WO2020243989A1 - 一种微型防抖云台以及相机模组 - Google Patents

一种微型防抖云台以及相机模组 Download PDF

Info

Publication number
WO2020243989A1
WO2020243989A1 PCT/CN2019/091438 CN2019091438W WO2020243989A1 WO 2020243989 A1 WO2020243989 A1 WO 2020243989A1 CN 2019091438 W CN2019091438 W CN 2019091438W WO 2020243989 A1 WO2020243989 A1 WO 2020243989A1
Authority
WO
WIPO (PCT)
Prior art keywords
shake
camera module
pan
tilt
lens carrier
Prior art date
Application number
PCT/CN2019/091438
Other languages
English (en)
French (fr)
Inventor
麦练智
Original Assignee
高瞻创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高瞻创新科技有限公司 filed Critical 高瞻创新科技有限公司
Publication of WO2020243989A1 publication Critical patent/WO2020243989A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the invention relates to the technical field of anti-shake pan/tilt, and specifically designs a miniature anti-shake pan/tilt and a camera module.
  • the device includes at least one compact camera module (Zoom), auto-focus (Auto-Focus) or fixed-focus (Fixed-Focus). Therefore, the market for the modules is huge, and the growth is steadily rising.
  • the photos and videos taken by the device are likely to be blurred or shaken due to external vibration, which affects the quality of the photos and videos.
  • the vibration is intense or in low light conditions, this problem will be more serious.
  • the existing mainstream technology reads vibration sensors (such as gyroscopes and acceleration sensors), calculates the vibration waveform and the required compensation angle, and compensates for image blur and shaking caused by vibration through electronic, optical, or mechanical methods to achieve Improve the effect of image quality.
  • vibration sensors such as gyroscopes and acceleration sensors
  • EIS Electronic Image Stabilizer
  • OIS Optical Image Stabilizer
  • GS Gimbal Stabilizer
  • EIS uses electronic methods to achieve the anti-shake effect. During shooting, EIS will adjust the position of each frame of the image according to the calculated vibration waveform to offset the image shaking caused by vibration. Since EIS does not require additional actuators, the main advantage of EIS is low cost, without additional weight and volume.
  • OIS uses optical and mechanical methods to move optical components (which can be a piece, a group or all lenses in the camera) to achieve relative movement between the optical components and the image sensor, changing the optical path and
  • the image circle (Image Circle) position compensates for image shaking caused by vibration. Since OIS is continuously making optical compensation in each frame of image shooting, it can offset the jitter of each frame of image exposure, and achieve better image quality than EIS.
  • the mainstream anti-shake pan/tilt uses a mechanical method to drive the entire camera module including the lens and image sensor to make a movement that is opposite to the vibration direction but close to the amplitude to offset the vibration caused by the vibration.
  • the image quality and anti-shake effect will not decrease at the edge of the image, and there is no need to reduce the optical resolution of the lens and the image due to the anti-shake.
  • the resolution of the sensor part. Therefore, the anti-shake effect and image quality of mainstream anti-shake gimbals are better than EIS and OIS.
  • the anti-shake principle of the miniature anti-shake gimbal is similar to that of the mainstream anti-shake gimbal. It achieves the anti-shake effect by driving the entire camera module containing the lens and image sensor.
  • the miniature anti-shake head adopts special shrapnel and flexible circuit board design to save space.
  • EIS Compared with the anti-shake PTZ and OIS, the main disadvantage of EIS is that it cannot compensate for the image shaking in each frame. This is because EIS adjusts the position of each frame of the image to offset the image shaking caused by vibration. Therefore, the images shot after EIS is turned on will be more prone to blurring caused by image shaking.
  • EIS reduces the resolution of the image sensor.
  • the image sensor or image processor needs to crop a suitable image according to the calculated vibration waveform as the final image.
  • the resolution will drop, and the final image will be lower than the maximum resolution of the image sensor. Therefore, EIS will increase the maximum resolution of the image sensor and reduce the image quality.
  • the main disadvantage of OIS is the partial optical resolution of the lens.
  • the position of the imaging circle on the image sensor will constantly change.
  • the image circle In order to prevent the image circle from exceeding the image sensor during the OIS process, the image circle must be enlarged because of OIS, but this will waste the resolution that the lens should have.
  • the edge of the imaging circle when the position of the imaging circle is relatively off, the edge of the imaging circle will be closer to the image sensor. Since most lenses have more blurriness and distortion at the edges than at the center, the image resolution and anti-shake effect of general OIS are not as good as the anti-shake gimbal.
  • the anti-shake gimbal requires an actuator that can drive the entire camera module. Since the weight and size of the camera module is much larger than the lens, the cost, weight, volume and power consumption of the anti-shake pan/tilt actuator are usually much higher than that of the OIS actuator, which is not suitable for application in small mobile devices, or will be reduced The battery life of the device.
  • the mainstream anti-vibration pan/tilt technology uses ball bearings or other frictional contact points as a mechanical support structure between immovable and movable parts. Since there is a nonlinear relationship between the friction force of the support structure and the speed of the movable part, the support structure increases the nonlinear friction force, which can affect the anti-shake effect. Especially when the vibration is relatively subtle and the direction changes frequently, the effect will be more obvious, and the anti-shake effect may be poor.
  • the driven camera module must pass through a complicated mechanical structure to be connected to the external immovable parts (such as the main control board) circuit and machinery, which will increase the difficulty of assembly and maintenance. cost.
  • miniature anti-shake head does not use contact points with friction, the disadvantages caused by the friction will not occur.
  • some miniature anti-shake gimbals use a stationary magnet design, which does not support electromagnetic autofocus and zoom actuators, which limits the scope of application.
  • the electromagnetic actuator utilizes the electromagnetic force generated by the magnet and the coil to push the lens component to achieve the auto focus or zoom function.
  • Another miniature anti-shake pan/tilt adopts a movable magnet design, which can support lens carriers with electromagnetic autofocus and zoom actuators, so it can support more application scenarios.
  • the camera module in the above design is not integrated into the miniature anti-shake pan/tilt actuator, it requires more components and sockets, so more space is required.
  • the spring system in the micro anti-shake head is arranged at the bottom of the camera module, which occupies a large space and greatly increases the height of the micro anti-shake head.
  • the purpose of the present invention is to provide a miniature anti-shake pan/tilt and camera module.
  • the anti-vibration effect of the pan/tilt is improved, while the difficulty of assembly and maintenance is reduced, and the cost, weight, Control of volume and power consumption;
  • the present invention can support a lens carrier containing electromagnetic autofocus and zoom actuators, and reduces the size and height of the pan/tilt.
  • the present invention provides a miniature anti-shake head, which includes a stationary structure and a movable structure; the stationary structure includes at least one positioning seat and at least one set of coils; the movable structure includes A lens carrier and at least one set of magnets; the lens carrier and the pan-tilt magnet form a movable structure; the movable structure is connected to the fixed structure through at least one set of elastic components; the magnet set is fixed on the On the outer wall of the lens carrier, the coil is installed on the inner wall or the outer wall of the positioning seat, the coil is arranged opposite to the magnet group, and both ends of the elastic component are respectively connected to the lens carrier and the positioning seat.
  • At least one end corner of the lens carrier is provided with a chamfered or rounded corner; the chamfered length on both sides of the chamfered corner is more than 1/of the total length or width of the lens carrier 10; The radius of the rounded corner is greater than 1/10 of the total length or width of the lens carrier; the chamfered corner or the rounded corner is arranged opposite to at least one of the elastic components.
  • the elastic component includes a plurality of springs, the number of the springs is at least three, and the plurality of springs are located on at least three non-parallel planes.
  • the lens carrier is also provided with an electromagnetic autofocus or zoom actuator, the actuator includes a magnet and a coil, and the magnets in the actuator are located on four sides of the lens carrier Or four corners.
