WO2021166983A1 - Synthetic material production system - Google Patents

Synthetic material production system Download PDF

Info

Publication number
WO2021166983A1
WO2021166983A1 PCT/JP2021/006036 JP2021006036W WO2021166983A1 WO 2021166983 A1 WO2021166983 A1 WO 2021166983A1 JP 2021006036 W JP2021006036 W JP 2021006036W WO 2021166983 A1 WO2021166983 A1 WO 2021166983A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hydrogen
supply line
gas
compressor
Prior art date
Application number
PCT/JP2021/006036
Other languages
French (fr)
Japanese (ja)
Inventor
健一 入江
圓島 信也
忠輝 谷岡
和徳 藤田
喜昌 安藤
崇寛 加茂
龍一 佐藤
淳史 堤
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021166983A1 publication Critical patent/WO2021166983A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present disclosure relates to a compound production system for producing a compound of carbon dioxide and hydrogen.
  • the present application claims priority based on Japanese Patent Application No. 2020-026781 filed on February 20, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a system for producing fuel by synthesizing hydrogen obtained by water splitting and carbon dioxide separated from exhaust gas of a power generation facility.
  • the purpose of this disclosure is to ensure a stable supply of hydrogen and to simplify the equipment in the compound production system.
  • the compound production system is The first hydrogen supply line for supplying by-product hydrogen gas and A second hydrogen supply line for supplying hydrogen gas generated using renewable energy, It has an inlet portion connected to the first hydrogen supply line and the second hydrogen supply line, and is configured to compress either the by-product hydrogen gas or the hydrogen gas to generate a compressed gas.
  • Compressor and A synthesis plant configured to produce a compound by synthesizing hydrogen contained in the compressed gas with carbon dioxide, and To be equipped.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 is a diagram schematically showing a configuration of a composite production system 1 (1A) according to an embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the compound production system 1 (1B) according to the embodiment.
  • FIG. 3 is a diagram schematically showing the configuration of the compound production system 1 (1C) according to the embodiment.
  • FIG. 4 is a diagram schematically showing the configuration of the compound production system 1 (1D) according to the embodiment.
  • FIG. 5 is a diagram schematically showing the configuration of the compound production system 1 (1E) according to the embodiment.
  • the solid line arrow indicates the fluid flow and its supply line
  • the broken line arrow indicates the sensor signal or the control signal.
  • the compound production system 1 (1A, 1B, 1C, 1D, 1E) utilizes a synthesis plant 10 configured to produce a compound and renewable energy.
  • a hydrogen generation device 20 configured to generate hydrogen gas is provided.
  • the composite production system 1 (1A, 1B, 1C, 1D, 1E) supplies the first hydrogen supply line 11 for supplying by-product hydrogen gas and the hydrogen gas generated by using renewable energy.
  • a second hydrogen supply line 12 for the purpose of producing a second hydrogen supply line 12 and a compressor 13 configured to generate a compressed gas are provided.
  • the synthesis plant 10 produces a synthetic product by synthesizing hydrogen contained in the compressed gas from the compressor 13 with carbon dioxide.
  • the synthesis plant 10 is configured to produce at least one of methanol, methane, and dimethyl ether as a synthetic product. Such compounds can be used as fuels and chemical materials.
  • the synthesis plant 10 drains water, which is a by-product of the synthesis.
  • the by-product hydrogen gas is a gas containing hydrogen produced as a by-product of, for example, the exhaust gas of a refinery or the off-gas of a PSA (Pressure Swing Adsorption) device.
  • the by-product hydrogen gas is supplied to the upstream side of the first hydrogen supply line 11.
  • the hydrogen gas generated by the hydrogen generation device 20 is supplied to the upstream side of the second hydrogen supply line 12.
  • the hydrogen gas generated by the hydrogen generator 20 is a high-purity hydrogen gas, whereas the by-product hydrogen gas may be a low-purity hydrogen gas.
  • the hydrogen generator 20 receives electric power from a power generation facility using renewable energy and generates hydrogen gas by water electrolysis.
  • the hydrogen generation device 20 may be configured to generate hydrogen gas by a method other than water electrolysis.
  • the hydrogen generator 20 may generate hydrogen gas from a hydrogen-containing gas by the PSA method by receiving electric power from a power generation facility using renewable energy, or generate hydrogen gas by another method. You may.
  • the compressor 13 has an inlet portion connected to the downstream side of the first hydrogen supply line 11 and the second hydrogen supply line 12.
  • the compressor 13 compresses either the by-product hydrogen gas or the hydrogen gas to generate a compressed gas.
  • "compressing either one of the by-product hydrogen gas and the hydrogen gas” means compressing both in different time zones. That is, the compressor 13 is connected to the first hydrogen supply line 11 and the second hydrogen supply line 12 so that both can be compressed.
  • the compound production system 1 (1A, 1B, 1C, 1D, 1E) determines the amount of by-product hydrogen gas supplied to the compressor 13, for example, as shown in FIGS. 1-5.
  • a control device configured to control the first valve 61 for adjustment, the second valve 62 for adjusting the amount of hydrogen gas supplied to the compressor 13, and the first valve 61 and the second valve 62. 30 (30A, 30B, 30C, 30D, 30E) and.
  • the first valve 61 is located on the first hydrogen supply line 11, and the second valve 62 is located on the second hydrogen supply line 12.
  • the first valve 61 and the second valve 62 may be a flow rate adjusting valve or an on-off valve.
  • the control device 30 (30A, 30B, 30C, 30D, 30E) may be configured to execute opening / closing control of the first valve 61 and the second valve 62.
  • the control device 30 (30A, 30B, 30C, 30D, 30E) is composed of, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a CPU (Central Processing Unit), and the like.
  • the compound production system 1 (1C, 1E) is located upstream of the second valve 62 in the second hydrogen supply line 12, for example, as shown in FIGS. 3 and 5, hydrogen.
  • a storage device 80 for storing gas is provided.
  • the storage device 80 includes, for example, a storage alloy or a tank.
  • the control device 30 (30C, 30E) is configured to control the first valve 61 and the second valve 62 based on the amount of hydrogen gas stored in the storage device 80.
  • the composite production system 1 (1C, 1E) may include a pressure sensor 72 configured to measure the pressure inside the storage device 80.
  • the control device 30 (30C, 30E) may be configured to acquire the measured value of the pressure sensor 72 and control the first valve 61 and the second valve 62 according to the measured value.
  • the control device 30 is not limited to a configuration in which control is executed based on the storage amount of the storage device 80, and may be configured to execute control in response to a manual operation by the user.
  • the composite production system 1 (1B) may include, for example, as shown in FIG. 2, a flow rate sensor 71 configured to measure the flow rate of hydrogen gas flowing through the second hydrogen supply line 12. ..
  • the control device 30 (30B) may be configured to acquire the measured value of the flow rate sensor 71 and control the first valve 61 and the second valve 62 according to the measured value.
  • control device 30 supplies hydrogen gas from the first hydrogen supply line 11 to the compressor 13 in a first supply mode in which the by-product hydrogen gas is supplied from the first hydrogen supply line 11 to the compressor 13.
  • the opening and closing of the first valve 61 and the second valve 62 may be controlled so as to select either one of the supply second supply modes.
  • the control device 30 opens and closes the first valve 61 and the second valve 62 so that the first valve 61 is in the open state and the second valve 62 is in the closed state. Control. Further, when the second supply mode is selected, the control device 30 controls the opening and closing of the first valve 61 and the second valve 62 so that the first valve 61 is in the closed state and the second valve 62 is in the open state.
  • the control of the control device 30 is not limited to the opening / closing control of the on-off valve, and the opening / closing of the flow rate adjusting valve may be adjusted to perform substantially the same control as the on-off control.
  • the control device 30 (30B, 30C, 30E) sets the first supply mode when the measured value of the flow rate sensor 71 or the pressure sensor 72 is equal to or less than the threshold value, as shown in FIGS. 2, 3 and 5, for example. If selected and the measured value exceeds the threshold value, the second supply mode may be selected and the first valve 61 and the second valve 62 may be controlled to open and close.
  • the compound production system 1 (1A, 1B, 1C, 1D, 1E) purifies the hydrogen component of the compressed gas from the compressor 13, for example, as shown in FIGS. 1-5.
  • the refiner 16 may be provided so as to supply the purified gas to the synthesis plant.
  • the composite production system 1 (1C, 1E) guides the compressed gas from the compressor 13 to the synthesis plant 10 via the purification apparatus 16, for example, as shown in FIGS. 3 and 5.
  • the first discharge line 18 and the second discharge line 19 for guiding the compressed gas from the compressor 13 to the synthesis plant 10 by bypassing the purification device 16 are provided.
  • the first hydrogen supply line 11 and the second hydrogen supply line 12 are merged, and the merging portion 21 connected to the compressor 13 and the compressor 13 are connected to each other.
  • a branch portion 22 that branches into a first discharge line 18 and a second discharge line 19 is provided.
  • the general-purpose compressor 13 has one inlet and one outlet.
  • the merging portion 21 and the inlet portion may be connected, and the branch portion 22 and the outlet portion may be connected, so that the general-purpose compressor 13 can be applied.
  • the composite production system 1 may not include at least one of the merging portion 21 and the branching portion 22.
  • the composite production system 1 (1A, 1B, 1D) includes only the merging section 21.
  • the compressor 13 may be configured to include two inlet portions and an outlet portion. In this case, the merging portion 21 and the branching portion 22 can be omitted.
  • the composite production system 1 (1C, 1E) comprises a first valve 61 that is located on the first hydrogen supply line 11 and can be opened and closed, for example, as shown in FIGS. 3 and 5.
  • a second valve 62 that is located on the second hydrogen supply line 12 and can be opened and closed, a third valve 63 that can be opened and closed on the first discharge line 18, and a second valve 63 that can be opened and closed and can be opened and closed. It may be provided with a 4-valve 64.
  • the control device 30 (30C, 30E) is configured to control the opening and closing of the first valve 61 and the second valve 62 so as to select either the first supply mode or the second supply mode. You may.
  • control device 30 (30C, 30E) opens and closes the third valve 63 and the fourth valve 64 so that the third valve 63 is in the open state and the fourth valve 64 is in the closed state in the first supply mode. May be controlled. Further, the control device 30 (30C, 30E) controls the opening and closing of the third valve 63 and the fourth valve 64 so that the third valve 63 is in the closed state and the fourth valve 64 is in the open state in the second supply mode. You may.
  • the composite production system 1 is not limited to a configuration in which the opening and closing of the third valve 63 and the fourth valve 64 is controlled according to the first supply mode and the second supply mode.
  • the compound production system 1 may be configured to control the opening and closing of the third valve 63 and the fourth valve 64 according to the hydrogen concentration.
  • the composite production system 1 may be configured to include a sensor (not shown) for measuring the hydrogen concentration and control the opening and closing of the third valve 63 and the fourth valve 64 according to the measured value. good.
