WO2024027017A1 - 一种防抖对焦马达及其应用模组 - Google Patents
一种防抖对焦马达及其应用模组 Download PDFInfo
- Publication number
- WO2024027017A1 WO2024027017A1 PCT/CN2022/124424 CN2022124424W WO2024027017A1 WO 2024027017 A1 WO2024027017 A1 WO 2024027017A1 CN 2022124424 W CN2022124424 W CN 2022124424W WO 2024027017 A1 WO2024027017 A1 WO 2024027017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shake
- seat
- focusing
- magnet
- circuit board
- Prior art date
Links
- 239000011324 bead Substances 0.000 claims description 50
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000005096 rolling process Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 8
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 13
- 230000008901 benefit Effects 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010297 mechanical methods and process Methods 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009347 mechanical transmission Effects 0.000 description 2
- 230000001739 rebound effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/09—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/08—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
- G03B13/36—Autofocus systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/18—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
Definitions
- the present invention relates to the technical field of camera modules, and in particular to an anti-shake focus motor and its application module.
- the device includes at least one zoom, auto-focus or fixed-focus compact camera module. Therefore, the market for said modules is huge and growing steadily.
- the photos and videos captured by the device may be blurred or shaken due to external vibrations, affecting the quality of the photos and videos. This problem will be more serious when the vibration is severe or in low light conditions.
- the existing mainstream technology reads vibration sensors (such as gyroscopes and acceleration sensors), calculates the vibration waveform and the required compensation angle, and compensates image blur and shaking caused by vibration through electronic, optical, or mechanical methods to improve the image. Quality results.
- vibration sensors such as gyroscopes and acceleration sensors
- EIS Electronic Image Stabilizer
- OIS Optical Image Stabilizer
- SSS Sensor-Shift Stabilizer
- GS Gimbal Stabilizer
- EIS achieves the anti-shake effect through electronic methods.
- EIS will adjust the position of each frame of image based on the calculated vibration waveform to offset image shake caused by vibration. Since EIS does not require additional actuators, the main advantage of EIS is low cost and no additional weight and volume.
- OIS uses optical and mechanical methods to use actuators to move optical components to achieve relative movement between the optical components and the image sensor, changing the optical path (Optical Path) and the position of the image circle (Image Circle) to offset the image caused by vibration Shake. Since OIS continuously performs optical anti-shake compensation during each frame of image shooting, it can offset the jitter during exposure of each frame of image and achieve better image quality than EIS.
- SSS uses a mechanical method to move the image sensor using an actuator to achieve relative movement between the optical components and the image sensor to offset image shake caused by vibration.
- the principle and effect of SSS's optical image stabilization are similar to those of OIS, which can offset the jitter during image exposure of each frame and achieve better image quality than EIS.
- SSS does not need to move heavier lenses or lenses during the anti-shake process, so it has greater advantages in high-frequency anti-shake effect and power consumption.
- SSS can compensate for rolling (Roll) shake that OIS cannot compensate for, so it can achieve up to 5-axis anti-shake, which is more than the highest 4-axis anti-shake of OIS.
- Mainstream GS uses mechanical methods to drive the entire camera module including the lens and image sensor to move in the opposite direction of the vibration but with a similar amplitude to offset the shaking caused by the vibration.
- the image quality and anti-shake effect will not decrease at the edge of the image, and there is no need to sacrifice part of the optical resolution of the lens and the image due to anti-shake. Sensor partial resolution. Therefore, the anti-shake effect and image quality of mainstream anti-shake gimbals are better than those of EIS, OIS and SSS.
- the purpose of the present invention is to provide an anti-shake focus motor and its application module, which has good anti-shake effect, has the advantages of low production difficulty, cost, volume and power consumption, and can support rolling anti-shake and focus functions.
- an anti-shake focusing motor including:
- the anti-shake structure includes an outer bead seat, an inner bead seat, a ball, an anti-shake magnet, an anti-shake coil and an anti-shake circuit board;
- the inner bead seat is installed inside the outer bead seat, and the inner bead seat is The ball seat is connected to the outer ball seat through the balls;
- the anti-shake magnet is installed on the inner bead seat;
- the anti-shake coil is installed on the outer bead seat, and the anti-shake coil is connected to the anti-shake coil.
- the anti-shake magnets are arranged oppositely;
- the anti-shake circuit board is installed on the outer bead seat, and the anti-shake circuit board is electrically connected to the anti-shake coil;
- the focusing structure includes a second magnet seat, a lens carrier, a connecting spring piece, a focusing magnet focusing coil and a focusing circuit board;
- the second magnet seat is connected to the inner bead seat;
- the focusing magnet is arranged on the third Two magnet seats;
- the lens carrier is connected to the second magnet seat through the connecting elastic piece;
- the focus coil is provided on the lens carrier;
- the focus circuit board is provided on the lens carrier, and the focus circuit The board is electrically connected to the focus coil.
- outer ball seats there are at least two outer ball seats, and the two outer ball seats are connected in an up-and-down manner; there are two groups of balls, and the two groups of balls are arranged one by one on the two outer ball seats.
- outer bead base there are at least two outer ball seats, and the two outer ball seats are connected in an up-and-down manner; there are two groups of balls, and the two groups of balls are arranged one by one on the two outer ball seats.
- the horizontal plane passing through the rotation center is defined as the first reference plane, wherein one group of the balls are located above the first reference plane, and the other group of the balls are located below the first reference plane.
- each group of the balls includes two, the two balls located above the first reference plane are arranged oppositely; the two balls located below the first reference plane and the two balls located above the first reference plane The two balls are arranged adjacent to each other.
- the anti-shake structure further includes a cage, which is disposed on the outer ball seat and used to position the balls.
- the anti-shake structure further includes a first magnet seat, the first magnet seat is installed on the inner bead seat, and the anti-shake magnet is installed on the first magnet seat.
- the anti-shake structure further includes a first coil seat, the first coil seat is installed on the outer bead seat, and the anti-shake coil is installed on the first coil seat.
