JP2021035909A - Production method for methane and production facility therefor - Google Patents

Production method for methane and production facility therefor Download PDF

Info

Publication number
JP2021035909A
JP2021035909A JP2017196533A JP2017196533A JP2021035909A JP 2021035909 A JP2021035909 A JP 2021035909A JP 2017196533 A JP2017196533 A JP 2017196533A JP 2017196533 A JP2017196533 A JP 2017196533A JP 2021035909 A JP2021035909 A JP 2021035909A
Authority
JP
Japan
Prior art keywords
gas
methane
adsorbent
adsorption tower
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017196533A
Other languages
Japanese (ja)
Inventor
佐々木 崇
Takashi Sasaki
崇 佐々木
朋子 鈴木
Tomoko Suzuki
朋子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017196533A priority Critical patent/JP2021035909A/en
Priority to PCT/JP2018/036978 priority patent/WO2019073867A1/en
Publication of JP2021035909A publication Critical patent/JP2021035909A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

To reduce a feed energy to a system for producing methane by separating and collecting carbon dioxide CO2 in exhaust gas by a solid CO2 adsorbent to react the collected CO2 with H2.SOLUTION: There is provided a methane production system producing methane from carbon dioxide (CO2) collected from an exhaust gas, and hydrogen (H2). The system comprises: a CO2 adsorption process of separating and adsorbing CO2 by feeding the exhaust gas to an adsorption tower filled with a CO2 solid adsorbent; a purge process of discharging the exhaust gas remaining in a void of the adsorption tower by gas substitution; a desorption process of desorbing CO2 from the adsorbent by heating of the adsorption tower and feeding of H2; a cooling process of cooling the adsorbent after the desorption process; a gas pooling process of pooling the gas including CO2 discharged from the desorption process and H2; and a methanation process of generating methane by reacting CO2 with H2 in a catalyst. The gases CO2 and H2 pooled in the gas pooling process are fed to the purge and methanation processes.SELECTED DRAWING: Figure 2

Description

本発明は、メタン(CH4)を製造する方法、及びその設備に関する。 The present invention relates to a method for producing methane (CH4) and its equipment.

近年、地球温暖化防止の観点から、石炭ガス化、製鉄、または火力発電プラント等からのCO2排出量を削減するためにCO2を回収する技術が開発されている。一例として、特許文献1や2では、石炭ガス化炉からの生成ガスに含まれるCOをシフト反応器にて〔数1〕に示すCOシフト反応によりCO2に変換し、その後、CO2回収設備により、ガス中のCO2を回収する方法が開示されている。 In recent years, from the viewpoint of preventing global warming, technologies for recovering CO2 have been developed in order to reduce CO2 emissions from coal gasification, steelmaking, thermal power plants, and the like. As an example, in Patent Documents 1 and 2, CO contained in the gas produced from a coal gasification furnace is converted into CO2 by the CO shift reaction shown in [Equation 1] by a shift reactor, and then converted into CO2 by a CO2 capture facility. A method for recovering CO2 in gas is disclosed.

Figure 2021035909
Figure 2021035909

現在までにCO2回収技術として実用化されている方式としては、吸収液を用いた化学吸収、物理吸収法の他、選択的にCO2を透過する膜分離法や混合ガスの液化温度差を利用した深冷分離法等がある。CO2分離回収技術はそれぞれ技術的、コスト的な優劣がそれぞれあるが、大規模プラントからのCO2分離回収技術としてはCO2吸収液を用いた化学吸収法又は物理吸収法が適しているとされている。 As methods that have been put into practical use as CO2 capture technology up to now, in addition to chemical absorption and physical absorption methods using an absorbent solution, a membrane separation method that selectively permeates CO2 and a liquefaction temperature difference of a mixed gas are used. There is a deep cold separation method, etc. Although each CO2 separation and recovery technology has technical and cost advantages, it is said that the chemical absorption method or physical absorption method using a CO2 absorption liquid is suitable as the CO2 separation and recovery technology from a large-scale plant. ..

但し、CO2吸収液を用いたCO2分離回収技術ではCO2を吸収した吸収液の再生に多大なエネルギーが必要となり、再生に要するエネルギーがCO2回収コスト増加の主たる原因となっていた。これに対し、CO2捕捉材として固体のCO2吸着材を用いたCO2回収方法がある。固体吸着材は上述した吸収液に比べて熱容量が小さいため、再生エネルギーを削減可能な技術と考えられ、近年注目されている。 However, the CO2 separation and recovery technology using a CO2 absorbing liquid requires a large amount of energy to regenerate the absorbing liquid that has absorbed CO2, and the energy required for the regeneration has been the main cause of the increase in CO2 recovery cost. On the other hand, there is a CO2 recovery method using a solid CO2 adsorbent as a CO2 scavenger. Since the solid adsorbent has a smaller heat capacity than the above-mentioned absorbent liquid, it is considered to be a technology capable of reducing renewable energy, and has been attracting attention in recent years.

固体吸着材を用いたCO2分離回収方法の一例は特許文献3に記載されている。本特許は、排ガス中のCO2を吸着材に吸着させる吸着工程と、吸着材に吸着されたCO2を脱着する脱着工程とを有し、脱着工程は、吸着材にCO2を吸着する際のCO2分圧より低いCO2分圧を示すパージガス、例えば火力発電プラントのタービン途中もしくはタービンを出た後で抽気した水蒸気を使用するCO2分離回収方法である。 An example of a CO2 separation / recovery method using a solid adsorbent is described in Patent Document 3. This patent has an adsorption step of adsorbing CO2 in exhaust gas to an adsorbent and a desorption step of desorbing CO2 adsorbed on the adsorbent, and the desorption step is the CO2 content when adsorbing CO2 to the adsorbent. This is a CO2 separation and recovery method that uses purge gas that exhibits a partial pressure of CO2 that is lower than the pressure, for example, steam extracted during or after the turbine of a thermal power plant.

また、特許文献4はボイラー排ガスからのCO2分離回収を目的としたもので、CO2を吸着材により捕捉するCO2吸着工程と、高純度CO2によりCO2吸着塔をパージするパージ工程、水蒸気等の熱エネルギーにより吸着材からCO2を脱離するCO2脱離工程、CO2脱離後の吸着塔を大気、若しくは高純度CO2により冷却する冷却工程から構成される。 Further, Patent Document 4 aims at separating and recovering CO2 from boiler exhaust gas, and includes a CO2 adsorption step of capturing CO2 with an adsorbent, a purging step of purging a CO2 adsorption tower with high-purity CO2, and thermal energy such as water vapor. It consists of a CO2 desorption step that desorbs CO2 from the adsorbent and a cooling step that cools the adsorption tower after CO2 desorption with the atmosphere or high-purity CO2.