  • the lens carrier further includes a magnetically permeable housing, and at least one set of the magnet set is arranged on an outer wall of the magnetically permeable housing.
  • pan/tilt further includes a pan/tilt circuit board fixedly connected to the positioning base, and the pan/tilt circuit board is electrically signaled to the pan/tilt coil.
  • the above miniature anti-shake platform further includes at least one position sensor, the position sensors are all installed on the inner wall of the positioning base or the platform circuit board, and each position sensor is connected to at least one set of the magnet group Relative settings.
  • miniature anti-shake pan/tilt further includes an anti-shake control chip connected with the electrical signal of the position sensor.
  • the present invention also discloses a camera module, which includes at least one of the miniature anti-shake platform, a lens, a camera module circuit board, and a camera that are sequentially arranged in the miniature anti-shake platform from top to bottom Module housing;
  • the lens is fixedly connected to the lens carrier, the central part of the camera module circuit board is fixedly connected to the movable structure, and the outside of the camera module circuit board is fixedly connected to the stationary Structure;
  • the central part of the camera module circuit board is provided with an image sensor; the camera module housing is fixedly connected to the stationary structure.
  • the position where the elastic component is connected to the lens carrier is located on the side of the lens and the image sensor.
  • the miniature anti-shake pan/tilt and camera module provided by the above technical solutions have beneficial effects including: 1.
  • Each group of elastic components has a sheet-like shape and is located on at least three non-parallel planes. .
  • This design can effectively improve the displacement stiffness coefficient (Linear Spring Constant) of the spring oscillator system.
  • Linear Spring Constant Linear Spring Constant
  • the center of rotation in the spring vibrator system is close to no displacement, so it will not affect the anti-shake effect of the gimbal, and it can also improve the anti-dropping of the gimbal
  • Figure 1 is an exploded schematic diagram of a miniature anti-shake pan/tilt head according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the structure of the camera module of Embodiment 1 of the present invention.
  • Fig. 3 is a bottom view of the circuit board of the camera module of the first embodiment of the present invention.
  • FIG. 5 is a top view of the circuit board of the camera module according to the first embodiment of the present invention.
  • FIG. 6 is an exploded schematic diagram of the camera module of Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the lens carrier of Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a partial structure of a camera module according to Embodiment 1 of the present invention.
  • Embodiment 9 is an exploded schematic diagram of the lens carrier in Embodiment 1 of the present invention.
  • Figure 10 is an exploded schematic diagram of the gimbal in embodiment 2 of the present invention
  • FIG. 11 is a schematic cross-sectional view of the camera module after rotation in Embodiment 2 of the present invention.
  • Figure 12 is an exploded schematic diagram of the lens carrier in Embodiment 3 of the present invention.
  • 1-positioning seat 2-coil, 201-coil, 3-magnet group, 301-magnet group, 4-spring, 5-lens carrier, 6-lens carrier shell, 7-upper shrapnel, 8-lower shrapnel, 9-coil seat, 10-lens carrier positioning seat, 101-lens carrier positioning seat, 102-lens carrier positioning seat, 11-positioning column, 12-bevel angle, 13-pan/tilt balance spring, 14-pan/tilt circuit board , 15- PTZ, 16- lens, 17- camera module circuit board, 18- camera module housing, 19- boss, 20- flexible circuit board, 21- rigid circuit board, 22- rigid circuit board, 23 -Rigid circuit board, 24-image sensor, 25-positioning hole, 26-socket, 27-multi-axis mechanical limit, 28-displacement sensor, 29-pan/tilt housing.
  • Embodiment 1 of the present invention is a miniature anti-shake head in Embodiment 1 of the present invention, which includes a stationary structure and a movable structure;
  • the stationary structure includes a positioning seat 1 and a set of coils 2;
  • the movable structure It includes a lens carrier 5 and a set of magnets 3;
  • the lens carrier 5 and the magnet set 3 form a movable structure;
  • the movable structure is connected to the immovable structure through a set of elastic components;
  • the magnet set 3 is fixed on the outer wall of the lens carrier 5, and the coil Installed on the inner wall of the positioning base 1, the coil 2 and the magnet set 3 are arranged oppositely, the two ends of the elastic component are respectively connected to the lens carrier 5 and the positioning base 1.
  • a set of magnet set 3 is composed of a magnet, the magnetic field above and below the magnet set 3 The direction is opposite; a group of coils 2 is composed of a coil, installed on the inner wall of the positioning base 1, and arranged opposite to the magnet group; each group of coils 1 can be connected to the circuit board circuit in the pan/tilt 13 or outside the pan/tilt 13.
  • the movable structure and the immovable structure are mechanically connected by elastic components, and form a spring oscillator system with multi-axis rotational freedom.
  • the lens carrier 5 includes a set of lens carrier housing 6, two pieces of shrapnel, a set of magnet sets 3, a set of coils 2, a coil seat 9 and a lens carrier positioning seat 10; each set of magnet sets 3 Contains 4 magnets, located on the inner wall of the four corners of the lens carrier 5 housing; a set of lens carriers includes a lens carrier positioning base 10; above the four corners of the lens carrier positioning base 10 are equipped with positioning posts 11, which are convenient for mechanical use with the elastic components of the pan/tilt Connected, the two shrapnels are the upper shrapnel 7 and the lower shrapnel 8.
  • a group of elastic components is composed of four springs 4, and the spring 4 is an independent elastic piece, which connects the positioning base 1 and the lens carrier positioning base 10 in the lens carrier 5.
  • the elastic component is provided with a positioning hole 25 which is opposite to the positioning post 11 on the positioning base 1 and the lens carrier positioning base 10.
  • the shrapnel is located on four non-parallel planes, and the intersection point of the four planes is close to the center of rotation in the spring oscillator system, forming a spring oscillator system with multi-axis rotation degrees of freedom, providing the two directions required by the movable structure for anti-shake ( Rx and Ry) degrees of freedom.
  • end corners of the lens carrier 5 are provided with chamfered corners 12; at least one end corner of the lens carrier 5 is provided with chamfered corners 12 or rounded corners; both sides of the chamfered corners 12 are chamfered
  • the length is more than 1/10 of the total length or width of the lens carrier 5; the radius of the rounded corner is greater than 1/10 of the total length or width of the lens carrier 5; the chamfered corner 12 Or the rounded corners are arranged opposite to at least one of the elastic components.
  • the purpose is to improve the drop resistance of the gimbal spring 4 by reserving more space for the gimbal spring 4.
  • a pan/tilt housing 29 mechanically connected to the positioning base 1 is provided above the pan/tilt to protect the internal structure of the pan/tilt.
  • the four corners of the lens carrier positioning seat 10 are provided with multi-axis mechanical limits 27, which can limit the maximum displacement and deflection of the movable structure, and achieve better resistance to fall.
  • the camera module of this embodiment includes a lens 16, a platform 15, and a camera module circuit.
  • the place where the four pieces of shrapnel and the lens carrier positioning seat 10 are connected is located on the side of the lens carrier 5, the lens 16 and the image sensor 24; (that is, the z-position of the connecting place is at the highest z-position of the lens and the lowest z-position of the image sensor 24 between).
  • the center of the camera module housing is provided with a boss 19, which can limit the maximum downward displacement of the movable structure and achieve better fall resistance.
  • the camera module circuit board includes rigid circuit boards 21, 22, 23 and a flexible circuit board 20; the rigid circuit board 21 is mechanically connected under the lens carrier positioning seat 10; the image sensor 24 is arranged above the rigid circuit board 21 and the rigid circuit
  • the board 21 is used for mechanical and circuit connection; the rigid circuit board 22 is mechanically connected with the positioning base 1; the rigid circuit board 22 is provided with a plurality of positioning holes 25, and the positioning holes 23 are arranged opposite to the fixing posts on the positioning base 1; flexible circuit
  • the board 20 is connected to the rigid circuit board 21 and the rigid circuit board 22; the socket 26 is connected to the rigid circuit board 23; the socket 26 can be connected to external components (such as the main control board) for circuit connection and signal transmission.
  • the rigid circuit board 21 and the movable parts of the pan/tilt can be provided with flexibility with multiple degrees of freedom.
