JP2017048087A - Method and apparatus for producing hydrogen from fossil fuel - Google Patents

Method and apparatus for producing hydrogen from fossil fuel Download PDF

Info

Publication number
JP2017048087A
JP2017048087A JP2015173431A JP2015173431A JP2017048087A JP 2017048087 A JP2017048087 A JP 2017048087A JP 2015173431 A JP2015173431 A JP 2015173431A JP 2015173431 A JP2015173431 A JP 2015173431A JP 2017048087 A JP2017048087 A JP 2017048087A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
shift
separation
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015173431A
Other languages
Japanese (ja)
Inventor
佐々木 崇
Takashi Sasaki
崇 佐々木
朋子 鈴木
Tomoko Suzuki
朋子 鈴木
山本 浩貴
Hirotaka Yamamoto
浩貴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015173431A priority Critical patent/JP2017048087A/en
Publication of JP2017048087A publication Critical patent/JP2017048087A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Industrial Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen production method capable of producing high purity hydrogen from fossil fuel at a low cost, and a production apparatus used for the method.SOLUTION: A partial oxidation (gasification) method capable of using low quality fossil fuel, such as brown coal and heavy oil, as a raw material is adopted as a method for producing hydrogen from fossil fuel, and hydrogen rich gas contained in gas having been subjected to gas purification, CO shift, dehumidification, desulfurization, and CO2 separation is purified by a cryogenic separation method to obtain high purity hydrogen. Liquid nitrogen by-produced when oxygen supplied as a combustion improver for the fossil fuel in a step of partial oxidation is produced by the cryogenic separation method is used as a cold heat medium used for the cryogenic separation method. By the present method, in a method for producing high purity hydrogen from low-quality fossil fuel, high purity hydrogen can be obtained at a low cost without requiring installation of a large-scale auxiliary machine and energy supplied from the outside.SELECTED DRAWING: Figure 1

Description

本発明は、化石燃料から高純度水素を製造する方法及びその製造装置に係り、具体的には、化石燃料を部分酸化化後、シフト工程でCO2とH2を主成分とするガスへ変換し、CO2とH2を分離後、冷熱媒体を用いた深冷分離により、水素リッチガスを精製して高純度水素を得る水素製造方法及びその製造装置に関する。   The present invention relates to a method for producing high-purity hydrogen from fossil fuel and a production apparatus thereof, specifically, after partial oxidation of fossil fuel, it is converted into a gas mainly composed of CO2 and H2 in a shift step, The present invention relates to a hydrogen production method and apparatus for producing high-purity hydrogen by purifying a hydrogen-rich gas by separating the CO2 and H2 by deep-cold separation using a cooling medium.

近年、化石燃料の枯渇や地球温暖化防止の観点から、水素を一次エネルギー源とする水素インフラの重要性が謳われている。特に、燃料電池に関する技術開発が近年加速しており、燃料電池車やエネファームを代表とする家庭用燃料電池の普及も活発化している。燃料電池に使用される水素には99.99%以上という高い純度が求められている。現在、水素ガスの製造方法で最も安価で実用性の高い製造方法は、特許文献1に示されている水蒸気改質法がある。本方法は、原料として天然ガス、灯油等の化石燃料を使用し、これらに水蒸気を添加して、式(1)に示す反応により改質し、更に生成したCOを式(2)のシフト反応によりCO2に変換すると同時に水素を製造する方法である。   In recent years, the importance of hydrogen infrastructure using hydrogen as a primary energy source has been raised from the viewpoint of fossil fuel depletion and global warming prevention. In particular, technological development related to fuel cells has been accelerating in recent years, and household fuel cells such as fuel cell vehicles and ENE-FARM are becoming more popular. Hydrogen used in fuel cells is required to have a high purity of 99.99% or more. Currently, the cheapest and most practical production method of hydrogen gas is the steam reforming method disclosed in Patent Document 1. In this method, fossil fuels such as natural gas and kerosene are used as raw materials, steam is added to these, reformed by the reaction shown in Formula (1), and the generated CO is further subjected to shift reaction in Formula (2). This is a method for producing hydrogen simultaneously with conversion to CO2.

Figure 2017048087
Figure 2017048087

Figure 2017048087
Figure 2017048087

水蒸気改質法による水素製造法は既に技術が確立されており、プラント運転実績が多数あるため有効な技術であるが、近年、シェール革命の影響により天然ガス(LNG)の価格が高騰しており、今後、それに伴い水素の製造価格も高騰すると考えられる。水蒸気改質法以外の水素製造方法としては、化石燃料の部分酸化法がある。   The hydrogen production method using the steam reforming method has already been established, and it is an effective technology because it has a large number of plant operations. In recent years, the price of natural gas (LNG) has risen due to the influence of the shale revolution. In the future, the production price of hydrogen is expected to rise accordingly. As a hydrogen production method other than the steam reforming method, there is a partial oxidation method of fossil fuel.

