WO2020241343A1 - System for producing synthetic product and method for producing synthetic product - Google Patents

System for producing synthetic product and method for producing synthetic product Download PDF

Info

Publication number
WO2020241343A1
WO2020241343A1 PCT/JP2020/019603 JP2020019603W WO2020241343A1 WO 2020241343 A1 WO2020241343 A1 WO 2020241343A1 JP 2020019603 W JP2020019603 W JP 2020019603W WO 2020241343 A1 WO2020241343 A1 WO 2020241343A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
plant
product hydrogen
flow rate
production system
Prior art date
Application number
PCT/JP2020/019603
Other languages
French (fr)
Japanese (ja)
Inventor
圓島 信也
忠輝 谷岡
和徳 藤田
喜昌 安藤
淳史 堤
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to DE112020001970.5T priority Critical patent/DE112020001970T5/en
Priority to CN202080033023.6A priority patent/CN113784785A/en
Publication of WO2020241343A1 publication Critical patent/WO2020241343A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to a compound production system and a compound production method for producing a compound.
  • Patent Document 1 describes a system for producing fuel by synthesizing hydrogen obtained by electrolysis of water or seawater and carbon dioxide separated from the exhaust gas of a power generation device. Is disclosed.
  • At least one embodiment of the present invention aims to provide a compound production system and a compound production method capable of producing a compound using by-product hydrogen.
  • the compound production system is A by-product hydrogen discharge plant that discharges by-product hydrogen and A carbon dioxide emission plant that emits carbon dioxide-containing gas, A synthesis plant that produces a composite by synthesizing the by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas, and A flow rate adjusting device configured to guide the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant. To be equipped.
  • a composite is produced by using the carbon dioxide-containing gas discharged from the carbon dioxide emitting plant and the by-product hydrogen discharged from the by-product hydrogen discharging plant. In this case, since the acquisition cost of hydrogen is low, the production cost of the composite can be lowered.
  • the flow rate adjusting device is configured to guide carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen supplied to the synthesis plant to the synthesis plant.
  • the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
  • the flow rate adjusting device is A carbon dioxide recovery device that recovers the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant, A recovery amount adjusting unit configured to control the recovery amount of the carbon dioxide of the carbon dioxide recovery device, and including.
  • the carbon dioxide is controlled to be recovered from the carbon dioxide-containing gas according to the amount of hydrogen generated or supplied so as not to recover an unnecessary amount of carbon dioxide. It becomes possible to. As a result, the cost for recovering high-purity carbon dioxide from the carbon dioxide-containing gas can be reduced.
  • the compound production system A by-product hydrogen storage device for accumulating the by-product hydrogen discharged from the by-product hydrogen discharge plant is provided.
  • the by-product hydrogen storage device can supply the by-product hydrogen to the synthesis plant.
  • the compound production system is A first supply line for supplying the by-product hydrogen discharged from the by-product hydrogen discharge plant to the synthesis plant is provided.
  • the by-product hydrogen storage device is provided in the first supply branch line branched from the first supply line.
  • the by-product hydrogen storage device since the by-product hydrogen storage device is provided in the first supply branch line branched from the first supply line, the by-product hydrogen is not passed through the by-product hydrogen storage device. It can also be supplied to the synthesis plant from one supply line. In this case, even when the synthesis plant is in operation, the connection between the by-product hydrogen storage device and the first supply line should be disconnected (the first supply branch line should be cut off) to maintain the by-product hydrogen storage device. Is also possible. As a result, the operating rate of the synthesis plant can be improved.
  • the flow rate adjusting device is configured to control the flow rate of carbon dioxide according to the remaining amount of the by-product hydrogen storage device.
  • the composite production system is: A carbon dioxide storage device for accumulating the carbon dioxide is provided.
  • the carbon dioxide storage device is configured to be able to supply the carbon dioxide to the synthesis plant.
  • the compound production system is A second supply line for supplying the carbon dioxide contained in the carbon dioxide-containing gas discharged from the carbon dioxide emission plant to the synthesis plant is provided.
  • the carbon dioxide storage device is provided in a second supply branch line branched from the second supply line.
  • the carbon dioxide storage device is provided in the second supply branch line branched from the second supply line, carbon dioxide is supplied to the second supply line without going through the carbon dioxide storage device. It can also be supplied to the synthesis plant from. In this case, even when the synthesis plant is in operation, it is possible to maintain the carbon dioxide storage device by disconnecting the connection between the carbon dioxide storage device and the second supply line (cutting off the second supply branch line). Become. As a result, the operating rate of the synthesis plant can be improved.
  • the flow rate adjusting device is A carbon dioxide capture device that recovers the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant and supplies the carbon dioxide to the carbon dioxide storage device and the synthesis plant.
  • a recovery amount adjusting unit configured to control the recovery amount of the carbon dioxide of the carbon dioxide recovery device, and Including The flow rate adjusting device is configured to control the amount of carbon dioxide recovered according to the remaining amount of the carbon dioxide storage device.
  • carbon dioxide is recovered when the remaining amount of the carbon dioxide storage device (that is, the amount of carbon dioxide stored) falls below the threshold value indicating insufficient remaining amount (for example, 10% of the rating).
  • the threshold value indicating insufficient remaining amount (for example, 10% of the rating).
  • Control to increase the amount of carbon dioxide more than usual control to reduce the amount of carbon dioxide recovered when the remaining amount of the carbon dioxide storage device exceeds the threshold (for example, 90% of the rating) indicating that the capacity is over. Etc. can be performed. Therefore, it is possible to reduce the possibility that the remaining amount of the carbon dioxide storage device becomes excessively low or excessive.
  • the by-product hydrogen discharge plant is a plant that produces caustic soda, and produces the by-product hydrogen in salt electrolysis for producing the caustic soda.
  • Carbon dioxide and hydrogen supplied to the synthesis plant must be refined to a high degree of purity.
  • impurities are contained in the by-product hydrogen, for example, the reaction rate or the reaction rate at the time of producing the synthetic product may decrease, which may hinder the production of the synthetic product.
  • the configuration of (9) above since the by-product hydrogen discharge plant discharges high-purity by-product hydrogen, the cost required for the hydrogen purification process can be reduced.
  • At least a part of the generated power of the carbon dioxide emission plant is transferred to the by-product hydrogen emission plant or the synthesis plant. Supply.
  • the efficiency of energy utilization can be improved by supplying at least a part of the generated power of the carbon dioxide emission plant to the by-product hydrogen emission plant or the synthesis plant.
  • the exhaust heat of the carbon dioxide emission plant is supplied to the synthesis plant in any one of the configurations (1) to (10).
  • the efficiency of energy utilization can be improved by utilizing the exhaust heat of the carbon dioxide emission plant in the synthesis plant.
  • the exhaust heat of the carbon dioxide emission plant is used for heating in the synthesis plant to react the carbon dioxide with the by-product hydrogen.
  • the synthesis plant since the synthesis plant uses the exhaust heat of the carbon dioxide emission plant for heating for reacting carbon dioxide and by-product hydrogen in the synthesis plant, the efficiency of energy utilization should be improved. Can be done.
  • the exhaust heat of the carbon dioxide emitting plant purifies the final product from the compound of the synthesis plant. Used in heating for.
  • the synthesis plant uses the exhaust heat of the carbon dioxide emission plant for heating for purifying the final product from the synthesis, it is possible to improve the efficiency of energy utilization.
  • the by-product hydrogen discharge plant uses pure water supplied from the carbon dioxide discharge plant to use caustic soda. To generate.
  • the compound production system is configured to remove impurities in raw water to produce pure water.
  • a pure water supply device for supplying the pure water to the by-product hydrogen discharge plant and the carbon dioxide discharge plant is provided.
  • the carbon dioxide emission plant emits the carbon dioxide-containing gas obtained by reforming naphtha.
  • the by-product hydrogen discharge plant discharges the by-product hydrogen obtained by performing hydrogen purification on the hydrogen-containing gas obtained from the carbon dioxide-containing gas discharged by the carbon dioxide discharge plant.
  • the compound production system A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant is provided.
  • the by-product hydrogen discharge plant performs hydrogen purification on the hydrogen-containing gas after the carbon dioxide recovery device recovers the carbon dioxide.
  • the by-product hydrogen discharge plant performs hydrogen purification on the hydrogen-containing gas (carbon dioxide lean gas) after recovering carbon dioxide, so that by-product hydrogen can be efficiently obtained. .. Further, since the volume processed by the by-product hydrogen discharge plant is smaller than that in the case of processing carbon dioxide-containing gas (carbon dioxide-rich gas), the by-product hydrogen discharge plant can be miniaturized (reduced in capacity).
  • the compound production system A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant is provided.
  • the by-product hydrogen discharge plant includes a hydrogen purification device provided on a flow path through which the carbon dioxide-containing gas flows from the carbon dioxide discharge plant to the carbon dioxide capture device.
  • the carbon dioxide recovery device recovers carbon dioxide from the carbon dioxide-containing gas (hydrogen lean gas) after the by-product hydrogen discharge plant has refined hydrogen, so that the carbon dioxide is efficiently recovered. be able to.
  • the volume processed by the carbon dioxide recovery device is smaller than when carbon dioxide is recovered from the carbon dioxide-containing gas (hydrogen-rich gas) before hydrogen purification, so the carbon dioxide recovery device is downsized (small capacity). Can be).
  • the flow rate adjusting device guides the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant. It is configured as follows.
  • the carbon dioxide recovery rate is controlled based on the amount of carbon dioxide required when producing a compound with the hydrogen recovery rate set to 100%, the carbon dioxide emission plant emits carbon dioxide. Even when the composition of the carbon dioxide-containing gas is changed, the hydrogen recovery rate can be fixed at 100%.
  • the compound production system A carbon dioxide recovery device that recovers the carbon dioxide from the carbon dioxide-containing gas, At least one valve for adjusting the flow rate ratio between the mainstream line connected to the carbon capture device and the bypass line bypassing the carbon capture device. To be equipped.
  • the volume of the carbon dioxide-containing gas processed by the carbon dioxide recovery device can be reduced by adjusting the flow rate ratio between the mainstream line and the bypass line, so that the carbon dioxide recovery device can be miniaturized (small). Capacity can be increased).
  • the flow rate adjusting device is configured to guide the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant by controlling the flow rate ratio. There is.
  • the carbon dioxide recovery rate and the hydrogen recovery rate can be fixed by controlling the flow rate ratio.
  • the synthesis plant produces at least one of methanol, methane, and dimethyl ether as the synthesis.
  • the compound production method is By-product hydrogen discharge step to discharge by-product hydrogen and A carbon dioxide emission step that emits carbon dioxide-containing gas, A compound production step of producing a compound by synthesizing the by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas, and A flow rate at which a part of the carbon dioxide emitted in the carbon dioxide emission step is extracted and the flow rate is adjusted with respect to the flow rate of the by-product hydrogen used in the compound production step to lead the carbon dioxide to synthesis. Adjustment steps and To be equipped.
  • a composite is produced using the carbon dioxide-containing gas emitted in the carbon dioxide emission step and the by-product hydrogen emitted in the by-product hydrogen discharge step.
  • the acquisition cost of hydrogen is low, the production cost of the composite can be lowered.
  • carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen used in the compound production step is guided to synthesis.
  • the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range where the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • the compound production system 100 is a system for producing a compound such as a fuel or a chemical material.
  • the synthetic product is methanol, methane, dimethyl ether (DME) and the like.
  • the composite production system 100 comprises a by-product hydrogen discharge plant 10 that discharges by-product hydrogen and a carbon dioxide-containing gas.
  • a carbon dioxide emission plant 20 that emits carbon dioxide
  • a synthesis plant 30 that produces a composite by synthesizing by-product hydrogen and carbon dioxide contained in a carbon dioxide-containing gas
  • a by-product hydrogen supplied to the synthesis plant 30 is provided.
  • the compound production system 100 produces a compound by using the carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 and the by-product hydrogen emitted from the by-product hydrogen emission plant 10. To do. In this case, since the acquisition cost of hydrogen is low, the production cost of the composite can be lowered.
  • the flow rate adjusting device 40 is configured to guide carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen supplied to the synthesis plant 30 to the synthesis plant 30. In this case, since the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
  • the flow control device 40 recovers carbon dioxide from the carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20. It includes a carbon dioxide capture device 42 and a recovery amount adjusting unit 41 configured to control the carbon dioxide recovery amount of the carbon dioxide recovery device 42.
  • the flow rate adjusting device 40 is, for example, a sensor (not shown) for measuring the hydrogen flow rate of the supply pipe to the synthesis plant 30 and a by-product hydrogen storage device in order to adjust the flow rate of carbon dioxide with respect to the flow rate of by-product hydrogen.
  • a sensor (not shown) for measuring the remaining amount of 50 may be provided.
  • the carbon dioxide recovery device 42 may be configured to separate and recover carbon dioxide by, for example, a PSA (Pressure Swing Adsorption) method, or may be configured to separate and recover carbon dioxide by an amine absorption method.
  • a PSA Pressure Swing Adsorption
  • the amount of carbon dioxide recovered or the recovery rate is adjusted by repeating pressurization and depressurization.
  • the recovery amount or recovery rate of carbon dioxide is adjusted by adjusting the flow rate of the absorption liquid.
  • the recovery amount adjusting unit 41 may be configured to adjust the recovery rate of the carbon dioxide recovery device 42, and is not the recovery rate but the amount of carbon dioxide-containing gas led to the carbon dioxide recovery device 42 and the carbon dioxide recovery device.
  • the configuration may be such that the amount of carbon dioxide-containing gas released to the outside without being guided to 42 is adjusted. Therefore, the exhaust gas of the carbon dioxide recovery device 42 may contain a carbon dioxide-containing gas that is released to the outside without being guided to the carbon dioxide recovery device 42, or the carbon dioxide-containing gas guided to the carbon dioxide recovery device 42. Of these, off-gas may be used after carbon dioxide is recovered.
  • the composite production system 100 is a by-product hydrogen for accumulating the by-product hydrogen discharged from the by-product hydrogen discharge plant 10.
  • a storage device 50 may be provided so that the by-product hydrogen storage device 50 can supply by-product hydrogen to the synthesis plant 30.
  • the by-product hydrogen storage device 50 is a device for storing hydrogen, for example, a hydrogen storage alloy, a storage tank, or the like.
  • the composite production system 100 provides a first supply line for supplying the by-product hydrogen discharged from the by-product hydrogen discharge plant 10 to the synthesis plant 30.
  • the by-product hydrogen storage device 50 may be provided in the first supply branch line branched from the first supply line.
  • the supply path from the by-product hydrogen storage device 50 to the synthesis plant 30 is another supply line provided in parallel with the first supply line.
  • the supply route from the by-product hydrogen storage device 50 to the synthesis plant 30 may be the first supply line. That is, the by-product hydrogen storage device 50 may have a configuration in which the by-product hydrogen is supplied to the first supply line or the by-product hydrogen is supplied from the first supply line.
  • the by-product hydrogen storage device 50 is provided in the first supply branch line branched from the first supply line, the by-product hydrogen is not passed through the by-product hydrogen storage device 50. It is also possible to supply to the synthesis plant 30 from one supply line. In this case, even when the synthesis plant 30 is in operation, the connection between the by-product hydrogen storage device 50 and the first supply line is cut (the first supply branch line is cut off) to maintain the by-product hydrogen storage device 50. It is also possible to do. As a result, the operating rate of the synthesis plant 30 can be improved.