  • the lens carrier in Embodiment 1 of the present invention is configured as an electromagnetic autofocus actuator.
  • the auto-focus actuator can be electrically connected to external components (such as an auto-focus control chip) through the spring 4, the camera module circuit or/and the pan/tilt circuit board 14.
  • the lens carrier 5 is a magnetically conductive housing, which can enhance the electromagnetic force of the auto-focus actuator and the pan/tilt coil, and reduce the magnetic interference between the auto-focus actuator and the pan/tilt.
  • the number of magnet groups 3 and coils 2 is two groups and A set of pan/tilt balance springs 13 are provided, which are mechanically connected by spring components and pan/tilt balance springs 13 through a movable structure and a fixed structure, and form a spring vibrator system with multi-axis rotational freedom;
  • the magnet group 3 is fixed on the lens
  • each group of magnets is composed of four magnets arranged side by side up and down, and the direction of the magnetic field is opposite;
  • each group of coils 2 is composed of two coils, and they are arranged oppositely; each group of coils 2 are installed on the positioning base 1.
  • the two sets of magnets 3 and coils 2 are respectively located on the four sides of the upper head 15, so that the limited space inside the head 15 can be used more effectively.
  • the flexible circuit board 20 in the pan/tilt circuit board 14 is not 90-degree rotationally symmetrical, it is easy to cause the spring system composed of the flexible circuit board 20 and elastic components to have a large difference in the spring coefficients of the two-axis rotation, which affects the prevention Shake effect.
  • the main function of the pan/tilt balance spring 13 is to compensate for this difference and improve the anti-shake effect.
  • the pan/tilt balance spring 13 can provide additional electrical connection channels to connect the lens carrier and the stationary structure.
  • the pan/tilt balance spring 13 may be located on at least one plane, and the plane may not pass through the center of rotation.
  • two displacement sensors 28 are provided on the pan/tilt circuit board 14, which are located at the center of the two sets of coils 2 to sense the magnets in the movable structure. Displacement.
  • the pan/tilt circuit board 14 is provided with pads to facilitate the circuit connection between each group of coils and the pan/tilt circuit board 14 through the pads; the coils 2 can be connected to each other through the pan/tilt circuit board 14; located on or outside the pan/tilt circuit board 14
  • the anti-shake control chip can use the PTZ circuit board 14 and the displacement sensor 28 and the coil as electrical signals to realize two-axis (Rx, Ry) closed-loop anti-shake control.
  • the anti-shake control chip reads at least one vibration sensor, calculates the vibration signal, outputs the required control signal, changes the current, electromagnetic force and electromagnetic torque of each set of coils, and controls the rotation of the lens carrier 5, the lens 16 and the image sensor 24
  • the center makes two-axis rotation to achieve anti-shake effect.
  • the anti-shake effect at the center and the periphery of the image is consistent, and the image resolution will not change due to the anti-shake.
  • Embodiment 3 of the present invention is similar to that of Embodiment 2, and the main difference lies in the structure of the lens carrier.
  • the lens carrier 5 in Embodiment 3 is an electromagnetic autofocus actuator.
  • the lens carrier 5 includes a lens carrier housing 6, two shrapnels, a magnet group 301, a coil 201, and a coil.
  • the upper four corners of the seat 101 are provided with positioning posts to facilitate mechanical connection with the spring 4;
  • the lower four corners of the positioning seat 1 are also provided with positioning posts to facilitate the mechanical connection with the lower spring 8;
  • the lower elastic piece 8 can be electrically connected through the metal parts and elastic components in the lens carrier positioning seat 101 or the pan/tilt balance spring 13; the lower elastic piece 8 can also be connected through the metal parts and rigid circuits in the lens carrier positioning seat 102
  • the board 21 is used for circuit connection; the circuit connection allows the auto-focus chip on or outside the camera module circuit board and the auto-focus actuator to be circuit-connected to achieve the auto-focus control effect.
  • the magnet group 301 in Embodiment 3 is on the inner walls of the four sides of the lens carrier housing 6, and the magnetic field direction of the magnet is consistent with the four magnets above the adjacent pan/tilt magnet group 3. Therefore, compared with the structure in the second embodiment, the magnetic field strength of the pan-tilt coil 2 and the coil of the autofocus actuator in the third embodiment can be higher, which can increase the electromagnetic force and reduce the power consumption. In addition, since the magnets in Embodiment 3 are not on the inner walls of the four corners of the lens carrier housing 6, the chamfers at the four corners of the lens carrier housing 6 can be larger, which further increases the space and anti-drop reliability of the pan/tilt spring 4.
  • Embodiment 4 of the present invention is similar to that of Embodiment 3.
  • the main difference is that the number of coils 2 is at least three groups, and the pan/tilt circuit board 14 is provided with at least three displacement sensors 28 (for example, Hall effect sensors), located The center position of at least three coils senses the displacement of the magnet in the movable structure.
  • the anti-shake control chip located on or outside the pan/tilt circuit board 14 can be connected to the displacement sensor 28 and the coil 2 of the pan/tilt circuit board 14 to realize two-axis (Rx, Ry) closed-loop anti-shake and one-axis (z) Displacement control.
  • One-axis displacement control can compensate for the Z-direction displacement caused by external acceleration in the Z-direction or changes in gravity, and reduce the impact of the Z-direction displacement or changes in gravity on the anti-shake effect.
  • the place where each group of elastic components in the embodiments 1 to 4 of the present invention is connected to the lens carrier 5 is on the side of the lens 16 and the image sensor 24 (that is, the z-position of the connecting place is at the highest z-position of the lens and Image sensor 24 between the lowest z-position). This can effectively save the space of the pan/tilt 15 and reduce the size, especially the height.
  • the shape of the spring 4 in the embodiments 1 to 4 of the present invention is a sheet shape and is on at least three non-parallel planes. This design can effectively improve the displacement stiffness coefficient (Linear Spring Constant) of the spring oscillator system. When external vibration occurs or the direction of the pan/tilt head changes, the center of rotation in the spring vibrator system is close to no displacement, so it will not affect the anti-shake effect of the pan/tilt head, and it can also improve the resistance of the pan/tilt head.
  • Linear Spring Constant Linear Spring Constant
  • Embodiments 1 to 4 of the present invention do not require balls or other contact points with friction, as a mechanical support structure between immovable and movable parts, so as to avoid nonlinearity in the anti-shake process
  • the friction force achieve better anti-shake effect.
  • the advantages of the anti-shake effect of the structure of the present invention will be more obvious.
  • Embodiments 1 to 4 of the present invention support the most commonly used electromagnetic actuators in autofocus or zoom functions. Because the electromagnetic actuator connected to the camera module and the magnet group 3 in the gimbal can be fixed and moved together during the anti-shake process, there will be no mutual interaction between the magnet and the magnet group 3 in the electromagnetic actuator. Intervene to avoid affecting the anti-shake effect and power consumption.
  • the structures in the first and fourth embodiments of the present invention are simple and compact, and easy to assemble, which is conducive to mass production and even automated production, and therefore has advantages in cost, weight, volume and power consumption.
  • the vibration sensor or the anti-shake control chip may be in the pan/tilt structure of the present invention; the open-loop or closed-loop anti-shake control may be implemented in the present invention; the lens carrier 5 may not contain an actuator (for example, Fixed focus); the lens carrier 5 can include different actuators (such as memory metal type, piezoelectric type and stepping motor); the pan/tilt circuit board 14 or the camera module circuit board 17 can be a rigid-flex board; the coil 2 can It is wound by a conducting wire or composed of a circuit board; the anti-shake compensation direction can be 3 to 5 axes; other numbers of displacement sensors 28, magnet groups 3, and coil 2 designs are also within the protection scope of the present invention.
  • the actuator for example, Fixed focus
  • the lens carrier 5 can include different actuators (such as memory metal type, piezoelectric type and stepping motor)
  • the pan/tilt circuit board 14 or the camera module circuit board 17 can be a rigid-flex board
  • the coil 2 can It is wound by a conducting wire or composed of