- the focusing structure further includes an elastic piece seat, the elastic piece base is installed on the second magnet base, and the connecting elastic piece is installed on the elastic piece base.
- the present invention also provides an application module for an anti-shake focus motor, including any one of the above-mentioned anti-shake focus motors, and also includes:
- the lens is arranged on the lens carrier;
- Image module the image module is arranged at the bottom end of the lens carrier, and the image module is arranged corresponding to the lens;
- Module housing the module housing is connected to the bottom end of the outer bead seat
- Module circuit board the module circuit board is provided in the module housing, and the module circuit board is connected to the focusing structure and the anti-shake structure respectively.
- the image module includes a sensor carrier, an optical filter, an image sensor and a sensor circuit board arranged in sequence from top to bottom; the sensor carrier is connected to the focusing structure; the optical filter is connected to the sensor.
- the circuit boards are respectively installed on the sensor carrier, and the image sensor is installed on the sensor circuit board.
- the module circuit board includes a movable part, an immovable part and an elastic part, and the movable part and the immovable part are connected through an elastic part.
- the anti-shake focus motor and its application module of the present invention have a simple structure, can support multi-axis motion and anti-shake, and have advantages in size, reliability and cost.
- the anti-shake focus motor and its application module of the present invention use an actuator driven by electromagnetic force and do not require a complex mechanical transmission structure. Therefore, it has a simple and compact structure, easy assembly, small size, light weight, and low cost. , The advantage of low power consumption is conducive to large-scale production and application.
- the anti-shake focus motor and its application module of the present invention can also use the ampere force generated by the energized focus coil in the magnetic field of the focus magnet to drive the focus structure, and combine it with an external or internal control drive chip to control the current direction of the focus coil. Realize the lens autofocus function, focusing quickly and accurately.
- Figure 1 is a schematic structural diagram of an anti-shake focus motor and its application module provided by an embodiment of the present invention
- Figure 2 is an exploded view of an anti-shake focus motor and its application module provided by an embodiment of the present invention
- Figure 3 is a cross-sectional view of an anti-shake focus motor and its application module provided by an embodiment of the present invention
- Figure 4 is an exploded view of the anti-shake structure provided by the embodiment of the present invention.
- Figure 5 is an exploded view of the focusing structure provided by the embodiment of the present invention.
- Figure 6 is a schematic structural diagram of the sensor circuit board.
- Second magnet holder 11. Lens carrier; 12. Connection shrapnel; 13. Focus magnet; 14. Focus coil; 16. Focus circuit board; 17. Position magnet; 25. Shrapnel holder;
- Image module
- connection should be understood in a broad sense.
- connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
- connection or integral connection
- connection or integral connection
- connection can be a mechanical connection or an electrical connection
- it can be a direct connection or an indirect connection through an intermediate medium
- it can be an internal connection between two components.
- specific meanings of the above terms in this application can be understood on a case-by-case basis.
- the anti-shake structure 100 includes an outer ball seat 1, an inner ball seat 2, a ball 3, Anti-shake magnet 4, anti-shake coil 5 and anti-shake circuit board 6; the inner bead seat 2 is installed inside the outer bead seat 1, and the inner bead seat 2 is connected to the outer bead seat 1 through the balls 3; the anti-shake magnet 4 is installed on Inner bead seat 2; anti-shake coil 5 is installed on the outer bead seat 1, and its anti-shake coil 5 is opposite to the anti-shake magnet 4; anti-shake circuit board 6 is installed on the outer bead seat 1, and the anti-shake circuit board 6 is connected to the anti-shake Coil 5 is electrically connected;
- the focusing structure 200 includes a second magnet seat 10, a lens carrier 11, a connecting elastic piece 12, a focusing magnet 13, a focusing coil 14 and a focusing circuit board 16; the second magnet seat 10 is connected to the inner bead seat 2; the focusing magnet 13 is provided On the second magnet base 10; the lens carrier 11 is connected to the second magnet base 10 through the connecting elastic piece 12; the focus coil 14 is provided on the lens carrier 11; the focus circuit board 16 is provided on the lens carrier 11, and the focus circuit board 16 and the focus coil 14 Electrical connection.
- the anti-shake coil 5 when shooting with anti-shake: the anti-shake coil 5 is energized, and the ampere force generated by the energized anti-shake coil 5 in the magnetic field of the anti-shake magnet 4 acts on the inner ball seat 2, and the inner ball seat is realized through the action of the ball 3 2. It moves relative to the outer bead seat 1, and uses an external or internal control driver chip to control the current direction and size of the anti-shake coil 5, thereby controlling the angle of the inner bead seat 2 to offset vibration interference during shooting to eliminate image blur. Improve the quality of images or videos.
- the ampere force generated by the energized focus coil 14 in the magnetic field of the focus magnet 13 is used to act on the lens carrier 11, and an external or internal control driver chip is used to control the current direction and size of the focus coil 14, thereby controlling the lens carrier 11.
- the amount of displacement realizes the automatic focusing function of the lens.
- the lens carrier 11 is automatically reset through the action of the shrapnel.
- the anti-shake circuit board 6 and the focus circuit board 16 are connected to the external power supply through the application module; a control drive chip and a vibration sensor are provided outside/inside the motor, and the control chip and vibration sensor are respectively connected to the anti-shake circuit board 6 and/or Or the focus circuit board 16 is connected; in this way, the driver chip can be controlled to read the vibration sensor, and calculate the required anti-shake angle and focus displacement, output the required control signal, and change the current and direction to achieve anti-shake and focus effects.
- the lens carrier 11 is connected to the sensor carrier 18 by connecting the elastic piece 12 and the second magnet seat 10, so the lens carrier 11 has at least one degree of freedom in displacement relative to the sensor carrier 18.
- the two outer ball seats 1 each have two rotational fulcrums, that is, the total number of rotational fulcrums is four; the outer periphery of the inner ball seat 2 is provided with at least four spherical segments corresponding to each ball 3, and each spherical segment The spherical centers are all coincident with the rotation center, which passes or approximately passes through the optical axis Z of the lens.