  • the flow rate adjusting device 40 shown in FIGS. 1 to 6 and 9 is configured to control the flow rate of carbon dioxide according to the remaining amount of the by-product hydrogen storage device 50. May be good.
  • the flow rate of carbon dioxide is reduced.
  • the threshold value indicating the insufficient remaining amount (for example, 10% of the rating).
  • Control to reduce the amount of carbon dioxide below normal control to increase the flow rate of carbon dioxide more than usual when the remaining amount of the by-product hydrogen storage device 50 exceeds the threshold value (for example, 90% of the rating) indicating that the capacity is over. Can be done. Therefore, it is possible to reduce the possibility that the remaining amount of the by-product hydrogen storage device 50 becomes excessively small or excessive.
  • the composite production system 100 comprises a carbon dioxide storage device 60 for storing carbon dioxide, from the carbon dioxide storage device 60 to the synthesis plant 30. It is configured to be able to supply carbon dioxide.
  • the carbon dioxide storage device 60 is a device for storing carbon dioxide, for example, a storage tank.
  • carbon dioxide can be stably supplied to the synthesis plant 30.
  • the carbon dioxide storage device 60 can be used. Therefore, carbon dioxide close to the amount of carbon dioxide corresponding to the amount of by-product hydrogen can be supplied to the synthesis plant 30. As a result, the operating rate of the synthesis plant 30 can be improved.
  • the composite production system 100 supplies carbon dioxide contained in the carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 to the synthesis plant 30.
  • a second supply line is provided, and the carbon dioxide storage device 60 may be provided in the second supply branch line branched from the second supply line.
  • the supply path from the carbon dioxide storage device 60 to the synthesis plant 30 is another supply line provided in parallel with the second supply line.
  • the supply route from the carbon dioxide storage device 60 to the synthesis plant 30 may be the second supply line. That is, the carbon dioxide storage device 60 may have a configuration in which carbon dioxide is supplied to the second supply line or carbon dioxide is supplied from the second supply line.
  • the carbon dioxide storage device 60 is provided in the second supply branch line branched from the second supply line, carbon dioxide is synthesized from the second supply line without going through the carbon dioxide storage device 60. It can also be supplied to the plant 30. In this case, even when the synthesis plant 30 is in operation, the connection between the carbon dioxide storage device 60 and the second supply line is cut (the second supply branch line is cut off) to maintain the carbon dioxide storage device 60. It is also possible. As a result, the operating rate of the synthesis plant can be improved.
  • the flow control device 40 shown in FIGS. 1 and 2 recovers carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant 20 and supplies carbon dioxide to the carbon dioxide storage device 60 and the synthesis plant 30. It includes a carbon capture device 42 and a recovery amount adjusting unit 41 configured to control the carbon dioxide recovery amount of the carbon dioxide recovery device 42.
  • the flow rate regulator 40 may be configured to control the amount of carbon dioxide recovered according to the remaining amount of the carbon dioxide storage device 60.
  • the flow rate adjusting device 40 includes a sensor (not shown) for measuring the remaining amount of the carbon dioxide storage device 60, a supply amount of carbon dioxide to the carbon dioxide storage device 60, and a supply amount of carbon dioxide from the carbon dioxide storage device 60. A sensor (not shown) or the like for measuring carbon dioxide may be provided.
  • the amount of carbon dioxide recovered is usually taken.
  • Control to increase the amount of carbon dioxide control to reduce the amount of carbon dioxide recovered when the remaining amount of the carbon dioxide storage device 60 exceeds the threshold (for example, 90% of the rating) indicating that the capacity is over. It becomes possible to do. Therefore, it is possible to reduce the possibility that the remaining amount of the carbon dioxide storage device 60 becomes excessively low or excessive.
  • the by-product hydrogen discharge plant 10 is a plant that produces caustic soda, such as the by-product hydrogen discharge plant 10 (10A) shown in FIGS. 3 to 6 and 9, for example. It may be configured to produce by-product hydrogen in salt electrolysis for production.
  • Carbon dioxide and hydrogen supplied to the synthesis plant 30 need to be refined with high purity.
  • impurities are contained in the by-product hydrogen, for example, the reaction rate or the reaction rate at the time of producing the synthetic product may decrease, which may hinder the production of the synthetic product.
  • the by-product hydrogen discharge plant 10 (10A) discharges high-purity by-product hydrogen, the cost required for the hydrogen purification process can be reduced.
  • At least a part of the generated power of the carbon dioxide emission plant 20 is supplied to the by-product hydrogen emission plant 10 or the synthesis plant 30.
  • the carbon dioxide emission plant 20 is a cement factory 20 (20B), and at least a part of the generated power of the power generation device 90 using the exhaust heat of the cement factory 20 (20B) is by-product hydrogen. It may be supplied to the discharge plant 10 or the synthesis plant 30.
  • the carbon dioxide emission plant 20 is a coal-fired power plant 20 (20A), and at least a part of the generated power is supplied to the by-product hydrogen emission plant 10 or the synthesis plant 30. Will be done.
  • the efficiency of energy utilization can be improved by supplying at least a part of the generated power of the carbon dioxide emission plant 20 to the by-product hydrogen emission plant 10 or the synthesis plant 30.
  • the composite production system 100 is configured to supply the waste heat of the carbon dioxide emission plant 20 to the synthesis plant 30, as in the composite production system 100 (100I) shown in FIG. 9, for example. It may have been done.
  • the synthesis plant 30 can utilize the exhaust heat of the carbon dioxide emission plant 20 to improve the efficiency of energy utilization.
  • FIG. 10 is a diagram schematically showing the configuration of the synthesis plant 30 according to the embodiment.
  • the synthesis plant 30 includes a hydrogen purification unit 31 for purifying hydrogen and a carbon dioxide purification unit 32 for purifying carbon dioxide. When high-purity by-product hydrogen and carbon dioxide are supplied, these configurations are unnecessary.
  • the synthesis plant 30 has a heating unit 33 for heating a gas in which hydrogen and carbon dioxide are mixed, a catalyst 34 for chemically reacting hydrogen and carbon dioxide to produce a compound (methanol), and distillation.
  • a distillation unit 36 configured to perform the above is provided.
  • the synthesis plant 30 includes a cooling unit 35 for circulating a gas that did not contribute to the production of the composite, a flash tank 37, and a compressor 38.
  • Hydrogen and carbon dioxide supplied from the hydrogen refining unit 31 and the carbon dioxide refining unit 32 are heated by the heating unit 33 in a mixed state and guided to the catalyst 34.
  • the catalyst 34 the gas in which hydrogen and carbon dioxide are mixed chemically reacts. This produces a composite.
  • the produced synthetic product is separated into water and the final product (high-purity methanol) by distillation in the distillation unit 36. In such a synthesis plant 30, heating is required in the heating unit 33 and the distillation unit 36.
  • the exhaust heat of the carbon dioxide emission plant 20 in the compound production system 100 (100I) shown in FIG. 9 is heating for reacting carbon dioxide and by-product hydrogen in the synthesis plant 30 ( That is, it may be used for heating by the heating unit 33 before leading to the catalyst 34).
  • the synthesis plant 30 uses the exhaust heat of the carbon dioxide emission plant 20 for heating for reacting carbon dioxide and by-product hydrogen in the synthesis plant 30, it is possible to improve the efficiency of energy utilization. it can.
  • the exhaust heat of the carbon dioxide emission plant 20 in the composition production system 100 (100I) shown in FIG. 9 is heating (ie,) for purifying the final product from the composition of the synthesis plant 30. It is used in the heating required for distillation of the distillation unit 36).
  • the synthesis plant 30 uses the waste heat of the carbon dioxide emission plant 20 for heating to purify the final product from the synthesis, so that the efficiency of energy utilization can be improved.
  • the by-product hydrogen discharge plant 10 (10A) is configured to use pure water supplied from the carbon dioxide discharge plant 20 to produce caustic soda. May be.
  • the by-product hydrogen discharge plant 10 and the carbon dioxide discharge plant 20 share pure water, so that the equipment for supplying pure water can be simplified.
  • the coal-fired power plant 20 (20A) steam is generated by a boiler and a generator is driven by a steam turbine. Pure water is used to supply water to this boiler.
  • the coal-fired power plant 20 (20A) is equipped with a pure water supply line (not shown) for replenishing the water supply used in the boiler.
  • the cement factory 20 (20B) steam is generated by the exhaust heat generated in the cement manufacturing process, and the power generation device 90 is driven by the steam turbine to use the electric power in the factory. Therefore, the cement factory 20 (20B) is provided with a pure water supply line for supplying pure water for generating steam to the steam turbine.
  • the carbon dioxide emission plant 20 for example, the coal-fired power plant 20 (20A) and the cement plant 20 (20B)
  • the compound production system 100 may include a pure water supply device 91, for example, as in the compound production system 100 (100F) shown in FIG.
  • the pure water supply device 91 is configured to remove impurities in raw water to produce pure water, and is configured to supply pure water to the by-product hydrogen discharge plant 10 and the carbon dioxide discharge plant 20.
  • the carbon dioxide emission plant 20 (20C) is obtained by modifying naphtha, for example, as in the compound production system 100 (100J, 100K, 100L, 100M) shown in FIGS. 11-14. It may be configured to emit carbon dioxide-containing gas.
  • the carbon dioxide emission plant 20 (20C) has a reformer 94 for reforming naphtha, a PSA device 95 for separating hydrogen from the reformed naphtha by the PSA method, and a PSA off gas of the PSA device 95. Is provided with a three-way valve 96 for dividing the flow into the heating furnace 97 and the flow rate adjusting device 40 (40B), and a heating furnace 97 for performing oil refining.
  • the hydrogen separated by the PSA device 95 is not used in the synthetic product, but is provided as a product to a hydrogen station or the like.
  • the by-product hydrogen discharge plant 10 (10C) is a hydrogen generator, and is a hydrogen-containing gas (carbon dioxide lean gas) obtained from the carbon dioxide-containing gas (carbon dioxide rich gas) discharged by the carbon dioxide discharge plant 20 (20C). On the other hand, it is configured to discharge by-product hydrogen obtained by performing hydrogen purification.
  • the numerical value not represented by the symbol exemplifies the ratio of the gas amount of each flow path to the gas amount of PSA off gas discharged from the PSA device 95 as 100%.
  • the composition of PSA off-gas is, for example, 50% by volume of carbon dioxide, 40% by volume of hydrogen, 10% by volume of methane and the like.
  • the composite production system 100 is a carbon dioxide capture device 42 that recovers carbon dioxide from a carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 (20C).
  • the by-product hydrogen discharge plant 10 (10C) may be configured such that the carbon dioxide recovery device 42 performs hydrogen purification on the hydrogen-containing gas after the carbon dioxide is recovered.
  • the by-product hydrogen discharge plant 10 (10C) performs hydrogen purification on the hydrogen-containing gas (carbon dioxide lean gas) after recovering carbon dioxide, so that by-product hydrogen can be efficiently obtained. Can be done. Further, since the volume processed by the by-product hydrogen discharge plant 10 (10C) is smaller than that when the carbon dioxide-containing gas (carbon dioxide-rich gas) is processed, the by-product hydrogen discharge plant 10 (10C) is downsized (small). Capacity can be increased).
  • the composite production system 100 is a carbon dioxide capture device 42 that recovers carbon dioxide from a carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 (20C).
  • the by-product hydrogen discharge plant 10 (10C) includes a hydrogen purification device provided on the flow path through which the carbon dioxide-containing gas flows from the carbon dioxide discharge plant 20 (20C) to the carbon dioxide recovery device 42. Good.
  • the carbon dioxide recovery device 42 recovers carbon dioxide from the carbon dioxide-containing gas (hydrogen lean gas) after the by-product hydrogen discharge plant 10 (10C) purifies hydrogen, so that the carbon dioxide is efficient. It can be recovered well. Further, since the volume processed by the carbon dioxide recovery device 42 is smaller than that in the case of recovering carbon dioxide from the carbon dioxide-containing gas (hydrogen-rich gas) before hydrogen purification, the carbon dioxide recovery device 42 is downsized (). Can be reduced in capacity).
  • the flow rate regulator 40 (40A) is supplied to the synthesis plant 30 by controlling the recovery rate of the carbon dioxide capture device 42. It is configured to guide carbon dioxide whose flow rate is adjusted with respect to the flow rate of raw hydrogen to the synthesis plant 30.
  • the carbon dioxide recovery rate is controlled based on the amount of carbon dioxide required when producing a compound with the hydrogen recovery rate set to 100%, the carbon dioxide emission plant 20 (20C) Even when the composition of the carbon dioxide-containing gas emitted by the gas changes, the hydrogen recovery rate can be fixed at 100%.
  • the composite production system 100 is connected to a carbon dioxide capture device 42 that recovers carbon dioxide from a carbon dioxide-containing gas and a carbon dioxide capture device 42. It is provided with at least one valve 43 for adjusting the flow ratio between the mainstream line to be used and the bypass line that bypasses the carbon dioxide capture device 42. At least one valve 43 is one three-way valve in the example shown in FIGS. 13 and 14. The valve 43 may be not a three-way valve but two valves for adjusting the flow rates of the mainstream line and the bypass line.
  • the compound production system 100 (100L) shown in FIG. 13 includes a carbon dioxide recovery device 42 that recovers carbon dioxide from one of the carbon dioxide-containing gases separated by the valve 43, and is a by-product hydrogen discharge plant.
  • No. 10 (10C) hydrogen purification is performed on the carbon dioxide-containing gas after the carbon dioxide recovery device 42 has recovered the carbon dioxide and the other carbon dioxide-containing gas separated by the valve 43.
  • the by-product hydrogen discharge plant 10 performs hydrogen purification on the carbon dioxide-containing gas after the carbon dioxide recovery device 42 has recovered the carbon dioxide and the other carbon dioxide-containing gas separated by the valve 43, By-product hydrogen can be obtained efficiently.
  • the by-product hydrogen discharge plant 10 (10C) purifies the carbon dioxide-containing gas discharged from the carbon dioxide emission plant 20 (20C) with a valve.
  • the carbon dioxide-containing gas after hydrogen purification by the by-product hydrogen discharge plant 10 (10C) is divided into two, and the carbon dioxide recovery device 42 divides one of the carbon dioxide-containing gases separated by the valve 43.
  • the carbon dioxide recovery device 42 recovers carbon dioxide from one of the carbon dioxide-containing gases separated by the valve 43 after the by-product hydrogen discharge plant 10 has refined hydrogen, so that carbon dioxide is efficiently acquired. can do.
  • the volume of the carbon dioxide-containing gas processed by the carbon dioxide recovery device can be reduced by adjusting the flow rate ratio between the mainstream line and the bypass line, so that the carbon dioxide recovery device can be miniaturized (small). Capacity can be increased).
  • the flow rate regulator 40 (40B) has a flow rate relative to the flow rate of by-product hydrogen supplied to the synthesis plant 30 by controlling the flow rate ratio. It may be configured to lead the adjusted carbon dioxide to the synthesis plant 30.
  • the carbon dioxide recovery rate and the hydrogen recovery rate can be fixed by controlling the flow rate ratio.
  • the synthesis plant 30 is configured to produce at least one of methanol, methane, and dimethyl ether as the compound. According to such a configuration, it is possible to produce a compound having excellent storage stability as compared with hydrogen gas.
  • FIG. 15 is a flowchart showing a compound production method according to an embodiment of the present invention.
  • the compound production system 100 discharges by-product hydrogen (step S1).
  • the composite production system 100 emits a carbon dioxide-containing gas (step S2). It should be noted that these steps may be performed at the same time, or there may be a time difference.
  • the composite production system 100 extracts a part from the carbon dioxide emitted in the carbon dioxide emission step, and synthesizes carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen used in the next step S4. Guide (step S3).
  • the composite product production system 100 produces a composite product by synthesizing by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas (step S4).
  • a compound is produced by using the carbon dioxide-containing gas emitted in the carbon dioxide emission step (step S1) and the by-product hydrogen emitted in the by-product hydrogen emission step (step S2). Produce.
  • the acquisition cost of hydrogen is low, the production cost of the composite can be lowered.
  • the flow rate adjusting step (step S3) carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen used in the compound production step (step S4) is guided to synthesis.
  • the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
  • the present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This system for producing a synthetic product is provided with: a by-produced hydrogen discharging plant which discharges by-produced hydrogen; a carbon dioxide discharging plant which discharges a carbon dioxide-containing gas; a synthesizing plant which produces a synthetic product by synthesizing the by-produced hydrogen and the carbon dioxide contained in the carbon dioxide-containing gas; and a flow rate regulation device configured to guide, to the synthesizing plant, the carbon dioxide of which the flow rate is regulated with respect to the flow rate of the by-produced hydrogen supplied to the synthesizing plant.