  • the sensor for measuring the hydrogen concentration may be provided in the first hydrogen supply line 11, for example, and may measure the hydrogen concentration of the by-product hydrogen gas flowing through the first hydrogen supply line 11. Further, a sensor for measuring the hydrogen concentration may be provided between the confluence portion 21 and the compressor 13 to measure the hydrogen concentration of the hydrogen-containing gas flowing into the compressor 13. A sensor for measuring the hydrogen concentration may be provided between the compressor 13 and the branch portion 22 and may measure the hydrogen concentration of the compressed gas discharged from the compressor 13. Even in such a configuration, high-purity hydrogen gas can be supplied to the synthesis plant 10. For example, the third valve 63 and the fourth valve 64 can be controlled so that the compressed gas is supplied to the purification device 16 when the measured hydrogen concentration is lower than the threshold value.
  • the compound production system 1 (1B, 1C, 1D, 1E) recovers carbon dioxide to recover carbon dioxide from the carbon dioxide-containing gas, eg, as shown in FIGS. 2-5.
  • the upstream side of the first hydrogen supply line 11 may be connected to the by-product hydrogen supply line 91.
  • the carbon dioxide-containing gas is a gas containing not only carbon dioxide but also hydrogen.
  • the composite production system 1 (1A, 1B, 1C, 1D, 1E) is a carbon dioxide supply line 15 for supplying carbon dioxide gas, for example, as shown in FIGS. 1-5.
  • a compressor 14 for compressing the carbon dioxide gas and a fifth valve 65 for adjusting the flow rate of the carbon dioxide gas may be provided.
  • the compressor 14 and the fifth valve 65 may be provided in the carbon dioxide supply line 15.
  • the upstream side of the carbon dioxide supply line 15 may be connected to a carbon dioxide gas supply source (for example, a carbon dioxide capture device 50 or a plant that discharges carbon dioxide gas).
  • the downstream side of the carbon dioxide supply line 15 may be connected to the synthesis plant 10.
  • control device 30 (30A, 30B, 30C, 30D, 30E) controls the fifth valve 65 and supplies carbon dioxide gas according to the amount of hydrogen guided to the synthesis plant 10. May be adjusted. In this case, waste can be reduced in the production of the composite.
  • the compound production system 1 (1A, 1B, 1C, 1D, 1E) may be configured not to include the fifth valve 65. Also in this case, for example, the control device 30 (30A, 30B, 30C, 30D, 30E) controls the carbon dioxide gas supply source (for example, the carbon dioxide recovery device 50 or the plant that emits carbon dioxide gas). It is possible to adjust the supply of carbon dioxide gas.
  • the control device 30 controls the carbon dioxide gas supply source (for example, the carbon dioxide recovery device 50 or the plant that emits carbon dioxide gas). It is possible to adjust the supply of carbon dioxide gas.
  • the synthetic product production system 1 (1A, 1B, 1C, 1D, 1E) may include a purification apparatus 17 for purifying carbon dioxide from carbon dioxide gas.
  • a purification apparatus 17 for purifying carbon dioxide from carbon dioxide gas.
  • impurities other than the raw materials of the synthetic product other than hydrogen and carbon dioxide
  • the purification device 17 may be omitted.
  • the compound production system 1 (1D) may be such that, for example, as shown in FIG. 4, the purification apparatus 16 is provided on the first hydrogen supply line 11 rather than on the downstream side of the compressor 13. good.
  • the purification apparatus 16 since the by-product hydrogen gas is purified and then supplied to the merging section 21, high-purity hydrogen gas is supplied even if the configurations of the third valve 63, the fourth valve 64, the second discharge line 19, etc. are omitted. Can be supplied to the synthesis plant 10.
  • the carbon dioxide supply line 15 may be connected to the downstream side of the press-fitting equipment 100.
  • the press-fitting equipment 100 is provided with one or more compressors (not shown), and is equipment for compressing the carbon dioxide recovered by the carbon dioxide recovery device 50 and immobilizing it in the stratum.
  • the compressor 14 can be omitted.
  • the carbon dioxide supply line 15 may be connected to the flow path of the compression process of the press-fitting equipment 100, for example, as shown by the alternate long and short dash line in FIG. Even in this case, the compressor 14 can be omitted because the carbon dioxide gas compressed by the press-fitting equipment 100 can be used. Further, the carbon dioxide supply line 15 may be connected to a flow path between the carbon dioxide recovery device 50 and the press-fitting equipment 100, for example, as shown by the alternate long and short dash line in FIG. In this case, a part of the carbon dioxide gas recovered by the carbon dioxide recovery device 50 can be supplied to the synthesis plant 10 and the remaining carbon dioxide gas can be immobilized on the stratum.
  • the present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a form in which these modes are appropriately combined.
  • the compound production system (1) is The first hydrogen supply line (11) for supplying by-product hydrogen gas and A second hydrogen supply line (12) for supplying hydrogen gas generated using renewable energy, and It has an inlet portion connected to the first hydrogen supply line (11) and the second hydrogen supply line (12), and compresses either the by-product hydrogen gas or the hydrogen gas to compress the compressed gas.
  • a compressor (13) configured to generate, and
  • a synthesis plant (10) configured to produce a composite by synthesizing hydrogen contained in the compressed gas with carbon dioxide, and To be equipped.
  • the by-product hydrogen gas when the hydrogen gas produced due to the decrease in renewable energy is reduced, the by-product hydrogen gas can supply the hydrogen required for the production of the compound. be. Therefore, a stable supply of hydrogen is possible. Further, since the compressor (13) is shared in the compression of the hydrogen gas and the by-product hydrogen gas, the equipment can be simplified.
  • the compound production system (1) is A first valve (61) located in the first hydrogen supply line (11) and for adjusting the amount of the by-product hydrogen gas supplied to the compressor (13).
  • a control device (30) configured to control the first valve (61) and the second valve (62), and a control device (30). With The control device (30) has a first supply mode (11) for supplying the by-product hydrogen gas from the first hydrogen supply line (11) to the compressor (13), and the second hydrogen supply line (12). The opening and closing of the first valve (61) and the second valve (62) are controlled so as to select either one of the second supply mode for supplying the hydrogen gas to the compressor (13).
  • the compression of the by-product hydrogen gas and the compression of the hydrogen gas can be combined. This can be achieved with one compressor (13). Further, since the by-product hydrogen gas and the hydrogen gas are difficult to mix, it is advantageous when the components of the by-product hydrogen gas and the hydrogen gas are different. For example, different treatments can be applied depending on whether the by-product hydrogen gas has a low hydrogen concentration or the hydrogen gas has a high hydrogen concentration.
  • the compound production system (1) is The second hydrogen supply line (12) is located upstream of the second valve (62) and is provided with a storage device (80) for storing the hydrogen gas.
  • the control device (30) is configured to control the first valve (61) and the second valve (62) based on the storage amount of the hydrogen gas in the storage device (80).
  • the supply amount of hydrogen is stable even if the supply amount of hydrogen gas fluctuates. It becomes possible to achieve the conversion.
  • the compound production system (1) is A purification apparatus (16) configured to purify the hydrogen component of the compressed gas and supply the purified gas to the synthesis plant (10) is provided.
  • the hydrogen-containing gas supplied to the compressor (13) contains impurities other than hydrogen
  • the gas whose hydrogen component is purified by the purification apparatus (16) can be supplied to the synthesis plant (10).
  • high-purity hydrogen gas can be supplied to the synthesis plant (10).
  • the compound production system (1) is A first discharge line (18) for guiding the compressed gas from the compressor (13) to the synthesis plant via the purification apparatus (16).
  • the purification apparatus (16) when the gas supplied to the compressor (13) is high-purity hydrogen gas, the purification apparatus (16) is bypassed by the second discharge line (19). Hydrogen gas can be supplied to the synthesis plant (10). In this case, the energy required for the purification apparatus (16) can be reduced.
  • the compound production system (1) is The confluence portion (21) where the first hydrogen supply line (11) and the second hydrogen supply line (12) merge and are connected to the compressor (13).
  • a general-purpose compressor has one inlet and one outlet.
  • the inlet portion and the confluence portion (21) of the compressor (13) are connected, and the outlet portion and the branch portion (22) of the compressor (13) are connected. It becomes possible.
  • the compressor (13) has two inlets (an inlet connected to the first hydrogen supply line (11) and an inlet connected to the second hydrogen supply line (12)) and two outlets. It is not necessary to provide a portion (an outlet portion connected to the first discharge line (18) and an outlet portion connected to the second discharge line (19)). Therefore, the composite production system (1) can be constructed by using the general-purpose compressor (13).
  • the compound production system (1) is A first valve (61) that is located on the first hydrogen supply line (11) and can be opened and closed, and A second valve (62) that is located on the second hydrogen supply line (12) and can be opened and closed, and A third valve (63) that is located at the first discharge line (18) and can be opened and closed, The fourth valve (64), which is located at the second discharge line (19) and can be opened and closed, The first supply mode for supplying the by-product hydrogen gas from the first hydrogen supply line (11) to the compressor (13) and the hydrogen from the second hydrogen supply line (12) to the compressor (13).
  • a control device (30) configured to control the opening and closing of the first valve (61) and the second valve (62) so as to select either one of the second supply modes for supplying gas.
  • the control device (30) has the third valve (63) and the third valve (63) so that the third valve (63) is in the open state and the fourth valve (64) is in the closed state in the first supply mode.
  • the third valve (63) controls the opening and closing of the four valves (64) so that the third valve (63) is closed and the fourth valve (64) is open in the second supply mode. And control the opening and closing of the fourth valve (64).
  • the compound production system (1) is A carbon dioxide capture device (50) for recovering carbon dioxide from a carbon dioxide-containing gas, and A power generation facility (40) configured to generate power using the by-product hydrogen gas, and A by-product hydrogen supply line (91) for supplying the by-product hydrogen gas after the carbon dioxide recovery device (50) has recovered the carbon dioxide from the carbon dioxide-containing gas to the power generation facility (40).
  • the first hydrogen supply line (11) is connected to the by-product hydrogen supply line (91).
  • the by-product hydrogen gas supplied to the power generation facility (40) can flow into the first hydrogen supply line (11). Therefore, the by-product hydrogen gas required for the production of the compound can be guided to the first hydrogen supply line (11), and the by-product hydrogen gas not required for the production of the compound can be guided to the power generation facility (40). ..
  • the by-product hydrogen gas discharged from the carbon dioxide capture device (50) can be used without waste.
  • the operating rate of the carbon dioxide capture device (50) can be improved.
  • Synthetic product production system 10 Synthesis plant 11 1st hydrogen supply line 12 2nd hydrogen supply line 13, 14 Compressor 15 Carbon dioxide supply line 16, 17 Purification device 18 1st discharge line 19 2nd discharge line 20 Hydrogen generation device 21 Confluence 22 Branch 30 Control device 40 Power generation equipment 50 Carbon dioxide recovery device 61 1st valve 62 2nd valve 63 3rd valve 64 4th valve 65 5th valve 71 Flow sensor 72 Pressure sensor 80 Storage device 91 By-product hydrogen supply line