- the ball 3 is in contact with the spherical segment; the anti-shake magnet 4 and the anti-shake coil 5 can drive the inner ball seat 2 to rotate around at least two The axis rotates, and each axis of rotation passes or approximately passes through the center of rotation.
- Four balls 3 are arranged between the two outer ball seats 1 and the inner ball seat 2.
- the four balls 3 are in one-to-one correspondence with the four concentric spherical segments on the inner ball seat 2, which can prevent multi-axis rotation. shake, and the four balls 3 can provide stable and reliable support to the inner ball seat 2, reducing the impact of posture difference on the anti-shake performance.
- the horizontal plane passing through the center of rotation is defined as the first reference plane, one group of balls 3 are located above the first reference plane, and the other group of balls 3 are located below the first reference plane.
- the assembly of each outer ball seat 1 and the inner ball seat 2 can be further facilitated, and the inner ball seat 2 can be stably supported, so that the inner ball seat 2 is less affected by attitude differences when realizing multi-axis anti-shake rotation.
- each set of balls 3 includes two.
- the two balls 3 located above the first reference plane are arranged oppositely; the two balls 3 located below the first reference plane and the two balls 3 located above the first reference plane.
- Two balls 3 are arranged adjacent to each other.
- the anti-shake structure 100 also includes a cage 9 .
- the cage 9 is provided on the outer ball seat 1 and is used to position the ball 3 . In this way, the cage 9 can ensure that the ball 3 is stably maintained at the designated position, ensuring the stability and reliability of the overall structure.
- the anti-shake structure 100 further includes a first magnet seat 8 , the first magnet seat 8 is installed on the inner bead seat 2 , and the anti-shake magnet 4 is installed on the first magnet seat 8 .
- the use of the first magnet seat 8 can facilitate the installation of the anti-shake magnet 4, and when assembling the motor, the first magnet seat 8 that has been equipped with the anti-shake magnet 4 in advance can be directly assembled, thereby improving the assembly efficiency.
- replacing the anti-shake magnet 4 by directly replacing the first magnet seat 8 is simple and fast. It also avoids direct replacement of the inner bead seat 2 or damage to the inner bead seat 2 by the anti-shake magnet 4, reducing maintenance costs.
- the anti-shake structure 100 further includes a first coil seat 7 , the first coil seat 7 is installed on the outer bead seat 1 , and the anti-shake coil 5 is installed on the first coil seat 7 .
- the first coil seat 7 can facilitate the installation of the anti-shake coil 5, and when assembling the motor, the first coil seat 7 that has been installed with the anti-shake coil 5 in advance can be directly assembled, thereby improving the assembly efficiency.
- replacing the anti-shake coil 5 by directly replacing the first coil seat 7 is simple and fast, and also avoids direct replacement of the outer bead seat 1 or damage to the outer bead seat 1 by the anti-shake coil 5, reducing maintenance costs.
- the focusing structure 200 further includes an elastic piece holder 25 , the elastic piece 25 is installed on the second magnet base 10 , and the connecting elastic piece 12 is installed on the elastic piece holder 25 .
- the connecting elastic piece 12 can connect the lens carrier 11 and the second magnet holder 10 through the elastic piece holder 25.
- the elastic piece holder 25 can facilitate the connection of the elastic piece 12, ensure the accurate position of the connecting elastic piece 12, and facilitate the assembly of the motor.
- the focusing structure 200 further includes a position magnet 17 , and the position magnet 17 is installed on the second magnet base 10 .
- a preferred embodiment of the present invention also provides an application module for an anti-shake focus motor, including any of the above-mentioned anti-shake focus motors, and also includes:
- Lens 300 the lens 300 is arranged on the lens carrier 11;
- Image module 400 the image module 400 is arranged at the bottom of the lens carrier 11, and the image module 400 is arranged corresponding to the lens;
- Module housing 500 which is connected to the bottom end of the outer bead seat 1;
- the module circuit board 600 is provided in the module housing 500, and the module circuit board 600 is connected to the focusing structure 200 and the anti-shake structure 100 respectively.
- the image module 400 includes a sensor carrier 18, a filter 19, an image sensor 20 and a sensor circuit board 21 arranged in sequence from top to bottom; the sensor carrier 18 is connected to the focusing structure 200; the filter The sheet 19 and the sensor circuit board 21 are respectively mounted on the sensor carrier 18 , and the image sensor 20 is mounted on the sensor circuit board 21 .
- the module circuit board 600 includes a movable part 22 , an immovable part 23 and an elastic part 24 .
- the movable part 22 and the immovable part 23 are connected through the elastic part 24 .
- the immovable part extends out of the module housing 500, the elastic part 24 and the movable part are located inside the module housing 500, the elastic part 24 is elastic wire, and one end of the elastic wire is connected to the movable part.
- the movable part is connected to the other end and the immovable part is connected to the other end.
- the elastic yarn has a bent portion 24a and a straight portion, and multiple bent portions 24a and straight portions are connected in sequence, so that the elastic thread has a vortex structure, which can achieve better damping and rebound effects.
- module circuit board 600 is connected to the sensor circuit board 21 through the module socket.
- the anti-shake structure 100 further includes a position sensor 15 .
- the position sensor 15 is installed on the anti-shake circuit board 6 and is arranged corresponding to the anti-shake magnet 4 .
- the position sensor 15 is connected to an external or internal control driver chip through the anti-shake circuit board 6 .
- the control driver chip can read the signal of the position sensor 15, sense the angle of the anti-shake magnet 4 and the inner bead seat 2, and realize closed-loop anti-shake control.
- the working process of the present invention is: the module circuit board 600 is connected to external equipment, the module circuit board 600 is connected to the sensor circuit board 21, the anti-shake circuit board 6 and the focus circuit board 16.
- the anti-shake coil 5 is powered on, The ampere force generated by the energized anti-shake coil 5 in the magnetic field of the anti-shake magnet 4 is used to act on the inner ball seat 2.
- the movement of the inner ball seat 2 relative to the outer ball seat 1 is realized, combined with external or internal control.