Description

合成物生産システム及び合成物生産方法Compound production system and compound production method
 本開示は、合成物を生産する合成物生産システム及び合成物生産方法に関する。 The present disclosure relates to a compound production system and a compound production method for producing a compound.
 化石燃料の利用に伴う二酸化炭素の排出を削減していくためには、あらゆる技術的な選択肢を追求していく必要がある。二酸化炭素含有ガスから二酸化炭素を回収して合成物(燃料、化学素材等)の資源として活用できれば、経済合理的に大気への二酸化炭素の排出を抑制することが可能となる。 In order to reduce carbon dioxide emissions associated with the use of fossil fuels, it is necessary to pursue all technical options. If carbon dioxide can be recovered from carbon dioxide-containing gas and used as a resource for synthetic products (fuel, chemical materials, etc.), it will be possible to economically and rationally suppress the emission of carbon dioxide into the atmosphere.
 二酸化炭素の活用に向けた提案として、例えば、特許文献1には、水又は海水の電気分解によって得られた水素と、発電装置の排ガスから分離した二酸化炭素とを合成し、燃料を生成するシステムが開示されている。 As a proposal for the utilization of carbon dioxide, for example, Patent Document 1 describes a system for producing fuel by synthesizing hydrogen obtained by electrolysis of water or seawater and carbon dioxide separated from the exhaust gas of a power generation device. Is disclosed.
特開平11-46460号公報Japanese Unexamined Patent Publication No. 11-46460
 特許文献1のように、もっぱら合成物の生産に使用するために、水又は海水の電気分解を行って水素を生成する場合、水素の取得コストが高くなるため、合成物の生産コストが高くなる。これに対して、合成物を生産するための処理とは別の処理の副産物として生じた水素である副生水素を活用する場合、水素の取得コストが低くなるため、合成物の生産コストが低くなる。 When hydrogen is produced by electrolyzing water or seawater exclusively for use in the production of a synthetic product as in Patent Document 1, the acquisition cost of hydrogen is high, so that the production cost of the synthetic product is high. .. On the other hand, when the by-product hydrogen, which is hydrogen generated as a by-product of the treatment different from the treatment for producing the compound, is utilized, the acquisition cost of hydrogen is low, so that the production cost of the compound is low. Become.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、副生水素を利用して合成物を生産することが可能な合成物生産システム及び合成物生産方法を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to provide a compound production system and a compound production method capable of producing a compound using by-product hydrogen.
 (1)本発明の少なくとも一実施形態に係る合成物生産システムは、
 副生水素を排出する副生水素排出プラントと、
 二酸化炭素含有ガスを排出する二酸化炭素排出プラントと、
 前記副生水素と前記二酸化炭素含有ガスに含まれる二酸化炭素とを合成することにより合成物を生産する合成プラントと、
 前記合成プラントに供給される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を前記合成プラントに導くように構成された流量調整装置と、
を備える。
(1) The compound production system according to at least one embodiment of the present invention is
A by-product hydrogen discharge plant that discharges by-product hydrogen and
A carbon dioxide emission plant that emits carbon dioxide-containing gas,
A synthesis plant that produces a composite by synthesizing the by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas, and
A flow rate adjusting device configured to guide the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant.
To be equipped.
 上記(1)の構成では、二酸化炭素排出プラントから排出される二酸化炭素含有ガスと、副生水素排出プラントから排出される副生水素とを使用して合成物を生産する。この場合、水素の取得コストが低くなるため、合成物の生産コストを低くすることができる。 In the configuration of (1) above, a composite is produced by using the carbon dioxide-containing gas discharged from the carbon dioxide emitting plant and the by-product hydrogen discharged from the by-product hydrogen discharging plant. In this case, since the acquisition cost of hydrogen is low, the production cost of the composite can be lowered.
 ところで、燃料、化学素材等の高純度の合成物を生産する場合、二酸化炭素と水素の供給量を、その合成における化学反応式に基づく比率となるように調整する必要がある。電気分解の場合、水素の発生量を調整できるため、二酸化炭素の供給状況に応じて水素の発生量を調整すれば、二酸化炭素と水素の供給量の比率を調整することが可能である。しかし、副生水素を使用する場合、水素の発生量又は供給量を調整することが困難である。また、二酸化炭素の排出量に対して水素の排出量が少ない場合、合成物の生産量を最大化するために水素の利用率が高いことが好ましい。 By the way, when producing high-purity synthetic products such as fuels and chemical materials, it is necessary to adjust the supply amount of carbon dioxide and hydrogen so that the ratio is based on the chemical reaction formula in the synthesis. In the case of electrolysis, the amount of hydrogen generated can be adjusted, so the ratio of the amount of carbon dioxide to the amount of hydrogen supplied can be adjusted by adjusting the amount of hydrogen generated according to the supply status of carbon dioxide. However, when by-product hydrogen is used, it is difficult to adjust the amount of hydrogen generated or supplied. Further, when the amount of hydrogen emitted is smaller than the amount of carbon dioxide emitted, it is preferable that the hydrogen utilization rate is high in order to maximize the production amount of the compound.
 この点、上記(1)の構成では、流量調整装置が合成プラントに供給される副生水素の流量に対して、流量を調整した二酸化炭素を合成プラントに導くように構成されている。この場合、副生水素の供給量に応じて二酸化炭素の供給量が調整されるため、水素の利用率を高くすることが可能となる。 In this regard, in the configuration of (1) above, the flow rate adjusting device is configured to guide carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen supplied to the synthesis plant to the synthesis plant. In this case, since the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
 (2)幾つかの実施形態では、上記(1)の構成において、
 前記流量調整装置は、
 前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置と、
 前記二酸化炭素回収装置の前記二酸化炭素の回収量を制御するように構成された回収量調整部と、
を含む。
(2) In some embodiments, in the configuration of (1) above,
The flow rate adjusting device is
A carbon dioxide recovery device that recovers the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant,
A recovery amount adjusting unit configured to control the recovery amount of the carbon dioxide of the carbon dioxide recovery device, and
including.
 上記(2)の構成によれば、二酸化炭素含有ガスから水素の発生量又は供給量に応じた分だけ二酸化炭素を回収するように制御して、不必要となる量の二酸化炭素を回収しないようにすることが可能となる。これにより、二酸化炭素含有ガスから純度が高い二酸化炭素を回収するためのコストを低減することができる。 According to the configuration of (2) above, the carbon dioxide is controlled to be recovered from the carbon dioxide-containing gas according to the amount of hydrogen generated or supplied so as not to recover an unnecessary amount of carbon dioxide. It becomes possible to. As a result, the cost for recovering high-purity carbon dioxide from the carbon dioxide-containing gas can be reduced.
 (3)幾つかの実施形態では、上記(1)又は(2)の構成において、合成物生産システムは、
 前記副生水素排出プラントから排出される前記副生水素を蓄積するための副生水素貯蔵装置を備え、
 前記副生水素貯蔵装置から前記合成プラントに前記副生水素を供給可能に構成されている。
(3) In some embodiments, in the configuration of (1) or (2) above, the compound production system
A by-product hydrogen storage device for accumulating the by-product hydrogen discharged from the by-product hydrogen discharge plant is provided.
The by-product hydrogen storage device can supply the by-product hydrogen to the synthesis plant.
 上記(3)の構成によれば、合成プラントに対して副生水素を安定供給することが可能となる。例えば、副生水素排出プラントから排出される副生水素の量が、流量調整装置が合成プラントに導く二酸化炭素の流量の調整可能範囲に対応する範囲を逸脱するほど変動しても、副生水素貯蔵装置を利用することによって、二酸化炭素の流量の調整可能範囲内の副生水素を合成プラントに供給することができる。これにより、合成プラントの稼働率を向上させることができる。 According to the configuration of (3) above, it is possible to stably supply by-product hydrogen to the synthesis plant. For example, even if the amount of by-product hydrogen discharged from the by-product hydrogen discharge plant fluctuates to the extent that it deviates from the range corresponding to the adjustable range of the carbon dioxide flow rate led by the flow rate regulator to the synthesis plant, by-product hydrogen By utilizing the storage device, by-product hydrogen within the adjustable range of carbon dioxide flow rate can be supplied to the synthesis plant. As a result, the operating rate of the synthesis plant can be improved.
 (4)幾つかの実施形態では、上記(3)の構成において、合成物生産システムは、
 前記副生水素排出プラントから排出される前記副生水素を前記合成プラントに供給するための第1供給ラインを備え、
 前記副生水素貯蔵装置は、前記第1供給ラインから分岐した第1供給分岐ラインに設けられる。
(4) In some embodiments, in the configuration of (3) above, the compound production system is
A first supply line for supplying the by-product hydrogen discharged from the by-product hydrogen discharge plant to the synthesis plant is provided.
The by-product hydrogen storage device is provided in the first supply branch line branched from the first supply line.
 上記(4)の構成によれば、副生水素貯蔵装置が第1供給ラインから分岐した第1供給分岐ラインに設けられているため、副生水素を、副生水素貯蔵装置を介さずに第1供給ラインから合成プラントに供給することもできる。この場合、合成プラントが稼働している状況においても、副生水素貯蔵装置と第1供給ラインとの接続を切断(第1供給分岐ラインを遮断)して副生水素貯蔵装置のメンテナンスをすることも可能なる。これにより合成プラントの稼働率を向上させることができる。 According to the configuration of (4) above, since the by-product hydrogen storage device is provided in the first supply branch line branched from the first supply line, the by-product hydrogen is not passed through the by-product hydrogen storage device. It can also be supplied to the synthesis plant from one supply line. In this case, even when the synthesis plant is in operation, the connection between the by-product hydrogen storage device and the first supply line should be disconnected (the first supply branch line should be cut off) to maintain the by-product hydrogen storage device. Is also possible. As a result, the operating rate of the synthesis plant can be improved.
 (5)幾つかの実施形態では、上記(3)又は(4)の構成において、
 前記流量調整装置は、前記副生水素貯蔵装置の残量に応じて前記二酸化炭素の流量を制御するように構成される。
(5) In some embodiments, in the configuration of (3) or (4) above,
The flow rate adjusting device is configured to control the flow rate of carbon dioxide according to the remaining amount of the by-product hydrogen storage device.
 上記(5)の構成によれば、例えば、副生水素貯蔵装置の残量(すなわち副生水素の貯蔵量)が残量不足を示す閾値(例えば定格の10%)を下回った場合に二酸化炭素の流量を通常よりも少なくする制御、副生水素貯蔵装置の残量が容量オーバー気味であることを示す閾値(例えば定格の90%)を上回った場合に二酸化炭素の流量を通常よりも多くする制御等を行うことが可能となる。そのため、副生水素貯蔵装置の残量が過度に少なくなったり、過剰になったりする虞を低減することができる。 According to the configuration of (5) above, for example, when the remaining amount of the by-product hydrogen storage device (that is, the stored amount of by-product hydrogen) falls below the threshold value indicating the insufficient remaining amount (for example, 10% of the rating), carbon dioxide is produced. Control to reduce the flow rate of carbon dioxide below normal, increase the flow rate of carbon dioxide more than usual when the remaining amount of the by-product hydrogen storage device exceeds the threshold value (for example, 90% of the rating) indicating that the capacity is over. It becomes possible to perform control and the like. Therefore, it is possible to reduce the possibility that the remaining amount of the by-product hydrogen storage device becomes excessively low or excessive.
 (6)幾つかの実施形態では、上記(1)乃至(5)の何れか一つの構成において、合成物生産システムは、
 前記二酸化炭素を蓄積するための二酸化炭素貯蔵装置を備え、
 前記二酸化炭素貯蔵装置から前記合成プラントに前記二酸化炭素を供給可能に構成されている。
(6) In some embodiments, in any one of the above configurations (1) to (5), the composite production system is:
A carbon dioxide storage device for accumulating the carbon dioxide is provided.
The carbon dioxide storage device is configured to be able to supply the carbon dioxide to the synthesis plant.
 上記(6)の構成によれば、合成プラントに対して二酸化炭素を安定供給することが可能となる。例えば、副生水素排出プラントから排出される副生水素の量が、二酸化炭素の回収量の調整可能範囲に対応する範囲を逸脱するほど変動しても、二酸化炭素貯蔵装置を利用することによって、その副生水素の量に対応する二酸化炭素の量に近い二酸化炭素を合成プラントに供給することができる。これにより、合成プラントの稼働率を向上させることができる。 According to the configuration of (6) above, it is possible to stably supply carbon dioxide to the synthesis plant. For example, even if the amount of by-product hydrogen emitted from the by-product hydrogen discharge plant fluctuates to the extent that it deviates from the range corresponding to the adjustable range of carbon dioxide recovery amount, by using the carbon dioxide storage device, Carbon dioxide close to the amount of carbon dioxide corresponding to the amount of by-product hydrogen can be supplied to the synthesis plant. As a result, the operating rate of the synthesis plant can be improved.
 (7)幾つかの実施形態では、上記(6)の構成において、合成物生産システムは、
 前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスに含まれる前記二酸化炭素を前記合成プラントに供給するための第2供給ラインを備え、
 前記二酸化炭素貯蔵装置は、前記第2供給ラインから分岐した第2供給分岐ラインに設けられる。
(7) In some embodiments, in the configuration of (6) above, the compound production system is
A second supply line for supplying the carbon dioxide contained in the carbon dioxide-containing gas discharged from the carbon dioxide emission plant to the synthesis plant is provided.
The carbon dioxide storage device is provided in a second supply branch line branched from the second supply line.
 上記(7)の構成によれば、二酸化炭素貯蔵装置が第2供給ラインから分岐した第2供給分岐ラインに設けられているため、二酸化炭素を、二酸化炭素貯蔵装置を介さずに第2供給ラインから合成プラントに供給することもできる。この場合、合成プラントが稼働している状況においても、二酸化炭素貯蔵装置と第2供給ラインとの接続を切断(第2供給分岐ラインを遮断)して二酸化炭素貯蔵装置のメンテナンスをすることも可能なる。これにより合成プラントの稼働率を向上させることができる。 According to the configuration of (7) above, since the carbon dioxide storage device is provided in the second supply branch line branched from the second supply line, carbon dioxide is supplied to the second supply line without going through the carbon dioxide storage device. It can also be supplied to the synthesis plant from. In this case, even when the synthesis plant is in operation, it is possible to maintain the carbon dioxide storage device by disconnecting the connection between the carbon dioxide storage device and the second supply line (cutting off the second supply branch line). Become. As a result, the operating rate of the synthesis plant can be improved.
 (8)幾つかの実施形態では、上記(6)又は(7)の構成において、
 前記流量調整装置は、
 前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収して、前記二酸化炭素貯蔵装置及び前記合成プラントに前記二酸化炭素を供給する二酸化炭素回収装置と、
 前記二酸化炭素回収装置の前記二酸化炭素の回収量を制御するように構成された回収量調整部と、
を含み、
 前記流量調整装置は、前記二酸化炭素貯蔵装置の残量に応じて前記二酸化炭素の回収量を制御するように構成される。
(8) In some embodiments, in the configuration of (6) or (7) above,
The flow rate adjusting device is
A carbon dioxide capture device that recovers the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant and supplies the carbon dioxide to the carbon dioxide storage device and the synthesis plant.
A recovery amount adjusting unit configured to control the recovery amount of the carbon dioxide of the carbon dioxide recovery device, and
Including
The flow rate adjusting device is configured to control the amount of carbon dioxide recovered according to the remaining amount of the carbon dioxide storage device.
 上記(8)の構成によれば、例えば、二酸化炭素貯蔵装置の残量(すなわち二酸化炭素の貯蔵量)が残量不足を示す閾値(例えば定格の10%)を下回った場合に二酸化炭素の回収量を通常よりも多くする制御、二酸化炭素貯蔵装置の残量が容量オーバー気味であることを示す閾値(例えば定格の90%)を上回った場合に二酸化炭素の回収量を通常よりも少なくする制御等を行うことが可能となる。そのため、二酸化炭素貯蔵装置の残量が過度に少なくなったり、過剰になったりする虞を低減することができる。 According to the configuration of (8) above, for example, carbon dioxide is recovered when the remaining amount of the carbon dioxide storage device (that is, the amount of carbon dioxide stored) falls below the threshold value indicating insufficient remaining amount (for example, 10% of the rating). Control to increase the amount of carbon dioxide more than usual, control to reduce the amount of carbon dioxide recovered when the remaining amount of the carbon dioxide storage device exceeds the threshold (for example, 90% of the rating) indicating that the capacity is over. Etc. can be performed. Therefore, it is possible to reduce the possibility that the remaining amount of the carbon dioxide storage device becomes excessively low or excessive.
 (9)幾つかの実施形態では、上記(1)乃至(8)の何れか一つの構成において、
 前記副生水素排出プラントは、苛性ソーダを生成するプラントであり、前記苛性ソーダを生成するための塩電解において前記副生水素を生成する。
(9) In some embodiments, in any one of the above (1) to (8) configurations.
The by-product hydrogen discharge plant is a plant that produces caustic soda, and produces the by-product hydrogen in salt electrolysis for producing the caustic soda.
 合成プラントに供給される二酸化炭素と水素は高純度に精製されていることが必要である。副生水素に不純物が含まれている場合、例えば、合成物を生産する際の反応率又は反応速度が低下して、合成物の生産に支障をきたす虞がある。この点、上記(9)の構成によれば、副生水素排出プラントが純度の高い副生水素を排出するため、水素の精製処理に必要なコストを低減することができる。 Carbon dioxide and hydrogen supplied to the synthesis plant must be refined to a high degree of purity. When impurities are contained in the by-product hydrogen, for example, the reaction rate or the reaction rate at the time of producing the synthetic product may decrease, which may hinder the production of the synthetic product. In this respect, according to the configuration of (9) above, since the by-product hydrogen discharge plant discharges high-purity by-product hydrogen, the cost required for the hydrogen purification process can be reduced.
 (10)幾つかの実施形態では、上記(1)乃至(9)の何れか一つの構成において、前記二酸化炭素排出プラントの発電電力の少なくとも一部を前記副生水素排出プラント又は前記合成プラントに供給する。 (10) In some embodiments, in any one of the above (1) to (9), at least a part of the generated power of the carbon dioxide emission plant is transferred to the by-product hydrogen emission plant or the synthesis plant. Supply.
 上記(10)の構成によれば、二酸化炭素排出プラントの発電電力の少なくとも一部を副生水素排出プラント又は合成プラントに供給することにより、エネルギー利用の効率化を図ることができる。 According to the configuration of (10) above, the efficiency of energy utilization can be improved by supplying at least a part of the generated power of the carbon dioxide emission plant to the by-product hydrogen emission plant or the synthesis plant.
 (11)幾つかの実施形態では、上記(1)乃至(10)の何れか一つの構成において、前記二酸化炭素排出プラントの排熱を前記合成プラントに供給する。 (11) In some embodiments, the exhaust heat of the carbon dioxide emission plant is supplied to the synthesis plant in any one of the configurations (1) to (10).
 上記(11)の構成によれば、合成プラントが二酸化炭素排出プラントの排熱を利用することにより、エネルギー利用の効率化を図ることができる。 According to the configuration of (11) above, the efficiency of energy utilization can be improved by utilizing the exhaust heat of the carbon dioxide emission plant in the synthesis plant.
 (12)幾つかの実施形態では、上記(1)乃至(11)の何れか一つの構成において、
 前記二酸化炭素排出プラントの排熱は、前記合成プラントにおける前記二酸化炭素と前記副生水素とを反応させるための加熱に使用される。
(12) In some embodiments, in any one of the above configurations (1) to (11),
The exhaust heat of the carbon dioxide emission plant is used for heating in the synthesis plant to react the carbon dioxide with the by-product hydrogen.