Abstract

This synthetic material production system comprises: a first hydrogen supply line for supplying a by-product hydrogen gas; a second hydrogen supply line for supplying hydrogen gas generated using renewable energy; a compressor which is configured to generate compressed gas; and a synthesis plant which is configure to produce a synthetic material. The compressor has an inlet part that is connected to the first and second hydrogen supply lines, and generates compressed gas by compressing either the by-product hydrogen gas or the hydrogen gas. The synthesis plant produces a synthetic material by combining carbon dioxide and the hydrogen contained in the compressed gas.

Description

合成物生産システムSynthetic production system
 本開示は、二酸化炭素と水素の合成物を生産するための合成物生産システムに関する。
 本願は、2020年2月20日に出願された特願2020-026871号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a compound production system for producing a compound of carbon dioxide and hydrogen.
The present application claims priority based on Japanese Patent Application No. 2020-026781 filed on February 20, 2020, the contents of which are incorporated herein by reference.
 地球温暖化の防止策として、二酸化炭素を回収して、それを水素と化学反応させて合成物(燃料、化学素材等)の資源として活用することが提案されている。例えば、特許文献1には、水分解によって得られた水素と、発電設備の排ガスから分離した二酸化炭素とを合成し、燃料を生成するシステムが開示されている。 As a measure to prevent global warming, it has been proposed to recover carbon dioxide and chemically react it with hydrogen to utilize it as a resource for synthetic products (fuel, chemical materials, etc.). For example, Patent Document 1 discloses a system for producing fuel by synthesizing hydrogen obtained by water splitting and carbon dioxide separated from exhaust gas of a power generation facility.
特開平11-46460号公報Japanese Unexamined Patent Publication No. 11-46460
 特許文献1のように、水素を水分解によって生成する場合、そのためのエネルギーが必要である。ここで、水分解のエネルギーとして再生可能エネルギーを利用する場合、地球温暖化を防止する目的に適している。しかしながら、再生可能エネルギーは、外部環境によって変動する場合があるため、再生可能エネルギーを利用した水分解によって水素を安定供給することが困難である。また、経済性の観点から、設備の簡素化が求められる。 When hydrogen is generated by water decomposition as in Patent Document 1, energy for that is required. Here, when renewable energy is used as energy for water decomposition, it is suitable for the purpose of preventing global warming. However, since renewable energy may fluctuate depending on the external environment, it is difficult to stably supply hydrogen by water splitting using renewable energy. In addition, from the viewpoint of economy, simplification of equipment is required.
 上述の事情に鑑みて、本開示は、合成物生産システムにおいて、水素の安定供給と設備の簡素化を図ることを目的とする。 In view of the above circumstances, the purpose of this disclosure is to ensure a stable supply of hydrogen and to simplify the equipment in the compound production system.
 本開示に係る合成物生産システムは、
 副生水素ガスを供給するための第1水素供給ラインと、
 再生可能エネルギーを用いて生成された水素ガスを供給するための第2水素供給ラインと、
 前記第1水素供給ライン及び前記第2水素供給ラインに接続される入口部を有し、前記副生水素ガスと前記水素ガスとのいずれか一方を圧縮して圧縮ガスを生成するように構成された圧縮機と、
 前記圧縮ガスに含まれる水素を二酸化炭素と合成することによって合成物を生産するように構成された合成プラントと、
を備える。
The compound production system according to the present disclosure is
The first hydrogen supply line for supplying by-product hydrogen gas and
A second hydrogen supply line for supplying hydrogen gas generated using renewable energy,
It has an inlet portion connected to the first hydrogen supply line and the second hydrogen supply line, and is configured to compress either the by-product hydrogen gas or the hydrogen gas to generate a compressed gas. Compressor and
A synthesis plant configured to produce a compound by synthesizing hydrogen contained in the compressed gas with carbon dioxide, and
To be equipped.
 本開示によれば、合成物生産システムにおいて、水素の安定供給と設備の簡素化を図ることができる。 According to the present disclosure, it is possible to achieve a stable supply of hydrogen and simplification of equipment in a synthetic product production system.
一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment. 一実施形態に係る合成物生産システムの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compound production system which concerns on one Embodiment.
 以下、添付図面を参照して幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the invention, but are merely explanatory examples. ..
For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained. The shape including the part and the like shall also be represented.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.
(合成物生産システムの構成)
 以下、実施形態に係る合成物生産システム1の構成について説明する。図1は、一実施形態に係る合成物生産システム1(1A)の構成を概略的に示す図である。図2は、一実施形態に係る合成物生産システム1(1B)の構成を概略的に示す図である。図3は、一実施形態に係る合成物生産システム1(1C)の構成を概略的に示す図である。図4は、一実施形態に係る合成物生産システム1(1D)の構成を概略的に示す図である。図5は、一実施形態に係る合成物生産システム1(1E)の構成を概略的に示す図である。なお、これらの図において、実線矢印は、流体の流れとその供給ラインを示し、破線矢印は、センサの信号又は制御信号を示している。
(Structure of compound production system)
Hereinafter, the configuration of the composite production system 1 according to the embodiment will be described. FIG. 1 is a diagram schematically showing a configuration of a composite production system 1 (1A) according to an embodiment. FIG. 2 is a diagram schematically showing the configuration of the compound production system 1 (1B) according to the embodiment. FIG. 3 is a diagram schematically showing the configuration of the compound production system 1 (1C) according to the embodiment. FIG. 4 is a diagram schematically showing the configuration of the compound production system 1 (1D) according to the embodiment. FIG. 5 is a diagram schematically showing the configuration of the compound production system 1 (1E) according to the embodiment. In these figures, the solid line arrow indicates the fluid flow and its supply line, and the broken line arrow indicates the sensor signal or the control signal.
 図1~図5に示すように、合成物生産システム1(1A、1B、1C、1D、1E)は、合成物を生産するように構成された合成プラント10と、再生可能エネルギーを利用して水素ガスを生成するように構成された水素生成装置20と、を備える。また、合成物生産システム1(1A、1B、1C、1D、1E)は、副生水素ガスを供給するための第1水素供給ライン11と、再生可能エネルギーを用いて生成された水素ガスを供給するための第2水素供給ライン12と、圧縮ガスを生成するように構成された圧縮機13と、を備える。 As shown in FIGS. 1 to 5, the compound production system 1 (1A, 1B, 1C, 1D, 1E) utilizes a synthesis plant 10 configured to produce a compound and renewable energy. A hydrogen generation device 20 configured to generate hydrogen gas is provided. Further, the composite production system 1 (1A, 1B, 1C, 1D, 1E) supplies the first hydrogen supply line 11 for supplying by-product hydrogen gas and the hydrogen gas generated by using renewable energy. A second hydrogen supply line 12 for the purpose of producing a second hydrogen supply line 12 and a compressor 13 configured to generate a compressed gas are provided.
 合成プラント10は、圧縮機13からの圧縮ガスに含まれる水素を二酸化炭素と合成することによって合成物を生産する。合成プラント10は、合成物として、メタノール、メタン、及びジメチルエーテルのうち少なくとも1種を生産するように構成される。このような合成物は、燃料や化学素材として利用可能である。また、合成プラント10は、合成物の副産物である水を排水する。 The synthesis plant 10 produces a synthetic product by synthesizing hydrogen contained in the compressed gas from the compressor 13 with carbon dioxide. The synthesis plant 10 is configured to produce at least one of methanol, methane, and dimethyl ether as a synthetic product. Such compounds can be used as fuels and chemical materials. In addition, the synthesis plant 10 drains water, which is a by-product of the synthesis.
 副生水素ガスは、例えば、製油所の排ガスやPSA(Pressure Swing Adsorption)装置のオフガス等の副産物として生成される水素を含むガスである。副生水素ガスは、第1水素供給ライン11の上流側に供給される。水素生成装置20が生成した水素ガスは、第2水素供給ライン12の上流側に供給される。水素生成装置20が生成する水素ガスは高純度の水素ガスであるのに対し、副生水素ガスは低純度の水素ガスであってもよい。 The by-product hydrogen gas is a gas containing hydrogen produced as a by-product of, for example, the exhaust gas of a refinery or the off-gas of a PSA (Pressure Swing Adsorption) device. The by-product hydrogen gas is supplied to the upstream side of the first hydrogen supply line 11. The hydrogen gas generated by the hydrogen generation device 20 is supplied to the upstream side of the second hydrogen supply line 12. The hydrogen gas generated by the hydrogen generator 20 is a high-purity hydrogen gas, whereas the by-product hydrogen gas may be a low-purity hydrogen gas.
 水素生成装置20は、再生可能エネルギーを利用した発電設備からの電力供給を受けて、水電解によって水素ガスを生成する。なお、水素生成装置20は、水電解以外の方法によって水素ガスを生成するように構成されてもよい。例えば、水素生成装置20は、再生可能エネルギーを利用した発電設備からの電力供給を受けて、PSA法によって水素含有ガスから水素ガスを生成してもよいし、他の方法によって水素ガスを生成してもよい。 The hydrogen generator 20 receives electric power from a power generation facility using renewable energy and generates hydrogen gas by water electrolysis. The hydrogen generation device 20 may be configured to generate hydrogen gas by a method other than water electrolysis. For example, the hydrogen generator 20 may generate hydrogen gas from a hydrogen-containing gas by the PSA method by receiving electric power from a power generation facility using renewable energy, or generate hydrogen gas by another method. You may.
 圧縮機13は、第1水素供給ライン11及び第2水素供給ライン12の下流側に接続される入口部を有する。圧縮機13は、副生水素ガスと水素ガスとのいずれか一方を圧縮して圧縮ガスを生成する。なお、「副生水素ガスと水素ガスとのいずれか一方を圧縮」とは、両者を異なる時間帯に分けて圧縮することを意味する。すなわち、圧縮機13は、両者を圧縮可能となるように第1水素供給ライン11及び第2水素供給ライン12に接続される。 The compressor 13 has an inlet portion connected to the downstream side of the first hydrogen supply line 11 and the second hydrogen supply line 12. The compressor 13 compresses either the by-product hydrogen gas or the hydrogen gas to generate a compressed gas. In addition, "compressing either one of the by-product hydrogen gas and the hydrogen gas" means compressing both in different time zones. That is, the compressor 13 is connected to the first hydrogen supply line 11 and the second hydrogen supply line 12 so that both can be compressed.
 幾つかの実施形態では、合成物生産システム1(1A、1B、1C、1D、1E)は、例えば、図1~図5に示すように、圧縮機13に供給する副生水素ガスの量を調整するための第1弁61と、圧縮機13に供給する水素ガスの量を調整するための第2弁62と、第1弁61及び第2弁62を制御するように構成された制御装置30(30A、30B、30C、30D、30E)と、を備える。第1弁61は、第1水素供給ライン11に位置し、第2弁62は、第2水素供給ライン12に位置する。 In some embodiments, the compound production system 1 (1A, 1B, 1C, 1D, 1E) determines the amount of by-product hydrogen gas supplied to the compressor 13, for example, as shown in FIGS. 1-5. A control device configured to control the first valve 61 for adjustment, the second valve 62 for adjusting the amount of hydrogen gas supplied to the compressor 13, and the first valve 61 and the second valve 62. 30 (30A, 30B, 30C, 30D, 30E) and. The first valve 61 is located on the first hydrogen supply line 11, and the second valve 62 is located on the second hydrogen supply line 12.