具体的には、石炭や重質油等の化石燃料をガス化炉にて酸素と反応させて部分酸化し、COとH2を主成分とするガス化ガスとし、その後、ガスを精製した後に式(2)に示すシフト反応によりCOを水蒸気と反応させてCO2とH2に変換する方法である。部分酸化法も水蒸気改質法と同様に化石燃料を使用するが、水蒸気改質法との違いは褐炭のような低質な石炭や石油精製の残渣として生成する重質油や残油といった、他用途への応用が困難な原料を用いて水素を製造できる点にある。   Specifically, fossil fuels such as coal and heavy oil are reacted with oxygen in a gasifier and partially oxidized to form a gasification gas mainly composed of CO and H2, and then the formula is refined after the gas is purified. This is a method in which CO is reacted with water vapor and converted into CO2 and H2 by the shift reaction shown in (2). The partial oxidation method uses fossil fuel in the same way as the steam reforming method, but the difference from the steam reforming method is that other low quality coals such as lignite and heavy oil and residual oil produced as petroleum refining residue are used. This is because hydrogen can be produced using raw materials that are difficult to be applied to applications.

特許文献2、3には石炭を部分酸化した後、ガス精製、シフト工程、CO2分離工程を経て生成した水素を燃料としてガスタービンにより発電する方法が開示されている。本方法で生成した水素中にはシフト工程で十分にCO2へ転換されなかったCOが含まれるが、発電用途に限れば、ガスタービン前段の燃焼器で水素と共にCOも燃焼されるので問題はない。しかし、燃料電池に応用する場合、水素中にCOが多量に含まれると、燃料電池の電極触媒として白金が使用されている場合は白金にCOが吸着して触媒の劣化を引き起こす。したがって、燃料電池に使用する水素には上述した純度の他、含有するCOの濃度規制、具体的には1ppm以下という厳しい制約をクリアする必要がある。水蒸気改質法、部分酸化法いずれにおいても、シフト工程までに生成したガス中のH2とそれ以外のガス、主にはCO2を分離する工程を設ける必要がある。しかし、CO2分離工程のみでは上述した燃料電池の要求仕様を満足するのは難しく、通常はCO2分離工程で分離された水素リッチガス中の不純物を除去するために水素精製工程を設ける。   Patent Documents 2 and 3 disclose a method of generating electricity with a gas turbine using hydrogen generated through a gas refining, shift process, and CO2 separation process after partial oxidation of coal. The hydrogen produced by this method includes CO that has not been sufficiently converted to CO2 in the shift process. However, if it is limited to power generation, there is no problem because CO is combusted together with hydrogen in the combustor in front of the gas turbine. . However, when applied to a fuel cell, if a large amount of CO is contained in hydrogen, when platinum is used as an electrode catalyst of the fuel cell, CO is adsorbed on the platinum and causes deterioration of the catalyst. Therefore, in addition to the purity described above, the hydrogen used in the fuel cell must satisfy the strict restriction of the concentration of CO contained, specifically, 1 ppm or less. In both the steam reforming method and the partial oxidation method, it is necessary to provide a step of separating H2 and other gases, mainly CO2, in the gas generated until the shift step. However, it is difficult to satisfy the above-mentioned required specifications of the fuel cell only with the CO2 separation step, and usually a hydrogen purification step is provided to remove impurities in the hydrogen rich gas separated in the CO2 separation step.

特許文献4には水素精製工程として圧力変動吸着(PSA:Pressure Swing Adsorption)法を用いる方法が開示されている。PSA法とは混合ガスに含まれるガスの吸着力の、圧力依存性を利用する方法である。水素は他のガスと比較して吸着力の圧力依存性が小さいという特徴を有し、高圧の状態にて水素を含む混合ガスの中で水素以外のガス成分を吸着材に吸着させ、吸着しにくい水素と分離する。吸着→減圧→洗浄→昇圧 を1つのサイクルとし、これを繰り返すことで水素の純度を上げていく方法である。   Patent Document 4 discloses a method using a pressure swing adsorption (PSA) method as a hydrogen purification step. The PSA method is a method that utilizes the pressure dependency of the adsorption power of a gas contained in a mixed gas. Hydrogen has the characteristic that the pressure dependency of the adsorption force is small compared with other gases, and adsorbs gas components other than hydrogen to the adsorbent in the mixed gas containing hydrogen at high pressure. Separates from difficult hydrogen. This is a method of increasing the purity of hydrogen by repeating adsorption, depressurization, washing, and pressurization as one cycle.

特許第5255896号公報Japanese Patent No. 5255896 特許第2870929号公報Japanese Patent No. 2870929 特許第3149561号公報Japanese Patent No. 3149561 特許第5280824号公報Japanese Patent No. 5280824

従来技術であるPSA法による水素精製技術では高純度の水素が得られるため、燃料電池用の水素精製には好適な方法であるといえる。上述したようにPSA法では、吸着、減圧、洗浄、昇圧を一つのサイクルとしている。したがって、上流側のプラント(水蒸気改質、部分酸化等)で絶えず生成される水素の精製歩留まりを抑制するため、最低4つ以上の吸着塔を用意して各工程操作を行う必要がある。   Since the hydrogen purification technology based on the PSA method, which is a conventional technology, can obtain high-purity hydrogen, it can be said that this method is suitable for hydrogen purification for fuel cells. As described above, in the PSA method, adsorption, depressurization, washing, and pressure increase are set as one cycle. Therefore, in order to suppress the purification yield of hydrogen that is constantly generated in the upstream plant (steam reforming, partial oxidation, etc.), it is necessary to prepare at least four adsorption towers and perform each process operation.