 上記(12)の構成によれば、合成プラントが二酸化炭素排出プラントの排熱を合成プラントにおける二酸化炭素と副生水素とを反応させるための加熱に利用するため、エネルギー利用の効率化を図ることができる。 According to the configuration of (12) above, since the synthesis plant uses the exhaust heat of the carbon dioxide emission plant for heating for reacting carbon dioxide and by-product hydrogen in the synthesis plant, the efficiency of energy utilization should be improved. Can be done.
 (13)幾つかの実施形態では、上記(1)乃至(11)の何れか一つの構成において、前記二酸化炭素排出プラントの排熱は、前記合成プラントの前記合成物から最終生成物を精製するための加熱において使用される。 (13) In some embodiments, in any one of the configurations (1) to (11) above, the exhaust heat of the carbon dioxide emitting plant purifies the final product from the compound of the synthesis plant. Used in heating for.
 上記(13)の構成によれば、合成プラントが二酸化炭素排出プラントの排熱を合成物から最終生成物を精製するための加熱に利用するため、エネルギー利用の効率化を図ることができる。 According to the configuration of (13) above, since the synthesis plant uses the exhaust heat of the carbon dioxide emission plant for heating for purifying the final product from the synthesis, it is possible to improve the efficiency of energy utilization.
 (14)幾つかの実施形態では、上記(1)乃至(13)の何れか一つの構成において、前記副生水素排出プラントは、前記二酸化炭素排出プラントから供給される純水を使用して苛性ソーダを生成する。 (14) In some embodiments, in any one of the above configurations (1) to (13), the by-product hydrogen discharge plant uses pure water supplied from the carbon dioxide discharge plant to use caustic soda. To generate.
 上記(14)の構成によれば、副生水素排出プラントと二酸化炭素排出プラントが、純水を共有するため、純水を供給するための設備を簡素化することができる。 According to the configuration of (14) above, since the by-product hydrogen discharge plant and the carbon dioxide discharge plant share pure water, the equipment for supplying pure water can be simplified.
 (15)幾つかの実施形態では、上記(1)乃至(14)の何れか一つの構成において、合成物生産システムは、原水の不純物を除去して純水を製造するように構成され、前記副生水素排出プラント及び前記二酸化炭素排出プラントに前記純水を供給する純水供給装置を備える。 (15) In some embodiments, in any one of the above configurations (1) to (14), the compound production system is configured to remove impurities in raw water to produce pure water. A pure water supply device for supplying the pure water to the by-product hydrogen discharge plant and the carbon dioxide discharge plant is provided.
 上記(15)の構成では、副生水素排出プラントと二酸化炭素排出プラントとが純水供給装置を共有するため、純水を供給するための設備を簡素化することができる。 In the configuration of (15) above, since the by-product hydrogen discharge plant and the carbon dioxide discharge plant share the pure water supply device, the equipment for supplying pure water can be simplified.
 (16)幾つかの実施形態では、上記(1)乃至(8)の何れか一つの構成において、
 前記二酸化炭素排出プラントは、ナフサの改質によって得られる前記二酸化炭素含有ガスを排出し、
 前記副生水素排出プラントは、前記二酸化炭素排出プラントが排出した前記二酸化炭素含有ガスから得られる水素含有ガスに対して水素精製を行うことによって得られる前記副生水素を排出する。
(16) In some embodiments, in any one of the above (1) to (8) configurations.
The carbon dioxide emission plant emits the carbon dioxide-containing gas obtained by reforming naphtha.
The by-product hydrogen discharge plant discharges the by-product hydrogen obtained by performing hydrogen purification on the hydrogen-containing gas obtained from the carbon dioxide-containing gas discharged by the carbon dioxide discharge plant.
 上記(16)の構成では、製油所に適用可能となる。 The configuration of (16) above can be applied to refineries.
 (17)幾つかの実施形態では、上記(16)の構成において、合成物生産システムは、
 前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置を備え、
 前記副生水素排出プラントは、前記二酸化炭素回収装置が前記二酸化炭素を回収した後の前記水素含有ガスに対して水素精製を行う。
(17) In some embodiments, in the configuration of (16) above, the compound production system
A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant is provided.
The by-product hydrogen discharge plant performs hydrogen purification on the hydrogen-containing gas after the carbon dioxide recovery device recovers the carbon dioxide.
 上記(17)の構成では、副生水素排出プラントは、二酸化炭素を回収した後の水素含有ガス(二酸化炭素リーンガス)に対して水素精製を行うため、副生水素を効率よく取得することができる。また、二酸化炭素含有ガス(二酸化炭素リッチガス)を処理する場合に比べて副生水素排出プラントが処理するボリュームが小さくなるため、副生水素排出プラントを小型化(小容量化)できる。 In the configuration of (17) above, the by-product hydrogen discharge plant performs hydrogen purification on the hydrogen-containing gas (carbon dioxide lean gas) after recovering carbon dioxide, so that by-product hydrogen can be efficiently obtained. .. Further, since the volume processed by the by-product hydrogen discharge plant is smaller than that in the case of processing carbon dioxide-containing gas (carbon dioxide-rich gas), the by-product hydrogen discharge plant can be miniaturized (reduced in capacity).
 (18)幾つかの実施形態では、上記(16)の構成において、合成物生産システムは、
 前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置を備え、
 前記副生水素排出プラントは、前記二酸化炭素排出プラントから前記二酸化炭素回収装置までの前記二酸化炭素含有ガスが流れる流路上に設けられた水素精製装置を含む。
(18) In some embodiments, in the configuration of (16) above, the compound production system
A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant is provided.
The by-product hydrogen discharge plant includes a hydrogen purification device provided on a flow path through which the carbon dioxide-containing gas flows from the carbon dioxide discharge plant to the carbon dioxide capture device.
 上記(18)の構成では、二酸化炭素回収装置は、副生水素排出プラントが水素精製を行った後の二酸化炭素含有ガス(水素リーンガス)から二酸化炭素を回収するため、二酸化炭素を効率よく回収することができる。また、水素精製を行う前の二酸化炭素含有ガス(水素リッチガス)から二酸化炭素を回収する場合に比べて、二酸化炭素回収装置が処理するボリュームが小さくなるため、二酸化炭素回収装置を小型化(小容量化)できる。 In the configuration of (18) above, the carbon dioxide recovery device recovers carbon dioxide from the carbon dioxide-containing gas (hydrogen lean gas) after the by-product hydrogen discharge plant has refined hydrogen, so that the carbon dioxide is efficiently recovered. be able to. In addition, the volume processed by the carbon dioxide recovery device is smaller than when carbon dioxide is recovered from the carbon dioxide-containing gas (hydrogen-rich gas) before hydrogen purification, so the carbon dioxide recovery device is downsized (small capacity). Can be).
 (19)幾つかの実施形態では、上記(17)又は(18)の構成において、
 前記流量調整装置は、前記二酸化炭素回収装置の回収率を制御することによって、前記合成プラントに供給される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を前記合成プラントに導くように構成されている。
(19) In some embodiments, in the configuration of (17) or (18) above,
By controlling the recovery rate of the carbon dioxide recovery device, the flow rate adjusting device guides the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant. It is configured as follows.
 上記(19)の構成では、例えば、水素の回収率を100%として合成物を生産する場合に必要な二酸化炭素の量に基づいて二酸化炭素の回収率を制御すれば、二酸化炭素排出プラントが排出する二酸化炭素含有ガスの組成が変化する場合であっても、水素の回収率を100%に固定することができる。 In the configuration of (19) above, for example, if the carbon dioxide recovery rate is controlled based on the amount of carbon dioxide required when producing a compound with the hydrogen recovery rate set to 100%, the carbon dioxide emission plant emits carbon dioxide. Even when the composition of the carbon dioxide-containing gas is changed, the hydrogen recovery rate can be fixed at 100%.
 (20)幾つかの実施形態では、上記(16)の構成において、合成物生産システムは、
 前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置と、
 前記二酸化炭素回収装置に接続される主流ラインと前記二酸化炭素回収装置をバイパスさせるバイパスラインとの流量比を調節するための少なくとも一つの弁と、
を備える。
(20) In some embodiments, in the configuration of (16) above, the compound production system
A carbon dioxide recovery device that recovers the carbon dioxide from the carbon dioxide-containing gas,
At least one valve for adjusting the flow rate ratio between the mainstream line connected to the carbon capture device and the bypass line bypassing the carbon capture device.
To be equipped.
 上記(20)の構成では、主流ラインとバイパスラインとの流量比を調整することにより、二酸化炭素回収装置が処理する二酸化炭素含有ガスのボリュームを小さくできるため、二酸化炭素回収装置を小型化(小容量化)できる。 In the configuration (20) above, the volume of the carbon dioxide-containing gas processed by the carbon dioxide recovery device can be reduced by adjusting the flow rate ratio between the mainstream line and the bypass line, so that the carbon dioxide recovery device can be miniaturized (small). Capacity can be increased).
 (21)幾つかの実施形態では、上記(20)の構成において、
 前記流量調整装置は、前記流量比を制御することによって、前記合成プラントに供給される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を前記合成プラントに導くように構成されている。
(21) In some embodiments, in the configuration of (20) above,
The flow rate adjusting device is configured to guide the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant by controlling the flow rate ratio. There is.
 上記(21)の構成では、例えば、流量比を制御することにより、二酸化炭素の回収率と水素の回収率を固定することができる。 In the configuration of the above (21), for example, the carbon dioxide recovery rate and the hydrogen recovery rate can be fixed by controlling the flow rate ratio.
 (22)幾つかの実施形態では、上記(1)乃至(21)の何れか一つの構成において、
 前記合成プラントは、前記合成物として、メタノール、メタン、及びジメチルエーテルのうち少なくとも1種を生産する。
(22) In some embodiments, in any one of the above configurations (1) to (21),
The synthesis plant produces at least one of methanol, methane, and dimethyl ether as the synthesis.
 上記(22)の構成によれば、水素ガスに比べて保存性に優れる合成物を生産することができる。 According to the configuration of (22) above, it is possible to produce a compound having excellent storage stability as compared with hydrogen gas.
 (23)本発明の少なくとも一実施形態に係る合成物生産方法は、
 副生水素を排出する副生水素排出ステップと、
 二酸化炭素含有ガスを排出する二酸化炭素排出ステップと、
 前記副生水素と前記二酸化炭素含有ガスに含まれる二酸化炭素とを合成することにより合成物を生産する合成物生産ステップと、
 前記二酸化炭素排出ステップにおいて排出される前記二酸化炭素から一部を抽出し、前記合成物生産ステップにおいて使用される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を合成に導く流量調整ステップと、
を備える。
(23) The compound production method according to at least one embodiment of the present invention is
By-product hydrogen discharge step to discharge by-product hydrogen and
A carbon dioxide emission step that emits carbon dioxide-containing gas,
A compound production step of producing a compound by synthesizing the by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas, and
A flow rate at which a part of the carbon dioxide emitted in the carbon dioxide emission step is extracted and the flow rate is adjusted with respect to the flow rate of the by-product hydrogen used in the compound production step to lead the carbon dioxide to synthesis. Adjustment steps and
To be equipped.
 上記(23)の方法によれば、二酸化炭素排出ステップにおいて排出される二酸化炭素含有ガスと、副生水素排出ステップにおいて排出される副生水素とを使用して合成物を生産する。この場合、水素の取得コストが低くなるため、合成物の生産コストを低くすることができる。また、流量調整ステップでは、合成物生産ステップにおいて使用される副生水素の流量に対して、流量を調整した二酸化炭素を合成に導く。この場合、副生水素の供給量に応じて二酸化炭素の供給量が調整されるため、水素の利用率を高くすることが可能となる。 According to the method (23) above, a composite is produced using the carbon dioxide-containing gas emitted in the carbon dioxide emission step and the by-product hydrogen emitted in the by-product hydrogen discharge step. In this case, since the acquisition cost of hydrogen is low, the production cost of the composite can be lowered. Further, in the flow rate adjusting step, carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen used in the compound production step is guided to synthesis. In this case, since the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
 本発明の少なくとも一実施形態によれば、副生水素を利用して合成物を生産することが可能な合成物生産システム及び合成物生産方法を提供することができる。 According to at least one embodiment of the present invention, it is possible to provide a compound production system and a compound production method capable of producing a compound using by-product hydrogen.
本発明の一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the synthetic product production system which concerns on one Embodiment of this invention. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成プラントの構成を概略的に示す図である。It is a figure which shows roughly the structure of the synthesis plant which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 本発明の一実施形態に係る合成物生産方法を示すフローチャートである。It is a flowchart which shows the synthetic product production method which concerns on one Embodiment of this invention.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. Absent.
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range where the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.
 図1~図9及び図11~図14は、それぞれ、本発明の一実施形態に係る合成物生産システム100(100A、100B、100C、100D、100E、100F、100G、100H、100I、100J、100K、100L、100M)の構成を概略的に示す図である。合成物生産システム100は、燃料や化学素材等の合成物を生産するシステムである。例えば、合成物は、メタノール、メタン、ジメチルエーテル(DME)等である。 1 to 9 and 11 to 14 show the compound production system 100 (100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H, 100I, 100J, 100K, respectively, according to the embodiment of the present invention. , 100L, 100M) is a diagram schematically showing the configuration. The compound production system 100 is a system for producing a compound such as a fuel or a chemical material. For example, the synthetic product is methanol, methane, dimethyl ether (DME) and the like.
 幾つかの実施形態では、例えば、図1~図9及び図11~図14に示すように、合成物生産システム100は、副生水素を排出する副生水素排出プラント10と、二酸化炭素含有ガスを排出する二酸化炭素排出プラント20と、副生水素と二酸化炭素含有ガスに含まれる二酸化炭素とを合成することにより合成物を生産する合成プラント30と、合成プラント30に供給される副生水素の流量に対して、流量を調整した二酸化炭素を合成プラント30に導くように構成された流量調整装置40と、を備える。 In some embodiments, for example, as shown in FIGS. 1-9 and 11-14, the composite production system 100 comprises a by-product hydrogen discharge plant 10 that discharges by-product hydrogen and a carbon dioxide-containing gas. A carbon dioxide emission plant 20 that emits carbon dioxide, a synthesis plant 30 that produces a composite by synthesizing by-product hydrogen and carbon dioxide contained in a carbon dioxide-containing gas, and a by-product hydrogen supplied to the synthesis plant 30. A flow rate adjusting device 40 configured to guide carbon dioxide whose flow rate has been adjusted with respect to the flow rate to the synthesis plant 30 is provided.
 かかる構成によれば、合成物生産システム100は、二酸化炭素排出プラント20から排出される二酸化炭素含有ガスと、副生水素排出プラント10から排出される副生水素とを使用して合成物を生産する。この場合、水素の取得コストが低くなるため、合成物の生産コストを低くすることができる。 According to such a configuration, the compound production system 100 produces a compound by using the carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 and the by-product hydrogen emitted from the by-product hydrogen emission plant 10. To do. In this case, since the acquisition cost of hydrogen is low, the production cost of the composite can be lowered.
 また、流量調整装置40は、合成プラント30に供給される副生水素の流量に対して、流量を調整した二酸化炭素を合成プラント30に導くように構成されている。この場合、副生水素の供給量に応じて二酸化炭素の供給量が調整されるため、水素の利用率を高くすることが可能となる。 Further, the flow rate adjusting device 40 is configured to guide carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen supplied to the synthesis plant 30 to the synthesis plant 30. In this case, since the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
 幾つかの実施形態では、例えば、図1~図9及び図11~図14に示すように、流量調整装置40は、二酸化炭素排出プラント20から排出される二酸化炭素含有ガスから二酸化炭素を回収する二酸化炭素回収装置42と、二酸化炭素回収装置42の二酸化炭素の回収量を制御するように構成された回収量調整部41と、を含む。流量調整装置40は、副生水素の流量に対して二酸化炭素の流量を調整するために、例えば、合成プラント30への供給配管の水素流量を計測するセンサ(不図示)、副生水素貯蔵装置50の残量を計測するセンサ(不図示)等を備えていてもよい。 In some embodiments, for example, as shown in FIGS. 1-9 and 11-14, the flow control device 40 recovers carbon dioxide from the carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20. It includes a carbon dioxide capture device 42 and a recovery amount adjusting unit 41 configured to control the carbon dioxide recovery amount of the carbon dioxide recovery device 42. The flow rate adjusting device 40 is, for example, a sensor (not shown) for measuring the hydrogen flow rate of the supply pipe to the synthesis plant 30 and a by-product hydrogen storage device in order to adjust the flow rate of carbon dioxide with respect to the flow rate of by-product hydrogen. A sensor (not shown) for measuring the remaining amount of 50 may be provided.
 二酸化炭素回収装置42は、例えば、PSA(Pressure Swing Adsorption)方式によって二酸化炭素を分離回収する構成であってもよいし、アミン吸収法によって二酸化炭素を分離回収する構成であってもよい。PSA方式による回収方法では、例えば、加圧と減圧との繰り返しにより二酸化炭素の回収量又は回収率を調整する。アミン吸収法による回収方法では、吸収液の流量を調整することにより二酸化炭素の回収量又は回収率を調整する。 The carbon dioxide recovery device 42 may be configured to separate and recover carbon dioxide by, for example, a PSA (Pressure Swing Adsorption) method, or may be configured to separate and recover carbon dioxide by an amine absorption method. In the recovery method by the PSA method, for example, the amount of carbon dioxide recovered or the recovery rate is adjusted by repeating pressurization and depressurization. In the recovery method by the amine absorption method, the recovery amount or recovery rate of carbon dioxide is adjusted by adjusting the flow rate of the absorption liquid.
 回収量調整部41は、二酸化炭素回収装置42の回収率を調整する構成であってもよいし、回収率ではなく、二酸化炭素回収装置42に導く二酸化炭素含有ガスの量と、二酸化炭素回収装置42に導かずに外部に放出する二酸化炭素含有ガスの量とを調整する構成であってもよい。そのため、二酸化炭素回収装置42の排ガスは、二酸化炭素回収装置42に導かずに外部に放出する二酸化炭素含有ガスを含んでいてもよいし、二酸化炭素回収装置42に導かれた二酸化炭素含有ガスのうち二酸化炭素を回収した後のオフガスであってもよい。 The recovery amount adjusting unit 41 may be configured to adjust the recovery rate of the carbon dioxide recovery device 42, and is not the recovery rate but the amount of carbon dioxide-containing gas led to the carbon dioxide recovery device 42 and the carbon dioxide recovery device. The configuration may be such that the amount of carbon dioxide-containing gas released to the outside without being guided to 42 is adjusted. Therefore, the exhaust gas of the carbon dioxide recovery device 42 may contain a carbon dioxide-containing gas that is released to the outside without being guided to the carbon dioxide recovery device 42, or the carbon dioxide-containing gas guided to the carbon dioxide recovery device 42. Of these, off-gas may be used after carbon dioxide is recovered.
 このような構成によれば、二酸化炭素含有ガスから水素の発生量又は供給量に応じた分だけ二酸化炭素を回収するように制御して、不必要となる量の二酸化炭素を回収しないようにすることが可能となる。これにより、二酸化炭素含有ガスから純度が高い二酸化炭素を回収するためのコストを低減することができる。 According to such a configuration, it is controlled to recover carbon dioxide from the carbon dioxide-containing gas according to the amount of hydrogen generated or supplied so as not to recover an unnecessary amount of carbon dioxide. It becomes possible. As a result, the cost for recovering high-purity carbon dioxide from the carbon dioxide-containing gas can be reduced.