- the driver chip controls the current direction and size of the anti-shake coil 5 to control the angle of the inner bead seat 2 to offset the vibration interference during shooting to eliminate the blur of the image and improve the quality of the image or film; when the shooting is completed, the anti-shake coil 5 When the power is turned off, the inner bead seat 2 automatically resets due to the rebound effect provided by the elastic part 24.
- the ampere force generated by the energized focus coil 14 in the magnetic field of the focus magnet 13 is used to act on the lens carrier 11, combined with an external control driver chip to control the current direction and size of the focus coil 14, thereby controlling the displacement of the lens carrier 11 , to realize the automatic focusing function of the lens. After the shooting is completed, the lens carrier 11 is automatically reset through the action of the shrapnel.
- the preferred embodiment of the present invention provides an anti-shake focus motor and its application module, which compared with the existing technology:
- the anti-shake focus motor and its application module of the present invention have a simple structure, can support multi-axis motion and anti-shake, and have advantages in size, reliability and cost.
- the anti-shake focus motor and its application module of the present invention use an actuator driven by electromagnetic force and do not require a complex mechanical transmission structure. Therefore, it has a simple and compact structure, easy assembly, small size, light weight, and low cost. , The advantage of low power consumption is conducive to mass production and application.
- the anti-shake focus motor and its application module of the present invention can also use the ampere force generated by the energized focus coil 14 in the magnetic field of the focus magnet 13 to drive the focus structure 200, and control the focus coil 14 in combination with an external or internal control drive chip.
- the current direction realizes the automatic focusing function of the lens, and the focusing is fast and accurate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Lens Barrels (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
一种防抖对焦马达及其应用模组,马达包括防抖结构(100)和对焦结构(200),防抖结构(100)包括外珠座(1)、内珠座(2)、滚珠(3)、防抖磁石(4)、防抖线圈(5)以及防抖电路板(6);对焦结构(200)包括第二磁石座(10)、镜头载体(11)、连接弹片(12)、对焦磁石(13)、对焦线圈(14)以及对焦电路板(16)。可以提供多轴自由度、减低微型云台防抖相机模组的功耗及体积、减少姿态差对防抖表现的影响、减低组装难度、以及提高最大防抖角度。
Description
本发明涉及摄像头模组技术领域,特别是涉及一种防抖对焦马达及其应用模组。
近年来具有拍摄功能的小型移动装置十分普及,应用范围亦不断扩展,包括智能手机﹑智能眼镜﹑运动相机﹑执法记录仪及行车记录仪。在所述装置中,包含至少一颗变焦(zoom)﹑自动对焦(Auto-Focus)或定焦(Fixed-Focus)小型相机模组(Compact camera module)。因此,所述模组的市场很庞大,增长亦稳步上扬。
在拍照及拍影片时,装置拍出来的照片及影片很可能因为外来振动而出现模糊或晃动,影响照片及影片质素。当振动比较激烈,或在低光情况下,这问题会更加严重。
为了解决上述问题,市场上已经出现很多不同的防抖技术。现有主流技术通过读取振动传感器(例如陀螺仪及加速传感器),计算振动波形及所需的补偿角度,通过电子﹑光学﹑或机械方法补偿因振动造成的图像模糊及晃动,达致改进图像质素的效果。