一方、各種プラントから回収したCO2は液化して地中や海底に貯留する技術が先行して開発されている。しかしながら、貯留先の有無は地域や国土に大きく依存されるため、全世界共通の汎用的な技術とはなり得ていない。そこで近年、回収したCO2をより有価性の高い二次エネルギーに変換する技術の開発が推進されている。代表的な二次エネルギーとしてはメタンが挙げられる。メタンはCO2とH2を反応物質として〔数2〕に示す反応により得ることができる。但し、CO2は安定な化合物であるため、〔数2〕を進行させるためには触媒が必要となる。 On the other hand, technologies for liquefying CO2 recovered from various plants and storing it underground or on the seabed have been developed in advance. However, since the existence of storage destinations depends largely on the region and land, it cannot be a general-purpose technology common to the whole world. Therefore, in recent years, the development of technology for converting the recovered CO2 into more valuable secondary energy has been promoted. A typical secondary energy is methane. Methane can be obtained by the reaction shown in [Equation 2] using CO2 and H2 as reactants. However, since CO2 is a stable compound, a catalyst is required to allow [Equation 2] to proceed.

Figure 2021035909
Figure 2021035909

また、〔数2〕ではCO2の反応物質としてH2が必要となるが、H2をどのように製造し、供給するかが課題の一つとして挙げられる。H2製造方法としては、化石燃料から製造する方法が一般的である。例えば、上述した石炭ガス化ガス中のCOと水蒸気を反応させて〔数1〕に示すCOシフト反応からH2を製造する方法がある。しかしながら、石炭ガス化ガス中のCOとH2から直接〔数3〕の反応によってメタンを製造することが可能であり、COシフト反応を経てH2を製造し、その後CO2と反応させることは非効率である。同じ化石燃料で天然ガスから例えば〔数4〕の水蒸気改質反応によりH2を製造する方法があるが、本反応により生成したH2から再度メタンを合成することは甚だ非効率である。化石燃料以外から水素を製造する方法として、近年、風力発電や太陽光発電に代表される再生可能エネルギーにより得られた電気を用いて水の電気分解によりH2を製造する方法が注目されている。特に、再生可能エネルギーの導入が急激に増加している欧州では国によって電力が供給過多となり、余剰電力が発生している。その余剰電力を使用して水の電気分解によって製造したH2と火力発電、製鉄業、他産業分野から排出、回収されたCO2を用いて〔数2〕反応によってメタンを製造し、パイプラインに供給するという施策が進められている。代表的な例として、ドイツの国策として推進されているPower to Gasプロジェクトが挙げられる。 Further, in [Equation 2], H2 is required as a CO2 reactant, and one of the issues is how to produce and supply H2. As an H2 production method, a method of producing from fossil fuel is common. For example, there is a method of producing H2 from the CO shift reaction shown in [Equation 1] by reacting CO in the above-mentioned coal gasification gas with water vapor. However, it is possible to produce methane directly from CO and H2 in coal gasification gas by the reaction of [Equation 3], and it is inefficient to produce H2 through a CO shift reaction and then react with CO2. is there. There is a method of producing H2 from natural gas with the same fossil fuel by, for example, the steam reforming reaction of [Equation 4], but it is extremely inefficient to resynthesize methane from H2 produced by this reaction. As a method for producing hydrogen from sources other than fossil fuels, a method for producing H2 by electrolysis of water using electricity obtained from renewable energy represented by wind power generation and solar power generation has been attracting attention in recent years. In particular, in Europe, where the introduction of renewable energy is rapidly increasing, there is an oversupply of electricity depending on the country, and surplus electricity is generated. Using the surplus electricity, H2 produced by electrolysis of water and CO2 emitted and recovered from thermal power generation, steel industry, and other industrial fields are used to produce methane by [Equation 2] reaction and supplied to the pipeline. Measures are being taken to do so. A typical example is the Power to Gas project, which is being promoted as a national policy of Germany.

特許文献5にCO2とH2を原料としたメタン製造方法の一例が記載されている。触媒を充填した多塔式のメタン反応器に産業排ガスから分離したCO2と再生可能エネルギーで得た電気を用いて水の電気分解により生成したH2を混合してメタンを製造するというシステムである。 Patent Document 5 describes an example of a methane production method using CO2 and H2 as raw materials. It is a system that produces methane by mixing CO2 separated from industrial exhaust gas and H2 generated by electrolysis of water using electricity obtained from renewable energy in a multi-column methane reactor filled with a catalyst.

Figure 2021035909
Figure 2021035909

Figure 2021035909
Figure 2021035909

特許第2870929号公報Japanese Patent No. 2870929 特許第3149561号公報Japanese Patent No. 3149561

これまで産業排ガスからのCO2回収方法としては特許文献1や2に記載されている通り、目的がCO2回収までであったため、最終生成物は高純度のCO2であれば良かった。そのため、特許文献1や2に記されているようにCO2固体吸着材に吸着したCO2の脱離方法としては脱離ガスの分離が容易で高純度のCO2を得る事ができる水蒸気を用いる方法が主流であった。しかし、例えば火力発電所からのCO2分離回収のようにCO2回収設備を設置するプラントに水蒸気がある場合は脱離ガスとして水蒸気を使用することができるが、水蒸気を使用できないプラントもある。また、上記火力発電所で水蒸気を使用する場合は発電効率の低下を招く。 As described in Patent Documents 1 and 2 as a method for recovering CO2 from industrial exhaust gas, the purpose has been to recover CO2, so that the final product should be high-purity CO2. Therefore, as described in Patent Documents 1 and 2, as a method for desorbing CO2 adsorbed on the CO2 solid adsorbent, a method using water vapor, which can easily separate the desorbed gas and obtain high-purity CO2, is used. It was mainstream. However, if there is water vapor in the plant where the CO2 recovery equipment is installed, for example, CO2 separation and recovery from a thermal power plant, water vapor can be used as the desorption gas, but some plants cannot use water vapor. In addition, when steam is used in the above thermal power plant, the power generation efficiency is lowered.

これに対し、固体吸着材により分離回収した後のCO2をそのままメタン製造に使用することを前提とした発明は少ない。CO2分離回収プロセスにメタン製造プロセスを組み合わせることで使用可能なユーティリティやCO2分離回収プロセスでの生成CO2仕様の制約を広げることができる。 On the other hand, there are few inventions on the premise that CO2 after being separated and recovered by a solid adsorbent is used as it is for methane production. By combining the CO2 separation and recovery process with the methane production process, the available utilities and restrictions on the CO2 specifications produced by the CO2 separation and recovery process can be expanded.

以上の課題を解決する方法として、本発明は、排ガスから回収した二酸化炭素(CO2)と水素(H2)からメタンを生成するメタン製造方法に関し、CO2固体吸着材を充填した吸着搭に排ガスを供給することでCO2を分離するCO2吸着工程とガス置換により吸着搭の空隙に残留する排ガスを排出するパージ工程と吸着搭の加熱及びH2供給により吸着材からCO2を脱離させる脱離工程と脱離工程後の吸着材を冷却する冷却工程と脱離工程から排出されたCO2とH2を含むガスを貯留するガス貯留工程とCO2とH2を触媒上で反応させることによりメタンを生成するメタネーション工程を備え、前記パージ工程及びメタネーション工程には前記ガス貯留工程で貯留したCO2+H2を供給することを特徴とするメタン製造方法である。 As a method for solving the above problems, the present invention relates to a methane production method for producing methane from carbon dioxide (CO2) and hydrogen (H2) recovered from exhaust gas, and supplies exhaust gas to an adsorption tower filled with a solid CO2 adsorbent. A CO2 adsorption process that separates CO2 by gas replacement, a purge process that discharges the exhaust gas remaining in the voids of the adsorption tower by gas replacement, and a desorption step and desorption that desorbs CO2 from the adsorbent by heating the adsorption tower and supplying H2. A cooling step to cool the adsorbent after the step, a gas storage step to store the gas containing CO2 and H2 discharged from the desorption step, and a metanation step to generate methane by reacting CO2 and H2 on a catalyst. The methane production method is characterized in that CO2 + H2 stored in the gas storage step is supplied to the purging step and the methanation step.