 幾つかの実施形態では、例えば、図1~図6及び図9に示すように、合成物生産システム100は、副生水素排出プラント10から排出される副生水素を蓄積するための副生水素貯蔵装置50を備え、副生水素貯蔵装置50から合成プラント30に副生水素を供給可能に構成されていてもよい。副生水素貯蔵装置50は、水素を貯蔵するための装置であって、例えば、水素吸蔵合金、貯蔵タンク等である。 In some embodiments, for example, as shown in FIGS. 1-6 and 9, the composite production system 100 is a by-product hydrogen for accumulating the by-product hydrogen discharged from the by-product hydrogen discharge plant 10. A storage device 50 may be provided so that the by-product hydrogen storage device 50 can supply by-product hydrogen to the synthesis plant 30. The by-product hydrogen storage device 50 is a device for storing hydrogen, for example, a hydrogen storage alloy, a storage tank, or the like.
 かかる構成によれば、合成プラント30に対して副生水素を安定供給することが可能となる。例えば、副生水素排出プラント10から排出される副生水素の量が、流量調整装置40が合成プラント30に導く二酸化炭素の流量の調整可能範囲に対応する範囲を逸脱するほど変動しても、副生水素貯蔵装置50を利用することによって、二酸化炭素の流量の調整可能範囲内の副生水素を合成プラント30に供給することができる。これにより、合成プラント30の稼働率を向上させることができる。 According to this configuration, it is possible to stably supply by-product hydrogen to the synthesis plant 30. For example, even if the amount of by-product hydrogen discharged from the by-product hydrogen discharge plant 10 fluctuates so as to deviate from the range corresponding to the adjustable range of the carbon dioxide flow rate led by the flow rate adjusting device 40 to the synthesis plant 30. By using the by-product hydrogen storage device 50, by-product hydrogen within the adjustable range of the flow rate of carbon dioxide can be supplied to the synthesis plant 30. As a result, the operating rate of the synthesis plant 30 can be improved.
 幾つかの実施形態では、例えば、図2に示すように、合成物生産システム100は、副生水素排出プラント10から排出される副生水素を合成プラント30に供給するための第1供給ラインを備え、副生水素貯蔵装置50は、第1供給ラインから分岐した第1供給分岐ラインに設けられていてもよい。なお、図2では、副生水素貯蔵装置50から合成プラント30への供給経路は、第1供給ラインと並列的に設けられた他の供給ラインである。しかし、副生水素貯蔵装置50から合成プラント30への供給経路は、第1供給ラインであってもよい。すなわち、副生水素貯蔵装置50は、第1供給ラインに対して副生水素を供給したり、第1供給ラインから副生水素が供給されたりする構成であってもよい。 In some embodiments, for example, as shown in FIG. 2, the composite production system 100 provides a first supply line for supplying the by-product hydrogen discharged from the by-product hydrogen discharge plant 10 to the synthesis plant 30. The by-product hydrogen storage device 50 may be provided in the first supply branch line branched from the first supply line. In FIG. 2, the supply path from the by-product hydrogen storage device 50 to the synthesis plant 30 is another supply line provided in parallel with the first supply line. However, the supply route from the by-product hydrogen storage device 50 to the synthesis plant 30 may be the first supply line. That is, the by-product hydrogen storage device 50 may have a configuration in which the by-product hydrogen is supplied to the first supply line or the by-product hydrogen is supplied from the first supply line.
 このような構成によれば、副生水素貯蔵装置50が第1供給ラインから分岐した第1供給分岐ラインに設けられているため、副生水素を、副生水素貯蔵装置50を介さずに第1供給ラインから合成プラント30に供給することもできる。この場合、合成プラント30が稼働している状況においても、副生水素貯蔵装置50と第1供給ラインとの接続を切断(第1供給分岐ラインを遮断)して副生水素貯蔵装置50のメンテナンスをすることも可能なる。これにより合成プラント30の稼働率を向上させることができる。 According to such a configuration, since the by-product hydrogen storage device 50 is provided in the first supply branch line branched from the first supply line, the by-product hydrogen is not passed through the by-product hydrogen storage device 50. It is also possible to supply to the synthesis plant 30 from one supply line. In this case, even when the synthesis plant 30 is in operation, the connection between the by-product hydrogen storage device 50 and the first supply line is cut (the first supply branch line is cut off) to maintain the by-product hydrogen storage device 50. It is also possible to do. As a result, the operating rate of the synthesis plant 30 can be improved.
 幾つかの実施形態では、例えば、図1~図6及び図9に示す流量調整装置40は、副生水素貯蔵装置50の残量に応じて二酸化炭素の流量を制御するように構成されていてもよい。 In some embodiments, for example, the flow rate adjusting device 40 shown in FIGS. 1 to 6 and 9 is configured to control the flow rate of carbon dioxide according to the remaining amount of the by-product hydrogen storage device 50. May be good.
 かかる構成によれば、例えば、副生水素貯蔵装置50の残量(すなわち副生水素の貯蔵量)が残量不足を示す閾値(例えば定格の10%)を下回った場合に二酸化炭素の流量を通常よりも少なくする制御、副生水素貯蔵装置50の残量が容量オーバー気味であることを示す閾値(例えば定格の90%)を上回った場合に二酸化炭素の流量を通常よりも多くする制御等を行うことが可能となる。そのため、副生水素貯蔵装置50の残量が過度に少なくなったり、過剰になったりする虞を低減することができる。 According to such a configuration, for example, when the remaining amount of the by-product hydrogen storage device 50 (that is, the stored amount of by-product hydrogen) falls below the threshold value indicating the insufficient remaining amount (for example, 10% of the rating), the flow rate of carbon dioxide is reduced. Control to reduce the amount of carbon dioxide below normal, control to increase the flow rate of carbon dioxide more than usual when the remaining amount of the by-product hydrogen storage device 50 exceeds the threshold value (for example, 90% of the rating) indicating that the capacity is over. Can be done. Therefore, it is possible to reduce the possibility that the remaining amount of the by-product hydrogen storage device 50 becomes excessively small or excessive.
 幾つかの実施形態では、例えば、図1及び図2に示すように、合成物生産システム100は、二酸化炭素を蓄積するための二酸化炭素貯蔵装置60を備え、二酸化炭素貯蔵装置60から合成プラント30に二酸化炭素を供給可能に構成されている。二酸化炭素貯蔵装置60は、二酸化炭素を貯蔵するための装置であって、例えば、貯蔵タンクである。 In some embodiments, for example, as shown in FIGS. 1 and 2, the composite production system 100 comprises a carbon dioxide storage device 60 for storing carbon dioxide, from the carbon dioxide storage device 60 to the synthesis plant 30. It is configured to be able to supply carbon dioxide. The carbon dioxide storage device 60 is a device for storing carbon dioxide, for example, a storage tank.
 かかる構成によれば、合成プラント30に対して二酸化炭素を安定供給することが可能となる。例えば、副生水素排出プラント10から排出される副生水素の量が、二酸化炭素の回収量の調整可能範囲に対応する範囲を逸脱するほど変動しても、二酸化炭素貯蔵装置60を利用することによって、その副生水素の量に対応する二酸化炭素の量に近い二酸化炭素を合成プラント30に供給することができる。これにより、合成プラント30の稼働率を向上させることができる。 According to such a configuration, carbon dioxide can be stably supplied to the synthesis plant 30. For example, even if the amount of by-product hydrogen discharged from the by-product hydrogen discharge plant 10 fluctuates to the extent that it deviates from the range corresponding to the adjustable range of the carbon dioxide recovery amount, the carbon dioxide storage device 60 can be used. Therefore, carbon dioxide close to the amount of carbon dioxide corresponding to the amount of by-product hydrogen can be supplied to the synthesis plant 30. As a result, the operating rate of the synthesis plant 30 can be improved.
 幾つかの実施形態では、例えば、図2に示すように、合成物生産システム100は、二酸化炭素排出プラント20から排出される二酸化炭素含有ガスに含まれる二酸化炭素を合成プラント30に供給するための第2供給ラインを備え、二酸化炭素貯蔵装置60は、第2供給ラインから分岐した第2供給分岐ラインに設けられていてもよい。なお、図2では、二酸化炭素貯蔵装置60から合成プラント30への供給経路は、第2供給ラインと並列的に設けられた他の供給ラインである。しかし、二酸化炭素貯蔵装置60から合成プラント30への供給経路は、第2供給ラインであってもよい。すなわち、二酸化炭素貯蔵装置60は、第2供給ラインに対して二酸化炭素を供給したり、第2供給ラインから二酸化炭素が供給されたりする構成であってもよい。 In some embodiments, for example, as shown in FIG. 2, the composite production system 100 supplies carbon dioxide contained in the carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 to the synthesis plant 30. A second supply line is provided, and the carbon dioxide storage device 60 may be provided in the second supply branch line branched from the second supply line. In FIG. 2, the supply path from the carbon dioxide storage device 60 to the synthesis plant 30 is another supply line provided in parallel with the second supply line. However, the supply route from the carbon dioxide storage device 60 to the synthesis plant 30 may be the second supply line. That is, the carbon dioxide storage device 60 may have a configuration in which carbon dioxide is supplied to the second supply line or carbon dioxide is supplied from the second supply line.
 かかる構成によれば、二酸化炭素貯蔵装置60が第2供給ラインから分岐した第2供給分岐ラインに設けられているため、二酸化炭素を、二酸化炭素貯蔵装置60を介さずに第2供給ラインから合成プラント30に供給することもできる。この場合、合成プラント30が稼働している状況においても、二酸化炭素貯蔵装置60と第2供給ラインとの接続を切断(第2供給分岐ラインを遮断)して二酸化炭素貯蔵装置60のメンテナンスをすることも可能なる。これにより、合成プラントの稼働率を向上させることができる。 According to this configuration, since the carbon dioxide storage device 60 is provided in the second supply branch line branched from the second supply line, carbon dioxide is synthesized from the second supply line without going through the carbon dioxide storage device 60. It can also be supplied to the plant 30. In this case, even when the synthesis plant 30 is in operation, the connection between the carbon dioxide storage device 60 and the second supply line is cut (the second supply branch line is cut off) to maintain the carbon dioxide storage device 60. It is also possible. As a result, the operating rate of the synthesis plant can be improved.
 図1及び図2に示す流量調整装置40は、二酸化炭素排出プラント20から排出される二酸化炭素含有ガスから二酸化炭素を回収して、二酸化炭素貯蔵装置60及び合成プラント30に二酸化炭素を供給する二酸化炭素回収装置42と、二酸化炭素回収装置42の二酸化炭素の回収量を制御するように構成された回収量調整部41と、を含んでいる。幾つかの実施形態では、このような構成において、流量調整装置40は、二酸化炭素貯蔵装置60の残量に応じて二酸化炭素の回収量を制御するように構成されてもよい。また、流量調整装置40は、二酸化炭素貯蔵装置60の残量を計測するセンサ(不図示)、二酸化炭素貯蔵装置60への二酸化炭素の供給量や二酸化炭素貯蔵装置60からの二酸化炭素の供給量を計測するセンサ(不図示)等を備えていてもよい。 The flow control device 40 shown in FIGS. 1 and 2 recovers carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant 20 and supplies carbon dioxide to the carbon dioxide storage device 60 and the synthesis plant 30. It includes a carbon capture device 42 and a recovery amount adjusting unit 41 configured to control the carbon dioxide recovery amount of the carbon dioxide recovery device 42. In some embodiments, in such a configuration, the flow rate regulator 40 may be configured to control the amount of carbon dioxide recovered according to the remaining amount of the carbon dioxide storage device 60. Further, the flow rate adjusting device 40 includes a sensor (not shown) for measuring the remaining amount of the carbon dioxide storage device 60, a supply amount of carbon dioxide to the carbon dioxide storage device 60, and a supply amount of carbon dioxide from the carbon dioxide storage device 60. A sensor (not shown) or the like for measuring carbon dioxide may be provided.
 かかる構成によれば、例えば、二酸化炭素貯蔵装置60の残量(すなわち二酸化炭素の貯蔵量)が残量不足を示す閾値(例えば定格の10%)を下回った場合に二酸化炭素の回収量を通常よりも多くする制御、二酸化炭素貯蔵装置60の残量が容量オーバー気味であることを示す閾値(例えば定格の90%)を上回った場合に二酸化炭素の回収量を通常よりも少なくする制御等を行うことが可能となる。そのため、二酸化炭素貯蔵装置60の残量が過度に少なくなったり、過剰になったりする虞を低減することができる。 According to such a configuration, for example, when the remaining amount of the carbon dioxide storage device 60 (that is, the stored amount of carbon dioxide) falls below the threshold value indicating the insufficient remaining amount (for example, 10% of the rating), the amount of carbon dioxide recovered is usually taken. Control to increase the amount of carbon dioxide, control to reduce the amount of carbon dioxide recovered when the remaining amount of the carbon dioxide storage device 60 exceeds the threshold (for example, 90% of the rating) indicating that the capacity is over. It becomes possible to do. Therefore, it is possible to reduce the possibility that the remaining amount of the carbon dioxide storage device 60 becomes excessively low or excessive.
 幾つかの実施形態では、副生水素排出プラント10は、例えば、図3~図6及び図9に示す副生水素排出プラント10(10A)のように、苛性ソーダを生成するプラントであり、苛性ソーダを生成するための塩電解において副生水素を生成するように構成されていてもよい。 In some embodiments, the by-product hydrogen discharge plant 10 is a plant that produces caustic soda, such as the by-product hydrogen discharge plant 10 (10A) shown in FIGS. 3 to 6 and 9, for example. It may be configured to produce by-product hydrogen in salt electrolysis for production.
 合成プラント30に供給される二酸化炭素と水素は高純度に精製されていることが必要である。副生水素に不純物が含まれている場合、例えば、合成物を生産する際の反応率又は反応速度が低下して、合成物の生産に支障をきたす虞がある。この点、上記の構成によれば、副生水素排出プラント10(10A)が純度の高い副生水素を排出するため、水素の精製処理に必要なコストを低減することができる。 Carbon dioxide and hydrogen supplied to the synthesis plant 30 need to be refined with high purity. When impurities are contained in the by-product hydrogen, for example, the reaction rate or the reaction rate at the time of producing the synthetic product may decrease, which may hinder the production of the synthetic product. In this respect, according to the above configuration, since the by-product hydrogen discharge plant 10 (10A) discharges high-purity by-product hydrogen, the cost required for the hydrogen purification process can be reduced.
 幾つかの実施形態では、例えば、図3、図4、図7及び図8に示すように、二酸化炭素排出プラント20の発電電力の少なくとも一部を副生水素排出プラント10又は合成プラント30に供給している。なお、図4に示す例では、二酸化炭素排出プラント20はセメント工場20(20B)であり、セメント工場20(20B)の排熱を利用した発電装置90の発電電力の少なくとも一部が副生水素排出プラント10又は合成プラント30に供給されてもよい。図3、図7及び図8に示す例では、二酸化炭素排出プラント20は石炭火力発電所20(20A)であり、その発電電力の少なくとも一部が副生水素排出プラント10又は合成プラント30に供給される。 In some embodiments, for example, as shown in FIGS. 3, 4, 7, and 8, at least a part of the generated power of the carbon dioxide emission plant 20 is supplied to the by-product hydrogen emission plant 10 or the synthesis plant 30. doing. In the example shown in FIG. 4, the carbon dioxide emission plant 20 is a cement factory 20 (20B), and at least a part of the generated power of the power generation device 90 using the exhaust heat of the cement factory 20 (20B) is by-product hydrogen. It may be supplied to the discharge plant 10 or the synthesis plant 30. In the examples shown in FIGS. 3, 7 and 8, the carbon dioxide emission plant 20 is a coal-fired power plant 20 (20A), and at least a part of the generated power is supplied to the by-product hydrogen emission plant 10 or the synthesis plant 30. Will be done.
 かかる構成によれば、二酸化炭素排出プラント20の発電電力の少なくとも一部を副生水素排出プラント10又は合成プラント30に供給することにより、エネルギー利用の効率化を図ることができる。 According to this configuration, the efficiency of energy utilization can be improved by supplying at least a part of the generated power of the carbon dioxide emission plant 20 to the by-product hydrogen emission plant 10 or the synthesis plant 30.
 幾つかの実施形態では、合成物生産システム100は、例えば、図9に示す合成物生産システム100(100I)のように、二酸化炭素排出プラント20の排熱を合成プラント30に供給するように構成されていてもよい。 In some embodiments, the composite production system 100 is configured to supply the waste heat of the carbon dioxide emission plant 20 to the synthesis plant 30, as in the composite production system 100 (100I) shown in FIG. 9, for example. It may have been done.
 かかる構成によれば、合成プラント30が二酸化炭素排出プラント20の排熱を利用することにより、エネルギー利用の効率化を図ることができる。 According to this configuration, the synthesis plant 30 can utilize the exhaust heat of the carbon dioxide emission plant 20 to improve the efficiency of energy utilization.
 ここで、合成プラント30の構成の一例を説明する。図10は、一実施形態に係る合成プラント30の構成を概略的に示す図である。図10に示すように、合成プラント30は、水素を精製するための水素精製部31と二酸化炭素を精製するための二酸化炭素精製部32とを備える。なお、高純度の副生水素と二酸化炭素が供給される場合、これらの構成は不要である。また、合成プラント30は、水素と二酸化炭素とが混合したガスを加熱するための加熱部33と、水素と二酸化炭素を化学反応させて合成物(メタノール)を生成するための触媒34と、蒸留を行うように構成された蒸留部36とを備える。また、合成プラント30は、合成物の生成に寄与しなかったガスを循環させるための冷却部35、フラッシュタンク37、及び圧縮機38を備える。 Here, an example of the configuration of the synthesis plant 30 will be described. FIG. 10 is a diagram schematically showing the configuration of the synthesis plant 30 according to the embodiment. As shown in FIG. 10, the synthesis plant 30 includes a hydrogen purification unit 31 for purifying hydrogen and a carbon dioxide purification unit 32 for purifying carbon dioxide. When high-purity by-product hydrogen and carbon dioxide are supplied, these configurations are unnecessary. Further, the synthesis plant 30 has a heating unit 33 for heating a gas in which hydrogen and carbon dioxide are mixed, a catalyst 34 for chemically reacting hydrogen and carbon dioxide to produce a compound (methanol), and distillation. A distillation unit 36 configured to perform the above is provided. In addition, the synthesis plant 30 includes a cooling unit 35 for circulating a gas that did not contribute to the production of the composite, a flash tank 37, and a compressor 38.
 水素精製部31と二酸化炭素精製部32から供給される水素と二酸化炭素とは、混合した状態で加熱部33によって加熱され、触媒34に導かれる。触媒34において、水素と二酸化炭素とが混合したガスは化学反応する。これにより、合成物が生成される。生成された合成物は、蒸留部36の蒸留によって水と最終生成物(高純度のメタノール)とに分離される。このような合成プラント30では、加熱部33と蒸留部36において加熱が必要となる。 Hydrogen and carbon dioxide supplied from the hydrogen refining unit 31 and the carbon dioxide refining unit 32 are heated by the heating unit 33 in a mixed state and guided to the catalyst 34. In the catalyst 34, the gas in which hydrogen and carbon dioxide are mixed chemically reacts. This produces a composite. The produced synthetic product is separated into water and the final product (high-purity methanol) by distillation in the distillation unit 36. In such a synthesis plant 30, heating is required in the heating unit 33 and the distillation unit 36.
 そこで、幾つかの実施形態では、図9に示す合成物生産システム100(100I)における二酸化炭素排出プラント20の排熱は、合成プラント30における二酸化炭素と副生水素とを反応させるための加熱(すなわち触媒34に導く前の加熱部33による加熱)に使用されていてもよい。 Therefore, in some embodiments, the exhaust heat of the carbon dioxide emission plant 20 in the compound production system 100 (100I) shown in FIG. 9 is heating for reacting carbon dioxide and by-product hydrogen in the synthesis plant 30 ( That is, it may be used for heating by the heating unit 33 before leading to the catalyst 34).
 かかる構成によれば、合成プラント30が二酸化炭素排出プラント20の排熱を合成プラント30における二酸化炭素と副生水素とを反応させるための加熱に利用するため、エネルギー利用の効率化を図ることができる。 According to this configuration, since the synthesis plant 30 uses the exhaust heat of the carbon dioxide emission plant 20 for heating for reacting carbon dioxide and by-product hydrogen in the synthesis plant 30, it is possible to improve the efficiency of energy utilization. it can.