 第1弁61及び第2弁62は、流量調整弁であってもよいし、開閉弁であってもよい。制御装置30(30A、30B、30C、30D、30E)は、第1弁61及び第2弁62の開閉制御を実行する構成であってもよい。制御装置30(30A、30B、30C、30D、30E)は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、CPU(Central Processing Unit)等から構成される。 The first valve 61 and the second valve 62 may be a flow rate adjusting valve or an on-off valve. The control device 30 (30A, 30B, 30C, 30D, 30E) may be configured to execute opening / closing control of the first valve 61 and the second valve 62. The control device 30 (30A, 30B, 30C, 30D, 30E) is composed of, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a CPU (Central Processing Unit), and the like.
 幾つかの実施形態では、合成物生産システム1(1C、1E)は、例えば、図3及び図5に示すように、第2水素供給ライン12において第2弁62より上流側に位置し、水素ガスを貯蔵するための貯蔵装置80を備える。貯蔵装置80は、例えば、吸蔵合金やタンクを含む。制御装置30(30C、30E)は、貯蔵装置80の水素ガスの貯蔵量に基づいて第1弁61及び第2弁62を制御するように構成される。 In some embodiments, the compound production system 1 (1C, 1E) is located upstream of the second valve 62 in the second hydrogen supply line 12, for example, as shown in FIGS. 3 and 5, hydrogen. A storage device 80 for storing gas is provided. The storage device 80 includes, for example, a storage alloy or a tank. The control device 30 (30C, 30E) is configured to control the first valve 61 and the second valve 62 based on the amount of hydrogen gas stored in the storage device 80.
 この場合、合成物生産システム1(1C、1E)は、貯蔵装置80内部の圧力を計測するように構成された圧力センサ72を備えていてもよい。制御装置30(30C、30E)は、圧力センサ72の計測値を取得し、計測値に応じて第1弁61及び第2弁62を制御するように構成されてもよい。なお、制御装置30は、貯蔵装置80の貯蔵量に基づいて制御を実行する構成に限られず、ユーザの手動操作に応じて制御を実行する構成であってもよい。 In this case, the composite production system 1 (1C, 1E) may include a pressure sensor 72 configured to measure the pressure inside the storage device 80. The control device 30 (30C, 30E) may be configured to acquire the measured value of the pressure sensor 72 and control the first valve 61 and the second valve 62 according to the measured value. The control device 30 is not limited to a configuration in which control is executed based on the storage amount of the storage device 80, and may be configured to execute control in response to a manual operation by the user.
 また、合成物生産システム1(1B)は、例えば、図2に示すように、第2水素供給ライン12を流れる水素ガスの流量を計測するように構成された流量センサ71を備えていてもよい。制御装置30(30B)は、流量センサ71の計測値を取得し、計測値に応じて第1弁61及び第2弁62を制御するように構成されてもよい。 Further, the composite production system 1 (1B) may include, for example, as shown in FIG. 2, a flow rate sensor 71 configured to measure the flow rate of hydrogen gas flowing through the second hydrogen supply line 12. .. The control device 30 (30B) may be configured to acquire the measured value of the flow rate sensor 71 and control the first valve 61 and the second valve 62 according to the measured value.
 幾つかの実施形態では、制御装置30は、第1水素供給ライン11から圧縮機13に副生水素ガスを供給する第1供給モードと、第2水素供給ライン12から圧縮機13に水素ガスを供給する第2供給モードとのいずれか一方を選択するように第1弁61及び第2弁62の開閉を制御してもよい。 In some embodiments, the control device 30 supplies hydrogen gas from the first hydrogen supply line 11 to the compressor 13 in a first supply mode in which the by-product hydrogen gas is supplied from the first hydrogen supply line 11 to the compressor 13. The opening and closing of the first valve 61 and the second valve 62 may be controlled so as to select either one of the supply second supply modes.
 具体的には、制御装置30は、第1供給モードを選択した場合、第1弁61が開放状態で第2弁62が閉鎖状態となるように第1弁61及び第2弁62の開閉を制御する。また、制御装置30は、第2供給モードを選択した場合、第1弁61が閉鎖状態で第2弁62が開放状態となるように第1弁61及び第2弁62の開閉を制御する。なお、制御装置30の制御は、開閉弁の開閉制御に限られず、流量調整弁の開度を調整して実質的に開閉制御と同じ制御を行ってもよい。 Specifically, when the first supply mode is selected, the control device 30 opens and closes the first valve 61 and the second valve 62 so that the first valve 61 is in the open state and the second valve 62 is in the closed state. Control. Further, when the second supply mode is selected, the control device 30 controls the opening and closing of the first valve 61 and the second valve 62 so that the first valve 61 is in the closed state and the second valve 62 is in the open state. The control of the control device 30 is not limited to the opening / closing control of the on-off valve, and the opening / closing of the flow rate adjusting valve may be adjusted to perform substantially the same control as the on-off control.
 制御装置30(30B、30C、30E)は、例えば、図2、図3及び図5に示すように、流量センサ71又は圧力センサ72の計測値が閾値以下である場合には第1供給モードを選択し、計測値が閾値を超えている場合には第2供給モードを選択し、第1弁61及び第2弁62を開閉制御してもよい。 The control device 30 (30B, 30C, 30E) sets the first supply mode when the measured value of the flow rate sensor 71 or the pressure sensor 72 is equal to or less than the threshold value, as shown in FIGS. 2, 3 and 5, for example. If selected and the measured value exceeds the threshold value, the second supply mode may be selected and the first valve 61 and the second valve 62 may be controlled to open and close.
 幾つかの実施形態では、合成物生産システム1(1A、1B、1C、1D、1E)は、例えば、図1~図5に示すように、圧縮機13からの圧縮ガスの水素成分を精製して、精製したガスを合成プラントに供給するように構成された精製装置16を備えていてもよい。 In some embodiments, the compound production system 1 (1A, 1B, 1C, 1D, 1E) purifies the hydrogen component of the compressed gas from the compressor 13, for example, as shown in FIGS. 1-5. The refiner 16 may be provided so as to supply the purified gas to the synthesis plant.
 幾つかの実施形態では、合成物生産システム1(1C、1E)は、例えば、図3及び図5に示すように、圧縮機13から精製装置16を介して合成プラント10に圧縮ガスを導くための第1排出ライン18と、圧縮機13から精製装置16をバイパスさせて合成プラント10に圧縮ガスを導くための第2排出ライン19と、を備える。また、合成物生産システム1(1C、1E)は、第1水素供給ライン11と第2水素供給ライン12とが合流し、圧縮機13に接続される合流部21と、圧縮機13に接続され、第1排出ライン18と第2排出ライン19とに分岐する分岐部22と、を備える。 In some embodiments, the composite production system 1 (1C, 1E) guides the compressed gas from the compressor 13 to the synthesis plant 10 via the purification apparatus 16, for example, as shown in FIGS. 3 and 5. The first discharge line 18 and the second discharge line 19 for guiding the compressed gas from the compressor 13 to the synthesis plant 10 by bypassing the purification device 16 are provided. Further, in the composite production system 1 (1C, 1E), the first hydrogen supply line 11 and the second hydrogen supply line 12 are merged, and the merging portion 21 connected to the compressor 13 and the compressor 13 are connected to each other. A branch portion 22 that branches into a first discharge line 18 and a second discharge line 19 is provided.
 汎用的な圧縮機13は、入口部と出口部とを1つずつ備える構成である。この点、上記構成では、合流部21と入口部を接続して、分岐部22と出口部を接続すればよいため、汎用的な圧縮機13を適用できる。なお、合成物生産システム1は、合流部21及び分岐部22の少なくとも一方を備えていない構成であってもよい。例えば、図1、図2及び図4に示すように、合成物生産システム1(1A、1B、1D)は、合流部21のみを備えている。なお、圧縮機13は、2つの入口部及び出口部を備える構成であってもよい。この場合、合流部21及び分岐部22を省略することも可能である。 The general-purpose compressor 13 has one inlet and one outlet. In this respect, in the above configuration, the merging portion 21 and the inlet portion may be connected, and the branch portion 22 and the outlet portion may be connected, so that the general-purpose compressor 13 can be applied. The composite production system 1 may not include at least one of the merging portion 21 and the branching portion 22. For example, as shown in FIGS. 1, 2 and 4, the composite production system 1 (1A, 1B, 1D) includes only the merging section 21. The compressor 13 may be configured to include two inlet portions and an outlet portion. In this case, the merging portion 21 and the branching portion 22 can be omitted.
 幾つかの実施形態において、合成物生産システム1(1C、1E)は、例えば、図3及び図5に示すように、第1水素供給ライン11に位置し、開閉可能な第1弁61と、第2水素供給ライン12に位置し、開閉可能な第2弁62と、第1排出ライン18に位置し、開閉可能な第3弁63と、第2排出ライン19に位置し、開閉可能な第4弁64と、を備えていてもよい。また、制御装置30(30C、30E)は、第1供給モードと、第2供給モードとのいずれか一方を選択するように第1弁61及び第2弁62の開閉を制御するように構成されてもよい。 In some embodiments, the composite production system 1 (1C, 1E) comprises a first valve 61 that is located on the first hydrogen supply line 11 and can be opened and closed, for example, as shown in FIGS. 3 and 5. A second valve 62 that is located on the second hydrogen supply line 12 and can be opened and closed, a third valve 63 that can be opened and closed on the first discharge line 18, and a second valve 63 that can be opened and closed and can be opened and closed. It may be provided with a 4-valve 64. Further, the control device 30 (30C, 30E) is configured to control the opening and closing of the first valve 61 and the second valve 62 so as to select either the first supply mode or the second supply mode. You may.
 かかる構成において、制御装置30(30C、30E)は、第1供給モードにおいて、第3弁63が開放状態で第4弁64が閉鎖状態となるように第3弁63及び第4弁64の開閉を制御してもよい。また、制御装置30(30C、30E)は、第2供給モードにおいて、第3弁63が閉鎖状態で第4弁64が開放状態となるように第3弁63及び第4弁64の開閉を制御してもよい。 In such a configuration, the control device 30 (30C, 30E) opens and closes the third valve 63 and the fourth valve 64 so that the third valve 63 is in the open state and the fourth valve 64 is in the closed state in the first supply mode. May be controlled. Further, the control device 30 (30C, 30E) controls the opening and closing of the third valve 63 and the fourth valve 64 so that the third valve 63 is in the closed state and the fourth valve 64 is in the open state in the second supply mode. You may.
 なお、合成物生産システム1は、第1供給モードと第2供給モードに応じて第3弁63及び第4弁64の開閉を制御する構成に限られない。合成物生産システム1は、水素濃度に応じて第3弁63及び第4弁64の開閉を制御する構成であってもよい。例えば、合成物生産システム1は、水素濃度を計測するためのセンサ(不図示)を備え、その計測値に応じて第3弁63及び第4弁64の開閉を制御するように構成されてもよい。 The composite production system 1 is not limited to a configuration in which the opening and closing of the third valve 63 and the fourth valve 64 is controlled according to the first supply mode and the second supply mode. The compound production system 1 may be configured to control the opening and closing of the third valve 63 and the fourth valve 64 according to the hydrogen concentration. For example, the composite production system 1 may be configured to include a sensor (not shown) for measuring the hydrogen concentration and control the opening and closing of the third valve 63 and the fourth valve 64 according to the measured value. good.
 水素濃度を計測するためのセンサは、例えば、第1水素供給ライン11に設けられ、第1水素供給ライン11を流れる副生水素ガスの水素濃度を計測してもよい。また、水素濃度を計測するためのセンサは、合流部21と圧縮機13の間に設けられ、圧縮機13に流入する水素含有ガスの水素濃度を計測してもよい。水素濃度を計測するためのセンサは、圧縮機13と分岐部22の間に設けられ、圧縮機13から排出される圧縮ガスの水素濃度を計測してもよい。このような構成においても、合成プラント10に高純度の水素ガスを供給することができる。例えば、計測された水素濃度が閾値より低い場合に、圧縮ガスが精製装置16に供給されるように、第3弁63と第4弁64を制御することができる。 The sensor for measuring the hydrogen concentration may be provided in the first hydrogen supply line 11, for example, and may measure the hydrogen concentration of the by-product hydrogen gas flowing through the first hydrogen supply line 11. Further, a sensor for measuring the hydrogen concentration may be provided between the confluence portion 21 and the compressor 13 to measure the hydrogen concentration of the hydrogen-containing gas flowing into the compressor 13. A sensor for measuring the hydrogen concentration may be provided between the compressor 13 and the branch portion 22 and may measure the hydrogen concentration of the compressed gas discharged from the compressor 13. Even in such a configuration, high-purity hydrogen gas can be supplied to the synthesis plant 10. For example, the third valve 63 and the fourth valve 64 can be controlled so that the compressed gas is supplied to the purification device 16 when the measured hydrogen concentration is lower than the threshold value.