また、吸着工程から排出されたCO2を含まないガスを貯留する排ガス貯留工程を備え、前記冷却工程で用いる冷却ガスは排ガス貯留工程から供給し、且つ循環供給することを特徴とするメタン製造方法である。 Further, the methane production method is provided with an exhaust gas storage process for storing CO2-free gas discharged from the adsorption process, and the cooling gas used in the cooling process is supplied from the exhaust gas storage process and circulated and supplied. is there.

更に、ガス貯留工程にCO2濃度検知工程、ガス貯留工程後流にH2供給工程を備え、ガス貯留工程にて貯留されたガス中のCO2濃度に応じてH2供給工程から供給するH2量を調節することを特徴とするメタン製造方法である。 Furthermore, the gas storage process is equipped with a CO2 concentration detection process and the wake of the gas storage process is equipped with an H2 supply process, and the amount of H2 supplied from the H2 supply process is adjusted according to the CO2 concentration in the gas stored in the gas storage process. This is a methane production method characterized by the above.

本発明によれば、CO2吸着材からのCO2脱離ガスとしてメタネーションプロセスで供給するH2を使用することができ、CO2脱離に要するエネルギーを低減することができる。 According to the present invention, H2 supplied by the metanation process can be used as the CO2 desorption gas from the CO2 adsorbent, and the energy required for CO2 desorption can be reduced.

実施例1で示した本発明のプロセスフローである。This is the process flow of the present invention shown in Example 1. 実施例2で示した本発明のシステム構成図の一例である。This is an example of the system configuration diagram of the present invention shown in Example 2. 実施例3で示した本発明のシステム構成図の一例である。This is an example of the system configuration diagram of the present invention shown in Example 3.

以下、本発明の実施の形態について実施例を挙げて説明するが、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to examples, but the present invention is not limited to the following embodiments.

本実施例では、本発明のメタン製造方法の基本プロセスについて説明する。図1に本発明に係わるメタン製造方法の概念図を示す。ここではCO2固体吸着材を充填した吸着塔1塔を対象として吸着、パージ、脱離、冷却の4工程とガス貯留、メタネーション工程との位置づけについて説明する。 In this embodiment, the basic process of the methane production method of the present invention will be described. FIG. 1 shows a conceptual diagram of a methane production method according to the present invention. Here, the positioning of the four steps of adsorption, purging, desorption, and cooling and the gas storage and metanation steps will be described for one adsorption tower filled with a solid CO2 adsorbent.

まず、CO2を含んだ排ガス1が吸着塔に供給される。排ガス1中のCO2が吸着材に捕捉されると吸着塔出口からはCO2を含まない排ガス2が排出される。吸着材へ供給する排ガス1の温度は充填する吸着材種に依存する。吸着材が物理吸着若しくは化学吸着どちらのメカニズムによってCO2を捕捉するかによっても適正温度は異なると考えられる。但し、吸収ではなく吸着によりCO2を捕捉する場合、再生に要するエネルギーを考慮するとなるべく低温で吸着可能な吸着材を選定することが望ましい。目安としては100℃以下、望ましくは50℃以下である。吸着工程にて吸着材へのCO2吸着が飽和に達した時点で排ガス1の供給を停止する。その際、吸着塔内の空隙にはCO2を含んだ排ガス1が残留している。 First, the exhaust gas 1 containing CO2 is supplied to the adsorption tower. When CO2 in the exhaust gas 1 is captured by the adsorbent, the exhaust gas 2 containing no CO2 is discharged from the outlet of the adsorption tower. The temperature of the exhaust gas 1 supplied to the adsorbent depends on the type of adsorbent to be filled. It is considered that the appropriate temperature differs depending on whether the adsorbent captures CO2 by the mechanism of physical adsorption or chemical adsorption. However, when CO2 is captured by adsorption rather than absorption, it is desirable to select an adsorbent that can be adsorbed at as low a temperature as possible in consideration of the energy required for regeneration. As a guide, it is 100 ° C or lower, preferably 50 ° C or lower. When the CO2 adsorption to the adsorbent reaches saturation in the adsorption process, the supply of exhaust gas 1 is stopped. At that time, the exhaust gas 1 containing CO2 remains in the voids in the adsorption tower.

次に、空隙に残留した排ガス1を排出するためにパージ工程でCO2+H2を吸着塔へ供給する。ここで供給するCO2+H2は次工程である脱離工程で排出されたガスを貯留したCO2貯留工程から供給される。パージ工程では空隙に残留した排ガス1を吸着塔から排出することが目的であり、吸着塔から排出された排ガス1は系外へ排気される。その為、パージ工程で供給するCO2+H2が過多となると排ガス中のCO2+H2量が増加し、プラントのCO2回収率が低下する。したがって、パージ工程で供給する(CO2+H2)量≒空隙量であることが望ましい。また、供給したCO2と空隙中の排ガス1が吸着塔内で混合されることを抑制するために、吸着塔内の吸着材上部にはメッシュ板等の整流板を設置し、流れを均一化すると供に、流れが層流となるように流速を制御することが望ましい。パージ工程終了後は吸着材にCO2が飽和吸着しており、また、空隙にはCO2+H2が滞留している状態である。 Next, CO2 + H2 is supplied to the adsorption tower in the purging process in order to discharge the exhaust gas 1 remaining in the voids. The CO2 + H2 supplied here is supplied from the CO2 storage process that stores the gas discharged in the desorption process, which is the next process. The purpose of the purging step is to discharge the exhaust gas 1 remaining in the voids from the adsorption tower, and the exhaust gas 1 discharged from the adsorption tower is exhausted to the outside of the system. Therefore, if the amount of CO2 + H2 supplied in the purging process becomes excessive, the amount of CO2 + H2 in the exhaust gas increases, and the CO2 recovery rate of the plant decreases. Therefore, it is desirable that the amount of (CO2 + H2) supplied in the purging step ≈ the amount of voids. In addition, in order to prevent the supplied CO2 and the exhaust gas 1 in the voids from being mixed in the adsorption tower, a rectifying plate such as a mesh plate is installed above the adsorbent in the adsorption tower to make the flow uniform. In addition, it is desirable to control the flow velocity so that the flow becomes a laminar flow. After the completion of the purging process, CO2 is saturated and adsorbed on the adsorbent, and CO2 + H2 is retained in the voids.