 また、幾つかの実施形態では、図9に示す合成物生産システム100(100I)における二酸化炭素排出プラント20の排熱は、合成プラント30の合成物から最終生成物を精製するための加熱(すなわち蒸留部36の蒸留に必要な加熱)において使用される。 Also, in some embodiments, the exhaust heat of the carbon dioxide emission plant 20 in the composition production system 100 (100I) shown in FIG. 9 is heating (ie,) for purifying the final product from the composition of the synthesis plant 30. It is used in the heating required for distillation of the distillation unit 36).
 かかる構成によれば、合成プラント30が二酸化炭素排出プラント20の排熱を合成物から最終生成物を精製するための加熱に利用するため、エネルギー利用の効率化を図ることができる。 According to this configuration, the synthesis plant 30 uses the waste heat of the carbon dioxide emission plant 20 for heating to purify the final product from the synthesis, so that the efficiency of energy utilization can be improved.
 幾つかの実施形態では、例えば、図5に示すように、副生水素排出プラント10(10A)は、二酸化炭素排出プラント20から供給される純水を使用して苛性ソーダを生成するように構成されていてもよい。 In some embodiments, for example, as shown in FIG. 5, the by-product hydrogen discharge plant 10 (10A) is configured to use pure water supplied from the carbon dioxide discharge plant 20 to produce caustic soda. May be.
 かかる構成によれば、副生水素排出プラント10と二酸化炭素排出プラント20が、純水を共有するため、純水を供給するための設備を簡素化することができる。 According to this configuration, the by-product hydrogen discharge plant 10 and the carbon dioxide discharge plant 20 share pure water, so that the equipment for supplying pure water can be simplified.
 ここで、石炭火力発電所20(20A)では、ボイラで蒸気を生成し蒸気タービンで発電機を駆動する。このボイラへの給水として純水が使用されている。石炭火力発電所20(20A)は、ボイラで使用される給水を補給するために純水供給ライン(不図示)を備えている。セメント工場20(20B)では、セメント製造プロセスで発生する排熱で蒸気を生成し、蒸気タービンで発電装置90を駆動して、電力を工場内で使用している。そのため、セメント工場20(20B)は、蒸気タービンに蒸気を生成するための純水を供給する純水供給ラインを備えている。このように、二酸化炭素排出プラント20(例えば、石炭火力発電所20(20A)、セメント工場20(20B))は、純水供給ラインを備えている場合がある。 Here, at the coal-fired power plant 20 (20A), steam is generated by a boiler and a generator is driven by a steam turbine. Pure water is used to supply water to this boiler. The coal-fired power plant 20 (20A) is equipped with a pure water supply line (not shown) for replenishing the water supply used in the boiler. In the cement factory 20 (20B), steam is generated by the exhaust heat generated in the cement manufacturing process, and the power generation device 90 is driven by the steam turbine to use the electric power in the factory. Therefore, the cement factory 20 (20B) is provided with a pure water supply line for supplying pure water for generating steam to the steam turbine. As described above, the carbon dioxide emission plant 20 (for example, the coal-fired power plant 20 (20A) and the cement plant 20 (20B)) may be provided with a pure water supply line.
 そこで、幾つかの実施形態では、合成物生産システム100は、例えば、図6に示す合成物生産システム100(100F)のように、純水供給装置91を備えていてもよい。純水供給装置91は、原水の不純物を除去して純水を製造するように構成され、副生水素排出プラント10及び二酸化炭素排出プラント20に純水を供給するように構成されている。 Therefore, in some embodiments, the compound production system 100 may include a pure water supply device 91, for example, as in the compound production system 100 (100F) shown in FIG. The pure water supply device 91 is configured to remove impurities in raw water to produce pure water, and is configured to supply pure water to the by-product hydrogen discharge plant 10 and the carbon dioxide discharge plant 20.
 このような構成では、副生水素排出プラント10と二酸化炭素排出プラント20とが純水供給装置91を共有するため、純水を供給するための設備を簡素化することができる。 In such a configuration, since the by-product hydrogen discharge plant 10 and the carbon dioxide discharge plant 20 share the pure water supply device 91, the equipment for supplying pure water can be simplified.
 幾つかの実施形態では、二酸化炭素排出プラント20(20C)は、例えば、図11~図14に示す合成物生産システム100(100J、100K、100L、100M)のように、ナフサの改質によって得られる二酸化炭素含有ガスを排出するように構成されていてもよい。二酸化炭素排出プラント20(20C)は、ナフサを改質するための改質装置94と、PSA方式によって、改質後のナフサから水素を分離するためのPSA装置95と、PSA装置95のPSAオフガスを加熱炉97と流量調整装置40(40B)とに分流するための三方弁96と、製油を行う加熱炉97とを備えている。なお、PSA装置95が分離した水素は、合成物には使用せずに、製品として水素ステーションなどに提供される。副生水素排出プラント10(10C)は、水素生成装置であって、二酸化炭素排出プラント20(20C)が排出した二酸化炭素含有ガス(二酸化炭素リッチガス)から得られる水素含有ガス(二酸化炭素リーンガス)に対して水素精製を行うことによって得られる副生水素を排出するように構成されている。 In some embodiments, the carbon dioxide emission plant 20 (20C) is obtained by modifying naphtha, for example, as in the compound production system 100 (100J, 100K, 100L, 100M) shown in FIGS. 11-14. It may be configured to emit carbon dioxide-containing gas. The carbon dioxide emission plant 20 (20C) has a reformer 94 for reforming naphtha, a PSA device 95 for separating hydrogen from the reformed naphtha by the PSA method, and a PSA off gas of the PSA device 95. Is provided with a three-way valve 96 for dividing the flow into the heating furnace 97 and the flow rate adjusting device 40 (40B), and a heating furnace 97 for performing oil refining. The hydrogen separated by the PSA device 95 is not used in the synthetic product, but is provided as a product to a hydrogen station or the like. The by-product hydrogen discharge plant 10 (10C) is a hydrogen generator, and is a hydrogen-containing gas (carbon dioxide lean gas) obtained from the carbon dioxide-containing gas (carbon dioxide rich gas) discharged by the carbon dioxide discharge plant 20 (20C). On the other hand, it is configured to discharge by-product hydrogen obtained by performing hydrogen purification.
 かかる構成によれば、製油所に適用可能となる。なお、図11~図14において、符号ではない数値は、PSA装置95から排出されるPSAオフガスのガス量を100%とした場合にそれに対する各々の流路のガス量の比率を例示している。PSAオフガスの組成は、例えば、二酸化炭素50体積%、水素40体積%、メタン等が10体積%である。 According to this configuration, it can be applied to refineries. In addition, in FIGS. 11 to 14, the numerical value not represented by the symbol exemplifies the ratio of the gas amount of each flow path to the gas amount of PSA off gas discharged from the PSA device 95 as 100%. .. The composition of PSA off-gas is, for example, 50% by volume of carbon dioxide, 40% by volume of hydrogen, 10% by volume of methane and the like.
 幾つかの実施形態では、例えば、図11に示すように、合成物生産システム100は、二酸化炭素排出プラント20(20C)から排出される二酸化炭素含有ガスから二酸化炭素を回収する二酸化炭素回収装置42を備え、副生水素排出プラント10(10C)は、二酸化炭素回収装置42が二酸化炭素を回収した後の水素含有ガスに対して水素精製を行うように構成されていてもよい。 In some embodiments, for example, as shown in FIG. 11, the composite production system 100 is a carbon dioxide capture device 42 that recovers carbon dioxide from a carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 (20C). The by-product hydrogen discharge plant 10 (10C) may be configured such that the carbon dioxide recovery device 42 performs hydrogen purification on the hydrogen-containing gas after the carbon dioxide is recovered.
 このような構成では、副生水素排出プラント10(10C)は、二酸化炭素を回収した後の水素含有ガス(二酸化炭素リーンガス)に対して水素精製を行うため、副生水素を効率よく取得することができる。また、二酸化炭素含有ガス(二酸化炭素リッチガス)を処理する場合に比べて副生水素排出プラント10(10C)が処理するボリュームが小さくなるため、副生水素排出プラント10(10C)を小型化(小容量化)できる。 In such a configuration, the by-product hydrogen discharge plant 10 (10C) performs hydrogen purification on the hydrogen-containing gas (carbon dioxide lean gas) after recovering carbon dioxide, so that by-product hydrogen can be efficiently obtained. Can be done. Further, since the volume processed by the by-product hydrogen discharge plant 10 (10C) is smaller than that when the carbon dioxide-containing gas (carbon dioxide-rich gas) is processed, the by-product hydrogen discharge plant 10 (10C) is downsized (small). Capacity can be increased).
 幾つかの実施形態では、例えば、図12に示すように、合成物生産システム100は、二酸化炭素排出プラント20(20C)から排出される二酸化炭素含有ガスから二酸化炭素を回収する二酸化炭素回収装置42を備え、副生水素排出プラント10(10C)は、二酸化炭素排出プラント20(20C)から二酸化炭素回収装置42までの二酸化炭素含有ガスが流れる流路上に設けられた水素精製装置を含んでいてもよい。 In some embodiments, for example, as shown in FIG. 12, the composite production system 100 is a carbon dioxide capture device 42 that recovers carbon dioxide from a carbon dioxide-containing gas emitted from the carbon dioxide emission plant 20 (20C). The by-product hydrogen discharge plant 10 (10C) includes a hydrogen purification device provided on the flow path through which the carbon dioxide-containing gas flows from the carbon dioxide discharge plant 20 (20C) to the carbon dioxide recovery device 42. Good.
 このような構成では、二酸化炭素回収装置42は、副生水素排出プラント10(10C)が水素精製を行った後の二酸化炭素含有ガス(水素リーンガス)から二酸化炭素を回収するため、二酸化炭素を効率よく回収することができる。また、水素精製を行う前の二酸化炭素含有ガス(水素リッチガス)から二酸化炭素を回収する場合に比べて、二酸化炭素回収装置42が処理するボリュームが小さくなるため、二酸化炭素回収装置42を小型化(小容量化)できる。 In such a configuration, the carbon dioxide recovery device 42 recovers carbon dioxide from the carbon dioxide-containing gas (hydrogen lean gas) after the by-product hydrogen discharge plant 10 (10C) purifies hydrogen, so that the carbon dioxide is efficient. It can be recovered well. Further, since the volume processed by the carbon dioxide recovery device 42 is smaller than that in the case of recovering carbon dioxide from the carbon dioxide-containing gas (hydrogen-rich gas) before hydrogen purification, the carbon dioxide recovery device 42 is downsized (). Can be reduced in capacity).
 幾つかの実施形態では、例えば、図11及び図12に示すように、流量調整装置40(40A)は、二酸化炭素回収装置42の回収率を制御することによって、合成プラント30に供給される副生水素の流量に対して、流量を調整した二酸化炭素を合成プラント30に導くように構成されている。 In some embodiments, for example, as shown in FIGS. 11 and 12, the flow rate regulator 40 (40A) is supplied to the synthesis plant 30 by controlling the recovery rate of the carbon dioxide capture device 42. It is configured to guide carbon dioxide whose flow rate is adjusted with respect to the flow rate of raw hydrogen to the synthesis plant 30.
 このような構成では、例えば、水素の回収率を100%として合成物を生産する場合に必要な二酸化炭素の量に基づいて二酸化炭素の回収率を制御すれば、二酸化炭素排出プラント20(20C)が排出する二酸化炭素含有ガスの組成が変化する場合であっても、水素の回収率を100%に固定することができる。 In such a configuration, for example, if the carbon dioxide recovery rate is controlled based on the amount of carbon dioxide required when producing a compound with the hydrogen recovery rate set to 100%, the carbon dioxide emission plant 20 (20C) Even when the composition of the carbon dioxide-containing gas emitted by the gas changes, the hydrogen recovery rate can be fixed at 100%.
 幾つかの実施形態では、例えば、図13及び図14に示すように、合成物生産システム100は、二酸化炭素含有ガスから二酸化炭素を回収する二酸化炭素回収装置42と、二酸化炭素回収装置42に接続される主流ラインと二酸化炭素回収装置42をバイパスさせるバイパスラインとの流量比を調節するための少なくとも一つの弁43と、を備えている。少なくとも一つの弁43は、図13及び図14に示す例では、一つの三方弁である。なお、弁43は三方弁ではなく、主流ラインとバイパスラインの流量を調整するための2つの弁であってもよい。 In some embodiments, for example, as shown in FIGS. 13 and 14, the composite production system 100 is connected to a carbon dioxide capture device 42 that recovers carbon dioxide from a carbon dioxide-containing gas and a carbon dioxide capture device 42. It is provided with at least one valve 43 for adjusting the flow ratio between the mainstream line to be used and the bypass line that bypasses the carbon dioxide capture device 42. At least one valve 43 is one three-way valve in the example shown in FIGS. 13 and 14. The valve 43 may be not a three-way valve but two valves for adjusting the flow rates of the mainstream line and the bypass line.
 具体的には、図13に示す合成物生産システム100(100L)は、弁43によって分流された一方の二酸化炭素含有ガスから二酸化炭素を回収する二酸化炭素回収装置42を備え、副生水素排出プラント10(10C)は、二酸化炭素回収装置42が二酸化炭素を回収した後の二酸化炭素含有ガス及び弁43によって分流された他方の二酸化炭素含有ガスに対して水素精製を行っている。この場合、副生水素排出プラント10は、二酸化炭素回収装置42が二酸化炭素を回収した後の二酸化炭素含有ガス及び弁43によって分流された他方の二酸化炭素含有ガスに対して水素精製を行うため、副生水素を効率よく取得することができる。 Specifically, the compound production system 100 (100L) shown in FIG. 13 includes a carbon dioxide recovery device 42 that recovers carbon dioxide from one of the carbon dioxide-containing gases separated by the valve 43, and is a by-product hydrogen discharge plant. In No. 10 (10C), hydrogen purification is performed on the carbon dioxide-containing gas after the carbon dioxide recovery device 42 has recovered the carbon dioxide and the other carbon dioxide-containing gas separated by the valve 43. In this case, since the by-product hydrogen discharge plant 10 performs hydrogen purification on the carbon dioxide-containing gas after the carbon dioxide recovery device 42 has recovered the carbon dioxide and the other carbon dioxide-containing gas separated by the valve 43, By-product hydrogen can be obtained efficiently.
 図14に示す合成物生産システム100(100M)は、副生水素排出プラント10(10C)は、二酸化炭素排出プラント20(20C)から排出される二酸化炭素含有ガスに対して水素精製を行い、弁43は、副生水素排出プラント10(10C)が水素精製を行った後の二酸化炭素含有ガスを2つに分流させ、二酸化炭素回収装置42は、弁43によって分流された一方の二酸化炭素含有ガスから二酸化炭素を回収している。この場合、二酸化炭素回収装置42は、副生水素排出プラント10が水素精製を行った後の弁43によって分流された一方の二酸化炭素含有ガスから二酸化炭素を回収するため、二酸化炭素を効率よく取得することができる。 In the compound production system 100 (100M) shown in FIG. 14, the by-product hydrogen discharge plant 10 (10C) purifies the carbon dioxide-containing gas discharged from the carbon dioxide emission plant 20 (20C) with a valve. In 43, the carbon dioxide-containing gas after hydrogen purification by the by-product hydrogen discharge plant 10 (10C) is divided into two, and the carbon dioxide recovery device 42 divides one of the carbon dioxide-containing gases separated by the valve 43. We are recovering carbon dioxide from. In this case, the carbon dioxide recovery device 42 recovers carbon dioxide from one of the carbon dioxide-containing gases separated by the valve 43 after the by-product hydrogen discharge plant 10 has refined hydrogen, so that carbon dioxide is efficiently acquired. can do.
 このような構成によれば、主流ラインとバイパスラインとの流量比を調整することにより、二酸化炭素回収装置が処理する二酸化炭素含有ガスのボリュームを小さくできるため、二酸化炭素回収装置を小型化(小容量化)できる。 According to such a configuration, the volume of the carbon dioxide-containing gas processed by the carbon dioxide recovery device can be reduced by adjusting the flow rate ratio between the mainstream line and the bypass line, so that the carbon dioxide recovery device can be miniaturized (small). Capacity can be increased).
 幾つかの実施形態では、例えば、図13及び図14において、流量調整装置40(40B)は、流量比を制御することによって、合成プラント30に供給される副生水素の流量に対して、流量を調整した二酸化炭素を合成プラント30に導くように構成されていてもよい。 In some embodiments, for example, in FIGS. 13 and 14, the flow rate regulator 40 (40B) has a flow rate relative to the flow rate of by-product hydrogen supplied to the synthesis plant 30 by controlling the flow rate ratio. It may be configured to lead the adjusted carbon dioxide to the synthesis plant 30.
 かかる構成によれば、例えば、流量比を制御することにより、二酸化炭素の回収率と水素の回収率を固定することができる。 According to this configuration, for example, the carbon dioxide recovery rate and the hydrogen recovery rate can be fixed by controlling the flow rate ratio.
 幾つかの実施形態では、合成プラント30は、合成物として、メタノール、メタン、及びジメチルエーテルのうち少なくとも1種を生産するように構成されている。かかる構成によれば、水素ガスに比べて保存性に優れる合成物を生産することができる。 In some embodiments, the synthesis plant 30 is configured to produce at least one of methanol, methane, and dimethyl ether as the compound. According to such a configuration, it is possible to produce a compound having excellent storage stability as compared with hydrogen gas.
 以下、本発明の少なくとも一実施形態に係る合成物生産方法について説明する。図15は、本発明の一実施形態に係る合成物生産方法を示すフローチャートである。図15に示すように、合成物生産システム100は、副生水素を排出する(ステップS1)。合成物生産システム100は、二酸化炭素含有ガスを排出する(ステップS2)。なお、これらのステップは同時に行われてもよいし、時差があってもよい。 Hereinafter, the compound production method according to at least one embodiment of the present invention will be described. FIG. 15 is a flowchart showing a compound production method according to an embodiment of the present invention. As shown in FIG. 15, the compound production system 100 discharges by-product hydrogen (step S1). The composite production system 100 emits a carbon dioxide-containing gas (step S2). It should be noted that these steps may be performed at the same time, or there may be a time difference.
 合成物生産システム100は、二酸化炭素排出ステップにおいて排出される二酸化炭素から一部を抽出し、次のステップS4において使用される副生水素の流量に対して、流量を調整した二酸化炭素を合成に導く(ステップS3)。合成物生産システム100は、副生水素と二酸化炭素含有ガスに含まれる二酸化炭素とを合成することにより合成物を生産する(ステップS4)。 The composite production system 100 extracts a part from the carbon dioxide emitted in the carbon dioxide emission step, and synthesizes carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen used in the next step S4. Guide (step S3). The composite product production system 100 produces a composite product by synthesizing by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas (step S4).
 このような方法によれば、二酸化炭素排出ステップ(ステップS1)において排出される二酸化炭素含有ガスと、副生水素排出ステップ(ステップS2)において排出される副生水素とを使用して合成物を生産する。この場合、水素の取得コストが低くなるため、合成物の生産コストを低くすることができる。また、流量調整ステップ(ステップS3)では、合成物生産ステップ(ステップS4)において使用される副生水素の流量に対して、流量を調整した二酸化炭素を合成に導く。この場合、副生水素の供給量に応じて二酸化炭素の供給量が調整されるため、水素の利用率を高くすることが可能となる。 According to such a method, a compound is produced by using the carbon dioxide-containing gas emitted in the carbon dioxide emission step (step S1) and the by-product hydrogen emitted in the by-product hydrogen emission step (step S2). Produce. In this case, since the acquisition cost of hydrogen is low, the production cost of the composite can be lowered. Further, in the flow rate adjusting step (step S3), carbon dioxide whose flow rate is adjusted with respect to the flow rate of by-product hydrogen used in the compound production step (step S4) is guided to synthesis. In this case, since the amount of carbon dioxide supplied is adjusted according to the amount of by-product hydrogen supplied, it is possible to increase the hydrogen utilization rate.
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
10 副生水素排出プラント
20 二酸化炭素排出プラント
20A 石炭火力発電所
20B セメント工場
30 合成プラント
31 水素精製部
32 二酸化炭素精製部
33 加熱部
34 触媒
35 冷却部
36 蒸留部
37 フラッシュタンク
38 圧縮機
40 流量調整装置
41 回収量調整部
42 二酸化炭素回収装置
43 弁
50 副生水素貯蔵装置
60 二酸化炭素貯蔵装置
90 発電装置
91 純水供給装置
94 改質装置
95 PSA装置
96 三方弁
97 加熱炉
100 合成物生産システム
10 By-product hydrogen discharge plant 20 Carbon dioxide discharge plant 20A Coal-fired power plant 20B Cement factory 30 Synthesis plant 31 Hydrogen purification unit 32 Carbon dioxide purification unit 33 Heating unit 34 Catalyst 35 Cooling unit 36 Distillation unit 37 Flash tank 38 Compressor 40 Flow rate Adjustment device 41 Recovery amount adjustment unit 42 Carbon dioxide recovery device 43 Valve 50 By-product hydrogen storage device 60 Carbon dioxide storage device 90 Power generation device 91 Pure water supply device 94 Reformer 95 PSA device 96 Three-way valve 97 Heating furnace 100 Compound production system