 幾つかの実施形態において、合成物生産システム1(1B、1C、1D、1E)は、例えば、図2~図5に示すように、二酸化炭素含有ガスから二酸化炭素を回収するための二酸化炭素回収装置50と、副生水素ガスを利用して発電を行うように構成された発電設備40と、二酸化炭素回収装置50が二酸化炭素含有ガスから二酸化炭素を回収した後の副生水素ガス(オフガス)を発電設備40に供給するための副生水素供給ライン91と、を備えていてもよい。第1水素供給ライン11の上流側は、副生水素供給ライン91に接続されてもよい。なお、二酸化炭素含有ガスは、二酸化炭素だけでなく水素も含むガスである。 In some embodiments, the compound production system 1 (1B, 1C, 1D, 1E) recovers carbon dioxide to recover carbon dioxide from the carbon dioxide-containing gas, eg, as shown in FIGS. 2-5. The device 50, the power generation facility 40 configured to generate power using the by-product hydrogen gas, and the by-product hydrogen gas (off gas) after the carbon dioxide recovery device 50 recovers carbon dioxide from the carbon dioxide-containing gas. May be provided with a by-product hydrogen supply line 91 for supplying the power generation facility 40. The upstream side of the first hydrogen supply line 11 may be connected to the by-product hydrogen supply line 91. The carbon dioxide-containing gas is a gas containing not only carbon dioxide but also hydrogen.
 幾つかの実施形態において、合成物生産システム1(1A、1B、1C、1D、1E)は、例えば、図1~図5に示すように、二酸化炭素ガスを供給するための二酸化炭素供給ライン15と、二酸化炭素ガスを圧縮するための圧縮機14と、二酸化炭素ガスの流量を調整するための第5弁65とを備えていてもよい。圧縮機14と第5弁65は、二酸化炭素供給ライン15に設けられてもよい。二酸化炭素供給ライン15の上流側は二酸化炭素ガスの供給源(例えば、二酸化炭素回収装置50や二酸化炭素ガスを排出するプラント)に接続されてもよい。二酸化炭素供給ライン15の下流側は合成プラント10に接続されてもよい。 In some embodiments, the composite production system 1 (1A, 1B, 1C, 1D, 1E) is a carbon dioxide supply line 15 for supplying carbon dioxide gas, for example, as shown in FIGS. 1-5. A compressor 14 for compressing the carbon dioxide gas and a fifth valve 65 for adjusting the flow rate of the carbon dioxide gas may be provided. The compressor 14 and the fifth valve 65 may be provided in the carbon dioxide supply line 15. The upstream side of the carbon dioxide supply line 15 may be connected to a carbon dioxide gas supply source (for example, a carbon dioxide capture device 50 or a plant that discharges carbon dioxide gas). The downstream side of the carbon dioxide supply line 15 may be connected to the synthesis plant 10.
 このような構成において、制御装置30(30A、30B、30C、30D、30E)は、第5弁65を制御して、合成プラント10に導かれる水素の量に応じて、二酸化炭素ガスの供給量を調整してもよい。この場合、合成物の生産において無駄を低減することができる。 In such a configuration, the control device 30 (30A, 30B, 30C, 30D, 30E) controls the fifth valve 65 and supplies carbon dioxide gas according to the amount of hydrogen guided to the synthesis plant 10. May be adjusted. In this case, waste can be reduced in the production of the composite.
 合成物生産システム1(1A、1B、1C、1D、1E)は、第5弁65を備えていない構成であってもよい。この場合においても、例えば、制御装置30(30A、30B、30C、30D、30E)が二酸化炭素ガスの供給源(例えば、二酸化炭素回収装置50や二酸化炭素ガスを排出するプラント)を制御して、二酸化炭素ガスの供給量を調整することが可能である。 The compound production system 1 (1A, 1B, 1C, 1D, 1E) may be configured not to include the fifth valve 65. Also in this case, for example, the control device 30 (30A, 30B, 30C, 30D, 30E) controls the carbon dioxide gas supply source (for example, the carbon dioxide recovery device 50 or the plant that emits carbon dioxide gas). It is possible to adjust the supply of carbon dioxide gas.
 幾つかの実施形態において、合成物生産システム1(1A、1B、1C、1D、1E)は、二酸化炭素ガスから二酸化炭素を精製するための精製装置17を備えていてもよい。この場合、合成プラント10に合成物の原料以外(水素と二酸化炭素以外)の不純物が供給されることを低減することができる。なお、二酸化炭素ガスの二酸化炭素の純度が十分に高い場合には、精製装置17が省略されてもよい。 In some embodiments, the synthetic product production system 1 (1A, 1B, 1C, 1D, 1E) may include a purification apparatus 17 for purifying carbon dioxide from carbon dioxide gas. In this case, it is possible to reduce the supply of impurities other than the raw materials of the synthetic product (other than hydrogen and carbon dioxide) to the synthesis plant 10. If the purity of carbon dioxide in the carbon dioxide gas is sufficiently high, the purification device 17 may be omitted.
 幾つかの実施形態において、合成物生産システム1(1D)は、例えば、図4に示すように、精製装置16は、圧縮機13の下流側ではなく第1水素供給ライン11に設けられてもよい。この場合、副生水素ガスが精製されてから合流部21に供給されるため、第3弁63、第4弁64、第2排出ライン19等の構成を省略しても、高純度の水素ガスを合成プラント10に供給することが可能となる。 In some embodiments, the compound production system 1 (1D) may be such that, for example, as shown in FIG. 4, the purification apparatus 16 is provided on the first hydrogen supply line 11 rather than on the downstream side of the compressor 13. good. In this case, since the by-product hydrogen gas is purified and then supplied to the merging section 21, high-purity hydrogen gas is supplied even if the configurations of the third valve 63, the fourth valve 64, the second discharge line 19, etc. are omitted. Can be supplied to the synthesis plant 10.
 幾つかの実施形態において、例えば、図5に示すように、二酸化炭素供給ライン15は、圧入設備100の下流側に接続されてもよい。圧入設備100は、一つ以上の圧縮機(不図示)を備え、二酸化炭素回収装置50が回収した二酸化炭素を圧縮して地層に固定化するための設備である。この場合、圧入設備100によって圧縮済みの二酸化炭素ガスを利用できるため、圧縮機14を省略することができる。 In some embodiments, for example, as shown in FIG. 5, the carbon dioxide supply line 15 may be connected to the downstream side of the press-fitting equipment 100. The press-fitting equipment 100 is provided with one or more compressors (not shown), and is equipment for compressing the carbon dioxide recovered by the carbon dioxide recovery device 50 and immobilizing it in the stratum. In this case, since the carbon dioxide gas compressed by the press-fitting equipment 100 can be used, the compressor 14 can be omitted.
 また、二酸化炭素供給ライン15は、例えば、図5において一点鎖線で示すように、圧入設備100の圧縮過程の流路に接続されてもよい。この場合においても、圧入設備100によって圧縮済みの二酸化炭素ガスを利用できるため、圧縮機14を省略することができる。また、二酸化炭素供給ライン15は、例えば、図5において一点鎖線で示すように、二酸化炭素回収装置50と圧入設備100の間の流路に接続されてもよい。この場合、二酸化炭素回収装置50が回収した二酸化炭素ガスの一部を合成プラント10に供給し、残りの二酸化炭素ガスを地層に固定化させることができる。 Further, the carbon dioxide supply line 15 may be connected to the flow path of the compression process of the press-fitting equipment 100, for example, as shown by the alternate long and short dash line in FIG. Even in this case, the compressor 14 can be omitted because the carbon dioxide gas compressed by the press-fitting equipment 100 can be used. Further, the carbon dioxide supply line 15 may be connected to a flow path between the carbon dioxide recovery device 50 and the press-fitting equipment 100, for example, as shown by the alternate long and short dash line in FIG. In this case, a part of the carbon dioxide gas recovered by the carbon dioxide recovery device 50 can be supplied to the synthesis plant 10 and the remaining carbon dioxide gas can be immobilized on the stratum.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a form in which these modes are appropriately combined.
(まとめ)
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(summary)
The contents described in each of the above embodiments are grasped as follows, for example.
 (1)本開示の一実施形態に係る合成物生産システム(1)は、
 副生水素ガスを供給するための第1水素供給ライン(11)と、
 再生可能エネルギーを用いて生成された水素ガスを供給するための第2水素供給ライン(12)と、
 前記第1水素供給ライン(11)及び前記第2水素供給ライン(12)に接続される入口部を有し、前記副生水素ガスと前記水素ガスとのいずれか一方を圧縮して圧縮ガスを生成するように構成された圧縮機(13)と、
 前記圧縮ガスに含まれる水素を二酸化炭素と合成することによって合成物を生産するように構成された合成プラント(10)と、
を備える。
(1) The compound production system (1) according to the embodiment of the present disclosure is
The first hydrogen supply line (11) for supplying by-product hydrogen gas and
A second hydrogen supply line (12) for supplying hydrogen gas generated using renewable energy, and
It has an inlet portion connected to the first hydrogen supply line (11) and the second hydrogen supply line (12), and compresses either the by-product hydrogen gas or the hydrogen gas to compress the compressed gas. A compressor (13) configured to generate, and
A synthesis plant (10) configured to produce a composite by synthesizing hydrogen contained in the compressed gas with carbon dioxide, and
To be equipped.
 上記(1)に記載の構成によれば、再生可能エネルギーの減少によって生成される水素ガスが減少した場合には、副生水素ガスによって合成物の生産に必要な水素を供給することが可能である。そのため、水素の安定供給が可能となる。また、水素ガスと副生水素ガスの圧縮において、圧縮機(13)を共用するため、設備の簡素化が可能となる。 According to the configuration described in (1) above, when the hydrogen gas produced due to the decrease in renewable energy is reduced, the by-product hydrogen gas can supply the hydrogen required for the production of the compound. be. Therefore, a stable supply of hydrogen is possible. Further, since the compressor (13) is shared in the compression of the hydrogen gas and the by-product hydrogen gas, the equipment can be simplified.
 (2)幾つかの実施形態では、上記(1)に記載の構成において、前記合成物生産システム(1)は、
 前記第1水素供給ライン(11)に位置し、前記圧縮機(13)に供給する前記副生水素ガスの量を調整するための第1弁(61)と、
 前記第2水素供給ライン(12)に位置し、前記圧縮機(13)に供給する前記水素ガスの量を調整するための第2弁(62)と、
 前記第1弁(61)及び前記第2弁(62)を制御するように構成された制御装置(30)と、
を備え、
 前記制御装置(30)は、前記第1水素供給ライン(11)から前記圧縮機(13)に前記副生水素ガスを供給する第1供給モード(11)と、前記第2水素供給ライン(12)から前記圧縮機(13)に前記水素ガスを供給する第2供給モードとのいずれか一方を選択するように前記第1弁(61)及び前記第2弁(62)の開閉を制御する。
(2) In some embodiments, in the configuration described in (1) above, the compound production system (1) is
A first valve (61) located in the first hydrogen supply line (11) and for adjusting the amount of the by-product hydrogen gas supplied to the compressor (13).
A second valve (62) located in the second hydrogen supply line (12) for adjusting the amount of the hydrogen gas supplied to the compressor (13).
A control device (30) configured to control the first valve (61) and the second valve (62), and a control device (30).
With
The control device (30) has a first supply mode (11) for supplying the by-product hydrogen gas from the first hydrogen supply line (11) to the compressor (13), and the second hydrogen supply line (12). The opening and closing of the first valve (61) and the second valve (62) are controlled so as to select either one of the second supply mode for supplying the hydrogen gas to the compressor (13).
 上記(2)に記載の構成によれば、副生水素ガスの量と水素ガスの量とを制御装置(30)によって制御することにより、副生水素ガスの圧縮と水素ガスの圧縮とを一つの圧縮機(13)で実現することができる。また、副生水素ガスと水素ガスが混合しにくいため、副生水素ガスと水素ガスの成分が異なる場合に有利である。例えば、水素濃度が低い副生水素ガスか水素濃度が高い水素ガスかによって異なる処理を適用することが可能となる。 According to the configuration described in (2) above, by controlling the amount of by-product hydrogen gas and the amount of hydrogen gas by the control device (30), the compression of the by-product hydrogen gas and the compression of the hydrogen gas can be combined. This can be achieved with one compressor (13). Further, since the by-product hydrogen gas and the hydrogen gas are difficult to mix, it is advantageous when the components of the by-product hydrogen gas and the hydrogen gas are different. For example, different treatments can be applied depending on whether the by-product hydrogen gas has a low hydrogen concentration or the hydrogen gas has a high hydrogen concentration.