次に、脱離工程で吸着材中のCO2を脱離させ、吸着材を再生する。吸着材からのCO2脱離方法としては熱エネルギーを用いた温度スイング法(TSA:Thermal Swing Adsorption)、とガスの圧縮、膨張を推進力とした圧力スイング法(PSA:Pressure Swing Adsorption)があるが、本発明ではTSAを対象とする。また、本発明では熱エネルギーにより吸着材から脱離したCO2と空隙に滞留しているCO2を吸着塔から排出する媒体ガスとしてH2を用いることとする。吸着、パージ工程は100℃以下の低温で操作される。従って、脱離の際にはまず吸着材を加熱し、加熱の過程で吸着材から脱離したCO2と空隙に滞留するH2を吸着搭外へ排出するために所定の温度まで昇温後、H2を吸着搭入口から供給する。吸着搭の加熱方式としては外部/内部加熱いずれでもよい。加熱温度は吸着塔へ充填する吸着材の特性に依存するが100℃から250℃、CO2脱離特性、前述した吸収液を用いた化学吸収法の再生温度、次工程での吸着材(塔塔)冷却に要する時間等を考慮すると100℃から200℃が望ましい。吸着塔から排出された再生ガスは冷却された後、ガス貯留工程を送られる。 Next, in the desorption step, CO2 in the adsorbent is desorbed to regenerate the adsorbent. As a method for desorbing CO2 from an adsorbent, there are a temperature swing method (TSA: Thermal Swing Adsorption) using thermal energy and a pressure swing method (PSA: Pressure Swing Adsorption) using gas compression and expansion as a driving force. , The present invention targets TSA. Further, in the present invention, H2 is used as a medium gas for discharging CO2 desorbed from the adsorbent by heat energy and CO2 staying in the voids from the adsorption tower. The adsorption and purge steps are operated at a low temperature of 100 ° C or less. Therefore, at the time of desorption, the adsorbent is first heated, and after raising the temperature to a predetermined temperature in order to discharge the CO2 desorbed from the adsorbent and the H2 staying in the voids to the outside of the adsorbent during the heating process, the H2 Is supplied from the suction gate. The heating method of the adsorption tower may be either external or internal heating. The heating temperature depends on the characteristics of the adsorbent to be filled in the adsorption tower, but it is 100 ° C to 250 ° C, CO2 desorption characteristics, the regeneration temperature of the chemical absorption method using the above-mentioned absorbent solution, and the adsorbent in the next step (tower tower). ) Considering the time required for cooling, 100 ° C to 200 ° C is desirable. The regenerated gas discharged from the adsorption tower is cooled and then sent to a gas storage process.

次に、脱離工程で加熱された吸着材(塔)を冷却する。冷却ガスとして好ましいのは吸着工程でCO2吸着後に排出されたCO2を含まない排ガス2である。仮に、CO2分離回収設備を設置するプラント内で窒素や酸素等の余剰ユーティリティが使用できる場合はこれらのガスを使用しても良い。ここでは上記余剰ユーティリティが無いことを想定した。冷却ガスは乾燥ガスである必要があり、且つ、CO2を含まないガスが好ましい。例えばCO2を含む排ガス1を用いて冷却する場合、冷却の仮定で排気ガスとしてCO2が排出されるだけでなく、吸着材にCO2が吸着し、後の吸着工程においてCO2吸着量が減少するためである。冷却工程では排ガス2を用いて吸着材(塔)が吸着工程での吸着温度である100℃以下まで冷却する。吸着工程での使用温度まで冷却された後、再度吸着工程から上述同様の操作を繰り返す。 Next, the adsorbent (tower) heated in the desorption step is cooled. The preferred cooling gas is exhaust gas 2 that does not contain CO2 and is emitted after CO2 is adsorbed in the adsorption process. If surplus utilities such as nitrogen and oxygen can be used in the plant where the CO2 separation and recovery equipment is installed, these gases may be used. Here, it is assumed that there is no surplus utility mentioned above. The cooling gas needs to be a dry gas, and a gas containing no CO2 is preferable. For example, when cooling using exhaust gas 1 containing CO2, not only CO2 is emitted as exhaust gas under the assumption of cooling, but also CO2 is adsorbed on the adsorbent and the amount of CO2 adsorbed decreases in the subsequent adsorption process. is there. In the cooling process, the exhaust gas 2 is used to cool the adsorbent (tower) to 100 ° C or lower, which is the adsorption temperature in the adsorption process. After cooling to the operating temperature in the adsorption step, the same operation as described above is repeated from the adsorption step again.

また、本発明の特徴はCO2分離回収システムとメタネーションシステムを融合させることである。上述したガス貯留工程には脱離ガスとして供給したH2と排ガスから分離回収されたCO2を含むガスが貯留される。〔数2〕に示した通り、メタネーション反応の反応物質はCO2とH2であるため、ガス貯留工程に貯留されたガスはそのままメタネーション工程に供給され、メタネーション工程で最終生成物であるメタンが製造される。 Further, a feature of the present invention is to integrate a CO2 separation and recovery system and a metanation system. In the gas storage process described above, a gas containing H2 supplied as desorbed gas and CO2 separated and recovered from the exhaust gas is stored. As shown in [Equation 2], since the reactants of the metanation reaction are CO2 and H2, the gas stored in the gas storage step is supplied to the metanation step as it is, and methane, which is the final product in the metanation step. Is manufactured.

メタネーション工程1では〔数2〕の反応を目的反応としてメタンを生成させる。〔数2〕ではメタン1モルに対して反応量論上は4モルのH2が反応するため、メタン:H2=1:4で供給すれば良いが、H2を量論比以上供給することで平衡上、反応が促進されると考えられるため、供給量はH2/CO2≧4とすることが望ましい。 In the methanation step 1, methane is produced with the reaction of [Equation 2] as the target reaction. In [Equation 2], 4 mol of H2 reacts with 1 mol of methane in terms of stoichiometry, so it is sufficient to supply methane: H2 = 1: 4, but equilibrium is achieved by supplying H2 more than the stoichiometric ratio. In addition, since it is considered that the reaction is promoted, it is desirable that the supply amount is H2 / CO2 ≥ 4.

本実施例では本発明に係わるシステムの一例を示す。システム構成図の一例を図2に示す。図2のシステムは吸着材2が充填された吸着塔1、外部加熱用の電気ヒーター3、ガス貯留タンク4、排ガス貯留タンク5、メタネーション触媒7が充填されたメタン反応器6、水素分離設備8、ポンプ9、冷却器10、加熱器11、気液分離器12から構成される。尚、本実施例では固定層吸着塔4塔構成とした。ここでは第一吸着塔1aを対象として排ガス中のCO2吸着操作例及びメタン製造操作を示す。 In this embodiment, an example of the system according to the present invention is shown. An example of the system configuration diagram is shown in FIG. The system of FIG. 2 includes an adsorption tower 1 filled with an adsorbent 2, an electric heater 3 for external heating, a gas storage tank 4, an exhaust gas storage tank 5, a methane reactor 6 filled with a methane catalyst 7, and a hydrogen separation facility. It is composed of 8, a pump 9, a cooler 10, a heater 11, and a gas-liquid separator 12. In this embodiment, four fixed layer adsorption towers were used. Here, an example of CO2 adsorption operation in exhaust gas and a methane production operation are shown for the first adsorption tower 1a.

