步骤5中,根据物料的拣选频次分析,式(1)表示最小化所有物料在固定周期内的拣选总距离,
    Figure PCTCN2019097474-appb-100001
    其中,d ab为第a个区域中第b个货架到拣选工作台的行程距离,f n为固定周期内物料n的平均拣选频次,S.t:
    Figure PCTCN2019097474-appb-100002
    x nab=1表示第n种零件置于第a个区域的第b个货架,否则为0,表示一种物料只能放在一个库位中。
  6. 如权利要求1所述的一种基于工位组划分的物料配送方法,其特征在于,所述步骤5中,根据物料属性分析、拣选频次分析、物料间关联性、物料的存放方式建立的数学模型为式(2)所示,
    Figure PCTCN2019097474-appb-100003
    其中,S.t:F n=f n/R n
    Figure PCTCN2019097474-appb-100004
    x nab=1表示第n种零件置于第a个区域的第b个货架,否则为0。
  7. 如权利要求6所述的一种基于工位组划分的物料配送方法,其特征在于,根据物料间关联性及根据划分的工位组,两种物料在同一工位组的次数越多,相关性越大,对具有相关性的物料进行聚类处理,将物料关联系数定义为式(3),
    Figure PCTCN2019097474-appb-100005
    其中,P mn表示物料m与n在同一工位组的次数,r mn代表物料间的相关性大小,r mn∈[0,1],定义新参数为每种物料修正后的拣选频次F n,F n=f n/R n
    Figure PCTCN2019097474-appb-100006
    f n为固定周期内物料n的平均拣选频次。
PCT/CN2019/097474 2019-06-06 2019-07-24 一种基于工位组划分的物料配送方法 WO2020244038A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/966,660 US20220092537A1 (en) 2019-06-06 2019-07-24 Material distribution method based on workstation group division

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910488643.8A CN110334852B (zh) 2019-06-06 2019-06-06 一种基于工位组划分的物料配送方法
CN201910488643.8 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244038A1 true WO2020244038A1 (zh) 2020-12-10

Family

ID=68140733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097474 WO2020244038A1 (zh) 2019-06-06 2019-07-24 一种基于工位组划分的物料配送方法

Country Status (3)