また、プラントでの水素製造規模に依存するが、化石燃料を改質、及び部分酸化して得られる水素を含む精製用ガスは多量であることが想定されるため、水素精製工程が大型化することが想定される。また、吸着剤の定期的な交換や昇圧工程で必要なガスの圧縮エネルギーが必要になるため、ランニングコストがかかることが懸念される。   In addition, although depending on the scale of hydrogen production at the plant, it is assumed that a large amount of purification gas containing hydrogen obtained by reforming and partially oxidizing fossil fuels will increase the size of the hydrogen purification process. It is assumed that Moreover, since the compression energy of gas required for periodic replacement | exchange of an adsorbent and a pressure | voltage rise process is needed, we are anxious about running cost taking place.

そこで、本発明の目的は、化石燃料から高純度の水素を安価に生成することが可能な水素製造方法及びそれに用いる製造装置を提供することにある。   Accordingly, an object of the present invention is to provide a hydrogen production method capable of producing high-purity hydrogen from fossil fuel at low cost and a production apparatus used therefor.

本発明の水槽製造方法は、化石燃料を酸素により部分酸化することでガス化するガス化工程と、ガス化ガスの精製工程と、ガス化ガスに含まれるCOをシフト触媒により水蒸気と反応させて水素とCO2へ転換するシフト工程と、シフト後ガス中に含まれるH2Sを除去する脱硫工程と、前記シフト工程で生成した水素とCO2を分離するCO2分離工程とCO2分離後のガスを精製して水素を高純度化する水素精製工程を備える水素製造方法において、前記水素精製工程では冷熱媒体を用いた深冷分離法にて水素リッチガス中の水素以外のガス成分を相変化させて分離し、高純度水素に精製することを特徴とする。   The water tank manufacturing method of the present invention includes a gasification step in which fossil fuel is gasified by partial oxidation with oxygen, a gasification gas purification step, and CO contained in the gasification gas is reacted with water vapor by a shift catalyst. A shift step for converting to hydrogen and CO2, a desulfurization step for removing H2S contained in the gas after the shift, a CO2 separation step for separating hydrogen and CO2 produced in the shift step, and a gas after the CO2 separation are purified In a hydrogen production method including a hydrogen purification step for purifying hydrogen, in the hydrogen purification step, gas components other than hydrogen in the hydrogen-rich gas are separated and separated by a cryogenic separation method using a cold medium. It is characterized by purifying to pure hydrogen.

本発明によれば、化石燃料から高純度の水素を安価に生成することができる。また、生成した水素は燃料電池への適用だけではなく、石油精製プラントにおける水添脱硫等の各種製品精製用や鉄鋼生産分野にて還元製鉄、また、水素を原料としてメタノールやDME、プラスチック原料といった化学製品を製造する分野にも適用できる。   According to the present invention, high-purity hydrogen can be produced at low cost from fossil fuels. The generated hydrogen is not only applied to fuel cells, but also used for refining various products such as hydrodesulfurization in oil refineries and in the steel production field. Also, hydrogen, methanol, DME, plastic raw materials, etc. It can also be applied to the field of manufacturing chemical products.

実施例1で示した本発明のシステムフロー図である。1 is a system flow diagram of the present invention shown in Embodiment 1. FIG. 実施例2で示した本発明のシステムフロー図である。It is a system flow figure of the present invention shown in Example 2. 実施例3で示した本発明のシステムフロー図である。It is a system flow figure of the present invention shown in Example 3. 実施例4で示した本発明の水素精製設備のシステム構成図である。It is a system block diagram of the hydrogen purification equipment of this invention shown in Example 4. 実施例5で示した本発明の水素精製設備のシステム構成図である。It is a system block diagram of the hydrogen purification equipment of this invention shown in Example 5. FIG. 実施例6で示した試験装置の概略図である。6 is a schematic diagram of a test apparatus shown in Example 6. FIG. 実施例6で示したシフト反応における水蒸気添加量の触媒種依存性結果である。7 is a result of catalyst species dependence of the amount of water vapor added in the shift reaction shown in Example 6. FIG.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

化石燃料からの水素製造方法として、低質な褐炭や重質油を適用できる部分酸化法に着目し、部分酸化(ガス化)、ガス精製、シフト、CO2分離工程を経たガス中の水素を精製する技術として、従来のPSA法に代わり、深冷分離法を適用する。   Focusing on partial oxidation methods that can apply low-quality lignite and heavy oil as a method for producing hydrogen from fossil fuels, purify hydrogen in gas that has undergone partial oxidation (gasification), gas purification, shift, and CO2 separation processes. As a technology, a cryogenic separation method is applied instead of the conventional PSA method.