Claims (23)

  1.  副生水素を排出する副生水素排出プラントと、
     二酸化炭素含有ガスを排出する二酸化炭素排出プラントと、
     前記副生水素と前記二酸化炭素含有ガスに含まれる二酸化炭素とを合成することにより合成物を生産する合成プラントと、
     前記合成プラントに供給される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を前記合成プラントに導くように構成された流量調整装置と、
    を備える合成物生産システム。
    A by-product hydrogen discharge plant that discharges by-product hydrogen and
    A carbon dioxide emission plant that emits carbon dioxide-containing gas,
    A synthesis plant that produces a composite by synthesizing the by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas, and
    A flow rate adjusting device configured to guide the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant.
    A compound production system equipped with.
  2.  前記流量調整装置は、
     前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置と、
     前記二酸化炭素回収装置の前記二酸化炭素の回収量を制御するように構成された回収量調整部と、
    を含む
    請求項1に記載の合成物生産システム。
    The flow rate adjusting device is
    A carbon dioxide recovery device that recovers the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant,
    A recovery amount adjusting unit configured to control the recovery amount of the carbon dioxide of the carbon dioxide recovery device,
    The compound production system according to claim 1.
  3.  前記副生水素排出プラントから排出される前記副生水素を蓄積するための副生水素貯蔵装置を備え、
     前記副生水素貯蔵装置から前記合成プラントに前記副生水素を供給可能に構成された
    請求項1又は2に記載の合成物生産システム。
    A by-product hydrogen storage device for accumulating the by-product hydrogen discharged from the by-product hydrogen discharge plant is provided.
    The composite production system according to claim 1 or 2, wherein the by-product hydrogen can be supplied from the by-product hydrogen storage device to the synthesis plant.
  4.  前記副生水素排出プラントから排出される前記副生水素を前記合成プラントに供給するための第1供給ラインを備え、
     前記副生水素貯蔵装置は、前記第1供給ラインから分岐した第1供給分岐ラインに設けられる
    請求項3に記載の合成物生産システム。
    A first supply line for supplying the by-product hydrogen discharged from the by-product hydrogen discharge plant to the synthesis plant is provided.
    The compound production system according to claim 3, wherein the by-product hydrogen storage device is provided in a first supply branch line branched from the first supply line.
  5.  前記流量調整装置は、前記副生水素貯蔵装置の残量に応じて前記二酸化炭素の流量を制御するように構成される
    請求項3又は4に記載の合成物生産システム。
    The compound production system according to claim 3 or 4, wherein the flow rate adjusting device is configured to control the flow rate of carbon dioxide according to the remaining amount of the by-product hydrogen storage device.
  6.  前記二酸化炭素を蓄積するための二酸化炭素貯蔵装置を備え、
     前記二酸化炭素貯蔵装置から前記合成プラントに前記二酸化炭素を供給可能に構成されている
    請求項1乃至5の何れか一項に記載の合成物生産システム。
    A carbon dioxide storage device for accumulating the carbon dioxide is provided.
    The compound production system according to any one of claims 1 to 5, wherein the carbon dioxide can be supplied from the carbon dioxide storage device to the synthesis plant.
  7.  前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスに含まれる前記二酸化炭素を前記合成プラントに供給するための第2供給ラインを備え、
     前記二酸化炭素貯蔵装置は、前記第2供給ラインから分岐した第2供給分岐ラインに設けられる
    請求項6に記載の合成物生産システム。
    A second supply line for supplying the carbon dioxide contained in the carbon dioxide-containing gas discharged from the carbon dioxide emission plant to the synthesis plant is provided.
    The compound production system according to claim 6, wherein the carbon dioxide storage device is provided in a second supply branch line branched from the second supply line.
  8.  前記流量調整装置は、
     前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収して、前記二酸化炭素貯蔵装置及び前記合成プラントに前記二酸化炭素を供給する二酸化炭素回収装置と、
     前記二酸化炭素回収装置の前記二酸化炭素の回収量を制御するように構成された回収量調整部と、
    を含み、
     前記流量調整装置は、前記二酸化炭素貯蔵装置の残量に応じて前記二酸化炭素回収装置の回収量を制御するように構成される
    請求項6又は7に記載の合成物生産システム。
    The flow rate adjusting device is
    A carbon dioxide capture device that recovers the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant and supplies the carbon dioxide to the carbon dioxide storage device and the synthesis plant.
    A recovery amount adjusting unit configured to control the recovery amount of the carbon dioxide of the carbon dioxide recovery device,
    Including
    The compound production system according to claim 6 or 7, wherein the flow rate adjusting device is configured to control the recovery amount of the carbon dioxide recovery device according to the remaining amount of the carbon dioxide storage device.
  9.  前記副生水素排出プラントは、苛性ソーダを生成するプラントであり、前記苛性ソーダを生成するための塩電解において前記副生水素を生成する
    請求項1乃至8の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 8, wherein the by-product hydrogen discharge plant is a plant that produces caustic soda, and produces the by-product hydrogen in salt electrolysis for producing the caustic soda. ..
  10.  前記二酸化炭素排出プラントの発電電力の少なくとも一部を前記副生水素排出プラント又は前記合成プラントに供給する
    請求項1乃至9の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 9, wherein at least a part of the power generated by the carbon dioxide emission plant is supplied to the by-product hydrogen emission plant or the synthesis plant.
  11.  前記二酸化炭素排出プラントの排熱を前記合成プラントに供給する
    請求項1乃至10の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 10, wherein the exhaust heat of the carbon dioxide emission plant is supplied to the synthesis plant.
  12.  前記二酸化炭素排出プラントの排熱は、前記合成プラントにおける前記二酸化炭素と前記副生水素とを反応させるための加熱に使用される
    請求項1乃至11の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 11, wherein the exhaust heat of the carbon dioxide emission plant is used for heating for reacting the carbon dioxide with the by-product hydrogen in the synthesis plant. ..
  13.  前記二酸化炭素排出プラントの排熱は、前記合成プラントの前記合成物から最終生成物を精製するための加熱において使用される
    請求項1乃至11の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 11, wherein the exhaust heat of the carbon dioxide emission plant is used in heating for purifying the final product from the compound of the synthesis plant.
  14.  前記副生水素排出プラントは、前記二酸化炭素排出プラントから供給される純水を使用して苛性ソーダを生成する
    請求項1乃至13の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 13, wherein the by-product hydrogen discharge plant uses pure water supplied from the carbon dioxide discharge plant to generate caustic soda.
  15.  原水の不純物を除去して純水を製造するように構成され、前記副生水素排出プラント及び前記二酸化炭素排出プラントに前記純水を供給する純水供給装置を備える
    請求項1乃至14の何れか一項に記載の合成物生産システム。
    Any of claims 1 to 14, which is configured to remove impurities in raw water to produce pure water and includes a pure water supply device for supplying the pure water to the by-product hydrogen discharge plant and the carbon dioxide discharge plant. The compound production system according to paragraph 1.
  16.  前記二酸化炭素排出プラントは、ナフサの改質によって得られる前記二酸化炭素含有ガスを排出し、
     前記副生水素排出プラントは、前記二酸化炭素排出プラントが排出した前記二酸化炭素含有ガスから得られる水素含有ガスに対して水素精製を行うことによって得られる前記副生水素を排出する
    請求項1乃至8の何れか一項に記載の合成物生産システム。
    The carbon dioxide emission plant emits the carbon dioxide-containing gas obtained by reforming naphtha.
    The by-product hydrogen discharge plant discharges the by-product hydrogen obtained by performing hydrogen purification on the hydrogen-containing gas obtained from the carbon dioxide-containing gas discharged by the carbon dioxide discharge plant. The compound production system according to any one of the above.
  17.  前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置を備え、
     前記副生水素排出プラントは、前記二酸化炭素回収装置が前記二酸化炭素を回収した後の前記水素含有ガスに対して水素精製を行う
    請求項16に記載の合成物生産システム。
    A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant is provided.
    The compound production system according to claim 16, wherein the by-product hydrogen discharge plant performs hydrogen purification on the hydrogen-containing gas after the carbon dioxide recovery device recovers the carbon dioxide.
  18.  前記二酸化炭素排出プラントから排出される前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置を備え、
     前記副生水素排出プラントは、前記二酸化炭素排出プラントから前記二酸化炭素回収装置までの前記二酸化炭素含有ガスが流れる流路上に設けられた水素精製装置を含む
    請求項16に記載の合成物生産システム。
    A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas discharged from the carbon dioxide emission plant is provided.
    The compound production system according to claim 16, wherein the by-product hydrogen discharge plant includes a hydrogen purification device provided on a flow path through which the carbon dioxide-containing gas flows from the carbon dioxide discharge plant to the carbon dioxide capture device.
  19.  前記流量調整装置は、前記二酸化炭素回収装置の回収率を制御することによって、前記合成プラントに供給される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を前記合成プラントに導くように構成されている
    請求項17又は18に記載の合成物生産システム。
    By controlling the recovery rate of the carbon dioxide recovery device, the flow rate adjusting device guides the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant. The composite production system according to claim 17 or 18, which is configured as such.
  20.  前記二酸化炭素含有ガスから前記二酸化炭素を回収する二酸化炭素回収装置と、
     前記二酸化炭素回収装置に接続される主流ラインと前記二酸化炭素回収装置をバイパスさせるバイパスラインとの流量比を調節するための少なくとも一つの弁と、
    を備える
    請求項16に記載の合成物生産システム。
    A carbon dioxide recovery device that recovers the carbon dioxide from the carbon dioxide-containing gas,
    At least one valve for adjusting the flow rate ratio between the mainstream line connected to the carbon capture device and the bypass line bypassing the carbon capture device.
    16. The composite production system according to claim 16.
  21.  前記流量調整装置は、前記流量比を制御することによって、前記合成プラントに供給される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を前記合成プラントに導くように構成されている
    請求項20に記載の合成物生産システム。
    The flow rate adjusting device is configured to guide the carbon dioxide whose flow rate is adjusted with respect to the flow rate of the by-product hydrogen supplied to the synthesis plant to the synthesis plant by controlling the flow rate ratio. The composite production system according to claim 20.
  22.  前記合成プラントは、前記合成物として、メタノール、メタン、及びジメチルエーテルのうち少なくとも1種を生産する
    請求項1乃至21の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 21, wherein the synthesis plant produces at least one of methanol, methane, and dimethyl ether as the compound.
  23.  副生水素を排出する副生水素排出ステップと、
     二酸化炭素含有ガスを排出する二酸化炭素排出ステップと、
     前記副生水素と前記二酸化炭素含有ガスに含まれる二酸化炭素とを合成することにより合成物を生産する合成物生産ステップと、
     前記二酸化炭素排出ステップにおいて排出される前記二酸化炭素から一部を抽出し、前記合成物生産ステップにおいて使用される前記副生水素の流量に対して、流量を調整した前記二酸化炭素を合成に導く流量調整ステップと、
    を備える合成物生産方法。
    By-product hydrogen discharge step to discharge by-product hydrogen and
    A carbon dioxide emission step that emits carbon dioxide-containing gas,
    A compound production step of producing a compound by synthesizing the by-product hydrogen and carbon dioxide contained in the carbon dioxide-containing gas, and
    A flow rate at which a part of the carbon dioxide emitted in the carbon dioxide emission step is extracted and the flow rate is adjusted with respect to the flow rate of the by-product hydrogen used in the compound production step to lead the carbon dioxide to synthesis. Adjustment steps and
    A compound production method comprising.
PCT/JP2020/019603 2019-05-24 2020-05-18 System for producing synthetic product and method for producing synthetic product WO2020241343A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020001970.5T DE112020001970T5 (en) 2019-05-24 2020-05-18 Synthetic Product Manufacturing System and Synthetic Product Manufacturing Process
CN202080033023.6A CN113784785A (en) 2019-05-24 2020-05-18 Composition production system and composition production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019097275A JP7432997B2 (en) 2019-05-24 2019-05-24 Composite production system and compound production method
JP2019-097275 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020241343A1 true WO2020241343A1 (en) 2020-12-03