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本发明公开了一种微型防抖云台,其包括不动结构以及可动结构;不动结构包括定位座以及线圈;可动结构包括镜头载体以及磁石组;可动结构通过弹性组件与不动结构连接;弹性组件包括若干弹簧。本发明还公开了一种相机模组,其包括微型防抖云台以及镜头、相机模组电路板与相机模组外壳;镜头固定连接于镜头载体,相机模组电路板的中心部分固定连接与可动结构,相机模组电路板的外部固定连接于不动结构;相机模组外壳固定连接于不动结构;本发明降低了组装以及维护的难度,实现对成本、重量、体积以及功耗的控制;其次,且降低了云台的体积及高度。

Description

一种微型防抖云台以及相机模组 技术领域
本发明涉及防抖云台技术领域,具体设计一种微型防抖云台以及相机模组。
背景技术
近年来具有拍摄功能的小型移动装置十分普及,应用范围亦不断扩展,包括智能手机﹑智能眼镜﹑运动相机﹑执法记录仪及行车记录仪。在所述装置中,包含至少一颗变焦(Zoom)﹑自动对焦(Auto-Focus)或定焦(Fixed-Focus)小型相机模組(Compact Camera Module)。因此,所述模組的市场很庞大,增长亦稳步上扬。
在拍照及拍影片时,所述装置拍出来的照片及影片很可能因为外来振动而出现模糊或晃动,影响照片及影片质素。当振动比较激烈,或在低光情况下,这问题会更加严重。
因此,市场上已经出现很多现有防抖技术。现有主流技术通过读取振动传感器(例如:陀螺仪及加速传感器),计算振动波形及所需的补偿角度,通过电子﹑光学﹑或机械方法补偿因振动做成的影像模糊及晃动,达致改进影像质素的效果。
所述现有技术可以按振动补偿方法分为三类,包括电子影像稳定器(Electronic Image stabilizer,EIS)﹑光学影像稳定器(Optical Image stabilizer,OIS)及防抖云台(Gimbal Stabilizer,GS)。EIS﹑OIS及防抖云台各有优点及缺点。
EIS是通过电子方法,达致防抖效果。在拍摄时,EIS会跟据计算的振动波形,调整每一帧影像的位置,抵消因振动做成的影像晃动。由于EIS不需要额外的致动器,所以EIS的主要优点是成本低,无需额外重量及体积。
OIS是通过光学及机械方法,利用致动器移动光学部件(可以是 相机中的一片,一组或所有镜片),达致光学部件和图像传感器之间出现相对运动,改变光路(Optical Path)及成像圈(Image Circle)位置,抵消因振动做成的影像晃动。由于OIS是在拍摄每一帧影像中不断作出光学补偿,因此能抵消每一帧影像曝光时的抖动,可以达致比EIS更佳的影像质素。
主流防抖云台是通过机械方法,带动整个包含镜片及图像传感器的相机模組,作出和振动方向相反,但振幅接近的运动,抵消因振动做成的晃动。在防抖过程中,由于光学部件和图像传感器之间没有相对运动,所以影像质素及防抖效果在影像边缘不会出现下降,亦不需要因为防抖犠牲镜头的部份光学解像度,及图像传感器部份解像度。因此,主流防抖云台的防抖效果及影像质素比EIS及OIS好。
微型防抖云台的防抖原理和主流防抖云台相近,都是通过带动整个包含镜片及图像传感器的相机模組,达致防抖的效果。微型防抖云台采用特别的弹片及软性电路板设计,达致节省空间的目的。
相对防抖云台及OIS,EIS的主要缺点是无法补偿每一个帧中的影像晃动,这是由于EIS通过调整每一帧影像的位置,抵消因振动做成的影像晃动。所以,EIS开启后拍摄的影像会较容易出现因影像晃动做成的模糊。
另一个EIS缺点是犠牲了图像传感器的解像度。在EIS开启时,图像传感器或图像处理器需要按计算振动波形剪裁合适的影像,作为最终影像。在剪裁过程中,解像度会下降,所述最终影像会比图像传感器的最大解像度低。因此,EIS会犠牲图像传感器的最大解像度,降低影像质素。
相对防抖云台,OIS的主要缺点是犠牲镜头的部份光学解像度。在OIS过程中,成像圈在图像传感器上的位置会不断改变。在OIS过程中为了避免成像圈超出图像传感器,成像圈必须因为OIS而扩大,但这会浪费了镜头应有的解像度。另一方面,在OIS过程中,当成像圈的位置较偏时,成像圈边缘会更靠近图像传感器。由于大部份镜头 的在边缘模糊度及畸变度都比中心严重,因此一般OIS的影像解像度及防抖效果都不及防抖云台。
虽然防抖云台的影像质素及防抖效果比OIS及EIS有明显优势,但是防抖云台需要能带动整个相机模組的致动器。由于相机模組的重量及大小远比镜头大,因此防抖云台致动器的成本﹑重量﹑体积及功耗通常比OIS致动器高很多,不适合应用在小型移动装置,或者会减少所述装置电池的续航时间。
另一方面,主流防抖云台技术采用了滚珠轴承或其他带有摩擦力的接触点,作为不动及可动部件之间的机械支撑结构。由于所述支撑结构的摩擦力和可动部件的速度之间是非线性的关系,因此所述支撑结构增加了非线性的摩擦力,所述摩擦力可以影响防抖效果。尤其是当振动比较微细及方向常常改变时,影响会更加明显,防抖效果可能欠佳。在主流防抖云台方案中,被带动的相机模組要通过复杂的机械结构,才能和外部不动的零件(例如:主控制板)电路及机械连接,这会增加组装和维修的难度及成本。
因为微型防抖云台没有采用带有摩擦力的接触点,所以不会出现所述摩擦力带来的缺点。另外,部份微型防抖云台采用不动的磁石设计,这种设计并不支持电磁式自动对焦及变焦致动器,局限了应用范围。所述电磁式致动器利用磁石及线圈产生的电磁力,推动镜头部件,达致自动对焦或变焦功能。
另一种微型防抖云台采用可动的磁石设计,能支持含电磁式自动对焦及变焦致动器的镜头载体,因此能支持更多的应用场景。但是,由于所述的设计中的相机模組不是被整合在微型防抖云台致动器之中,需要较多的部件及插座,所以需要更多的空间。另外,所述微型防抖云台中的弹簧系统设置于相机模組的底部,占用较大的空间,大幅度增加了微型防抖云台的高度。
发明内容
本发明的目的是提供一种微型防抖云台以及相机模组,相对于主 流防抖云台,提高了云台的防振效果,同时降低了组装以及维护的难度,实现对成本、重量、体积以及功耗的控制;其次,相对于微型防抖云台,本发明能支持含电磁式自动对焦及变焦致动器的镜头载体,且降低了云台的体积及高度。
为实现上述目的,本发明所提供的一种微型防抖云台,其包括不动结构以及可动结构;所述不动结构包括至少一个定位座以及至少一组线圈;所述可动结构包括镜头载体以及至少一组磁石组;所述的镜头载体及云台磁石组成可动结构;所述可动结构通过至少一组弹性组件与所述不动结构连接;所述磁石组固定在所述镜头载体的外壁上,所述线圈安装在所述定位座的内壁或外壁上,所述线圈与所述磁石组相对设置,所述弹性组件的两端分别连接所述镜头载体以及定位座。
上述微型防抖云台中,所述镜头载体的至少一端角设有倒斜角或倒圆角;所述倒斜角的两侧倒角长度为超过所述镜头载体总长度或总宽度的1/10;所述倒圆角的圆角半径大于所述镜头载体的总长度或总宽度的1/10;所述倒斜角或倒圆角与至少一个所述弹性组件相对设置。
