JP7028600B2 - Methane production system and methane production method - Google Patents

Methane production system and methane production method Download PDF

Info

Publication number
JP7028600B2
JP7028600B2 JP2017196534A JP2017196534A JP7028600B2 JP 7028600 B2 JP7028600 B2 JP 7028600B2 JP 2017196534 A JP2017196534 A JP 2017196534A JP 2017196534 A JP2017196534 A JP 2017196534A JP 7028600 B2 JP7028600 B2 JP 7028600B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
steam
methane
production system
methane production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017196534A
Other languages
Japanese (ja)
Other versions
JP2019069917A (en
Inventor
重雄 幡宮
良平 稲垣
啓信 小林
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017196534A priority Critical patent/JP7028600B2/en
Priority to PCT/JP2018/032809 priority patent/WO2019073722A1/en
Publication of JP2019069917A publication Critical patent/JP2019069917A/en
Application granted granted Critical
Publication of JP7028600B2 publication Critical patent/JP7028600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、消費エネルギーの少ないメタン製造システム及びメタン製造方法に関する。 The present invention relates to a methane production system and a methane production method that consume less energy.

世界のエネルギー消費および温暖化の原因となる二酸化炭素CO2排出量は増加し続けており、気候変動とそれによる人類の生活環境や生態系への深刻な影響が懸念されている。世界のエネルギー起源CO2排出量の約40%は発電等のエネルギー変換部門が占めており、電力産業にとってCO2削減は大きな課題である。特に、石炭を燃料とする火力発電はCO2排出量が多く、発生したCO2を分離回収し地中に戻して貯蔵する技術開発も研究されている。発生したCO2を化学的に燃料に変換して再利用できれば、全体としてのCO2排出量を抑制できることから、CO2を水素H2と反応させメタンに転換する技術が注目されている。 Carbon dioxide CO 2 emissions, which cause global energy consumption and global warming, continue to increase, and there are concerns about climate change and its serious impact on human living environments and ecosystems. Energy conversion sectors such as power generation account for about 40% of the world's energy-derived CO 2 emissions, and CO 2 reduction is a major issue for the electric power industry. In particular, coal-fueled thermal power generation emits a large amount of CO 2 , and research is being conducted on technological development to separate and recover the generated CO 2 and return it to the ground for storage. If the generated CO 2 can be chemically converted into fuel and reused, the overall CO 2 emissions can be suppressed. Therefore, the technology of reacting CO 2 with hydrogen H 2 to convert it into methane is drawing attention.

CO2のメタン化反応として、(数1)に示す反応式が知られている。
(数1)CO2+4H2 → CH4+2H2O
As a CO 2 methanation reaction, the reaction formula shown in (Equation 1) is known.
(Number 1) CO 2 + 4H 2 → CH 4 + 2H 2 O

CO2は燃焼排ガスから分離回収し、水素は電力を利用してアルカリ水電解や固体高分子形水電解などの水の電気分解により製造することができる。近年、各国で再生可能エネルギーの開発と推進が行われ、欧州では風力発電や太陽光発電などの再生可能エネルギーを用いた発電が増加している。風力発電や太陽光発電は出力変動が大きく、時には需要以上の電力を発生し、利用できない余剰電力が生じることが問題となっている。電力を使用して水を電気分解して水素を製造し、二酸化炭素と反応させてメタン燃料に転換する技術はPower to Gasと呼ばれる。電力として余剰電力が使用できれば、CO2排出量抑制及び余剰電力有効利用の双方が期待できるので、再生可能エネルギーの余剰電力が多く発生する欧州で、とりわけドイツが国策として複数の実証プロジェクトを積極的に推進中である。生成したメタンは合成天然ガスとして、既存のインフラ設備(パイプライン、天然ガス貯蔵所)に供給される。 CO 2 can be separated and recovered from combustion exhaust gas, and hydrogen can be produced by electrolysis of water such as alkaline water electrolysis and solid polymer water electrolysis using electric power. In recent years, renewable energy has been developed and promoted in each country, and power generation using renewable energy such as wind power generation and solar power generation is increasing in Europe. The problem with wind power generation and solar power generation is that the output fluctuates greatly, sometimes more power is generated than required, and surplus power that cannot be used is generated. The technology that uses electric power to electrolyze water to produce hydrogen and react it with carbon dioxide to convert it into methane fuel is called Power to Gas. If surplus electricity can be used as electricity, both CO 2 emission reduction and effective use of surplus electricity can be expected. Is being promoted. The generated methane will be supplied to existing infrastructure equipment (pipelines, natural gas storage) as synthetic natural gas.

発電プラントと排ガスから二酸化炭素を分離回収しメタンに転換する設備を組み合わせたシステムとしては、例えば、特開2015-109767号公報(特許文献1)及び特表2016-531973号公報(特許文献2)に記載されている。 As a system combining a power plant and equipment for separating and recovering carbon dioxide from exhaust gas and converting it into methane, for example, Japanese Patent Application Laid-Open No. 2015-109767 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2016-531973 (Patent Document 2). It is described in.