所述现有技术可以按振动补偿方法分为四类,包括电子防抖(Electronic Image Stabilizer,EIS)﹑光学防抖(Optical Image Stabilizer,OIS)﹑平移传感器防抖(Sensor-Shift Stabilizer,SSS)及防抖云台(Gimbal Stabilizer,GS)。EIS﹑OIS﹑SSS及GS各有不同的优点及缺点。
EIS是通过电子方法,达致防抖效果。在拍摄时,EIS会跟据计算的振动波形,调整每一帧影像的位置,抵消因振动造成的影像晃动。由于EIS不需要额外的致动器,所以EIS的主要优点是成本低,无需额外增加重量及体积。
OIS是通过光学及机械方法,利用致动器移动光学部件,达致光学部件和图 像传感器之间出现相对运动,改变光路(Optical Path)及成像圈(Image Circle)位置,抵消因振动造成的影像晃动。由于OIS是在拍摄每一帧影像中不断作出光学防抖补偿,因此能抵消每一帧影像曝光时的抖动,可以达致比EIS更佳的影像质素。
SSS是通过机械方法,利用致动器移动图像传感器,达致光学部件和图像传感器之间出现相对运动,抵消因振动造成的影像晃动。SSS的光学防抖原理和效果和OIS接近,能抵消每一帧影像曝光时的抖动,可以达致比EIS更佳的影像质素。相对于OIS,SSS在防抖过程中不需要移动较重的镜片或镜头,所以在高频防抖效果及功耗方面有较大优势。另外,SSS可以补偿OIS无法补偿的滚动(Rol l)抖动,所以可以达致最多5轴防抖,多于OIS最高的4轴防抖。
主流GS是通过机械方法,带动整个包含镜头及图像传感器的相机模组,作出和振动方向相反,但振幅接近的运动,抵消因振动造成的晃动。在防抖过程中,由于光学部件和图像传感器之间没有相对运动,所以影像质素及防抖效果在影像边缘不会出现下降,亦不需要因为防抖牺牲镜头的部份光学解像度,及图像传感器部份解像度。因此,主流防抖云台的防抖效果和影像质素比EIS﹑OIS及SSS好。
综上,可以看出现在市面常见的相机模组装置都存在各自的问题的,现技术无法在集成各个相机模组装置优点的情况下,对其缺点进行克服。
发明内容
本发明的目的是提供一种防抖对焦马达及其应用模组,具备良好的防抖效果,以及生产难度﹑成本﹑体积及功耗低等优点,并能支持滚动防抖及对焦功能。
为了解决上述技术问题,本发明提供一种防抖对焦马达,包括:
防抖结构,所述防抖结构包括外珠座、内珠座、滚珠、防抖磁石、防抖线圈以及防抖电路板;所述内珠座安装于外珠座的内部,且所述内珠座通过所述滚珠与所述外珠座连接;所述防抖磁石安装于所述内珠座;所述防抖线圈安装于所述外珠座,其所述防抖线圈与所述防抖磁石相对设置;所述防抖电路板安装于所述外珠座,且所述防抖电路板与所述防抖线圈电连接;
对焦结构,所述对焦结构包括第二磁石座、镜头载体、连接弹片、对焦磁石对焦线圈以及对焦电路板;所述第二磁石座连接所述内珠座;所述对焦磁石设置于所述第二磁石座;所述镜头载体通过所述连接弹片与所述第二磁石座连接;所述对焦线圈设置于所述镜头载体;所述对焦电路板设置于所述镜头载体,且所述对焦电路板与所述对焦线圈电连接。
优选地,所述外珠座设置有至少两个,两个所述外珠座呈上下拼接的方式连接;所述滚珠设置有两组,两组所述滚珠一一对应设置于两个所述外珠座;
其中,将经过所述旋转中心的水平面定义为第一参考平面,其中一组所述滚珠均位于所述第一参考平面的上方,另外一组所述滚珠均位于所述第一参考平面的下方。
优选地,每组所述滚珠包括两个,位于所述第一参考平面上方的两个所述滚珠相对设置;位于所述第一参考平面下方的两个滚珠和位于所述第一参考平面上方的两个所述滚珠相邻设置。
优选地,所述防抖结构还包括保持架,所述保持架设置于所述外珠座,用于对滚珠进行定位。
优选地,所述防抖结构还包括第一磁石座,所述第一磁石座安装于所述内珠座,所述防抖磁石安装于所述第一磁石座。
优选地,所述防抖结构还包括第一线圈座,所述第一线圈座安装于所述外珠座,所述防抖线圈安装于所述第一线圈座。
优选地,所述对焦结构还包括弹片座,所述弹片座安装于所述第二磁石座,所述连接弹片安装于所述弹片座。
为了解决上述问题,本发明还提供了一种防抖对焦马达的应用模组,包括上述任一所述的防抖对焦马达,还包括:
镜头,所述镜头设置于所述镜头载体上;
图像模组,所述图像模组设置于所述镜头载体的底端,且所述图像模组与所述镜头对应设置;
模组壳体,所述模组壳体与所述外珠座的底端连接;
模组电路板,所述模组电路板,所述模组电路板设置于所述模组壳体,所述模组电路板分别与所述对焦结构和所述防抖结构连接。
优选地,所述图像模组包括自上而下依次设置的传感器载体、滤光片、图像传感器和传感器电路板;所述传感器载体与所述对焦结构连接;所述滤光片与所述传感器电路板分别安装于所述传感器载体,所述图像传感器安装于所述传感器电路板。
优选地,所述模组电路板包括可动部分、不可动部分和弹性部分,所述可动部分与不可动部分通过弹性部分连接。
本发明具有以下有益效果:
(1)本发明的防抖对焦马达及其应用模组结构简单,能支持多轴运动及防抖,在尺寸、可靠性及成本上都可以更有优势。
(2)本发明的防抖对焦马达及其应用模组利用电磁力驱动的致动器,不需要复杂的机械传动结构,因此其具有结构简单紧凑、组装方便、体积小巧、重量轻、成本低、功耗低的优点,有利于大规模生产和应用。
(3)本发明的防抖对焦马达及其应用模组外珠座和内珠座采用滚珠连接,不需要其他结构将外珠座和内珠座连接,结构简单紧凑,制造成本﹑重量及体积较低。
(4)本发明的防抖对焦马达及其应用模组还可以利用通电对焦线圈在对焦磁石的磁场中产生的安培力驱动对焦结构,结合外部或内部的控制驱动芯片控制对焦线圈的电流方向,实现镜头自动对焦功能,对焦迅速准确。
图1是本发明实施例提供的防抖对焦马达及其应用模组的结构示意图;
图2是本发明实施例提供的防抖对焦马达及其应用模组的爆炸图;
图3是本发明实施例提供的防抖对焦马达及其应用模组的剖面图;
图4是本发明实施例提供的防抖结构的爆炸图;
图5是本发明实施例提供的对焦结构的爆炸图
图6是传感器电路板的一种结构示意图。
附图标记:
100、防抖结构;
1、外珠座;2、内珠座;3、滚珠;4、防抖磁石;5、防抖线圈;6、防抖电路板;7、第一线圈座;8、第一磁石座;9、保持架;15、位置传感器;
200、对焦结构;
10、第二磁石座;11、镜头载体;12、连接弹片;13、对焦磁石;14、对焦线圈;16、对焦电路板;17、位置磁石;25、弹片座;
300、镜头;
400、图像模组;
18、传感器载体;19、滤光片;20、图像传感器;21、传感器电路板;
500、模组壳体;
600、模组电路板;