上述微型防抖云台中,所述弹性组件包括若干弹簧,所述弹簧数目至少为三个且若干所述弹簧位于至少三个不平行的平面上。
上述微型防抖云台中,所述镜头载体还设置有电磁式自动对焦或变焦的致动器,所述致动器包括磁石及线圈,所述致动器中的磁石位于镜头载体的四侧边或四端角。
上述微型防抖云台中,所述镜头载体还包括导磁外壳,至少一组所述磁石组设置于所述导磁外壳的外壁。
上述微型防抖云台中,其还包括固定连接于所述定位座的云台电路板,所述云台电路板与所述云台线圈电信号连接。
上述微型防抖云台中,其还包括至少一个位置传感器,所述位置传感器均安装在所述定位座的内壁或云台电路板上,每个所述位置传 感器均与至少一组所述磁石组相对设置。
上述微型防抖云台中,其还包括与所述位置传感器电信号连接的防抖控制芯片。
本发明还公开了一种相机模组,其包括至少一个所述的微型防抖云台以及自上而下依序设置于所述微型防抖云台内的镜头、相机模组电路板与相机模组外壳;所述镜头固定连接于所述镜头载体,所述相机模组电路板的中心部分固定连接与所述可动结构,所述相机模组电路板的外部固定连接于所述不动结构;所述相机模组电路板的中心部份设有图像传感器;所述相机模组外壳固定连接于所述不动结构。
上述相机模组中,当所述镜头方向朝上时,所述弹性组件连接于所述镜头载体的位置位于所述镜头以及图像传感器侧面。
上述技术方案所提供的一种微型防抖云台以及相机模组,与现有技术相比,其有益效果包括:1、每组弹性组件形状为片状,在至少三个不平行的平面上。这种设计能有效提高弹簧振子系统的位移劲度系数(Linear Spring Constant)。当出现外来振动或云台的方向改向改变时,弹簧振子系统中的旋转中心接近不会出现位移,所以不会影响云台的防抖效果,亦能提高云台的抗跌性;2、不需要滚珠或其他带有摩擦力的接触点,作为不动及可动部件之间的机械支撑结构,因此避免在防抖过程中出现非线性的摩擦力,达致更佳的防抖效果。尤其是当振动比较微细及方向常常改变时,本发明中结构的防抖效果优势会更明显。3、支持自动对焦或变焦功能中最常用的电磁式致动器。因为连接相机模組的电磁式致动器和微型防抖云台中的磁石在防抖过程中可以是固定在一起运动,所以不会出现电磁式致动器中的磁石和云台中的磁石之间互相干预,避免影响防抖效果及功耗;4、结构简单紧凑,组装方便,有利于大量生产,甚至自动化生产,因此在成本﹑重量﹑体积及功耗上都有优势。
附图说明
图1是本发明实施例1微型防抖云台的爆炸示意图;
图2是本发明实施例1相机模组的结构示意图;
图3是本发明实施例1相机模組电路板的仰视图;
图4是本发明实施例1相机模組电路板的侧视图;
图5是本发明实施例1相机模組电路板的俯视图;
图6是本发明实施例1相机模組的爆炸示意图;
图7是本发明实施例1镜头载体的结构示意图;
图8是本发明实施例1相机模組的局部结构示意图;
图9是本发明实施例1中镜头载体的爆炸示意图;
图10是本发明实施例2中云台的爆炸示意图
图11是本发明实施例2中旋转后相机模組的剖面示意图;
图12是本发明实施例3中镜头载体的爆炸示意图
其中,1-定位座,2-线圈,201-线圈,3-磁石组,301-磁石组,4-弹簧,5-镜头载体,6-镜头载体外壳,7-上弹片,8-下弹片,9-线圈座,10-镜头载体定位座,101-镜头载体定位座,102-镜头载体定位座,11-定位柱,12-倒斜角,13-云台平衡弹簧,14-云台电路板,15-云台,16-镜头,17-相机模組电路板,18-相机模組外壳,19-凸台,20-软性电路板,21-硬性电路板,22-硬性电路板,23-硬性电路板,24-图像传感器,25-定位孔,26-插座,27-多轴机械限位,28-位移传感器,29-云台外壳。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
如图1所示,为本发明的实施例1中的一种微型防抖云台,其包括不动结构以及可动结构;不动结构包括一个定位座1以及一组线圈2;可动结构包括镜头载体5以及一组磁石组3;镜头载体5及磁石组3组成可动结构;可动结构通过一组弹性组件与不动结构连接;磁 石组3固定在镜头载体5的外壁上,线圈安装在定位座1的内壁上,线圈2与磁石组3相对设置,弹性组件的两端分别连接镜头载体5以及定位座1;一组磁石组3由一块磁石组成,磁石组3上方及下方磁场方向相反;一组线圈2由一个线圈构成,安装在定位座1的内壁上,并与磁石组相对设置;每组线圈1可以和云台13中或云台13外的电路板电路连接。
可动结构及不动结构通过弹性组件作机械连接,并组成一个多轴旋转自由度的弹簧振子系统。
如图7及9所示,镜头载体5包含一组镜头载体外壳6、两片弹片、一组磁石组3、一组线圈2、一个线圈座9及一个镜头载体定位座10;每组磁石组3包含4个磁石,位于镜头载体5外壳四角的内壁;一组镜头载体包含一个镜头载体定位座10;镜头载体定位座10的四角上方设有定位柱11,方便和云台的弹性组件作机械连接,两个弹片为上弹片7以及下弹片8。
如图8所示,一组弹性组件由四个弹簧4组成,弹簧4为独立弹片,连接定位座1及镜头载体5中的镜头载体定位座10。弹性组件上设有定位孔25,和定位座1及镜头载体定位座10上的定位柱11相对设置。弹片位于四个不平行的平面上,四个平面相交点接近弹簧振子系统中的旋转中心,构成一个多轴旋转自由度的弹簧振子系统,提供防抖时可动结构所需要的两个方向(Rx及Ry)自由度。
优选的,所述镜头载体5的四端角设有倒斜角12;所述镜头载体5的至少一端角设有倒斜角12或倒圆角;所述倒斜角12的两侧倒角长度为超过所述镜头载体5总长度或总宽度的1/10;所述倒圆角的圆角半径大于所述镜头载体5的总长度或总宽度的1/10;所述倒斜角12或倒圆角与至少一个所述弹性组件相对设置。目的是通过保留更多空间给云台弹簧4,提升云台弹簧4的抗跌性。
优选的,云台上方设有一个与定位座1作机械连接的云台外壳29,实现对云台内部结构的保护。
镜头载体定位座10的四角设有多轴机械限位27,可以限制可动结构的最大位移及偏转,达致更好的抗跌性。
如图2-6以及8、9所示,本发明的微型防抖云台在以下描述为云台,本实施例的相机模组,包含一个镜头16、一个云台15、一块相机模組电路板17及一个相机模組外壳18;其中,镜头16固定连接于镜头载体5,相机模组电路板17的中心部分固定连接与可动结构,相机模组电路板17的外部固定连接于不动结构;相机模组电路板17的中心部份设有图像传感器24;相机模组外壳18固定连接于不动结构的定位座1;云台电路板14和相机模組电路板于云台两侧电路信号连接。四片弹片和镜头载体定位座10连接的地方位于镜头载体5、镜头16及图像传感器24侧面;(即是所述连接地方的z-位置在镜头最高z-位置及图像传感器24最低z-位置之间)。
相机模組外壳中心设有凸台19,可以限制可动结构的向下最大位移,达致更好的抗跌性。