特開2015-109767号公報JP-A-2015-109767 特表2016-531973号公報Special Table 2016-53 1973 Gazette

二酸化炭素と水素からメタンを合成する(数1)の化学反応は発熱反応であるが、反応が開始するためには原料ガスを約300℃のメタン生成反応開始温度まで予熱して供給する必要がある。また、固体吸着材を利用して排ガスから二酸化炭素を分離回収するには、固体吸着材を加熱したり冷却したりする熱操作が必要になる。これらの熱操作を個別に実施する場合は、外部熱源や冷熱源を利用すれば目的を達成することができるが、外部熱源の利用はシステム全体のエネルギー消費を増大させ効率を低下させる原因となる。 The chemical reaction of synthesizing methane from carbon dioxide and hydrogen (Equation 1) is an exothermic reaction, but in order for the reaction to start, it is necessary to preheat the raw material gas to the methane production reaction start temperature of about 300 ° C and supply it. be. Further, in order to separate and recover carbon dioxide from the exhaust gas using the solid adsorbent, a thermal operation for heating or cooling the solid adsorbent is required. When these thermal operations are performed individually, the purpose can be achieved by using an external heat source or a cold heat source, but the use of an external heat source causes an increase in energy consumption and a decrease in efficiency of the entire system. ..

特許文献1には、発電プラントと排ガスから二酸化炭素を分離回収しメタンに転換する設備を組み合わせたシステムの記載はあっても、メタン生成反応熱の回収、利用方法が明確には示されていない。また、特許文献2には、発電プラントと排ガスから二酸化炭素を分離回収しメタンに転換する設備を組み合わせたシステムの記載、およびメタン生成反応熱の回収はあっても、その利用方法が明確ではない。本発明の目的は、燃焼排ガスから二酸化炭素を分離回収しメタンを製造する設備を有する発電プラントにおいて、システム全体として、消費エネルギーの少ないメタン製造システム及びメタン製造方法を提供することである。 Patent Document 1 describes a system that combines a power plant and equipment that separates and recovers carbon dioxide from exhaust gas and converts it into methane, but does not clearly indicate how to recover and use the heat of methane generation reaction. .. Further, Patent Document 2 describes a system that combines a power plant and a facility that separates and recovers carbon dioxide from exhaust gas and converts it into methane, and recovers the heat of methane generation reaction, but its utilization method is not clear. .. An object of the present invention is to provide a methane production system and a methane production method with low energy consumption as a whole system in a power plant having a facility for separating and recovering carbon dioxide from combustion exhaust gas to produce methane.

上記目的を達成するために本発明に係るメタン製造システムは、蒸気を発生させるボイラと、前記蒸気により駆動される蒸気タービンと、前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造システムであって、前記蒸気タービンから排出された蒸気を、前記メタン化反応器のメタン転換時の反応熱によって昇温させて、昇温させた蒸気を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給する。 In order to achieve the above object, the methane production system according to the present invention includes a boiler for generating steam, a steam turbine driven by the steam, and a water supply heater for heating and supplying water to the boiler. The facility, a carbon dioxide recovery device that recovers and desorbs carbon dioxide contained in the exhaust gas of the power generation facility, and the desorbed carbon dioxide react with hydrogen supplied from the outside to convert it into methane. In a methane production system having a methaneization reactor , the steam discharged from the steam turbine is heated by the reaction heat at the time of methane conversion of the methaneization reactor, and the temperature is raised. After supplying hydrogen, the desorbed carbon dioxide and the carbon dioxide recovery device, it is supplied to the water supply heater.

また、蒸気を発生させるボイラと、前記蒸気により駆動される蒸気タービンと、前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造システムにおいて行われるメタン製造方法であって、前記蒸気タービンから排出された蒸気を、前記メタン化反応器のメタン転換時の反応熱によって昇温させて、昇温させた蒸気を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給するメタン製造方法。
Further, a power generation facility including a boiler that generates steam, a steam turbine driven by the steam, and a water supply heater that heats and supplies water to the boiler, and carbon dioxide contained in the exhaust gas of the power generation facility. It is carried out in a methane production system having a carbon dioxide recovery device that recovers and desorbs the methane, and a methaneization reactor that reacts the desorbed carbon dioxide with hydrogen supplied from the outside to convert it into methane. In the methane production method, the steam discharged from the steam turbine is heated by the reaction heat at the time of methane conversion of the methaneization reactor, and the heated steam is the hydrogen and the desorbed dioxide. A methane production method in which carbon and the methane are supplied to the carbon dioxide recovery device and then supplied to the water supply heater.

本発明によれば、システム全体として消費エネルギーの少ないメタン製造システム及びメタン製造方法を提供することが可能である。 According to the present invention, it is possible to provide a methane production system and a methane production method that consume less energy as a whole system.

実施例1に示す本発明のシステム構成図の一例である。It is an example of the system configuration diagram of the present invention shown in Example 1. 実施例2に示す本発明のシステム構成図の一例である。It is an example of the system configuration diagram of the present invention shown in Example 2. 二酸化炭素固体吸着材吸着特性の例を示した図である。It is a figure which showed the example of the carbon dioxide solid adsorbent adsorption property. 2工程の二酸化炭素回収装置の運用方法概念図である。It is a conceptual diagram of the operation method of the carbon dioxide capture device of two steps. 実施例3に示す本発明のシステム構成図の一例である。It is an example of the system configuration diagram of the present invention shown in Example 3. 実施例4に示す本発明のシステム構成図の一例である。It is an example of the system configuration diagram of the present invention shown in Example 4.