22、可动部分;23、不可动部分;24、弹性部分;24a、弯折部。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通 技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
参见图1~5所示,本发明优选实施例提供一种防抖对焦马达及其应用模组,包括防抖结构100,防抖结构100包括外珠座1、内珠座2、滚珠3、防抖磁石4、防抖线圈5以及防抖电路板6;内珠座2安装于外珠座1的内部,且内珠座2通过滚珠3与外珠座1连接;防抖磁石4安装于内珠座2;防抖线圈5安装于外珠座1,其防抖线圈5与防抖磁石4相对设置;防抖电路板6安装于外珠座1,且防抖电路板6与防抖线圈5电连接;
对焦结构200,对焦结构200包括第二磁石座10、镜头载体11、连接弹片12、对焦磁石13、对焦线圈14以及对焦电路板16;第二磁石座10连接内珠座2;对焦磁石13设置于第二磁石座10;镜头载体11通过连接弹片12与第二磁石座10连接;对焦线圈14设置于镜头载体11;对焦电路板16设置于镜头载体11,且对焦电路板16与对焦线圈14电连接。
基于上述方案,拍摄防抖时:防抖线圈5通电,利用通电防抖线圈5在防抖磁石4的磁场中产生的安培力作用于内珠座2,通过滚珠3的作用进而实现内珠座2相对于外珠座1活动,结合外部或者内部的控制驱动芯片控制防抖线圈5的电流方向和大小,从而控制内珠座2的角度,实现抵消拍摄时的振动干扰以消除影像的模糊,改善影像或影片的素质。拍摄对焦时:利用通电对焦线圈14在对焦磁石13的磁场中产生的安培力作用于镜头载体11,结合外部或内部的控制驱动芯片控制对焦线圈14的电流方向和大小,从而控制镜头载体11的位移量,实现镜头自动对焦功能,拍摄完毕后,通过弹片的作用,镜头载体11自动复位。
需要说明的,防抖电路板6和对焦电路板16通过应用模组与外部电源连接;马达外部/内部设置有控制驱动芯片和振动传感器,控制芯片和振动传感器分别与防抖电路板6和/或对焦电路板16连接;这样就可以实现控制驱动芯片读取振动传感器,并且计算所需防抖角度和对焦位移量,输出所需的控制讯号,改变防抖线圈5和对焦线圈14的电流及方向,达致防抖和对焦效果。而镜头载体11通过连接弹片12及第二磁石座10与传感器载体18连接,所以镜头载体11相对于传感器载体18有至少有一个位移自由度。
此外,两个外珠座1上均具有两个转动支点,即转动支点的总数为四个;内珠座2的外周设置有至少四个与各滚珠3一一对应的球面段,各球面段的球心均重合于旋转中心,该旋转中心经过或大致经过镜头的光轴Z,滚珠3与球面段抵接;防抖磁石4和防抖线圈5能够驱动内珠座2绕至少两个旋转轴线转动,各旋转轴线经过或大致经过旋转中心。两个外珠座1与内珠座2之间设置四个滚珠3,四个滚珠3分别与内珠座2上的四个共心的球面段一一对应抵接,能够实现多轴转动防抖,且四个滚珠3能够对内珠座2实现稳定可靠的支撑,减少姿态差对防抖表现的影响。
本发明的一些优选实施例中,外珠座1设置有至少两个,两个外珠座1呈上下拼接的方式连接;滚珠3设置有两组,两组滚珠3一一对应设置于两个外珠座1;
其中,将经过旋转中心的水平面定义为第一参考平面,其中一组滚珠3均位于第一参考平面的上方,另外一组滚珠3均位于第一参考平面的下方。如此,能够进一步便于装配各外珠座1及内珠座2,且能够对内珠座2进行稳定地支撑,使得内珠座2在实现多轴防抖转动时受姿态差影响小。
本发明的一些优选实施例中,每组滚珠3包括两个,位于第一参考平面上方的两个滚珠3相对设置;位于第一参考平面下方的两个滚珠3和位于第一参考平面上方的两个滚珠3相邻设置。
本发明的一些优选实施例中,防抖结构100还包括保持架9,保持架9设置于外珠座1,用于对滚珠3进行定位。如此,保持架9可以保证滚珠3稳定保持于指定位置,确保整体结构的稳定可靠性。
本发明的一些优选实施例中,防抖结构100还包括第一磁石座8,第一磁石座8安装于内珠座2,防抖磁石4安装于第一磁石座8。具体的,采用第一磁石座8可以方便防抖磁石4安装,且在对马达进行组装时,可以直接将事先已经装有防抖磁石4的第一磁石座8进行组装,提高了组装的效率;此外通过直接更换第一磁石座8进行对防抖磁石4的更换,简单快捷,也避免直接更换内珠座2或者防抖磁石4损坏内珠座2,降低了维护成本。
本发明的一些优选实施例中,防抖结构100还包括第一线圈座7,第一线圈座7安装于外珠座1,防抖线圈5安装于第一线圈座7。具体的,第一线圈座7可以方便防抖线圈5安装,且在对马达进行组装时,可以直接将事先已经装有防抖线圈5的第一线圈座7座进行组装,提高了组装的效率;此外通过直接更换第一线圈座7进行对防抖线圈5的更换,简单快捷,也避免直接更换外珠座1或者防抖线圈5损坏外珠座1,降低了维护成本。
本发明的一些优选实施例中,对焦结构200还包括弹片座25,弹片座25安装于第二磁石座10,连接弹片12安装于弹片座25。具体的,连接弹片12可以通过弹片座25连接镜头载体11和第二磁石座10,弹片座25可以方便连接弹片12连接,且确保连接弹片12的位置准确,也方便马达的组装。
本发明的一些优选实施例中,对焦结构200还包括位置磁石17,位置磁石17安装于第二磁石座10。
本发明优选实施例还提供了一种防抖对焦马达的应用模组,包括上述任一的防抖对焦马达,还包括:
镜头300,镜头300设置于镜头载体11上;
图像模组400,图像模组400设置于镜头载体11的底端,且图像模组400与镜头对应设置;
模组壳体500,模组壳体500与外珠座1的底端连接;
模组电路板600,模组电路板600设置于模组壳体500,模组电路板600分别与对焦结构200和防抖结构100连接。
本发明的一些优选实施例中,图像模组400包括自上而下依次设置的传感器载体18、滤光片19、图像传感器20和传感器电路板21;传感器载体18与对焦结构200连接;滤光片19与传感器电路板21分别安装于传感器载体18,图像传感器20安装于传感器电路板21。
参见图6所示,本发明的一些优选实施例中,模组电路板600包括可动部分22、不可动部分23和弹性部分24,可动部分22与不可动部分23通过弹性部分24连接。
本发明的一些优选实施例中,不可动部分伸出模组壳体500的外部,弹性部分24和可动部分位于模组壳体500的内部,弹性部分24弹性丝,弹性丝的一端连接可动部分,另一端连接不可动部分。
进一步的,弹性丝具有弯折部24a和直线部,多个弯折部24a和直线部依次连接,使得弹性丝呈涡旋结构;能够达到较好的阻尼及回弹效果。
进一步的,模组电路板600通过模组插座与传感器电路板21连接。
本发明的一些优选实施例中,防抖结构100还包括位置传感器15,位置传感器15安装于防抖电路板6,并且与防抖磁石4对应设置。具体的,位置传感器15通过防抖电路板6和外部或者内部的控制驱动芯片连接。控制驱动芯片能读取位置传感器15信号,感应防抖磁石4及内珠座2角度,实现闭环防抖控制。