 (3)幾つかの実施形態では、上記(2)に記載の構成において、前記合成物生産システム(1)は、
 前記第2水素供給ライン(12)において前記第2弁(62)より上流側に位置し、前記水素ガスを貯蔵するための貯蔵装置(80)を備え、
 前記制御装置(30)は、前記貯蔵装置(80)の前記水素ガスの貯蔵量に基づいて前記第1弁(61)及び前記第2弁(62)を制御するように構成される。
(3) In some embodiments, in the configuration described in (2) above, the compound production system (1) is
The second hydrogen supply line (12) is located upstream of the second valve (62) and is provided with a storage device (80) for storing the hydrogen gas.
The control device (30) is configured to control the first valve (61) and the second valve (62) based on the storage amount of the hydrogen gas in the storage device (80).
 上記(3)に記載の構成によれば、水素ガスの貯蔵量に応じて副生水素ガスの供給量を調整することにより、水素ガスの供給量が変動しても、水素の供給量の安定化を図ることが可能となる。 According to the configuration described in (3) above, by adjusting the supply amount of by-product hydrogen gas according to the storage amount of hydrogen gas, the supply amount of hydrogen is stable even if the supply amount of hydrogen gas fluctuates. It becomes possible to achieve the conversion.
 (4)幾つかの実施形態では、上記(1)乃至(3)の何れか一つに記載の構成において、前記合成物生産システム(1)は、
 前記圧縮ガスの水素成分を精製して、精製したガスを前記合成プラント(10)に供給するように構成された精製装置(16)を備える。
(4) In some embodiments, in the configuration according to any one of (1) to (3) above, the compound production system (1) is
A purification apparatus (16) configured to purify the hydrogen component of the compressed gas and supply the purified gas to the synthesis plant (10) is provided.
 上記(4)に記載の構成によれば、圧縮機(13)に供給された水素含有ガスに水素以外の不純物が含まれている場合においても、精製装置(16)によって水素成分を精製したガスを合成プラント(10)に供給することができる。例えば、不純物が含まれる副生水素含有ガスが圧縮機に供給された場合にも高純度の水素ガスを合成プラント(10)に供給することができる。 According to the configuration described in (4) above, even when the hydrogen-containing gas supplied to the compressor (13) contains impurities other than hydrogen, the gas whose hydrogen component is purified by the purification apparatus (16). Can be supplied to the synthesis plant (10). For example, even when a by-product hydrogen-containing gas containing impurities is supplied to the compressor, high-purity hydrogen gas can be supplied to the synthesis plant (10).
 (5)幾つかの実施形態では、上記(4)に記載の構成において、前記合成物生産システム(1)は、
 前記圧縮機(13)から前記精製装置(16)を介して前記合成プラントに前記圧縮ガスを導くための第1排出ライン(18)と、
 前記圧縮機(13)から前記精製装置(16)をバイパスさせて前記合成プラント(10)に前記圧縮ガスを導くための第2排出ライン(19)と、
を備える。
(5) In some embodiments, in the configuration described in (4) above, the compound production system (1) is
A first discharge line (18) for guiding the compressed gas from the compressor (13) to the synthesis plant via the purification apparatus (16).
A second discharge line (19) for guiding the compressed gas from the compressor (13) to the synthesis plant (10) by bypassing the refiner (16).
To be equipped.
 上記(5)に記載の構成によれば、圧縮機(13)に供給されたガスが高純度の水素ガスである場合に、第2排出ライン(19)によって精製装置(16)をバイパスして水素ガスを合成プラント(10)に供給することができる。この場合、精製装置(16)に必要なエネルギーを低減できる。 According to the configuration described in (5) above, when the gas supplied to the compressor (13) is high-purity hydrogen gas, the purification apparatus (16) is bypassed by the second discharge line (19). Hydrogen gas can be supplied to the synthesis plant (10). In this case, the energy required for the purification apparatus (16) can be reduced.
 (6)幾つかの実施形態では、上記(5)に記載の構成において、前記合成物生産システム(1)は、
 前記第1水素供給ライン(11)と前記第2水素供給ライン(12)とが合流し、前記圧縮機(13)に接続される合流部(21)と、
 前記圧縮機(13)に接続され、前記第1排出ライン(18)と前記第2排出ライン(19)とに分岐する分岐部(22)と、
を備える。
(6) In some embodiments, in the configuration described in (5) above, the compound production system (1) is
The confluence portion (21) where the first hydrogen supply line (11) and the second hydrogen supply line (12) merge and are connected to the compressor (13).
A branch portion (22) connected to the compressor (13) and branched into the first discharge line (18) and the second discharge line (19).
To be equipped.
 汎用的な圧縮機は、入口部と出口部とを1つずつ備える構成である。この点、上記(6)に記載の構成によれば、圧縮機(13)の入口部と合流部(21)を接続し、圧縮機(13)の出口部と分岐部(22)を接続することが可能となる。この場合、圧縮機(13)は、2つの入口部(第1水素供給ライン(11)に接続される入口部と第2水素供給ライン(12)に接続される入口部)と、2つの出口部(第1排出ライン(18)に接続される出口部と第2排出ライン(19)に接続される出口部)を備える必要がない。そのため、汎用的な圧縮機(13)を用いて合成物生産システム(1)を構築することができる。 A general-purpose compressor has one inlet and one outlet. In this regard, according to the configuration described in (6) above, the inlet portion and the confluence portion (21) of the compressor (13) are connected, and the outlet portion and the branch portion (22) of the compressor (13) are connected. It becomes possible. In this case, the compressor (13) has two inlets (an inlet connected to the first hydrogen supply line (11) and an inlet connected to the second hydrogen supply line (12)) and two outlets. It is not necessary to provide a portion (an outlet portion connected to the first discharge line (18) and an outlet portion connected to the second discharge line (19)). Therefore, the composite production system (1) can be constructed by using the general-purpose compressor (13).
 (7)幾つかの実施形態では、上記(5)又は(6)に記載の構成において、前記合成物生産システム(1)は、
 前記第1水素供給ライン(11)に位置し、開閉可能な第1弁(61)と、
 前記第2水素供給ライン(12)に位置し、開閉可能な第2弁(62)と、
 前記第1排出ライン(18)に位置し、開閉可能な第3弁(63)と、
 前記第2排出ライン(19)に位置し、開閉可能な第4弁(64)と、
 前記第1水素供給ライン(11)から前記圧縮機(13)に前記副生水素ガスを供給する第1供給モードと、前記第2水素供給ライン(12)から前記圧縮機(13)に前記水素ガスを供給する第2供給モードとのいずれか一方を選択するように前記第1弁(61)及び前記第2弁(62)の開閉を制御するように構成された制御装置(30)と、
を備え、
 前記制御装置(30)は、前記第1供給モードにおいて、前記第3弁(63)が開放状態で前記第4弁(64)が閉鎖状態となるように前記第3弁(63)及び前記第4弁(64)の開閉を制御し、前記第2供給モードにおいて、前記第3弁(63)が閉鎖状態で前記第4弁(64)が開放状態となるように前記第3弁(63)及び前記第4弁(64)の開閉を制御する。
(7) In some embodiments, in the configuration according to (5) or (6) above, the compound production system (1) is
A first valve (61) that is located on the first hydrogen supply line (11) and can be opened and closed, and
A second valve (62) that is located on the second hydrogen supply line (12) and can be opened and closed, and
A third valve (63) that is located at the first discharge line (18) and can be opened and closed,
The fourth valve (64), which is located at the second discharge line (19) and can be opened and closed,
The first supply mode for supplying the by-product hydrogen gas from the first hydrogen supply line (11) to the compressor (13) and the hydrogen from the second hydrogen supply line (12) to the compressor (13). A control device (30) configured to control the opening and closing of the first valve (61) and the second valve (62) so as to select either one of the second supply modes for supplying gas.
With
The control device (30) has the third valve (63) and the third valve (63) so that the third valve (63) is in the open state and the fourth valve (64) is in the closed state in the first supply mode. The third valve (63) controls the opening and closing of the four valves (64) so that the third valve (63) is closed and the fourth valve (64) is open in the second supply mode. And control the opening and closing of the fourth valve (64).
 上記(7)に記載の構成によれば、圧縮機(13)に副生水素ガスが供給される場合には、その圧縮ガスに対して精製装置(16)による精製処理がなされるため、合成プラント(10)に高純度の水素ガスを供給することができる。圧縮機(13)に水素ガスが供給される場合には、その圧縮ガスに対して精製装置(16)による精製処理がバイパスされるため、精製処理の負担を軽減することができる。 According to the configuration described in (7) above, when the by-product hydrogen gas is supplied to the compressor (13), the compressed gas is refined by the refining apparatus (16), so that the compressed gas is synthesized. High-purity hydrogen gas can be supplied to the plant (10). When hydrogen gas is supplied to the compressor (13), the refining process by the refining apparatus (16) is bypassed for the compressed gas, so that the burden of the refining process can be reduced.
 (8)幾つかの実施形態では、上記(1)乃至(7)の何れか一項に記載の構成において、前記合成物生産システム(1)は、
 二酸化炭素含有ガスから二酸化炭素を回収するための二酸化炭素回収装置(50)と、
 前記副生水素ガスを利用して発電を行うように構成された発電設備(40)と、
 前記二酸化炭素回収装置(50)が前記二酸化炭素含有ガスから前記二酸化炭素を回収した後の前記副生水素ガスを前記発電設備(40)に供給するための副生水素供給ライン(91)と、
を備え、
 前記第1水素供給ライン(11)は、前記副生水素供給ライン(91)に接続される。
(8) In some embodiments, in the configuration according to any one of (1) to (7) above, the compound production system (1) is
A carbon dioxide capture device (50) for recovering carbon dioxide from a carbon dioxide-containing gas, and
A power generation facility (40) configured to generate power using the by-product hydrogen gas, and
A by-product hydrogen supply line (91) for supplying the by-product hydrogen gas after the carbon dioxide recovery device (50) has recovered the carbon dioxide from the carbon dioxide-containing gas to the power generation facility (40).
With
The first hydrogen supply line (11) is connected to the by-product hydrogen supply line (91).
 上記(8)に記載の構成によれば、発電設備(40)に供給される副生水素ガスの一部を第1水素供給ライン(11)に流入させることができる。そのため、合成物の生産に必要な分だけ副生水素ガスを第1水素供給ライン(11)に導き、合成物の生産に不要な副生水素ガスについては発電設備(40)に導くことができる。その結果、二酸化炭素回収装置(50)から排出される副生水素ガスを無駄なく利用することが可能となる。また、二酸化炭素回収装置(50)の稼働率を向上させることができる。 According to the configuration described in (8) above, a part of the by-product hydrogen gas supplied to the power generation facility (40) can flow into the first hydrogen supply line (11). Therefore, the by-product hydrogen gas required for the production of the compound can be guided to the first hydrogen supply line (11), and the by-product hydrogen gas not required for the production of the compound can be guided to the power generation facility (40). .. As a result, the by-product hydrogen gas discharged from the carbon dioxide capture device (50) can be used without waste. In addition, the operating rate of the carbon dioxide capture device (50) can be improved.
1 合成物生産システム
10 合成プラント
11 第1水素供給ライン
12 第2水素供給ライン
13,14 圧縮機
15 二酸化炭素供給ライン
16,17 精製装置
18 第1排出ライン
19 第2排出ライン
20 水素生成装置
21 合流部
22 分岐部
30 制御装置
40 発電設備
50 二酸化炭素回収装置
61 第1弁
62 第2弁
63 第3弁
64 第4弁
65 第5弁
71 流量センサ
72 圧力センサ
80 貯蔵装置
91 副生水素供給ライン
1 Synthetic product production system 10 Synthesis plant 11 1st hydrogen supply line 12 2nd hydrogen supply line 13, 14 Compressor 15 Carbon dioxide supply line 16, 17 Purification device 18 1st discharge line 19 2nd discharge line 20 Hydrogen generation device 21 Confluence 22 Branch 30 Control device 40 Power generation equipment 50 Carbon dioxide recovery device 61 1st valve 62 2nd valve 63 3rd valve 64 4th valve 65 5th valve 71 Flow sensor 72 Pressure sensor 80 Storage device 91 By-product hydrogen supply line