以下、本発明の実施の形態について実施例を挙げて説明するが、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to examples, but the present invention is not limited to the following embodiments.

図1は本発明に関わる石炭焚き火力発電システムの一実施例を示したものである。ボイラ101で発生した蒸気は蒸気タービン102に導かれ、発電機103を駆動した後、復水器104で水に戻り、給水ポンプ105で加圧され、給水加熱器106で加熱されたのち、ボイラ101に供給される。ボイラで発生した排ガスは脱硝装置110、熱回収器111、電気集塵器113、湿式脱硫装置114、排ガス再加熱器112を経て排気塔130から大気に放出される。図1には、排ガス中の二酸化炭素を回収する装置200と、回収した二酸化炭素をメタンに転換する装置300が記載されている。二酸化炭素を回収する装置200では、湿式脱硫装置114から出たボイラ排ガスの一部が分岐装置120で分岐され、CO2吸着材が充填されたCO2吸着脱離塔201aに導かれる。図3は二酸化炭素の固体吸着材CeO2の吸着特性の一例を示したもので、縦軸は50℃における吸着率を100%とした相対値で示してある。図3に示すように、この固体吸着材は50℃程度の低温域のCO2吸着率が高く、150℃以上では吸着していたCO2の大部分を放出し、高温での吸着率は低い値となっている。そのため、この固体吸着材を複数個利用して、時間をずらして、50℃から150℃程度の温度範囲で昇温冷却を繰り返すことにより、排ガスからCO2を分離回収できる。 FIG. 1 shows an embodiment of a coal-fired thermal power generation system according to the present invention. The steam generated in the boiler 101 is guided to the steam turbine 102, drives the generator 103, returns to water by the condenser 104, is pressurized by the feed water pump 105, is heated by the feed water heater 106, and then the boiler. Supplied to 101. The exhaust gas generated in the boiler is discharged to the atmosphere from the exhaust tower 130 via the denitration device 110, the heat recovery device 111, the electrostatic precipitator 113, the wet desulfurization device 114, and the exhaust gas reheater 112. FIG. 1 shows a device 200 for recovering carbon dioxide in exhaust gas and a device 300 for converting the recovered carbon dioxide into methane. In the device 200 for recovering carbon dioxide, a part of the boiler exhaust gas emitted from the wet desulfurization device 114 is branched by the branching device 120 and guided to the CO 2 adsorption desorption tower 201a filled with the CO 2 adsorbent. Figure 3 shows an example of the adsorption characteristics of the carbon dioxide solid adsorbent CeO 2 , and the vertical axis shows the relative value with the adsorption rate at 50 ° C as 100%. As shown in Fig. 3, this solid adsorbent has a high CO 2 adsorption rate in the low temperature range of about 50 ° C, releases most of the CO 2 adsorbed at 150 ° C or higher, and has a low adsorption rate at high temperature. It is a value. Therefore, CO 2 can be separated and recovered from the exhaust gas by using a plurality of these solid adsorbents and repeating heating and cooling in a temperature range of about 50 ° C to 150 ° C at different times.

図1に戻ると、CO2吸着脱離塔201aは低温排ガスによる冷却工程、CO2吸着脱離塔201bは抽気蒸気による加熱工程に対応している。湿式脱硫装置を有する石炭火力発電プラント100では、湿式脱硫装置114の出口排ガス温度は脱硫液の飽和水蒸気温度に近く、例えば40℃程度の低温になっている。この温度の低温排ガスをそのまま大気中に放出すると、気象条件によっては排ガス中の水蒸気が凝縮して白煙を発生し硫酸ミストが生じたり、浮力による排ガス上昇能力が弱いため、十分な拡散ができず、排ガスが地表付近に滞留する可能性があるため、通常は排ガス再加熱器112で排ガス温度を90℃程度以上に昇温したのち、排気塔から放出している。ただし、今回の二酸化炭素回収装置では、冷却を目的としているので、この低温排ガスの一部を排ガス供給管141で分岐して冷却に利用する。冷却に使用した後の低温排ガスは排ガス再加熱器112で昇温された高温の排ガスと、合流装置121で混合された後、排気塔130から排出される。 Returning to FIG. 1, the CO 2 adsorption / desorption tower 201a corresponds to the cooling process by the low temperature exhaust gas, and the CO 2 adsorption / desorption tower 201b corresponds to the heating process by the extracted steam. In the coal-fired power generation plant 100 having a wet desulfurization apparatus, the outlet exhaust gas temperature of the wet desulfurization apparatus 114 is close to the saturated water vapor temperature of the desulfurization liquid, for example, a low temperature of about 40 ° C. If low-temperature exhaust gas at this temperature is released into the atmosphere as it is, depending on the weather conditions, the water vapor in the exhaust gas may condense to generate white smoke and generate sulfuric acid mist, or the exhaust gas rising capacity due to buoyancy is weak, so sufficient diffusion can be achieved. However, since the exhaust gas may stay near the ground surface, the exhaust gas temperature is usually raised to about 90 ° C. or higher by the exhaust gas reheater 112 and then discharged from the exhaust tower. However, since the carbon dioxide recovery device this time is intended for cooling, a part of this low-temperature exhaust gas is branched at the exhaust gas supply pipe 141 and used for cooling. The low-temperature exhaust gas after being used for cooling is mixed with the high-temperature exhaust gas heated by the exhaust gas reheater 112 by the merging device 121, and then discharged from the exhaust tower 130.