まず、吸着塔1aに排ガスを供給する。その際、排ガス供給管21に設置された弁V1a、及び排ガス排出管24に設置された弁V3aを開く。吸着操作中、吸着塔から排出された排ガスの一部は排ガス貯留タンク5に供給されて貯留される。吸着材2aへのCO2吸着が飽和に達した後、弁V1aを閉め、吸着塔1aへの排ガスを停止すると同時に、弁V1bを開いて吸着塔1bの吸着操作に移る。尚、吸着塔へ充填する吸着材としては活性炭、ゼオライト、酸化セリウム系等固体でCO2を吸着する物質であれば何でもよいが、排ガス中に水分が含まれる場合、吸着材への水分吸着によりCO2吸着阻害が懸念されるため、水分の影響が少ない、例えば酸化セリウム系の吸着材が好ましい。また、充填方法も粒状、ハニカム状、板状等固定層に充填できる形態であれば何でも良い。但し、処理ガス量が大容量となる場合は、圧力損失を考慮し、吸着物質を表面にコーティングしたハニカム状や板状の形態のものが好ましい。 First, the exhaust gas is supplied to the adsorption tower 1a. At that time, the valve V1a installed in the exhaust gas supply pipe 21 and the valve V3a installed in the exhaust gas discharge pipe 24 are opened. During the adsorption operation, a part of the exhaust gas discharged from the adsorption tower is supplied to the exhaust gas storage tank 5 and stored. After the CO2 adsorption to the adsorbent 2a reaches saturation, the valve V1a is closed to stop the exhaust gas to the adsorption tower 1a, and at the same time, the valve V1b is opened to move to the adsorption operation of the adsorption tower 1b. The adsorbent to be filled in the adsorption tower may be any solid substance that adsorbs CO2, such as activated carbon, zeolite, and cerium oxide. However, if the exhaust gas contains water, CO2 is adsorbed on the adsorbent. Since there is a concern about adsorption inhibition, for example, a cerium oxide-based adsorbent that is less affected by water is preferable. Further, the filling method may be any form as long as it can be filled in the fixed layer such as granular, honeycomb-shaped, and plate-shaped. However, when the amount of processing gas is large, a honeycomb-shaped or plate-shaped one in which an adsorbent is coated on the surface is preferable in consideration of pressure loss.

吸着塔1aでは次にパージガス供給管22に設置されている弁4aを開き、ガス貯留タンク4に貯留されているCO2+H2をポンプ9aを介して供給し、吸着塔内をCO2+H2でパージする。パージ操作に際しては予め吸着塔内の空隙量を計量しておき、空隙に残留した排ガスを吸着塔外へ排出する最小量のCO2を供給するように制御する。パージ操作終了後、弁4a及び弁3aを閉める。 Next, in the adsorption tower 1a, the valve 4a installed in the purge gas supply pipe 22 is opened, CO2 + H2 stored in the gas storage tank 4 is supplied via the pump 9a, and the inside of the adsorption tower is purged with CO2 + H2. To do. In the purging operation, the amount of voids in the adsorption tower is measured in advance, and the exhaust gas remaining in the voids is controlled to be supplied to the minimum amount of CO2 discharged to the outside of the adsorption tower. After the purging operation is completed, the valves 4a and 3a are closed.

次に、脱離操作を行う。本実施例では各吸着塔に外部加熱式の電気ヒーター3を設置した。吸着塔及び充填されている吸着材を加熱できるものであれば外部/内部加熱式いずれでもよく、また、加熱方法も電気ヒーターの他、例えば水蒸気のように熱を持った媒体であればいずれの方法でもよい。脱離操作ではまず脱離ガス排出管25に設置されている弁V5aを開き、その後電気ヒーターにより脱離温度まで吸着塔を加熱する。加熱の過程でガス膨張分、及び吸着材から脱離したCO2が空隙に滞留しているH2と共に脱離ガス排出管から排出されてガス貯留タンク4に送られる。吸着塔1aの温度が所定温度まで昇温した後、H2供給管23に設置された弁V6aを開き、吸着塔1aにH2が導入され、空隙に滞留しているCO2+H2を吸着塔外へ排出すると同時にCO2分圧低下に伴って吸着材2aから脱離したCO2を塔外へ排出する。脱離ガスは冷却器10aで冷却された後、ガス貯留タンク4に貯留される。脱離操作終了後は弁5a、6aを閉め、電気ヒーター3aを停止する。 Next, a detachment operation is performed. In this embodiment, an external heating type electric heater 3 is installed in each adsorption tower. Any external / internal heating type may be used as long as the adsorption tower and the filled adsorbent can be heated, and the heating method can be any medium other than an electric heater, for example, a medium having heat such as steam. It may be a method. In the desorption operation, the valve V5a installed in the desorption gas discharge pipe 25 is first opened, and then the suction tower is heated to the desorption temperature by an electric heater. In the process of heating, the gas expansion component and CO2 desorbed from the adsorbent are discharged from the desorbed gas discharge pipe together with H2 staying in the voids and sent to the gas storage tank 4. After the temperature of the adsorption tower 1a has risen to a predetermined temperature, the valve V6a installed in the H2 supply pipe 23 is opened, H2 is introduced into the adsorption tower 1a, and CO2 + H2 staying in the voids is discharged to the outside of the adsorption tower. At the same time as the CO2 is discharged, the CO2 desorbed from the adsorbent 2a is discharged to the outside of the tower as the CO2 partial pressure decreases. The desorbed gas is cooled by the cooler 10a and then stored in the gas storage tank 4. After the detachment operation is completed, the valves 5a and 6a are closed and the electric heater 3a is stopped.

次に、冷却操作を行う。冷却操作は吸着操作時に吸着塔から排出され、排ガス貯留タンクに貯留されたCO2をほとんど含まないガスで行う。まず、排ガス供給管21に設置されている弁のうちV1a、それからV2aを開く。また、排ガス排出管に設置している弁V3aを開く。その後、ポンプ9bを介して排ガス貯留タンク5に貯留している排ガスを吸着塔1aへ供給する。吸着搭から排出されたガスは冷却器10bにて冷却した後、再度排ガス貯留タンク5、ポンプ9bを介して吸着塔へ排ガスを循環供給させる。吸着塔内が所定の温度まで低下したら弁V2aを閉め、循環ガスの供給を停止する。 Next, a cooling operation is performed. The cooling operation is performed with a gas that is discharged from the adsorption tower during the adsorption operation and contains almost no CO2 stored in the exhaust gas storage tank. First, among the valves installed in the exhaust gas supply pipe 21, V1a and then V2a are opened. Also, open the valve V3a installed in the exhaust gas discharge pipe. After that, the exhaust gas stored in the exhaust gas storage tank 5 is supplied to the adsorption tower 1a via the pump 9b. The gas discharged from the adsorption tower is cooled by the cooler 10b, and then the exhaust gas is circulated and supplied to the adsorption tower again via the exhaust gas storage tank 5 and the pump 9b. When the temperature inside the adsorption tower drops to a predetermined temperature, the valve V2a is closed and the supply of circulating gas is stopped.