Claims (8)

  1.  副生水素ガスを供給するための第1水素供給ラインと、
     再生可能エネルギーを用いて生成された水素ガスを供給するための第2水素供給ラインと、
     前記第1水素供給ライン及び前記第2水素供給ラインに接続される入口部を有し、前記副生水素ガスと前記水素ガスとのいずれか一方を圧縮して圧縮ガスを生成するように構成された圧縮機と、
     前記圧縮ガスに含まれる水素を二酸化炭素と合成することによって合成物を生産するように構成された合成プラントと、
    を備える合成物生産システム。
    The first hydrogen supply line for supplying by-product hydrogen gas and
    A second hydrogen supply line for supplying hydrogen gas generated using renewable energy,
    It has an inlet portion connected to the first hydrogen supply line and the second hydrogen supply line, and is configured to compress either the by-product hydrogen gas or the hydrogen gas to generate a compressed gas. Compressor and
    A synthesis plant configured to produce a compound by synthesizing hydrogen contained in the compressed gas with carbon dioxide, and
    A compound production system equipped with.
  2.  前記第1水素供給ラインに位置し、前記圧縮機に供給する前記副生水素ガスの量を調整するための第1弁と、
     前記第2水素供給ラインに位置し、前記圧縮機に供給する前記水素ガスの量を調整するための第2弁と、
     前記第1弁及び前記第2弁を制御するように構成された制御装置と、
    を備え、
     前記制御装置は、前記第1水素供給ラインから前記圧縮機に前記副生水素ガスを供給する第1供給モードと、前記第2水素供給ラインから前記圧縮機に前記水素ガスを供給する第2供給モードとのいずれか一方を選択するように前記第1弁及び前記第2弁の開閉を制御する
    請求項1に記載の合成物生産システム。
    A first valve located in the first hydrogen supply line for adjusting the amount of the by-product hydrogen gas supplied to the compressor, and
    A second valve located in the second hydrogen supply line for adjusting the amount of the hydrogen gas supplied to the compressor, and
    A control device configured to control the first valve and the second valve, and
    With
    The control device has a first supply mode in which the by-product hydrogen gas is supplied from the first hydrogen supply line to the compressor, and a second supply mode in which the hydrogen gas is supplied from the second hydrogen supply line to the compressor. The composite production system according to claim 1, wherein the opening and closing of the first valve and the second valve are controlled so as to select either one of the modes.
  3.  前記第2水素供給ラインにおいて前記第2弁より上流側に位置し、前記水素ガスを貯蔵するための貯蔵装置を備え、
     前記制御装置は、前記貯蔵装置の前記水素ガスの貯蔵量に基づいて前記第1弁及び前記第2弁を制御するように構成された
    請求項2に記載の合成物生産システム。
    It is located upstream of the second valve in the second hydrogen supply line and is provided with a storage device for storing the hydrogen gas.
    The compound production system according to claim 2, wherein the control device is configured to control the first valve and the second valve based on the storage amount of the hydrogen gas in the storage device.
  4.  前記圧縮ガスの水素成分を精製して、精製したガスを前記合成プラントに供給するように構成された精製装置を備える
    請求項1乃至3の何れか一項に記載の合成物生産システム。
    The compound production system according to any one of claims 1 to 3, further comprising a purification apparatus configured to purify the hydrogen component of the compressed gas and supply the purified gas to the synthesis plant.
  5.  前記圧縮機から前記精製装置を介して前記合成プラントに前記圧縮ガスを導くための第1排出ラインと、
     前記圧縮機から前記精製装置をバイパスさせて前記合成プラントに前記圧縮ガスを導くための第2排出ラインと、
    を備える請求項4に記載の合成物生産システム。
    A first discharge line for guiding the compressed gas from the compressor to the synthesis plant via the refiner,
    A second discharge line for bypassing the refiner from the compressor and guiding the compressed gas to the synthesis plant.
    The compound production system according to claim 4.
  6.  前記第1水素供給ラインと前記第2水素供給ラインとが合流し、前記圧縮機に接続される合流部と、
     前記圧縮機に接続され、前記第1排出ラインと前記第2排出ラインとに分岐する分岐部と、
    を備える請求項5に記載の合成物生産システム。
    A confluence portion where the first hydrogen supply line and the second hydrogen supply line merge and are connected to the compressor.
    A branch portion connected to the compressor and branched into the first discharge line and the second discharge line,
    The synthetic product production system according to claim 5.
  7.  前記第1水素供給ラインに位置し、開閉可能な第1弁と、
     前記第2水素供給ラインに位置し、開閉可能な第2弁と、
     前記第1排出ラインに位置し、開閉可能な第3弁と、
     前記第2排出ラインに位置し、開閉可能な第4弁と、
     前記第1水素供給ラインから前記圧縮機に前記副生水素ガスを供給する第1供給モードと、前記第2水素供給ラインから前記圧縮機に前記水素ガスを供給する第2供給モードとのいずれか一方を選択するように前記第1弁及び前記第2弁の開閉を制御するように構成された制御装置と、
    を備え、
     前記制御装置は、前記第1供給モードにおいて、前記第3弁が開放状態で前記第4弁が閉鎖状態となるように前記第3弁及び前記第4弁の開閉を制御し、前記第2供給モードにおいて、前記第3弁が閉鎖状態で前記第4弁が開放状態となるように前記第3弁及び前記第4弁の開閉を制御する
    請求項5又は6に記載の合成物生産システム。
    A first valve that is located on the first hydrogen supply line and can be opened and closed,
    A second valve that is located on the second hydrogen supply line and can be opened and closed,
    A third valve that is located on the first discharge line and can be opened and closed,
    A fourth valve that is located on the second discharge line and can be opened and closed,
    One of a first supply mode in which the by-product hydrogen gas is supplied from the first hydrogen supply line to the compressor and a second supply mode in which the hydrogen gas is supplied from the second hydrogen supply line to the compressor. A control device configured to control the opening and closing of the first valve and the second valve so as to select one, and
    With
    In the first supply mode, the control device controls the opening and closing of the third valve and the fourth valve so that the third valve is in the open state and the fourth valve is in the closed state, and the second supply is provided. The composite production system according to claim 5 or 6, wherein in the mode, the opening and closing of the third valve and the fourth valve are controlled so that the third valve is in the closed state and the fourth valve is in the open state.
  8.  二酸化炭素含有ガスから前記二酸化炭素を回収するための二酸化炭素回収装置と、
     前記副生水素ガスを利用して発電を行うように構成された発電設備と、
     前記二酸化炭素回収装置が前記二酸化炭素含有ガスから前記二酸化炭素を回収した後の前記副生水素ガスを前記発電設備に供給するための副生水素供給ラインと、
    を備え、
     前記第1水素供給ラインは、前記副生水素供給ラインに接続される
    請求項1乃至7の何れか一項に記載の合成物生産システム。
    A carbon dioxide recovery device for recovering the carbon dioxide from the carbon dioxide-containing gas,
    A power generation facility configured to generate power using the by-product hydrogen gas, and
    A by-product hydrogen supply line for supplying the by-product hydrogen gas after the carbon dioxide recovery device recovers the carbon dioxide from the carbon dioxide-containing gas to the power generation facility, and
    With
    The compound production system according to any one of claims 1 to 7, wherein the first hydrogen supply line is connected to the by-product hydrogen supply line.
PCT/JP2021/006036 2020-02-20 2021-02-18 Synthetic material production system WO2021166983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026871 2020-02-20
JP2020026871A JP7377127B2 (en) 2020-02-20 2020-02-20 Composite production system