一方、CO2吸着脱離塔201bの加熱熱源としては、蒸気タービンの抽気蒸気を熱媒体として熱交換器を介して間接加熱する方式とする。蒸気タービンから抽気された低圧蒸気(0.4MPa、150℃)は抽気蒸気供給管151を通りメタン化反応器301でメタン転換反応の反応熱を回収し昇温する。抽気蒸気流量は蒸気流量制御装置150を使用してメタン化反応温度検出器350でメタン化反応温度が適切な値(たとえば400~450℃)を維持できるように制御する。メタン転換反応熱を回収した抽気蒸気は、CO2予熱器303及びH2予熱器304でメタン転換の原料ガス予熱(280℃程度)およびCO2吸着脱離工程304で二酸化炭素回収装置の再生工程(150~200℃)に利用した後、給水予熱器106に戻され、凝縮してメタン転換反応熱の余剰熱をボイラ給水に与える。具体的には、(数1)において反応熱としては-165kJ/molの発熱を行う。そのとき、メタン化反応熱および冷却回収熱としては3600kWであり、水素及びCO2予熱量としては500kW使用され、固体吸着材再生時加熱量として1600kW使用される。よって1500kWがプロセス余剰熱として、復水系給水加熱器に回収されることとなる。これは燃料削減の観点で0.2%に相当する。重量当たりのメタン発熱量は石炭の約2倍であるため、石炭火力CO2の1%をメタン化し再利用すれば石炭使用量が2%削減される。 On the other hand, as the heating heat source of the CO 2 adsorption / desorption tower 201b, a method of indirect heating via a heat exchanger using the bleed steam of the steam turbine as a heat medium is adopted. The low-pressure steam (0.4 MPa, 150 ° C.) extracted from the steam turbine passes through the extracted steam supply pipe 151, and the reaction heat of the methane conversion reaction is recovered by the methaneization reactor 301 to raise the temperature. The bleed steam flow rate is controlled by the methanation reaction temperature detector 350 using the steam flow rate controller 150 so that the methanation reaction temperature can be maintained at an appropriate value (for example, 400 to 450 ° C.). The extracted steam from which the heat of the methane conversion reaction has been recovered is used in the CO2 preheater 303 and the H2 preheater 304 to preheat the raw material gas for methane conversion (about 280 ° C) and in the CO2 adsorption / desorption step 304 to regenerate the carbon dioxide recovery device (150 to). After being used at 200 ° C.), it is returned to the water supply preheater 106 and condensed to give excess heat of the methane conversion reaction heat to the boiler water supply. Specifically, in (Equation 1), heat of -165 kJ / mol is generated as the heat of reaction. At that time, the heat of reaction for methanation and the heat of recovery from cooling are 3600 kW, the amount of hydrogen and CO2 preheat is 500 kW, and the amount of heat during regeneration of the solid adsorbent is 1600 kW. Therefore, 1500 kW will be recovered to the feed water heater of the condensate system as process surplus heat. This is equivalent to 0.2% in terms of fuel reduction. Since the calorific value of methane per weight is about twice that of coal, if 1% of coal-fired CO2 is methaneized and reused, the amount of coal used will be reduced by 2%.

図4は排ガスからの二酸化炭素回収装置を簡略化して示した概念図である。図4では、蒸気加熱による再生工程と低温排ガスによる冷却・吸着工程を弁203から弁207を順次切り替えることで、最も単純な2工程の二酸化炭素回収システムが構築できる例を示している。図4のグラフはCO2吸着脱離塔201aの吸着剤温度変化を概念的に示した図である。抽気蒸気で吸着材202aが加熱され温度が上昇すると吸着している二酸化炭素が脱離し放出される(再生工程)。弁が切替えられ低温排ガスが供給されると吸着材202aの温度は低下をはじめ、吸着材の温度に応じた吸着率で二酸化炭素が吸着されるようになる(冷却・吸着工程)。CO2吸着脱離塔201aとCO2吸着脱離塔201bを組合わせることで二酸化炭素回収システムになる。ここでは示さないが、必要とする二酸化炭素の純度に応じて、二酸化炭素回収システムを、再生工程、冷却工程、吸着工程に分ける3塔式や吸着装置内の気体を全量排出するパージ工程を加えた4塔式に拡張してもよい。 FIG. 4 is a conceptual diagram showing a simplified carbon dioxide recovery device from exhaust gas. FIG. 4 shows an example in which the simplest two-step carbon capture system can be constructed by sequentially switching the valve 203 to the valve 207 between the regeneration process by steam heating and the cooling / adsorption process by low-temperature exhaust gas. The graph in FIG. 4 is a diagram conceptually showing the change in the adsorbent temperature of the CO 2 adsorption desorption tower 201a. When the adsorbent 202a is heated by the extracted steam and the temperature rises, the adsorbed carbon dioxide is desorbed and released (regeneration step). When the valve is switched and the low temperature exhaust gas is supplied, the temperature of the adsorbent 202a begins to drop, and carbon dioxide is adsorbed at an adsorption rate according to the temperature of the adsorbent (cooling / adsorption step). Combining the CO 2 adsorption and desorption tower 201a and the CO 2 adsorption and desorption tower 201b creates a carbon dioxide recovery system. Although not shown here, the carbon dioxide recovery system is divided into a regeneration process, a cooling process, and an adsorption process according to the required purity of carbon dioxide, and a purging process that discharges all the gas in the adsorption device is added. It may be expanded to a 4-tower system.