深冷分離法とは、冷熱媒体を用いて混合ガスを冷却し、各ガスの沸点差を利用して分離する方法である。上記CO2分離後の水素リッチガス中には95%以下の水素の他、不純物としてCO2、CH4や燃料電池用電極触媒の被毒成分であるCOが含まれる。水素、CO2、CH4、及びCO各ガスの沸点はそれぞれ-249℃、-79℃、-162℃、-192℃である。水素は他のガスに比べて沸点が低く、深冷分離により精製するのに適したガスであると言える。   The cryogenic separation method is a method in which a mixed gas is cooled using a cooling medium and separated using a difference in boiling points between the gases. The hydrogen-rich gas after the separation of CO2 contains 95% or less of hydrogen, as well as CO2, CH4, and CO, which is a poisoning component of the fuel cell electrode catalyst, as impurities. The boiling points of hydrogen, CO2, CH4, and CO gases are -249 ° C, -79 ° C, -162 ° C, and -192 ° C, respectively. Hydrogen has a lower boiling point than other gases and can be said to be a gas suitable for purification by cryogenic separation.

本発明は、次のような基本的特徴を有する。化石燃料を酸素により部分酸化することでガス化するガス化工程と、ガス化ガスの精製工程と、ガス化ガスに含まれるCOをシフト触媒により水蒸気と反応させて水素とCO2へ転換するシフト工程と、シフト後ガス中に含まれるH2Sを除去する脱硫工程と、前記シフト工程で生成した水素とCO2を分離するCO2分離工程とCO2分離後のガスを精製して水素を高純度化する水素精製工程を備える水素製造方法において、前記水素精製工程では冷熱媒体を用いた深冷分離法にて水素中のCO2やCO、CH4を分離し、高純度水素に精製することを特徴とする水素製造方法である。   The present invention has the following basic features. Gasification process to gasify fossil fuel by partial oxidation with oxygen, gasification gas purification process, shift process to convert CO contained in gasification gas to water vapor by shift catalyst and convert to hydrogen and CO2 And a desulfurization process that removes H2S contained in the gas after the shift, a CO2 separation process that separates the hydrogen and CO2 produced in the shift process, and a hydrogen purification that purifies the gas after the CO2 separation and purifies the hydrogen. In the hydrogen production method comprising the steps, in the hydrogen purification step, CO2 or CO, CH4 in hydrogen is separated by a cryogenic separation method using a cooling medium, and purified to high purity hydrogen It is.

また、例えば冷熱媒体としては、ガス化工程の燃焼助剤として供給する酸素を同じく深冷分離法を適用した空気分離工程で生成する際に併せて生成される液体窒素を用いることを特徴とし、冷熱媒体生成用の新たな補機を追設することなく、既存のプラントに敷設されているユーティリティを利用して高純度の水素を精製することができる。   In addition, for example, as the cooling medium, it is characterized by using liquid nitrogen that is also generated when oxygen that is supplied as a combustion aid in the gasification process is generated in an air separation process that also applies a cryogenic separation method, High-purity hydrogen can be purified using a utility installed in an existing plant without adding a new auxiliary machine for generating a cooling medium.