相机模組电路板包含硬性电路板21、22、23以及软性电路板20;硬性电路板21和镜头载体定位座10下方作机械连接;图像传感器24设置于硬性电路板21上方,和硬性电路板21作机械及电路连接;硬性电路板22和定位座1作机械连接;硬性电路板22上设有多个定位孔25,定位孔23和定位座1上的定住柱相对设置;软性电路板20连接硬性电路板21及硬性电路板22;插座26连接于硬性电路板23;插座26可以和外部零件(例如:主控制板)电路连接及信号传输。
因为软性电路板20连接不动机构及硬性电路板21,所以可以提供硬性电路板21及云台可动部件所需的多自由度弹性。
本发明的实施例1中的镜头载体设置为电磁式自动对焦致动器。自动对焦致动器可以通过的弹簧4、相机模組电路或/及云台电路板14,和外部零件(例如自动对焦控制芯片)作电路连接。
优选地,镜头载体5为导磁外壳,可以增强的自动对焦致动器及云台线圈的电磁力,以及减少的自动对焦致动器及云台之间的磁干扰。
实施例2
如图10至11所示,为本发明的实施例2中的一种微型防抖云台,与实施例一微型防抖云台的区别在于,磁石组3以及线圈2的数量为两组且设置有一组云台平衡弹簧13,通过可动结构及不动结构通过弹簧组件及云台平衡弹簧13作机械连接,并组成一个多轴旋转自由度的弹簧振子系统;磁石组3均固定在镜头载体的外壁上;每组磁石组由四块磁石上、下并排设置组成,并且磁场方向相反;每组线圈2由两个线圈构成,并相对设置;每组线圈2均安装在定位座1的内壁上,并与一组磁石组3相对设置。
两组磁石组3及线圈2分别位于上云台15的四边位置,从而能更有效地利用云台15内部中的有限空间。
由于云台电路板14中的软性电路板20和不是90度旋转对称,容易造成由软性电路板20和弹性组件组成的弹簧系统,出现两轴方向旋转弹簧系数出现较大差异,影响防抖效果。云台平衡弹簧13的主要作用是补偿这种差异,提高防抖效果。另外,云台平衡弹簧13可以提供额外的电连接通道,连接镜头载体及不动结构。云台平衡弹簧13可以位于至少一个平面上,所述平面可以不通过所述旋转中心。
其中,如图10及11所示,云台电路板14上设有两个位移传感器28(例如霍尔效应传感器或光学传感器),位于两组线圈2的中心位置,感应可动结构中的磁石位移。云台电路板14设有焊盘,方便每组线圈通过焊盘和云台电路板14作电路连接;线圈2可以通过云台电路板14互相电路连接;位于云台电路板14上或外的防抖控制芯片可以通过云台电路板14和的位移传感器28及线圈作电信号,实现两轴(Rx,Ry)闭环防抖控制。
防抖控制芯片通过读取至少一个振动传感器,计算振动讯号,输出所需的控制讯号,改变每组线圈的电流、电磁力及电磁力矩,控制镜头载体5、镜头16及图像传感器24的围绕旋转中心作出两轴旋转,达致防抖效果。在防抖过程中,由于镜头及图像传感器24之间没有相对位移及旋转,所以图像中心及周边的防抖效果是一致的,及图像解像度不会因为防抖出现变化。
实施例3
本发明的实施例3的结构和实施例2的类似,主要区别在于镜头载体结构。如图12所示,实施例3中的镜头载体5为电磁式自动对焦致动器,镜头载体5包括一个镜头载体外壳6、两片弹片、一组磁石组301、一组线圈201、一个线圈座9及一个镜头载体定位座10;每组磁石组包含4个磁石,位于镜头载体外壳6四边的内壁;一组镜头载体定位座10包含上下两块镜头载体定位座101及102组合连接;定位座101的四角上方设有定位柱,方便和弹簧4作机械连接;定位座1的四角下方亦设有定位柱,方便和下弹片8作机械连接;镜头载体定位座102和101及硬性电路板21作机械连接;下弹片8可以通过镜头载体定位座101中的金属部件和弹性组件或云台平衡弹簧13作电路连接;下弹片8亦可以通过镜头载体定位座102中的金属部件和硬性电路板21作电路连接;电路连接容许在相机模組电路板上或外的自动对焦芯片和自动对焦致动器作电路连接,达致自动对焦控制效果。
实施例3中的磁石组301在镜头载体外壳6四边的内壁,磁石的磁场方向和相邻的云台磁石组3上方四块磁石是一致的。因此,相对于实施例2中的结构,通过实施例3中云台线圈2及自动对焦致动器的线圈的磁场强度能够更高,可以提高电磁力及减低功耗。另外,由于实施例3中的磁石不在镜头载体外壳6四角的内壁,因此位于镜头载体外壳6四角的倒角能够更大,进一步增加云台弹簧4的空间及抗跌可靠性。
实施例4
本发明的实施例4的结构和实施例3的类似,主要区别为线圈2数目是至少三组,以及云台电路板14上设有至少三个位移传感器28(例如霍尔效应传感器),位于至少三个线圈的中心位置,感应可动结构中的磁石位移。位于云台电路板14上或外的防抖控制芯片可以通过云台电路板14和的位移传感器28及线圈2作电路连接,实现两 轴(Rx,Ry)闭环防抖及一轴(z)位移控制。一轴位移控制可以补偿因为外来Z方向加速或重力改变造成的Z方向位移,减少因为Z方向位移或重力改变影响防抖效果。
当镜头16向上时,本发明的实施例1至4中的每组弹性组件连接镜头载体5的地方在镜头16及图像传感器24侧面(即是连接地方的z-位置在镜头最高z-位置及图像传感器24最低z-位置之间)。这样能有效节省云台15的空间,减低尺寸,尤其是高度。
本发明的实施例1至4中的弹簧4形状为片状,在至少三个不平行的平面上。这种设计能有效提高弹簧振子系统的位移劲度系数(Linear Spring Constant)。当出现外来振动或云台的方向改向改变时,弹簧振子系统中的旋转中心接近不会出现位移,所以不会影响云台的防抖效果,亦能提高云台的抗跌性。
另外,本发明中实施例1至4中的结构不需要滚珠或其他带有摩擦力的接触点,作为不动及可动部件之间的机械支撑结构,因此避免在防抖过程中出现非线性的摩擦力,达致更佳的防抖效果。尤其是当振动比较微细及方向常常改变时,本发明中结构的防抖效果优势会更明显。
最后,本发明中实施例1至4中的结构支持自动对焦或变焦功能中最常用的电磁式致动器。因为连接相机模組的电磁式致动器和云台中的磁石组3在防抖过程中可以是固定在一起运动,,所以不会出现电磁式致动器中的磁石和磁石组3之间互相干预,避免影响防抖效果及功耗。
本发明中实施例1及4中的结构简单紧凑,组装方便,有利于大量生产,甚至自动化生产,因此在成本﹑重量﹑体积及功耗上都有优势。
在其它实施例中,振动传感器或防抖控制芯片可以在本发明中的云台结构中;可以在本发明中实施开环或闭环防抖控制;镜头载体5可以是不包含致动器(例如定焦);镜头载体5可以包含不同致动器 (例如记忆金属式、压电式及步进马达);云台电路板14或相机模組电路板17可以是软硬结合板;线圈2可以由通电线绕成或由电路板组成;防抖补偿方向可以是3至5轴;采用其他数目的位移传感器28、磁石组3、及线圈2设计,亦在本发明的保护范围之内。
在本发明的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