以上、図1で見てきたように、燃焼排ガスに含まれる二酸化炭素をメタンに転換する装置を有するボイラおよび蒸気タービンを備えた発電設備において、蒸気タービンの低圧抽気蒸気を利用してメタン化反応の反応熱を回収し、その熱を各種加熱工程の熱源に使用した後、給水加熱に利用することと、二酸化炭素の固体吸着材の冷却に低温排ガスを利用することで、システム全体の消費エネルギーを低減した発電プラントを構築できる。 As described above, as seen in FIG. 1, in a power generation facility equipped with a boiler and a steam turbine having a device for converting carbon dioxide contained in combustion exhaust gas into methane, a methaneization reaction is carried out using the low-pressure extracted steam of the steam turbine. After recovering the reaction heat of the system and using the heat as a heat source for various heating processes, the energy consumption of the entire system is consumed by using it for heating the water supply and by using low-temperature exhaust gas to cool the solid adsorbent of carbon dioxide. It is possible to build a power plant with reduced energy consumption.

図2は本発明に関わる発電システムの別な一実施例を示したものである。 FIG. 2 shows another embodiment of the power generation system according to the present invention.

石炭を燃料とする発電プラントでは、実施例1に示したように湿式脱硫装置を設置することが主流となっているが、天然ガスや低硫黄燃料を使用した発電プラントでは湿式脱硫装置は設置されないので、燃焼排ガス温度は100℃以上となっている場合が多い。このような状況では、排ガスによる二酸化炭素固体吸着材の冷却は期待できない。そこで、排ガスの一部を分岐装置120で分岐し冷却器115により排ガス温度を排ガス中の水蒸気露点温度(たとえば40℃)近くまで冷却してから二酸化炭素吸着塔201aの冷却に使用する。冷却に使用した後の低温排ガスは、分岐しなかった排ガスと合流装置121で混合した後、排気塔130から排出する。また、図2では、水蒸気凝縮器305が設置されていない例を示している。メタン化反応器301に供給する原料ガスは二酸化炭素と水素であるが、固体吸着材を利用して排ガスから二酸化炭素を分離回収する場合、吸着材にはいくらかの水蒸気も吸着し、供給する二酸化炭素に水蒸気が含まれることが考えられる。そのため図1の実施例1では、二酸化炭素と混合している水蒸気を凝縮させ除去する目的で水蒸気凝縮器305を設置した例を示した。一方、固体吸着材の種類によっては二酸化炭素のみを選択的に吸着し、水蒸気は吸着しない場合も考えられる。図2は二酸化炭素回収装置からの供給ガスに水蒸気がほとんど含まれない場合を想定し、この場合には水蒸気凝縮器305が不要になるため水蒸気凝縮器305を設置していない。当然ながら、実施例2においても、二酸化炭素回収装置からの供給ガスに水蒸気が含まれ、それを除去したい場合には水蒸気凝縮器305を設置してもかまわない。 In a power plant using coal as fuel, it is mainstream to install a wet desulfurization device as shown in Example 1, but in a power plant using natural gas or low sulfur fuel, a wet desulfurization device is not installed. Therefore, the combustion exhaust gas temperature is often 100 ° C or higher. In such a situation, the exhaust gas cannot be expected to cool the carbon dioxide solid adsorbent. Therefore, a part of the exhaust gas is branched by the branching device 120, and the exhaust gas temperature is cooled to near the water vapor dew point temperature (for example, 40 ° C.) in the exhaust gas by the cooler 115, and then used for cooling the carbon dioxide adsorption tower 201a. The low-temperature exhaust gas after being used for cooling is mixed with the unbranched exhaust gas by the merging device 121 and then discharged from the exhaust tower 130. Further, FIG. 2 shows an example in which the steam condenser 305 is not installed. The raw material gases supplied to the methanation reactor 301 are carbon dioxide and hydrogen, but when carbon dioxide is separated and recovered from the exhaust gas using a solid adsorbent, some water vapor is also adsorbed on the adsorbent and supplied. It is possible that carbon contains water vapor. Therefore, in Example 1 of FIG. 1, an example in which the steam condenser 305 is installed for the purpose of condensing and removing the steam mixed with carbon dioxide is shown. On the other hand, depending on the type of solid adsorbent, it is possible that only carbon dioxide is selectively adsorbed and water vapor is not adsorbed. FIG. 2 assumes a case where the gas supplied from the carbon dioxide recovery device contains almost no steam, and in this case, the steam condenser 305 is not installed because the steam condenser 305 is unnecessary. Of course, also in the second embodiment, if the gas supplied from the carbon dioxide capture device contains water vapor and it is desired to remove the water vapor, the water vapor condenser 305 may be installed.