以下、本発明に係る実施形態について、図面を参照して説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

(実施例1)
図1に本発明のシステムフローの一例を示す。化石燃料である重質油、残油、又は石炭を燃料としてガス化工程でガス化し、水素とCOを主成分とするガス化ガスを得る。その後、化石燃料由来の残渣や水溶性ガス成分を除去するため、ガス精製工程にガス化ガスを送り、上記不純物質を除去する。その後、シフト工程にガス精製後のガスを供給し、式(2)に示したシフト反応により、ガス中のCOと水蒸気を反応させてCO2とH2を主成分とするシフト後ガスを得る。シフト反応では反応を加速させるため、式(2)の量論比以上の水蒸気を供給することが一般的であるため、シフト工程後には反応に使用されなかった水分が残る。そこで、シフト工程後に除湿工程を設けてガス中の水分を除去する。理由は後述する。本実施例ではシフト工程は脱硫前シフトプロセスを適用した例を示している為、シフト工程後のガス中には数百〜数千ppmの硫化水素(H2S)が含まれる。ガス中にH2Sが含まれると後段のCO2分離工程で使用するCO2吸収液にH2Sが吸収され、CO2吸収性能を低下させるという懸念がある。したがって、CO2分離工程前段にてH2Sを除去することを目的として脱硫工程を設ける。その後、CO2分離工程にて水素とCO2を分離する。CO2分離後にはCO2リッチガスと水素リッチガスが生成するが、水素リッチガス中の水素純度は90〜95%であり、不純物質としてCO2、CO、CH4等が含まれる。この水素リッチガスを精製して高純度の水素を得るために、CO2分離工程後の水素リッチガスを水素精製工程に供給する。水素精製工程では深冷分離により水素を高純度化する。水素分離工程で使用する冷熱媒体として、液体窒素を用いる。この液体窒素は、空気分離工程にて同じく深冷分離法で空気から酸素を生成する際に生成するものを用いる。空気分離工程で生成した酸素はガス化工程に供給し、化石燃料の部分酸化の助燃剤として用いる。水素精製工程では深冷分離法を用いるため、多量の水分が精製対象ガスに含まれると配管内で水分が凍結して閉塞する恐れがあるため、前段の除湿工程で完全に水分を除去する必要がある。
Example 1
FIG. 1 shows an example of the system flow of the present invention. Gasification is performed in the gasification process using heavy oil, residual oil, or coal, which is fossil fuel, in the gasification step, and gasification gas mainly containing hydrogen and CO is obtained. Thereafter, in order to remove residues derived from fossil fuels and water-soluble gas components, gasification gas is sent to the gas purification step to remove the impurities. Thereafter, the gas after gas purification is supplied to the shift step, and the shift gas shown in Formula (2) is reacted with CO in the gas and water vapor to obtain a post-shift gas containing CO2 and H2 as main components. In order to accelerate the reaction in the shift reaction, it is common to supply water vapor with a stoichiometric ratio equal to or higher than the stoichiometric ratio of the formula (2). Therefore, water that has not been used in the reaction remains after the shift step. Therefore, a dehumidification step is provided after the shift step to remove moisture in the gas. The reason will be described later. In this embodiment, the shift process shows an example in which the shift process before desulfurization is applied, and therefore, the gas after the shift process contains several hundred to several thousand ppm of hydrogen sulfide (H2S). When H2S is contained in the gas, there is a concern that H2S is absorbed in the CO2 absorbing liquid used in the subsequent CO2 separation step, thereby reducing the CO2 absorption performance. Therefore, a desulfurization process is provided for the purpose of removing H2S in the previous stage of the CO2 separation process. Thereafter, hydrogen and CO2 are separated in a CO2 separation step. A CO2-rich gas and a hydrogen-rich gas are produced after CO2 separation, but the hydrogen purity in the hydrogen-rich gas is 90 to 95%, and CO2, CO, CH4, etc. are included as impurity substances. In order to purify the hydrogen-rich gas to obtain high-purity hydrogen, the hydrogen-rich gas after the CO2 separation step is supplied to the hydrogen purification step. In the hydrogen purification process, hydrogen is purified by cryogenic separation. Liquid nitrogen is used as a cooling medium used in the hydrogen separation step. The liquid nitrogen used is that which is generated when oxygen is generated from air by the cryogenic separation method in the air separation step. Oxygen generated in the air separation step is supplied to the gasification step and used as a combustion aid for partial oxidation of fossil fuel. Since the cryogenic separation method is used in the hydrogen purification process, if a large amount of moisture is contained in the gas to be purified, the moisture may freeze and clog in the piping. Therefore, it is necessary to completely remove the moisture in the previous dehumidification process. There is.

本実施例の効果としては、化石燃料の部分酸化法にて必須の工程である空気分離工程で生成した液体窒素の冷熱を利用して水素を精製することであり、冷熱源を新たに生成するための補機や動力を省くことができ、高純度水素の製造コストを削減することができる。   The effect of the present embodiment is to purify hydrogen using the cold heat of liquid nitrogen produced in the air separation process, which is an essential process in the partial oxidation method of fossil fuel, and newly generate a cold heat source. As a result, it is possible to omit auxiliary equipment and power for the purpose, and to reduce the production cost of high-purity hydrogen.

(実施例2)
図2に本発明のシステムフローの別の例を示す。本実施例に示すシステム構成の内、ガス化工程からCO2分離工程までは実施例1と同様である。実施例1との違いは、水素精製工程の冷熱源としてLNGを用いることにある。海外で産出された天然ガスを輸入する際、LNGとして液化して運び込む方法が一般的である。LNGを天然ガス(CH4)に戻す際、多量の冷熱が発生する。この冷熱を水素精製に利用するのが本実施例の特徴である。したがって、システム構成としては、実施例1の構成の他、冷熱回収工程を追加する。冷熱回収工程ではLNGを気化させ、その際に発生する冷熱を間接熱交換により他の媒体で回収する。LNG気化時の冷熱を回収した媒体を水素精製工程に供給してCO2分離後の水素リッチガスを高純度の水素に精製する。また、LNG気化後に生成したCH4はパイプラインへ供給し、家庭用及び産業用の各用途に用いる。
(Example 2)
FIG. 2 shows another example of the system flow of the present invention. Of the system configuration shown in the present embodiment, the steps from the gasification step to the CO2 separation step are the same as in the first embodiment. The difference from Example 1 is that LNG is used as a cold heat source in the hydrogen purification process. When importing natural gas produced overseas, it is common to liquefy and transport it as LNG. When returning LNG to natural gas (CH4), a large amount of cold energy is generated. The feature of this embodiment is that this cold energy is used for hydrogen purification. Therefore, as a system configuration, in addition to the configuration of the first embodiment, a cold energy recovery process is added. In the cold heat recovery process, LNG is vaporized, and the cold heat generated at that time is recovered by another medium by indirect heat exchange. The medium that recovered the cold energy from LNG vaporization is supplied to the hydrogen purification process, and the hydrogen rich gas after CO2 separation is purified to high purity hydrogen. In addition, CH4 generated after LNG vaporization is supplied to the pipeline and used for household and industrial applications.