本发明的工作过程为:模组电路板600接通外部设备,模组电路板600连接传感器电路板21、防抖电路板6和对焦电路板16,拍摄防抖时:防抖线圈5通电,利用通电防抖线圈5在防抖磁石4的磁场中产生的安培力作用于内珠座2,通过滚珠3的作用进而实现内珠座2相对于外珠座1活动,结合外部或者内部的控制驱动芯片控制防抖线圈5的电流方向和大小,从而控制内珠座2的角度,实现抵消拍摄时的振动干扰以消除影像的模糊,改善影像或影片的素质;当拍摄完毕,防抖线圈5断电,因为弹性部分24提供的回弹效果内珠座2自动复位。拍摄对焦时:利用通电对焦线圈14在对焦磁石13的磁场中产生的安培力作用于镜头载体11,结合外部的控制驱动芯片控制对焦线圈14的电流方向和大小,从而控制镜头载体11的位移量,实现镜头自动对焦功能,拍摄完毕后,通过弹片的作用,镜头载体11自动复位。
综上,本发明优选实施例提供一种防抖对焦马达及其应用模组,其与现有技术相比:
(1)本发明的防抖对焦马达及其应用模组结构简单,能支持多轴运动及防抖,在尺寸、可靠性及成本上都可以更有优势。
(2)本发明的防抖对焦马达及其应用模组利用电磁力驱动的致动器,不需要复杂的机械传动结构,因此其具有结构简单紧凑、组装方便、体积小巧、重量 轻、成本低、功耗低的优点,有利于大规模生产和应用。
(3)本发明的防抖对焦马达及其应用模组外珠座1和内珠座2采用滚珠3连接,不需要其他结构将外珠座1和内珠座2连接,结构简单紧凑,制造成本﹑重量及体积较低。
(4)本发明的防抖对焦马达及其应用模组还可以利用通电对焦线圈14在对焦磁石13的磁场中产生的安培力驱动对焦结构200,结合外部或内部的控制驱动芯片控制对焦线圈14的电流方向,实现镜头自动对焦功能,对焦迅速准确。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。
Claims (10)
- 一种防抖对焦马达,其特征在于,包括:防抖结构,所述防抖结构包括外珠座、内珠座、滚珠、防抖磁石、防抖线圈以及防抖电路板;所述内珠座安装于外珠座的内部,且所述内珠座通过所述滚珠与所述外珠座连接;所述防抖磁石安装于所述内珠座;所述防抖线圈安装于所述外珠座,其所述防抖线圈与所述防抖磁石相对设置;所述防抖电路板安装于所述外珠座,且所述防抖电路板与所述防抖线圈电连接;对焦结构,所述对焦结构包括第二磁石座、镜头载体、连接弹片、对焦磁石对焦线圈以及对焦电路板;所述第二磁石座连接所述内珠座;所述对焦磁石设置于所述第二磁石座;所述镜头载体通过所述连接弹片与所述第二磁石座连接;所述对焦线圈设置于所述镜头载体;所述对焦电路板设置于所述镜头载体,且所述对焦电路板与所述对焦线圈电连接。
- 如权利要求1所述的防抖对焦马达,其特征在于:所述外珠座设置有至少两个,两个所述外珠座呈上下拼接的方式连接;所述滚珠设置有两组,两组所述滚珠一一对应设置于两个所述外珠座;其中,将经过所述旋转中心的水平面定义为第一参考平面,其中一组所述滚珠均位于所述第一参考平面的上方,另外一组所述滚珠均位于所述第一参考平面的下方。
- 如权利要求2所述的防抖对焦马达,其特征在于:每组所述滚珠包括两个,位于所述第一参考平面上方的两个所述滚珠相对设置;位于所述第一参考平面下方的两个滚珠和所述第一参考平面上方的两个滚珠相邻设置。
- 如权利要求1所述的防抖对焦马达,其特征在于:所述防抖结构还包括保持架,所述保持架设置于所述外珠座,用于对滚珠进行定位。
- 如权利要求1所述的防抖对焦马达,其特征在于:所述防抖结构还包括第一磁石座,所述第一磁石座安装于所述内珠座,所述防抖磁石安装于所述第一磁石座。
- 如权利要求1所述的防抖对焦马达,其特征在于:所述防抖结构还包括 第一线圈座,所述第一线圈座安装于所述外珠座,所述防抖线圈安装于所述第一线圈座。
- 如权利要求1所述的防抖对焦马达,其特征在于:所述对焦结构还包括弹片座,所述弹片座安装于所述第二磁石座,所述连接弹片安装于所述弹片座。
- 一种防抖对焦马达的应用模组,其特征在于:包括权利要求1-7任一所述的防抖对焦马达,还包括:镜头,所述镜头设置于所述镜头载体上;图像模组,所述图像模组设置于所述镜头载体的底端,且所述图像模组与所述镜头对应设置;模组壳体,所述模组壳体与所述外珠座的底端连接;模组电路板,所述模组电路板,所述模组电路板设置于所述模组壳体,所述模组电路板分别与所述对焦结构和所述防抖结构连接。
- 如权利要求8所述的防抖对焦马达的应用模组,其特征在于:所述图像模组包括自上而下依次设置的传感器载体、滤光片、图像传感器和传感器电路板;所述传感器载体与所述对焦结构连接;所述滤光片与所述传感器电路板分别安装于所述传感器载体,所述图像传感器安装于所述传感器电路板。
- 如权利要求9所述的防抖对焦马达的应用模组,其特征在于:所述模组电路板包括可动部分、不可动部分和弹性部分,所述可动部分与不可动部分通过弹性部分连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210941255.2A CN115268007A (zh) | 2022-08-05 | 2022-08-05 | 一种防抖对焦马达及其应用模组 |
CN202210941255.2 | 2022-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024027017A1 true WO2024027017A1 (zh) | 2024-02-08 |
Family
ID=83750152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/124424 WO2024027017A1 (zh) | 2022-08-05 | 2022-10-10 | 一种防抖对焦马达及其应用模组 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240045224A1 (zh) |
CN (1) | CN115268007A (zh) |
WO (1) | WO2024027017A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116170666A (zh) * | 2022-12-30 | 2023-05-26 | 昆山丘钛微电子科技股份有限公司 | 一种防抖对焦结构以及摄像模组 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07159834A (ja) * | 1993-12-09 | 1995-06-23 | Nikon Corp | 振れ防止装置 |