  1. 一种微型防抖云台,其特征在于,其包括不动结构以及可动结构;所述不动结构包括至少一个定位座以及至少一组线圈;所述可动结构包括镜头载体以及至少一组磁石组;所述可动结构通过至少一组弹性组件与所述不动结构连接;所述磁石组固定在所述镜头载体的外壁上,所述线圈安装在所述定位座的内壁或外壁上,所述线圈与所述磁石组相对设置,所述弹性组件的两端分别连接所述镜头载体以及定位座。
  2. 如权利要求1所述的微型防抖云台,其特征在于,所述镜头载体的至少一端角设有倒斜角或倒圆角;所述倒斜角的两侧倒角长度为超过所述镜头载体总长度或总宽度的1/10;所述倒圆角的圆角半径大于所述镜头载体的总长度或总宽度的1/10;所述倒斜角或倒圆角与至少一个所述弹性组件相对设置。
  3. 如权利要求1所述的微型防抖云台,其特征在于,所述弹性组件包括若干弹簧,所述弹簧数目至少为三个且若干所述弹簧位于至少三个不平行的平面上。
  4. 如权利要求1所述的微型防抖云台,其特征在于,所述镜头载体还设置有电磁式自动对焦或变焦的致动器,所述致动器包括磁石及线圈,所述致动器中的磁石位于镜头载体的四侧边或四端角。
  5. 如权利要求1所述的微型防抖云台,其特征在于,所述镜头载体还包括导磁外壳,至少一组所述磁石组设置于所述导磁外壳的外壁。
  6. 如权利要求1所述的微型防抖云台,其特征在于,其还包括固定连接于所述定位座的云台电路板,所述云台电路板与所述云台线圈电信号连接。
  7. 如权利要求1-6任一项所述的微型防抖云台,其特征在于,其还包括至少一个位置传感器,所述位置传感器均安装在所述定位座或云台电路板上,每个所述位置传感器均与至少一组所述磁石组相对 设置。
  8. 如权利要求7所述的微型防抖云台,其特征在于,其还包括与所述位置传感器电信号连接的防抖控制芯片。
  9. 一种相机模组,其特征在于,其包括至少一个如权利要求1-8任一项所述的微型防抖云台以及自上而下依序设置于所述微型防抖云台内的镜头、相机模组电路板与相机模组外壳;所述镜头固定连接于所述镜头载体,所述相机模组电路板的中心部分固定连接与所述可动结构,所述相机模组电路板的外部固定连接于所述不动结构;所述相机模组电路板的中心部份设有图像传感器;所述相机模组外壳固定连接于所述不动结构。
  10. 如权利要求9所述的相机模组,其特征在于,当所述镜头方向朝上时,所述弹性组件连接于所述镜头载体的位置位于所述镜头以及图像传感器侧面。
PCT/CN2019/091438 2019-06-04 2019-06-15 一种微型防抖云台以及相机模组 WO2020243989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910481009.1 2019-06-04
CN201910481009.1A CN112034662B (zh) 2019-06-04 2019-06-04 一种微型防抖云台以及相机模组