図5は本発明に関わる発電システムのさらに別な一実施例を示す。 FIG. 5 shows yet another embodiment of the power generation system according to the present invention.

図1の実施例1との違いは、蒸気タービンからの抽気蒸気を抽気蒸気供給管151の途中で蒸気分岐装置310により分岐し、直接、二酸化炭素回収装置201bに向かうバイパス経路を設けたことである。システム起動時に、機器の熱容量が相対的に大きな場合は、安定状態に達するまでに長時間を要することが想定される。そのような場合に供給蒸気量を個別に調整できるように抽気蒸気供給管156を設けた。これによりシステムが安定して静定するまでの時間を短縮でき、全体としてのシステム効率を向上できる。 The difference from the first embodiment of FIG. 1 is that the bleed steam from the steam turbine is branched by the steam branching device 310 in the middle of the bleed steam supply pipe 151, and a bypass path directly to the carbon dioxide recovery device 201b is provided. be. If the heat capacity of the device is relatively large at the time of system startup, it is expected that it will take a long time to reach a stable state. In such a case, the bleed steam supply pipe 156 is provided so that the amount of steam supplied can be adjusted individually. As a result, the time required for the system to stabilize and settle can be shortened, and the overall system efficiency can be improved.

図6は本発明に関わる発電システムのさらに別な一実施例を示す。 FIG. 6 shows yet another embodiment of the power generation system according to the present invention.

図5の実施例3との違いは、熱交換をした後の戻り抽気蒸気管155の途中でメタン化反応器301の温度を調整するメタン化反応器冷却器302の熱を回収する蒸気分岐管157を設けたことである。メタン化反応器301では(数1)に示すように、二酸化炭素1モルからメタン1モルと水蒸気2モルが製造される。生成ガスは水蒸気を多量に含んだ約400℃の混合ガスであるため、このガスの熱を回収する。回収されたガスを蒸気タービン給水に与えることを目的に、蒸気分岐管157を設けた。これによりシステム全体としての熱回収効率が期待できる。 The difference from Example 3 of FIG. 5 is a steam branch pipe that recovers the heat of the methanation reactor cooler 302 that adjusts the temperature of the methanation reactor 301 in the middle of the return air extraction steam pipe 155 after heat exchange. 157 was set up. As shown in (Equation 1), the methaneation reactor 301 produces 1 mol of methane and 2 mol of steam from 1 mol of carbon dioxide. Since the generated gas is a mixed gas at about 400 ° C. containing a large amount of water vapor, the heat of this gas is recovered. A steam branch pipe 157 was provided for the purpose of supplying the recovered gas to the steam turbine water supply. As a result, the heat recovery efficiency of the entire system can be expected.

以上より、上記実施例記載の発明によって、本発明によれば、燃焼排ガスに含まれる二酸化炭素をメタンに転換する装置を有するボイラおよび蒸気タービンを備えた発電設備において、二酸化炭素と水素を原料としたメタン製造に必要な加熱熱量をメタン化反応の反応熱でまかなうことができ、余剰熱を蒸気タービン系の給水加熱で回収できるので、ボイラの燃料消費量を削減でき発電プラントの効率を改善することができる。 Based on the above, according to the invention described in the above Examples, according to the present invention, carbon dioxide and hydrogen are used as raw materials in a power generation facility equipped with a boiler and a steam turbine having a device for converting carbon dioxide contained in combustion exhaust gas into methane. The amount of heat required for methane production can be covered by the reaction heat of the methaneization reaction, and the excess heat can be recovered by heating the water supply of the steam turbine system, reducing the fuel consumption of the boiler and improving the efficiency of the power plant. be able to.

100…発電システム、101…ボイラ、102…蒸気タービン、103…発電機、104…復水器、105…給水ポンプ、106…給水加熱器、110…排ガス脱硝装置、111…排ガス熱回収器、112…排ガス再加熱器、113…電気集塵器、114…湿式脱硫装置、115…冷却器、120…分岐装置、121…合流装置、130…排気塔、141…排ガス供給管、142…排ガス排出管、150…蒸気流量制御装置、151…抽気蒸気供給管、152…抽気蒸気供給管、153…抽気蒸気供給管、154…抽気蒸気戻り管、155…抽気蒸気戻り管、156…蒸気分岐管、157…蒸気分岐管、200…CO2吸着脱離システム、201…CO2吸着脱離塔、202…CO2吸着材、203…排ガス入口側弁、204…排ガス出口側弁、205…CO2出口側弁、206…再生蒸気入口側弁、207…再生蒸気出口側弁、212…CO2排出管、300…メタン化システム、301…メタン化反応器、302…冷却器、303…CO2予熱器、304…H2予熱器、305…水蒸気凝縮器、306…H2供給装置、310…蒸気分岐装置、311…蒸気合流装置、320…蒸気分岐装置、321…蒸気合流装置、350…メタン化反応温度検出器 100 ... power generation system, 101 ... boiler, 102 ... steam turbine, 103 ... generator, 104 ... water recovery device, 105 ... water supply pump, 106 ... water supply heater, 110 ... exhaust gas denitration device, 111 ... exhaust gas heat recovery device, 112 … Exhaust steam reheater, 113… Electric dust collector, 114… Wet desulfurizer, 115… Cooler, 120… Branching device, 121… Merger, 130… Exhaust tower, 141… Exhaust steam supply pipe, 142… Exhaust steam exhaust pipe , 150 ... Steam flow control device, 151 ... Extract steam supply pipe, 152 ... Extract steam supply pipe, 153 ... Extract steam supply pipe, 154 ... Extract steam return pipe, 155 ... Extract steam return pipe, 156 ... Steam branch pipe, 157 … Steam branch pipe, 200… CO2 adsorption / desorption system, 201… CO2 adsorption / desorption tower, 202… CO2 adsorbent, 203… exhaust gas inlet side valve, 204… exhaust gas outlet side valve, 205… CO2 outlet side valve, 206… Regenerated steam inlet side valve, 207 ... Regenerated steam outlet side valve, 212 ... CO2 discharge pipe, 300 ... Methanization system, 301 ... Methanization reactor, 302 ... Cooler, 303 ... CO2 preheater, 304 ... H2 preheater, 305 ... Steam condenser, 306 ... H2 supply device, 310 ... Steam branching device, 311 ... Steam merging device, 320 ... Steam branching device, 321 ... Steam merging device, 350 ... Methanization reaction temperature detector