Family

ID=73454321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019603 WO2020241343A1 (en) 2019-05-24 2020-05-18 System for producing synthetic product and method for producing synthetic product

Country Status (4)

Country Link
JP (1) JP7432997B2 (en)
CN (1) CN113784785A (en)
DE (1) DE112020001970T5 (en)
WO (1) WO2020241343A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166983A1 (en) * 2020-02-20 2021-08-26 三菱パワー株式会社 Synthetic material production system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023124239A (en) 2022-02-25 2023-09-06 三菱重工業株式会社 plant
JPWO2023195266A1 (en) * 2022-04-08 2023-10-12

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263400A (en) * 1997-03-24 1998-10-06 Ishii Iron Works Co Ltd Amorphous alloy catalyst for reformed gas of hydrocarbon and use of the catalyst
JP2015109767A (en) * 2013-12-05 2015-06-11 株式会社Ihi Power generation system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479950B1 (en) 2003-03-04 2003-12-15 スガ試験機株式会社 Environmental purification circulation type water electrolysis device
JP2006137620A (en) * 2004-11-10 2006-06-01 Toshiba Corp Collection system for carbon dioxide in waste gas, and its collection method
JP5082254B2 (en) * 2005-02-18 2012-11-28 三菱化学株式会社 Method for producing aromatic compound and method for producing hydrogenated aromatic compound
EP2228358A1 (en) * 2009-03-13 2010-09-15 Methanol Casale S.A. Recovery of CO2 in a process for synthesis of methanol
JP2012076065A (en) 2010-10-06 2012-04-19 Ihi Corp Device and method for recovering carbon dioxide
JP2012184139A (en) 2011-03-07 2012-09-27 Hitachi Ltd Carbon dioxide separation device
CN102351624B (en) * 2011-08-24 2013-12-11 西安交通大学 System for preparing low-carbon olefins by CO2 hydrogenation
CN103773524A (en) * 2012-10-19 2014-05-07 中冶焦耐工程技术有限公司 Liquefied natural gas production method
DE102013002583A1 (en) * 2013-02-14 2014-08-14 Etogas Gmbh Converting hydrocarbon compound, preferably methane containing starting gas in carbon containing solid and hydrogen containing residual gas, comprises methanizing carbon dioxide and hydrogen-containing reactant gas to product gas
WO2015004143A1 (en) * 2013-07-09 2015-01-15 Mitsubishi Hitachi Power Systems Europe Gmbh Methanation method and power plant comprising co2 methanation of power plant flue gas
KR101850268B1 (en) * 2013-09-09 2018-04-20 치요다가코겐세츠가부시키가이샤 Manufacturing device and manufacturing method for hydrogen and synthetic natural gas
JP6299347B2 (en) * 2014-04-01 2018-03-28 株式会社Ihi CO2 fixing system
DE102014112580B4 (en) * 2014-09-01 2019-01-24 Mitsubishi Hitachi Power Systems Europe Gmbh Industrial production plant with minimal greenhouse gas emissions, especially carbon dioxide emissions, and method of operation thereof
CN104371780B (en) * 2014-11-03 2016-06-08 中国华能集团清洁能源技术研究院有限公司 Wind, light abandon electricity and the industrial organic waste water system and method for coal preparing natural gas
CN104725179A (en) * 2015-01-08 2015-06-24 江苏省宏观经济研究院 Method for recycling carbon dioxide based on non-grid-connected wind power
CN104974780B (en) * 2015-06-09 2017-03-08 武汉凯迪工程技术研究总院有限公司 Chlor-alkali adjusts technique and its equipment with F- T synthesis comprehensive utilization
FR3038908A1 (en) * 2015-07-16 2017-01-20 Gdf Suez DEVICE AND METHOD FOR PRODUCING SYNTHESIS GAS
CN105296033A (en) * 2015-11-03 2016-02-03 中海石油气电集团有限责任公司 Method for preparing LNG from coke oven gas by efficiently utilizing purge gas in liquefaction process
EP3377214B1 (en) * 2015-11-16 2020-09-09 Fuelcell Energy, Inc. Energy storage using an rep with an engine
FR3050206B1 (en) * 2016-04-15 2018-05-11 Engie HYDROGENATION DEVICE AND METHOD FOR PRODUCING METHANOL AND DEVICE AND METHOD FOR COGENERATION OF METHANOL AND SYNTHETIC METHANE
CN105779047A (en) * 2016-04-22 2016-07-20 北京中科瑞奥能源科技股份有限公司 Technology and system for making flue gas into liquified natural gas
CN106831326A (en) * 2016-12-22 2017-06-13 赛鼎工程有限公司 A kind of comprehensive utilization process of coke-stove gas synthesizing methanol co-production liquefied natural gas
JP2018135283A (en) * 2017-02-21 2018-08-30 株式会社日立製作所 Method and apparatus for manufacturing methane
JP7028600B2 (en) * 2017-10-10 2022-03-02 株式会社日立製作所 Methane production system and methane production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263400A (en) * 1997-03-24 1998-10-06 Ishii Iron Works Co Ltd Amorphous alloy catalyst for reformed gas of hydrocarbon and use of the catalyst
JP2015109767A (en) * 2013-12-05 2015-06-11 株式会社Ihi Power generation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUOKA, MASAO: "Utilization of Hydrogen from Chlor-Alkali Industry in Japan", JOURNAL OF THE HYDROGEN ENERGY SYSTEMS SOCIETY OF JAPAN, vol. 28, no. 1, 2003, pages 16 - 22 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166983A1 (en) * 2020-02-20 2021-08-26 三菱パワー株式会社 Synthetic material production system

Also Published As

Publication number Publication date
JP2020189817A (en) 2020-11-26
CN113784785A (en) 2021-12-10
DE112020001970T5 (en) 2021-12-30
JP7432997B2 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
WO2020241343A1 (en) System for producing synthetic product and method for producing synthetic product
EP2196448B1 (en) Method of coproducing methanol and ammonia
KR102243776B1 (en) Methanation method and power plant comprising co₂ methanation of power plant flue gas
US20210388511A1 (en) Process for electrochemical preparation of ammonia
HU222969B1 (en) Process for generating electric energy, steam and carbon dioxide from hydrocarbon feedstock
JP6263029B2 (en) Methane production method, methane production apparatus, and gasification system using the same
JP5636059B2 (en) Method and system for producing hydrogen using sodium ion separation membrane
WO2017087405A1 (en) System for capturing co2 from a fuel cell
JP7353163B2 (en) Ammonia derivative manufacturing plant and ammonia derivative manufacturing method
CA2804389A1 (en) Syngas production through the use of membrane technologies
US10647587B2 (en) Process for the ammonia production
JP6603607B2 (en) Methanol synthesis system
AU2022290085A1 (en) Method for recycling unused gas in membrane reactor
CA3203055A1 (en) Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products
JP5557255B2 (en) Reactant manufacturing method and manufacturing system using exhaust heat and renewable energy
CA3022543A1 (en) Carbon dioxide capturing steam methane reformer
JP4030846B2 (en) Methanol production method and apparatus
JP2023093823A (en) Carbon dioxide conversion apparatus and carbon dioxide conversion method
JP4473223B2 (en) Improved shift conversion arrangement and method.
WO2019073722A1 (en) Methane production system and methane production method
CN117586098A (en) Method and apparatus for producing methanol and synthesis gas
CA3069717A1 (en) Method and system to produce hydrocarbon feedstocks
JP2016184550A (en) Gas manufacturing apparatus
JP2008207969A (en) Apparatus, system and method for producing hydrogen
WO2024135085A1 (en) Hydrocarbon production system and hydrocarbon production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813701

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20813701

Country of ref document: EP

Kind code of ref document: A1