本実施例の効果としては、輸入したLNGを家庭や産業用の各用途で使用する際に必須となるCH4への気化時に発生する冷熱を回収して水素を精製することにより、LNG気化時に発生する冷熱を有効利用できる点にある。   The effect of this example is that when the imported LNG is used for household and industrial applications, it is generated when LNG is vaporized by recovering the cold heat that is generated when CH4 is vaporized and purifying hydrogen. It is in the point which can effectively use the cold heat.

(実施例3)
図3に本発明のシステムフローの別の例を示す。本実施例の基本構成は実施例1と同様であり、実施例1との違いはCO2分離工程及び水素精製工程で分離されたCO2をガス化工程へ供給するCO2リサイクル工程を設けた点にある。化石燃料の内、特に石炭をガス化工程に供給する場合、固体物のため供給配管内での摩擦抵抗が大きく、円滑にガス化工程へ供給することが困難である。その為、一般的には搬送ガスとして空気分離工程で生成したN2を用いる。ガス化工程に化石燃料の搬送用に供給されたN2はCO2分離工程後の水素リッチガスに含まれるため、水素精製工程での分離対象物質となる。水素精製工程での冷熱媒体として液体窒素を用いた場合、当然、液体窒素の沸点とN2の凝固点は同等であるため、N2の分離効率は低い。
(Example 3)
FIG. 3 shows another example of the system flow of the present invention. The basic configuration of this example is the same as that of Example 1, and the difference from Example 1 is that a CO2 recycling step for supplying CO2 separated in the CO2 separation step and the hydrogen purification step to the gasification step is provided. . When fossil fuel, especially coal, is supplied to the gasification process, the friction resistance in the supply pipe is large due to the solid matter, and it is difficult to supply the gasification process smoothly. Therefore, N2 produced in the air separation process is generally used as the carrier gas. Since N2 supplied for fossil fuel transportation in the gasification process is included in the hydrogen-rich gas after the CO2 separation process, it becomes a substance to be separated in the hydrogen purification process. When liquid nitrogen is used as a cooling medium in the hydrogen purification process, naturally, the boiling point of liquid nitrogen is equal to the freezing point of N2, and thus the separation efficiency of N2 is low.

一方、本実施例で示したように、搬送ガスとしてCO2分離工程や水素精製工程で生成したCO2を用いた場合、ガス化工程後のCO2濃度が若干増加するものの、CO2分離工程で分離することが可能であり、水素精製工程への影響度は小さい。但し、系内のCO2濃度が増加するため、シフト工程でのCO転化効率は平衡の制約上低下することが懸念される。したがって、シフト工程での水蒸気添加量を増加させる、若しくは反応温度を低下させて理論転化率を向上させるといった対策が必要となる。しかしながら、高濃度の水素を製造するという目的に着目すれば、搬送ガスとしてN2を用いる場合よりもCO2を用いた場合の方が水素精製工程の負荷を低減できると考えられる。   On the other hand, as shown in this example, when CO2 produced in the CO2 separation process or hydrogen purification process is used as the carrier gas, the CO2 concentration after the gasification process slightly increases, but it is separated in the CO2 separation process. The impact on the hydrogen purification process is small. However, since the CO2 concentration in the system increases, there is a concern that the CO conversion efficiency in the shift process is lowered due to equilibrium constraints. Therefore, it is necessary to take measures to increase the theoretical conversion rate by increasing the amount of steam added in the shift step or by lowering the reaction temperature. However, paying attention to the purpose of producing high-concentration hydrogen, it is considered that the load of the hydrogen purification process can be reduced more when CO2 is used than when N2 is used as the carrier gas.