これまでの操作でガス貯留タンク4には排ガスから分離回収したCO2と脱離ガスとして供給したH2を含んだガスが貯留されている。貯留されているガスは加熱器11bによって所定温度まで昇温された後、メタネーション触媒7aが充填されたメタン反応器6aへ供給される。第一メタン反応器6aでは〔数2〕の反応によりメタンが生成される。メタネーション反応は発熱反応であるため、低温ほど理論転化率は高くなるが、CO2は安定な化合物であるため、入口温度を所定の温度以上に設定しないと反応が起動しない。メタネーション触媒としてはアルミナを担体としたRh/Mn系、Rh系、Ni系、Pd系、Pt系が知られているが、この中でも最も低温活性が高いのはRh/Mn系である。Rh/Mn系触媒では触媒入口温度250℃以上が好ましく、それ以外の触媒では300℃以上が必要である。反応器の耐熱温度、触媒の耐熱性、および平衡でのメタン生成収率を加味するとより低温での反応起動が望ましいため、Rh/Mn系触媒が好ましい。第一反応器6aによるメタネーション後のガスは冷却器10cに供給され、ガスを十分冷却した後、気液分離器12aにてメタネーション反応によって生成したドレンを除去する。その後、第二、第三メタン反応器前後でそれぞれ第一メタン反応器と同様に加熱、反応、冷却、ドレン除去の工程を経て、最終的に高純度のメタンを生成する。第二、第三メタン反応器へ充填する触媒としては第一反応器6aと同様にRh/Mn系触媒が好ましい。また、〔数2〕によるとCO2メタネーション反応はCO2 1モルに対してH2 4モルを消費する反応であり、理論上はH2/CO2=4mol/molで反応するが、H2/CO2>4で反応させた方が平衡上、反応進行は促進される。仮に、ガス貯留タンク4に貯留したガスの組成がH2/CO2>4mol/molであった場合は、CO2を全てメタンに転化した後のガス中にはメタンとH2が存在する。ここで、最終生成ガス中にH2が存在するとメタン純度が低下するので、最下流のメタン反応器の後段に水素分離器8を設置することが好ましい。水素分離器8で分離されたメタンは貯留、若しくは使用先に送られ、H2はCO2吸着プロセス上流のH2供給配管に戻される。 In the gas storage tank 4 by the operation so far, a gas containing CO2 separated and recovered from the exhaust gas and H2 supplied as a desorbed gas is stored. The stored gas is heated to a predetermined temperature by the heater 11b and then supplied to the methane reactor 6a filled with the methane catalyst 7a. In the first methane reactor 6a, methane is produced by the reaction of [Equation 2]. Since the methanation reaction is an exothermic reaction, the theoretical conversion rate increases as the temperature decreases, but since CO2 is a stable compound, the reaction does not start unless the inlet temperature is set above a predetermined temperature. As the methanation catalyst, Rh / Mn-based, Rh-based, Ni-based, Pd-based, and Pt-based catalysts using alumina as a carrier are known, and among them, the Rh / Mn-based catalyst has the highest low-temperature activity. For Rh / Mn-based catalysts, the catalyst inlet temperature is preferably 250 ° C. or higher, and for other catalysts, 300 ° C. or higher is required. The Rh / Mn-based catalyst is preferable because it is desirable to start the reaction at a lower temperature in consideration of the heat resistant temperature of the reactor, the heat resistance of the catalyst, and the methane production yield at equilibrium. The gas after metanation by the first reactor 6a is supplied to the cooler 10c, and after the gas is sufficiently cooled, the drain generated by the metanation reaction is removed by the gas-liquid separator 12a. After that, before and after the second and third methane reactors, the steps of heating, reaction, cooling, and drain removal are performed in the same manner as in the first methane reactor, respectively, to finally produce high-purity methane. As the catalyst to be filled in the second and third methane reactors, a Rh / Mn-based catalyst is preferable as in the case of the first reactor 6a. According to [Equation 2], the CO2 metanation reaction is a reaction that consumes 4 mol of H2 for 1 mol of CO2, and theoretically reacts at H2 / CO2 = 4 mol / mol, but at H2 / CO2> 4. The reaction is more balanced and the reaction progress is promoted. If the composition of the gas stored in the gas storage tank 4 is H2 / CO2> 4 mol / mol, methane and H2 are present in the gas after all CO2 is converted to methane. Here, since the methane purity decreases when H2 is present in the final produced gas, it is preferable to install the hydrogen separator 8 at the subsequent stage of the most downstream methane reactor. The methane separated by the hydrogen separator 8 is stored or sent to the destination, and H2 is returned to the H2 supply pipe upstream of the CO2 adsorption process.

本実施例では、メタネーション工程の運転制御方法の一例を示す。システム構成の一例を図3に示す。図3のシステム構成の大部分は図2と同様であり、図3では図2システムのガス貯留工程にCO2分析計13を設置し、更に、ガス貯留工程からメタネーション反応器へ供給される配管にH2配管14を接続し、更に、H2配管にCO2分析計の分析値を元に流量を制御する流量調節弁15を設置した。実施例2で述べたように、CO2メタネーション反応はH2/CO2≧4で供給することが望ましいが、上流のCO2分離回収プロセスの運転過程で、H2/CO2<4のガスがガス貯留タンク4に貯留される可能性もある。その場合は、〔数2〕の反応進行が平衡上抑制されるだけでなく、最終製造ガスであるメタンにCO2が混入し、メタン純度の低下に繋がる。そこで、ガス貯留タンク4に貯留されているガス中のCO2濃度を常時測定するCO2分析計13を設置し、仮に貯留ガスの組成がH2/CO2<4であった場合、ガス調節弁15の開度を調節し、メタン製造プロセスに供給されるガスの組成がH2/CO2≧4となるように制御する。 In this embodiment, an example of the operation control method of the meta-nation process is shown. An example of the system configuration is shown in FIG. Most of the system configuration in FIG. 3 is the same as in FIG. 2. In FIG. 3, a CO2 analyzer 13 is installed in the gas storage process of the system in FIG. 2, and a pipe supplied from the gas storage process to the metanation reactor. The H2 pipe 14 was connected to the H2 pipe, and a flow rate control valve 15 for controlling the flow rate based on the analysis value of the CO2 analyzer was installed in the H2 pipe. As described in Example 2, it is desirable to supply the CO2 metanation reaction with H2 / CO2 ≥ 4, but in the operation process of the upstream CO2 separation and recovery process, the gas of H2 / CO2 <4 is gas storage tank 4 It may be stored in. In that case, not only the reaction progress of [Equation 2] is suppressed in equilibrium, but also CO2 is mixed in methane, which is the final production gas, leading to a decrease in methane purity. Therefore, a CO2 analyzer 13 that constantly measures the CO2 concentration in the gas stored in the gas storage tank 4 is installed, and if the composition of the stored gas is H2 / CO2 <4, the gas control valve 15 is opened. The degree is adjusted so that the composition of the gas supplied to the methane production process is H2 / CO2 ≥ 4.