Country Link
US (1) US20220092537A1 (zh)
CN (1) CN110334852B (zh)
WO (1) WO2020244038A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112766644A (zh) * 2020-12-30 2021-05-07 九科信息技术(深圳)有限公司 基于SaaS自动化平台的调度方法、装置、设备及存储介质
CN112904809A (zh) * 2021-01-11 2021-06-04 华翔翔能科技股份有限公司 一种5s现场管理系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112700181B (zh) * 2019-10-23 2024-04-02 京东方科技集团股份有限公司 物料配送系统、方法、电子设备及存储介质
CN110880063A (zh) * 2019-10-31 2020-03-13 南京中车浦镇工业物流有限公司 一种基于工位制节拍化的物料配送方法
CN111724068A (zh) * 2020-06-22 2020-09-29 信利(仁寿)高端显示科技有限公司 一种同时生产多种型号面板的方法及系统
CN112070438B (zh) * 2020-09-08 2022-05-17 艾普工华科技(武汉)有限公司 一种基于配置分层的物料配送方法和系统
CN117035588A (zh) * 2023-10-10 2023-11-10 宁德时代新能源科技股份有限公司 一种生产线物料的配送方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122749A1 (en) * 2002-12-20 2004-06-24 Hung-Shan Wei System and method for managing manufacturing orders
CN101950387A (zh) * 2010-09-08 2011-01-19 合肥工业大学 一种机械产品装配过程实时物料配送方法
CN104463521A (zh) * 2014-10-28 2015-03-25 艾普工华科技(武汉)有限公司 物料配送方法
CN106600197A (zh) * 2016-12-19 2017-04-26 苏州宏软信息技术有限公司 车间物料配送装置及方法
US20170236082A1 (en) * 2015-04-09 2017-08-17 NetSuite Inc. System and methods for real time display of supply chain and data processing of related tasks and events
CN107918853A (zh) * 2017-12-08 2018-04-17 黑龙江省科学院自动化研究所 不确定环境下物料配送方法
CN109034693A (zh) * 2018-07-10 2018-12-18 朱雪梅 一种精益物流平准化配送管理系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782767B (zh) * 2010-01-07 2011-11-16 西安交通大学 基于uwb的数字化制造车间物料实时配送系统
CN103473669B (zh) * 2013-09-30 2016-06-01 上海交通大学 基于rfid的混合装配生产线物料供应系统和方法
CN104914869B (zh) * 2015-03-24 2017-09-05 南京航空航天大学 基于uwb的离散制造车间物料配送小车控制系统
CN106980955B (zh) * 2017-03-29 2021-02-26 北京京东尚科信息技术有限公司 用于输出信息的方法和装置
CN109612556B (zh) * 2019-01-16 2020-07-24 福州中润电子科技有限公司 一种识别物料投料量的方法及终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040122749A1 (en) * 2002-12-20 2004-06-24 Hung-Shan Wei System and method for managing manufacturing orders
CN101950387A (zh) * 2010-09-08 2011-01-19 合肥工业大学 一种机械产品装配过程实时物料配送方法
CN104463521A (zh) * 2014-10-28 2015-03-25 艾普工华科技(武汉)有限公司 物料配送方法
US20170236082A1 (en) * 2015-04-09 2017-08-17 NetSuite Inc. System and methods for real time display of supply chain and data processing of related tasks and events
CN106600197A (zh) * 2016-12-19 2017-04-26 苏州宏软信息技术有限公司 车间物料配送装置及方法
CN107918853A (zh) * 2017-12-08 2018-04-17 黑龙江省科学院自动化研究所 不确定环境下物料配送方法
CN109034693A (zh) * 2018-07-10 2018-12-18 朱雪梅 一种精益物流平准化配送管理系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112766644A (zh) * 2020-12-30 2021-05-07 九科信息技术(深圳)有限公司 基于SaaS自动化平台的调度方法、装置、设备及存储介质
CN112766644B (zh) * 2020-12-30 2024-01-05 九科信息技术(深圳)有限公司 基于SaaS自动化平台的调度方法、装置、设备及存储介质
CN112904809A (zh) * 2021-01-11 2021-06-04 华翔翔能科技股份有限公司 一种5s现场管理系统
CN112904809B (zh) * 2021-01-11 2022-04-12 华翔翔能科技股份有限公司 一种5s现场管理系统

Also Published As

Publication number Publication date
CN110334852A (zh) 2019-10-15
CN110334852B (zh) 2021-03-12
US20220092537A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2020244038A1 (zh) 一种基于工位组划分的物料配送方法
Van Den Berg A literature survey on planning and control of warehousing systems
CN104036377B (zh) 基于多色集合理论的智能储配系统优化调度方法
CN109460954B (zh) 一种基于jit-vmi的供应商直供线边物料配送方法
CN108364099A (zh) 一种基于仿真的物流配送系统及配送方法
CN108681845B (zh) 一种基于大数据的智慧物流派单管理系统
WO2022048234A1 (zh) 货物调度方法、装置、电子设备以及存储介质
CN110501978B (zh) 一种机器人产品生产车间排产调度方法
CN107274094A (zh) 一种创建船舶分段堆场作业调度计划的系统及方法
CN107844934A (zh) 一种电能表智能仓储配送管理系统
CN113433915B (zh) 一种车间钣金加工自动排产算法
CN107357270A (zh) 一种eps泡塑制造中的任务调度方法
CN110457751A (zh) 一种液化天然气接收站的现货动态预测调度方法及系统
CN110110978A (zh) 一种用于机柜自动生产线的mes系统
CN108460565A (zh) 一种基于云计算的主动型物流管理系统
CN116258337A (zh) 一种基于企业制造运营的产业链协同管理系统
CN117635000B (zh) 基于工业互联网的lms生产物流调度方法
CN110516408B (zh) 一种基于Demo3D仿真的四线一库设计管理系统
CN116384883A (zh) 一种电能计量设备的生产运营管理系统
CN114971494A (zh) 一种零部件均衡供货路径方法
CN102393687A (zh) 一种解决改机问题的限定分配调度方法
CN112990628A (zh) 分拣设备调度方法、装置及计算机可读存储介质
Jeroen et al. A literature survey on planning and control of warehousing systems
CN201364596Y (zh) 港口装备制造企业物流协同配送仿真系统
CN105678489B (zh) 一种圆片推送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931870

Country of ref document: EP

Kind code of ref document: A1