JP2011203283A (ja) * | 2010-03-24 | 2011-10-13 | Tdk Taiwan Corp | レンズのオートフォーカスモジュールの手ブレ防止構造 |
CN104020546A (zh) * | 2014-06-19 | 2014-09-03 | 深圳市世尊科技有限公司 | 一种可同时实现光学变焦和光学防抖的对焦马达 |
CN105629626A (zh) * | 2014-11-05 | 2016-06-01 | 惠州友华微电子科技有限公司 | 一种相机、光学系统及光学防抖摄像头装置 |
CN211429403U (zh) * | 2020-03-17 | 2020-09-04 | Oppo广东移动通信有限公司 | 光学防抖马达、摄像头模组及电子设备 |
CN112612102A (zh) * | 2020-12-31 | 2021-04-06 | 河南皓泽电子股份有限公司 | 光学元件驱动机构 |
CN112886788A (zh) * | 2021-03-08 | 2021-06-01 | Oppo广东移动通信有限公司 | 音圈马达、摄像头及电子设备 |
CN216673110U (zh) * | 2021-12-02 | 2022-06-03 | Oppo广东移动通信有限公司 | 摄像模组以及电子设备 |
CN114630017A (zh) * | 2020-12-11 | 2022-06-14 | 宁波舜宇光电信息有限公司 | 驱动装置和带有驱动装置的摄像模组 |
-
2022
- 2022-08-05 CN CN202210941255.2A patent/CN115268007A/zh active Pending
- 2022-10-10 WO PCT/CN2022/124424 patent/WO2024027017A1/zh unknown
-
2023
- 2023-08-02 US US18/229,190 patent/US20240045224A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07159834A (ja) * | 1993-12-09 | 1995-06-23 | Nikon Corp | 振れ防止装置 |
JP2011203283A (ja) * | 2010-03-24 | 2011-10-13 | Tdk Taiwan Corp | レンズのオートフォーカスモジュールの手ブレ防止構造 |
CN104020546A (zh) * | 2014-06-19 | 2014-09-03 | 深圳市世尊科技有限公司 | 一种可同时实现光学变焦和光学防抖的对焦马达 |
CN105629626A (zh) * | 2014-11-05 | 2016-06-01 | 惠州友华微电子科技有限公司 | 一种相机、光学系统及光学防抖摄像头装置 |
CN211429403U (zh) * | 2020-03-17 | 2020-09-04 | Oppo广东移动通信有限公司 | 光学防抖马达、摄像头模组及电子设备 |
CN114630017A (zh) * | 2020-12-11 | 2022-06-14 | 宁波舜宇光电信息有限公司 | 驱动装置和带有驱动装置的摄像模组 |
CN112612102A (zh) * | 2020-12-31 | 2021-04-06 | 河南皓泽电子股份有限公司 | 光学元件驱动机构 |
CN112886788A (zh) * | 2021-03-08 | 2021-06-01 | Oppo广东移动通信有限公司 | 音圈马达、摄像头及电子设备 |
CN216673110U (zh) * | 2021-12-02 | 2022-06-03 | Oppo广东移动通信有限公司 | 摄像模组以及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
US20240045224A1 (en) | 2024-02-08 |
CN115268007A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112034662B (zh) | 一种微型防抖云台以及相机模组 | |
CN107340667B (zh) | 一种整合相机模组的防抖微型云台 | |
CN112415708B (zh) | 一种防抖对焦马达及其应用模组 | |
CN110784650B (zh) | 防抖摄像模组及电子设备 | |
CN102798959B (zh) | 一种可实现镜头可控倾斜的音圈马达结构 | |
CN110500479B (zh) | 一种能带动相机模组的防抖微型云台 | |
CN210142249U (zh) | 一种微型防抖云台以及相机模组 | |
CN107329348A (zh) | 一种带防抖功能的透镜驱动装置 | |
WO2022142951A1 (zh) | 一种弹簧防抖系统及采用其的镜头防抖对焦装置 | |
WO2020191812A1 (zh) | 一种高性能及可靠的微型防抖云台 | |
CN214586188U (zh) | 一种防抖对焦马达及其应用模组 | |
TWI485459B (zh) | 成像裝置 | |
WO2023284277A1 (zh) | 防抖相机模组及其摄影设备 | |
WO2021232948A1 (zh) | 具有防抖功能的感光组件、摄像模组及其组装方法 | |
WO2024027017A1 (zh) | 一种防抖对焦马达及其应用模组 | |
CN202904103U (zh) | 一种可实现镜头可控倾斜的音圈马达结构 | |
CN217954821U (zh) | 一种防抖对焦马达及其应用模组 | |
CN213876151U (zh) | 一种防抖对焦马达及其应用模组 | |
CN212029014U (zh) | 一种微型防抖云台 | |
CN113301237A (zh) | 一种传感器驱动马达结构及防抖摄像模组 | |
WO2023231205A1 (zh) | 一种潜望式镜头驱动装置、摄像装置及移动终端 | |
WO2023226276A1 (zh) | 一种微型防抖云台相机模组 | |
CN113446485B (zh) | 一种微型防抖云台 | |
CN215581370U (zh) | 防抖相机模组及其摄影设备 | |
CN214959790U (zh) | 一种传感器驱动马达结构及防抖摄像模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22953809 Country of ref document: EP Kind code of ref document: A1 |