本実施例により、最終製造ガスであるメタンの純度を高める事ができる。 According to this embodiment, the purity of methane, which is the final production gas, can be increased.

1…吸着塔、2…吸着材、3…電気ヒーター、4…ガス貯留タンク、5…排ガス貯留タンク,6…メタン反応器,7…メタネーション触媒,8…水素分離設備,9…ポンプ,10…冷却器、11…加熱器、12…気液分離器、13…CO2分析計、14…H2配管、15…流量調節弁、21…排ガス供給管、22…CO2供給管,23…水蒸気供給管,24…排ガス排出管,25…脱離ガス排出管,V1〜7…弁 1 ... Adsorption tower, 2 ... Adsorbent, 3 ... Electric heater, 4 ... Gas storage tank, 5 ... Exhaust gas storage tank, 6 ... Methane reactor, 7 ... Metanation catalyst, 8 ... Hydrogen separation equipment, 9 ... Pump, 10 ... cooler, 11 ... heater, 12 ... gas-liquid separator, 13 ... CO2 analyzer, 14 ... H2 piping, 15 ... flow control valve, 21 ... exhaust gas supply pipe, 22 ... CO2 supply pipe, 23 ... steam supply pipe , 24 ... Exhaust gas discharge pipe, 25 ... Desorption gas discharge pipe, V1-7 ... Valve

Claims (12)

排ガスから回収した二酸化炭素(CO2)と水素(H2)からメタンを生成するメタン製造方法に関し、CO2固体吸着材を充填した吸着搭に排ガスを供給することでCO2を分離するCO2吸着工程とガス置換により吸着搭の空隙に残留する排ガスを排出するパージ工程と吸着搭の加熱及びH2供給により吸着材からCO2を脱離させる脱離工程と脱離工程後の吸着材を冷却する冷却工程と脱離工程から排出されたCO2とH2を含むガスを貯留するガス貯留工程とCO2とH2を触媒上で反応させることによりメタンを生成するメタネーション工程を備え、前記パージ工程及びメタネーション工程には前記ガス貯留工程で貯留したCO2+H2を供給することを特徴とするメタン製造方法。 Regarding the methane production method that produces methane from carbon dioxide (CO2) and hydrogen (H2) recovered from exhaust gas, a CO2 adsorption process that separates CO2 and gas replacement by supplying exhaust gas to an adsorption tower filled with a solid CO2 adsorbent. A purging process that discharges the exhaust gas remaining in the voids of the adsorption tower, a desorption step that desorbs CO2 from the adsorbent by heating the adsorption tower and H2 supply, and a cooling step and desorption that cools the adsorbent after the desorption step. A gas storage step for storing gas containing CO2 and H2 discharged from the step and a metanation step for producing methane by reacting CO2 and H2 on a catalyst are provided, and the purging step and the metanation step include the gas. A methane production method characterized by supplying CO2 + H2 stored in a storage process. 請求項1に記載のメタン製造方法において、前記吸着工程から排出されたCO2を含まないガスを貯留する排ガス貯留工程を備え、前記冷却工程で用いる冷却ガスは排ガス貯留工程から供給し、且つ循環供給することを特徴とするメタン製造方法。 The methane production method according to claim 1 includes an exhaust gas storage step for storing CO2-free gas discharged from the adsorption step, and the cooling gas used in the cooling step is supplied from the exhaust gas storage step and circulated and supplied. A methane production method characterized by 請求項1、2に記載のメタン製造方法において、前記ガス貯留工程にCO2濃度検知工程、ガス貯留工程後流にH2供給工程を備え、ガス貯留工程にて貯留されたガス中のCO2濃度に応じてH2供給工程から供給するH2量を調節することを特徴とするメタン製造方法。 In the methane production method according to claims 1 and 2, the gas storage step is provided with a CO2 concentration detection step, and the wake of the gas storage step is provided with an H2 supply step, depending on the CO2 concentration in the gas stored in the gas storage step. A methane production method characterized by adjusting the amount of H2 supplied from the H2 supply process. CO2固体吸着材を充填した吸着搭で排ガスに含まれるCO2を分離後、ガス置換により吸着搭の空隙に残留する排ガスを排出するパージし、吸着搭の加熱及びH2供給により吸着材からCO2を脱離させ、CO2脱離後の吸着材を冷却する機能を有するCO2分離回収設備に分離回収したCO2と外部から供給するH2をメタネーション触媒が充填されたメタン反応器内で反応させることでメタンを生成する機能を追加したメタン製造方法に関し、吸着材から脱離したガスを貯留するガス貯留ランクを備え、前記吸着搭のパージ、及び吸着材からの脱離時にはガス貯留タンクからパージ及び脱離用ガスを供給することを特徴とするメタン製造設備。 After separating CO2 contained in the exhaust gas with an adsorption tower filled with a solid CO2 adsorbent, purge the exhaust gas remaining in the voids of the adsorption tower by gas replacement, and remove CO2 from the adsorbent by heating the adsorption tower and supplying H2. Methane is produced by reacting CO2 separated and recovered in a CO2 separation and recovery facility that has the function of separating and cooling the adsorbent after CO2 desorption and H2 supplied from the outside in a methane reactor filled with a methanation catalyst. Regarding the methane production method with the added function of generating, it has a gas storage rank for storing the gas desorbed from the adsorbent, and for purging and desorbing from the gas storage tank when purging the adsorption tower and desorbing from the adsorbent. A methane production facility characterized by supplying gas. 請求項4に記載のメタン製造設備において、前記吸着搭から排出されたCO2を含まないガスを貯留する排ガス貯留タンク及びポンプを備え、吸着搭の冷却で用いる冷却ガスは排ガス貯留タンクから供給し、且つ循環供給することを特徴とするメタン製造設備。 The methane production facility according to claim 4 is provided with an exhaust gas storage tank and a pump for storing CO2-free gas discharged from the adsorption tower, and the cooling gas used for cooling the adsorption tower is supplied from the exhaust gas storage tank. A methane production facility characterized by circulating supply. 請求項4、5に記載のメタン製造設備において、前記ガス貯留タンクにCO2分析計、ガス貯留タンク後流にH2供給配管、H2供給配管に流量調節弁を備え、ガス貯留タンク内のガス中CO2濃度に応じて前記流量調節弁を制御し、H2供給量を調節することを特徴とするメタン製造設備。 The methane production facility according to claims 4 and 5 is provided with a CO2 analyzer in the gas storage tank, an H2 supply pipe in the wake of the gas storage tank, and a flow rate control valve in the H2 supply pipe, and CO2 in the gas in the gas storage tank. A methane production facility characterized in that the flow rate control valve is controlled according to the concentration to adjust the H2 supply amount. 請求項4〜6に記載のメタン製造設備において、CO2吸着塔は固定層型の多塔構成とし、各CO2吸着塔入口には排ガス供給管、パージガス供給管、H2供給管を備え、又、CO2吸着塔出口には排ガス排出管、脱離ガス排出管を備えることを特徴とするメタン製造設備。 In the methane production facility according to claims 4 to 6, the CO2 adsorption tower has a fixed layer type multi-tower configuration, and each CO2 adsorption tower inlet is provided with an exhaust gas supply pipe, a purge gas supply pipe, and an H2 supply pipe, and CO2. A methane production facility characterized by having an exhaust gas discharge pipe and a desorption gas discharge pipe at the outlet of the adsorption tower. 請求項4〜6に記載のメタン製造設備において、前記メタン反応器は多塔構成とし、各反応器間に冷却器及び気液分離器を供えることを特徴とするメタン製造設備。 The methane production facility according to claims 4 to 6, wherein the methane reactor has a multi-column structure, and a cooler and a gas-liquid separator are provided between the reactors. 請求項4〜6に記載のメタン製造設備において、CO2吸着搭からの脱離ガス、及びメタン反応器へ供給するH2は再生可能エネルギーにより得られた電気を用いて水の電気分解工程により生成したH2であることを特徴とするメタン製造方法。 In the methane production facility according to claims 4 to 6, the desorbed gas from the CO2 adsorption tower and H2 supplied to the methane reactor were generated by an electrolysis step of water using electricity obtained from renewable energy. A methane production method characterized by being H2. 請求項4〜6に記載のメタン製造設備において、最下流のメタン反応器の後段に水素分離設備を備える事を特徴とするメタン製造設備。 The methane production facility according to claims 4 to 6, wherein a hydrogen separation facility is provided after the most downstream methane reactor. 請求項4に記載のCO2固体吸着材は、Ceを含む酸化物であることを特徴とするメタン製造設備。 The methane production facility according to claim 4, wherein the CO2 solid adsorbent is an oxide containing Ce. 請求項4に記載のメタネーション触媒はアルミナを担体としたRh/Mn系、Rh系、Ni系、Pd系、Pt系のいずれかであることを特徴とするメタン製造方法。 The methane production method according to claim 4, wherein the metanation catalyst is any one of Rh / Mn-based, Rh-based, Ni-based, Pd-based, and Pt-based using alumina as a carrier.
JP2017196533A 2017-10-10 2017-10-10 Production method for methane and production facility therefor Pending JP2021035909A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017196533A JP2021035909A (en) 2017-10-10 2017-10-10 Production method for methane and production facility therefor
PCT/JP2018/036978 WO2019073867A1 (en) 2017-10-10 2018-10-03 Methane producing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196533A JP2021035909A (en) 2017-10-10 2017-10-10 Production method for methane and production facility therefor