(実施例4)
本実施例では本発明に係る、水素精製システムの一例を示す。システム構成図の一例を図4に示す。本実施例での水素精製システムは、圧縮機1、空気分離設備2、ガス化炉3、水洗塔4、シフト反応器5、ノックアウトドラム6、H2S吸収塔7、H2S再生塔8、CO2吸収塔9、CO2フラッシュドラム10、水素精製設備11を、主要な構成機器として備える。圧縮機1に空気を供給して圧縮したガスを空気分離設備2に送り、酸素と窒素を分離する。分離された酸素と石炭をガス化炉3に送り、部分酸化反応によりCOと水素を主成分とするガス化ガスを生成する。ガス化炉3で生成したガス化ガスは、熱交換器12aを通って水洗塔4に送られ、洗浄される。
Example 4
In this embodiment, an example of a hydrogen purification system according to the present invention is shown. An example of a system configuration diagram is shown in FIG. The hydrogen purification system in this example is composed of a compressor 1, an air separation facility 2, a gasification furnace 3, a washing tower 4, a shift reactor 5, a knockout drum 6, an H2S absorption tower 7, an H2S regeneration tower 8, and a CO2 absorption tower. 9. A CO2 flash drum 10 and a hydrogen purification equipment 11 are provided as main components. Gas compressed by supplying air to the compressor 1 is sent to the air separation facility 2 to separate oxygen and nitrogen. The separated oxygen and coal are sent to the gasification furnace 3, and a gasification gas mainly composed of CO and hydrogen is generated by a partial oxidation reaction. The gasification gas generated in the gasification furnace 3 is sent to the water washing tower 4 through the heat exchanger 12a and cleaned.

具体的には、水洗塔4で、生成ガス中の重金属やハロゲン化水素等の不純物質が除去される。その後、水洗塔4で洗浄された生成ガスは、シフト反応器5に送られるが、この際、熱交換器12a及びガス加熱器13により加熱され、シフト触媒の反応温度まで昇温させられる。この加熱により、生成ガスのシフト反応器5の入口温度は、200℃から250℃となる。定常運転時でのシフト反応器5aの入口での生成ガスの主成分はCOと水素であり、COが乾燥状態で約60vol%、水素が約25vol%である。シフト反応器5aの入口で水蒸気が供給され、各シフト反応器に充填されたシフト触媒により、COシフト反応が進行する。また、石炭ガス中には、微量のCOSやHCNが含まれる。COSは式(3)、HCNは式(4)の反応により転化されるが、シフト反応と同様の加水分解反応であるので、シフト触媒と同一触媒で進行する。したがって、COS及びHCN転化器は別途設けず、シフト反応器でCO、COS、HCNを転化する。   Specifically, the water washing tower 4 removes impurities such as heavy metals and hydrogen halide in the product gas. Thereafter, the product gas washed in the water-washing tower 4 is sent to the shift reactor 5. At this time, the product gas is heated by the heat exchanger 12 a and the gas heater 13 and raised to the reaction temperature of the shift catalyst. By this heating, the inlet temperature of the product gas shift reactor 5 becomes 200 ° C. to 250 ° C. The main components of the product gas at the inlet of the shift reactor 5a during steady operation are CO and hydrogen. CO is about 60 vol% in a dry state and hydrogen is about 25 vol%. Water vapor is supplied at the inlet of the shift reactor 5a, and the CO shift reaction proceeds by the shift catalyst filled in each shift reactor. Coal gas contains trace amounts of COS and HCN. COS is converted by the reaction of Formula (3) and HCN is converted by the reaction of Formula (4). However, since it is a hydrolysis reaction similar to the shift reaction, it proceeds with the same catalyst as the shift catalyst. Therefore, COS and HCN converter are not provided separately, and CO, COS, and HCN are converted in the shift reactor.

Figure 2017048087
Figure 2017048087

Figure 2017048087
Figure 2017048087

各シフト反応器5a〜5cから排出されたガスは、熱交換器7b〜7dによって冷却される。シフト反応は発熱反応であるため、反応器入口よりも反応器出口の方が温度は高くなる。また、平衡上、高温ほどCO転化反応が進行しにくくなるという特徴を有すため、反応器を多段構成とし、各反応器間でガスを冷却するシステムを採用するほうが効率的である。シフト反応器の最終段(本実施例では5c)後のガス中の水分は、ノックアウトドラム6により凝縮して除去する。その後、ガスは、H2S吸収塔7に送られ、吸収液によりH2Sを除去する。H2S除去後のガスはCO2吸収塔9に送られ、ガス中のCO2が吸収液により除去される。CO2除去後のガスの主成分はH2であり、発電用のプラントであればガスタービンの燃料として使用し、また、化学製造用や製鉄用のプラントであれば化学製品製造ライン、若しくは還元用ガスとして使用する。CO2吸収液は、CO2フラッシュドラム10に送られ、ヘンリー則による溶質ガス分圧の溶解度依存性を利用した減圧操作により吸収液中のCO2を再生させる。   The gas discharged from each shift reactor 5a-5c is cooled by heat exchangers 7b-7d. Since the shift reaction is an exothermic reaction, the temperature at the reactor outlet is higher than that at the reactor inlet. In addition, because of the equilibrium, the CO conversion reaction is less likely to proceed at higher temperatures, so it is more efficient to adopt a system in which the reactor is configured in multiple stages and the gas is cooled between the reactors. Water in the gas after the final stage of the shift reactor (5c in this embodiment) is condensed and removed by the knockout drum 6. Thereafter, the gas is sent to the H2S absorption tower 7 to remove H2S by the absorbing solution. The gas after H2S removal is sent to the CO2 absorption tower 9, and CO2 in the gas is removed by the absorbing solution. The main component of the gas after CO2 removal is H2, which is used as a fuel for gas turbines if it is a power generation plant, and a chemical product production line or reducing gas if it is a plant for chemical production or iron making. Use as The CO2 absorbing solution is sent to the CO2 flash drum 10, and CO2 in the absorbing solution is regenerated by a depressurization operation using the solubility dependency of the solute gas partial pressure according to Henry's law.