Claims (9)

蒸気を発生させるボイラと、
前記蒸気により駆動される蒸気タービンと、
前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、
前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、
脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造システムであって
前記蒸気タービンから排出された蒸気を、前記メタン化反応器のメタン転換時の反応熱によって昇温させて、昇温させた蒸気を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給するメタン製造システム。
A boiler that generates steam and
The steam turbine driven by the steam and
A power generation facility including a feed water heater that heats and supplies water to the boiler, and
A carbon dioxide recovery device that recovers and desorbs carbon dioxide contained in the exhaust gas of the power generation facility, and
A methane production system having a methanation reactor that reacts the desorbed carbon dioxide with hydrogen supplied from the outside to convert it into methane, and the steam discharged from the steam turbine is converted into the methaneization. The temperature is raised by the reaction heat at the time of methane conversion of the reactor, and the heated steam is supplied to the hydrogen, the desorbed carbon dioxide and the carbon dioxide recovery device, and then the methane supplied to the water supply heater. Manufacturing system.
請求項1に記載のメタン製造システムであって、
前記反応熱で前記水素及び前記脱離された二酸化炭素を前記メタン転換応開始に適正な温度まで加熱することを特徴とするメタン製造システム。
The methane production system according to claim 1.
A methane production system comprising heating the hydrogen and the desorbed carbon dioxide with the heat of reaction to a temperature suitable for initiating the reaction of the methane conversion.
請求項1または2に記載のメタン製造システムであって、
前記二酸化炭素回収装置を前記ボイラの燃焼排ガスを降温させたガスで冷却することを特徴とするメタン製造システム。
The methane production system according to claim 1 or 2.
A methane production system comprising cooling the carbon dioxide recovery device with a gas obtained by lowering the temperature of the combustion exhaust gas of the boiler .
請求項1ないし3のいずれか1項に記載のメタン製造システムであって、
前記二酸化炭素回収装置内の回収材と前記蒸気とが接触しないことを特徴とするメタン製造システム。
The methane production system according to any one of claims 1 to 3.
A methane production system characterized in that the recovered material in the carbon dioxide recovery device and the steam do not come into contact with each other.
請求項1ないし4のいずれか1項に記載のメタン製造システムであって、
前記発電設備が石炭焚き火力発電プラントであることを特徴とするメタン製造システム。
The methane production system according to any one of claims 1 to 4.
A methane production system characterized in that the power generation facility is a coal-fired thermal power plant.
請求項1ないし5のいずれか1項に記載のメタン製造システムであって、
前記脱離された二酸化炭素を冷却し、前記二酸化炭素と混合している水蒸気を凝縮させる冷却器を有することを特徴とするメタン製造システム。
The methane production system according to any one of claims 1 to 5.
A methane production system comprising a cooler that cools the desorbed carbon dioxide and condenses the water vapor mixed with the carbon dioxide.
請求項1ないし6のいずれか1項に記載のメタン製造システムであって、
前記蒸気タービンから排出された蒸気が前記二酸化炭素回収装置に供給されることを特徴とするメタン製造システム。
The methane production system according to any one of claims 1 to 6.
A methane production system characterized in that steam discharged from the steam turbine is supplied to the carbon dioxide recovery device.
請求項1ないし7のいずれか1項に記載のメタン製造システムであって、
メタン化反応器の温度を冷却するメタン化反応器冷却器を備え、前記メタン化反応器冷却器により回収された反応熱を前記給水加熱器へ供給するメタン製造システム。
The methane production system according to any one of claims 1 to 7.
A methane production system including a methaneization reactor cooler that cools the temperature of the methaneization reactor, and supplying the reaction heat recovered by the methaneization reactor cooler to the water supply heater.
蒸気を発生させるボイラと、
前記蒸気により駆動される蒸気タービンと、
前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、
前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、
脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造システムにおいて行われるメタン製造方法であって、
前記蒸気タービンから排出された蒸気を、前記メタン化反応器のメタン転換時の反応熱によって昇温させて、昇温させた蒸気を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給するメタン製造方法。
A boiler that generates steam and
The steam turbine driven by the steam and
A power generation facility including a feed water heater that heats and supplies water to the boiler, and
A carbon dioxide recovery device that recovers and desorbs carbon dioxide contained in the exhaust gas of the power generation facility, and
A methane production method performed in a methane production system including a methanation reactor that reacts the desorbed carbon dioxide with hydrogen supplied from the outside to convert it into methane.
The steam discharged from the steam turbine is heated by the reaction heat at the time of methane conversion of the methaneization reactor, and the heated steam is the hydrogen, the desorbed carbon dioxide, and the carbon dioxide recovery device. A method for producing methane, which is supplied to the water supply heater after being supplied to the water supply heater.
JP2017196534A 2017-10-10 2017-10-10 Methane production system and methane production method Active JP7028600B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017196534A JP7028600B2 (en) 2017-10-10 2017-10-10 Methane production system and methane production method
PCT/JP2018/032809 WO2019073722A1 (en) 2017-10-10 2018-09-05 Methane production system and methane production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196534A JP7028600B2 (en) 2017-10-10 2017-10-10 Methane production system and methane production method