Publications (1)

Publication Number Publication Date
WO2021166983A1 true WO2021166983A1 (en) 2021-08-26

Family

ID=77392165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006036 WO2021166983A1 (en) 2020-02-20 2021-02-18 Synthetic material production system

Country Status (2)

Country Link
JP (1) JP7377127B2 (en)
WO (1) WO2021166983A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289227A1 (en) * 2008-05-20 2009-11-26 Siemens Aktiengesellschaft Production of Fuel Materials Utilizing Waste Carbon Dioxide and Hydrogen from Renewable Resources
JP2015109767A (en) * 2013-12-05 2015-06-11 株式会社Ihi Power generation system
JP2018008940A (en) * 2016-07-04 2018-01-18 公益財団法人地球環境産業技術研究機構 Method for producing methanol and methanol production device
WO2020241343A1 (en) * 2019-05-24 2020-12-03 三菱日立パワーシステムズ株式会社 System for producing synthetic product and method for producing synthetic product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289227A1 (en) * 2008-05-20 2009-11-26 Siemens Aktiengesellschaft Production of Fuel Materials Utilizing Waste Carbon Dioxide and Hydrogen from Renewable Resources
JP2015109767A (en) * 2013-12-05 2015-06-11 株式会社Ihi Power generation system
JP2018008940A (en) * 2016-07-04 2018-01-18 公益財団法人地球環境産業技術研究機構 Method for producing methanol and methanol production device
WO2020241343A1 (en) * 2019-05-24 2020-12-03 三菱日立パワーシステムズ株式会社 System for producing synthetic product and method for producing synthetic product

Also Published As

Publication number Publication date
JP2021130846A (en) 2021-09-09
JP7377127B2 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
CA2790545C (en) Method for load regulation of an ammonia plant
AU2019202471B2 (en) Plant complex for steel production and method for operating the plant complex
CA2930471C (en) Plant complex for steel production and method for operating the plant complex
BR112019013872B1 (en) PROCESS AND DEVICE FOR GENERATING ELECTRIC POWER
JP6820219B2 (en) Hydrogen production system
ES2685493T3 (en) Procedure to provide a gas with a very high methane content and installation designed for it
CN109952271B (en) Method for combined production of methanol and ammonia
AU2018264668A1 (en) A method for generating syngas for use in hydroformylation plants
AU704370B2 (en) Process and plant for the production of hydrogen and of energy
EP3898506A1 (en) Method of integrating a fuel cell with a steam methane reformer
KR20220075958A (en) System for synthesegas reforming and method for controlling the same
WO2021166983A1 (en) Synthetic material production system
WO2012043994A3 (en) System for producing a polymer electrolyte fuel cell using biogas as fuel, and method for controlling same
WO2020241343A1 (en) System for producing synthetic product and method for producing synthetic product
WO2015101717A1 (en) System and method for producing synthetic fuel
CN107278340A (en) Fuel cell system
US9950928B2 (en) Process for producing ammonia synthesis gas
WO2021166985A1 (en) System for producing synthetic article
JP2021524544A (en) Expander for SOECD applications
JP6924596B2 (en) Hydrogen production equipment
JP5057683B2 (en) Hydrogen production equipment
JPS59195502A (en) Manufacture of ammonia synthesis gas
US20220081785A1 (en) Ambient air separation and soec front-end for ammonia synthesis gas production
KR20170038458A (en) Apparatus for producing synthetic natural gas and method for producing synthetic natural gas using the same
WO2021054378A1 (en) Complex production system and carbon dioxide processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757277

Country of ref document: EP

Kind code of ref document: A1