Publications (1)

Publication Number Publication Date
JP2021035909A true JP2021035909A (en) 2021-03-04

Family

ID=66100859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196533A Pending JP2021035909A (en) 2017-10-10 2017-10-10 Production method for methane and production facility therefor

Country Status (2)

Country Link
JP (1) JP2021035909A (en)
WO (1) WO2019073867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033280A (en) * 2018-08-28 2020-03-05 国立大学法人静岡大学 Method for manufacturing methane and manufacturing system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205348B2 (en) * 2019-03-28 2023-01-17 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recovery method
JP7173088B2 (en) * 2020-04-28 2022-11-16 株式会社豊田中央研究所 Adsorption tower control device, gas separation device, adsorption tower control method, and computer program
JP7338577B2 (en) * 2020-07-10 2023-09-05 株式会社豊田中央研究所 Carbon dioxide recovery device and carbon dioxide recovery method
CN112777853A (en) * 2020-12-18 2021-05-11 天津大学 Movable composite pollution wastewater treatment device and process thereof
CN112807932B (en) * 2021-01-05 2022-06-07 湖南中冶长天节能环保技术有限公司 Method for optimally controlling discharge temperature of desorption tower and cooling air system
JP2023000697A (en) * 2021-06-18 2023-01-04 公益財団法人地球環境産業技術研究機構 Carbon dioxide separation, recovery and utilization system and carbon dioxide separation, recovery and utilization method
CN114455585B (en) * 2022-02-16 2024-01-16 青海师范大学 Method for adsorbing carbon dioxide in air

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589996B2 (en) * 2011-09-12 2014-09-17 株式会社日立製作所 Carbon dioxide capture material
PT3019582T (en) * 2013-07-09 2017-12-13 Mitsubishi Hitachi Power Systems Europe Gmbh Flexibly operable power plant and method for the operation thereof
JP6232985B2 (en) * 2013-12-05 2017-11-22 株式会社Ihi Power generation system
DE102013022021B4 (en) * 2013-12-20 2018-02-15 Bruno Kolb Process for the methanation of carbon dioxide from gas mixtures after separation by selective reversible adsorption
JP2018135283A (en) * 2017-02-21 2018-08-30 株式会社日立製作所 Method and apparatus for manufacturing methane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033280A (en) * 2018-08-28 2020-03-05 国立大学法人静岡大学 Method for manufacturing methane and manufacturing system
JP7226729B2 (en) 2018-08-28 2023-02-21 国立大学法人静岡大学 Method and production system for producing methane

Also Published As

Publication number Publication date
WO2019073867A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP2021035909A (en) Production method for methane and production facility therefor
US20230119784A1 (en) Hydrogen and/or ammonia production process
Gao et al. Enhanced water gas shift processes for carbon dioxide capture and hydrogen production
US20070282021A1 (en) Producing ethanol and saleable organic compounds using an environmental carbon dioxide reduction process
CA2982275A1 (en) Production process and production system for producing methane/gaseous and/or liquid hydrocarbons
JPH11312527A (en) Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron
WO2015055349A1 (en) Integrated process/plant for storage of co2 by conversion to synthetic natural gas
WO2022229838A1 (en) Process for producing hydrogen from a hydrocarbon feedstock
JP2015124217A (en) Method for producing methane, methane production device and gasification system using the same
US20210331115A1 (en) Method and system for removing carbon dioxide
Hao et al. Elevated temperature pressure swing adsorption using LaNi4. 3Al0. 7 for efficient hydrogen separation
WO2024063805A2 (en) Small modular nuclear reactor integrated energy systems for energy production and green industrial applications
WO2019073722A1 (en) Methane production system and methane production method
Rydén et al. Two novel approaches for hydrogen production; chemical-looping reforming and steam reforming with carbon dioxide capture by chemical-looping combustion
US20240001296A1 (en) Method and system to capture co2 in flue gases emitted intermittently
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
García et al. CO 2 Capture–A Brief Review of Technologies and Its Integration
WO2017183388A1 (en) Internal combustion engine
WO2021250083A1 (en) Method for the production of hydrogen
JPH11111320A (en) Recovery and fixing method for carbon dioxide, nitrogen gas, and argon gas in fuel cell power generation using internal combustion type reformer
Fino Hydrogen production in conventional, bio-based and nuclear power plants
RU2561345C1 (en) Method of energy generation in anaerobic system
Guo et al. Hydrogen Production via Methane Steam Reforming with Simultaneous Separation of Hydrogen and Carbon Dioxide
Giaconia Hydrogen production by solar steam reforming as a fuel decarbonization route
WO2024135085A1 (en) Hydrocarbon production system and hydrocarbon production method