Publications (1)

Publication Number Publication Date
WO2020243989A1 true WO2020243989A1 (zh) 2020-12-10

Family

ID=73576544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091438 WO2020243989A1 (zh) 2019-06-04 2019-06-15 一种微型防抖云台以及相机模组

Country Status (2)

Country Link
CN (1) CN112034662B (zh)
WO (1) WO2020243989A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542568A (zh) * 2021-07-14 2021-10-22 高瞻创新科技有限公司 防抖相机模组及其摄影设备
CN114144012A (zh) * 2021-01-18 2022-03-04 南昌欧菲光电技术有限公司 电路板组件、摄像头模组及电子设备
CN114650346A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 摄像头组件及电子设备
CN115185138A (zh) * 2022-07-14 2022-10-14 新思考电机有限公司 驱动机构、透镜驱动装置及摄像设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114666489B (zh) * 2020-12-23 2023-04-18 宁波舜宇光电信息有限公司 三轴防抖云台、防抖摄像模组及电子设备
CN112969296A (zh) * 2021-03-26 2021-06-15 南昌欧菲光电技术有限公司 一种柔性电路板、摄像模组及柔性电路板的组装方法
CN115047581A (zh) * 2022-05-23 2022-09-13 高瞻创新科技有限公司 一种微型防抖云台相机模组
CN115348389B (zh) * 2022-08-18 2024-01-09 维沃移动通信有限公司 一种云台组件以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105396A (ko) * 2007-05-30 2008-12-04 삼성테크윈 주식회사 보이스 코일 모듈
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN108881697A (zh) * 2018-08-15 2018-11-23 信利光电股份有限公司 一种二轴防抖云台及摄像装置
CN208399865U (zh) * 2018-05-18 2019-01-18 高瞻创新科技有限公司 一种能带动相机模组的防抖微型云台
CN208924333U (zh) * 2018-05-18 2019-05-31 高瞻创新科技有限公司 一种整合相机模组的致动器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881598B1 (en) * 2009-12-03 2011-02-01 Tdk Taiwan Corporation Anti-shake auto-focus modular structure
US8982464B2 (en) * 2010-10-22 2015-03-17 Tdk Taiwan Corporation Tilt-type anti-shake compensation structure for auto-focus module
CN105099119B (zh) * 2015-09-25 2018-06-26 爱佩仪光电技术(深圳)有限公司 一种能改变移轴中心的光学防抖音圈马达及其装配方法
CN208027058U (zh) * 2017-08-25 2018-10-30 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN108100284A (zh) * 2018-02-09 2018-06-01 深圳市道通智能航空技术有限公司 一种云台、摄像组件及无人飞行器
CN210142249U (zh) * 2019-06-04 2020-03-13 高瞻创新科技有限公司 一种微型防抖云台以及相机模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080105396A (ko) * 2007-05-30 2008-12-04 삼성테크윈 주식회사 보이스 코일 모듈
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN208399865U (zh) * 2018-05-18 2019-01-18 高瞻创新科技有限公司 一种能带动相机模组的防抖微型云台
CN208924333U (zh) * 2018-05-18 2019-05-31 高瞻创新科技有限公司 一种整合相机模组的致动器
CN108881697A (zh) * 2018-08-15 2018-11-23 信利光电股份有限公司 一种二轴防抖云台及摄像装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650346A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 摄像头组件及电子设备
CN114144012A (zh) * 2021-01-18 2022-03-04 南昌欧菲光电技术有限公司 电路板组件、摄像头模组及电子设备
CN113542568A (zh) * 2021-07-14 2021-10-22 高瞻创新科技有限公司 防抖相机模组及其摄影设备
CN113542568B (zh) * 2021-07-14 2023-08-22 高瞻创新科技有限公司 防抖相机模组及其摄影设备
CN115185138A (zh) * 2022-07-14 2022-10-14 新思考电机有限公司 驱动机构、透镜驱动装置及摄像设备
CN115185138B (zh) * 2022-07-14 2023-12-05 新思考电机有限公司 驱动机构、透镜驱动装置及摄像设备

Also Published As

Publication number Publication date
CN112034662A (zh) 2020-12-04
CN112034662B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2020243989A1 (zh) 一种微型防抖云台以及相机模组
CN210142249U (zh) 一种微型防抖云台以及相机模组
CN107340667B (zh) 一种整合相机模组的防抖微型云台
US9835872B2 (en) Lens holder driving device
TWI693463B (zh) 帶防抖功能的透鏡驅動裝置
CN112415708B (zh) 一种防抖对焦马达及其应用模组
US9151965B2 (en) Lens driving device and camera module including the same
JP6148680B2 (ja) カメラ駆動装置
JP2021535443A (ja) カメラモジュール
CN110500479B (zh) 一种能带动相机模组的防抖微型云台
US20220221734A1 (en) Camera module
TWI485459B (zh) 成像裝置
US11392010B2 (en) Spring system and lens anti-shaking device using the same
WO2023284277A1 (zh) 防抖相机模组及其摄影设备
WO2022142951A1 (zh) 一种弹簧防抖系统及采用其的镜头防抖对焦装置
WO2021232948A1 (zh) 具有防抖功能的感光组件、摄像模组及其组装方法
CN213876151U (zh) 一种防抖对焦马达及其应用模组
KR101600574B1 (ko) 카메라 모듈
WO2023226276A1 (zh) 一种微型防抖云台相机模组
CN214380329U (zh) 云台马达组件
CN212029014U (zh) 一种微型防抖云台
CN113446485B (zh) 一种微型防抖云台
CN213271668U (zh) 微型防抖云台
WO2024027017A1 (zh) 一种防抖对焦马达及其应用模组
CN217954821U (zh) 一种防抖对焦马达及其应用模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08-04-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931589

Country of ref document: EP

Kind code of ref document: A1