Publications (2)

Publication Number Publication Date
JP2019069917A JP2019069917A (en) 2019-05-09
JP7028600B2 true JP7028600B2 (en) 2022-03-02

Family

ID=66101335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196534A Active JP7028600B2 (en) 2017-10-10 2017-10-10 Methane production system and methane production method

Country Status (2)

Country Link
JP (1) JP7028600B2 (en)
WO (1) WO2019073722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140029271A (en) * 2012-08-29 2014-03-10 가부시끼 가이샤 구보다 Combine and rice-straw stem raising apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432997B2 (en) * 2019-05-24 2024-02-19 三菱重工業株式会社 Composite production system and compound production method
JPWO2021220455A1 (en) * 2020-04-30 2021-11-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024448A (en) 2008-07-16 2010-02-04 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
WO2015004143A1 (en) 2013-07-09 2015-01-15 Mitsubishi Hitachi Power Systems Europe Gmbh Methanation method and power plant comprising co2 methanation of power plant flue gas
JP2015051954A (en) 2013-09-09 2015-03-19 千代田化工建設株式会社 Hydrogen and synthetic natural gas production apparatus and method
JP2015109767A (en) 2013-12-05 2015-06-11 株式会社Ihi Power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024448A (en) 2008-07-16 2010-02-04 Kellogg Brown & Root Llc Systems and methods for producing substitute natural gas
WO2015004143A1 (en) 2013-07-09 2015-01-15 Mitsubishi Hitachi Power Systems Europe Gmbh Methanation method and power plant comprising co2 methanation of power plant flue gas
JP2015051954A (en) 2013-09-09 2015-03-19 千代田化工建設株式会社 Hydrogen and synthetic natural gas production apparatus and method
JP2015109767A (en) 2013-12-05 2015-06-11 株式会社Ihi Power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140029271A (en) * 2012-08-29 2014-03-10 가부시끼 가이샤 구보다 Combine and rice-straw stem raising apparatus
KR102112660B1 (en) 2012-08-29 2020-05-19 가부시끼 가이샤 구보다 Combine and rice-straw stem raising apparatus

Also Published As

Publication number Publication date
JP2019069917A (en) 2019-05-09
WO2019073722A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
CA2698906C (en) Improved method for regeneration of absorbent
TWI491726B (en) The method of gas purification, coal gasification plant and shift catalyst
US9278312B2 (en) System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S
WO2008009049A1 (en) Co2 capture using solar thermal energy
JP2018168205A (en) Method and facility for producing methane
JP7028600B2 (en) Methane production system and methane production method
JP7353163B2 (en) Ammonia derivative manufacturing plant and ammonia derivative manufacturing method
JP2021035909A (en) Production method for methane and production facility therefor
JP7117971B2 (en) Methane production method and methane production equipment
WO2014127410A1 (en) A method of regenerating an absorbent for capture of carbon dioxide
JP2016530983A (en) Method for sustainable energy generation in a power plant with a solid oxide fuel cell
JP2019089675A (en) Carbon dioxide collection and conversion system, and coal gasification system
JP4744971B2 (en) Low quality waste heat recovery system
JP5292333B2 (en) CO2 recovery method and CO2 recovery device
JP2013241923A (en) Gasification power generation system of carbon-based fuel
Tian et al. Economic cost and performance analysis of a novel trigeneration scheme utilizing CO2 capture and solid oxide electrolysis units
JP5753433B2 (en) Gasification power generation system
KR101520831B1 (en) method and apparatus of CO2 separation and collection at off gas
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
KR20160035791A (en) apparatus for capturing carbon dioxide
WO2023013015A1 (en) Carbon dioxide recovery method and carbon dioxide recovery system using carbon dioxide cycle power generation facility
Abanades García et al. Method to capture CO2 in flue gases emitted intermittently
WO2023041541A1 (en) Method for capturing co2 from a flue gas from a district heating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150