再生したCO2は、液化及び固化によって回収される。H2S吸収液はH2S再生塔8に送られ、例えばプラント内の未利用蒸気によって加熱することで再生させる。加熱再生後に排出されたH2Sは、燃焼させた後、カルシウム系吸収剤や石灰石により石膏化される。CO2吸収塔9から排出されたガスの主成分は水素であるが、不純物として吸収液で除去できないCOやCH4の他、吸収されなかったCO2が含まれる。これらのガスを水素精製設備11に送り、空気分離設備2で酸素と共に副生された液体窒素の冷熱により深冷分離され、高純度の水素を得る。   The regenerated CO2 is recovered by liquefaction and solidification. The H2S absorption liquid is sent to the H2S regeneration tower 8 and regenerated by heating with unused steam in the plant, for example. H2S discharged after heating regeneration is combusted and then plastered with calcium-based absorbent and limestone. Although the main component of the gas discharged from the CO2 absorption tower 9 is hydrogen, CO2 that has not been absorbed is contained in addition to CO and CH4 that cannot be removed by the absorbing solution as impurities. These gases are sent to the hydrogen purification facility 11 and are cryogenically separated by the cold heat of liquid nitrogen by-produced together with oxygen in the air separation facility 2 to obtain high purity hydrogen.

本実施例では、シフト反応器5の前段に水洗塔4を設置し、生成ガス中の重金属やハロゲン化水素を除去している。シフト反応器5に用いる触媒は、重金属やハロゲン化水素の流入により被毒し、活性が低下する可能性がある。従って、シフト反応器2の前段で、重金属やハロゲン化水素を除去する必要がある。   In this embodiment, the water washing tower 4 is installed in the previous stage of the shift reactor 5 to remove heavy metals and hydrogen halide in the product gas. The catalyst used in the shift reactor 5 may be poisoned by the inflow of heavy metal or hydrogen halide, and the activity may be reduced. Therefore, it is necessary to remove heavy metals and hydrogen halides before the shift reactor 2.

尚、本実施例では、重金属やハロゲン化水素を除去する装置として、湿式除去装置である水洗塔を用いた例を示したが、吸着材や吸収材を用いた乾式除去装置を使用しても良い。吸着材や吸収材としては、アルカリ金属、アルカリ土類金属の酸化物、炭酸塩、水酸化物の他、活性炭やゼオライト等の多孔性物質を使用することができる。   In this embodiment, as an apparatus for removing heavy metals and hydrogen halides, an example using a water washing tower which is a wet removal apparatus is shown, but a dry removal apparatus using an adsorbent or an absorbent material may be used. good. As the adsorbent and absorbent, porous materials such as activated carbon and zeolite can be used in addition to oxides, carbonates and hydroxides of alkali metals and alkaline earth metals.

乾式除去装置を用いることにより、生成ガスの冷却・昇温操作を省くことができるため、エネルギーロスを抑制することができる。しかしながら、水洗塔を用いると、水洗塔からの同伴水蒸気が生成ガスに混ざることが期待でき、シフト反応器2の入口で供給する水蒸気量を低減することができる利点もある。シフト反応器5に充填する触媒としては、一般的なサワーシフト触媒であるCo/Mo系、Ni-Mo系触媒を使用することができる。また、これ以外にも耐硫黄性を有するシフト触媒であれば使用することは可能である。   By using the dry removal device, the operation of cooling and raising the temperature of the product gas can be omitted, so that energy loss can be suppressed. However, when the water washing tower is used, it can be expected that entrained water vapor from the water washing tower is mixed with the product gas, and there is an advantage that the amount of water vapor supplied at the inlet of the shift reactor 2 can be reduced. As the catalyst charged in the shift reactor 5, a Co / Mo-based or Ni-Mo-based catalyst, which is a general sour shift catalyst, can be used. In addition, any shift catalyst having sulfur resistance can be used.

シフト反応は、式(1)に示すように加水分解反応であるので、シフト反応器5の前段に水蒸気供給管を設置して、所定量の水蒸気を生成ガスに定常的に供給できるようにする。H2S吸収塔7とCO2吸収塔9としては、物理吸収塔と化学吸収塔のいずれも適用できる。吸収液の例としては、物理吸収ではセレクソール、レクチゾール等が使用でき、化学吸収ではメチルジエタノールアミン(MDEA)やアンモニア等が使用できる。本実施例では、CO2吸収塔9でCO2を吸収した吸収液は、CO2フラッシュドラム10で再生するシステムとしている。吸収液の再生には、フラッシュドラムを用いる方式以外にも、再生塔による加熱再生方式や、フラッシュドラムと再生塔の組合せによる再生方式を採用しても良い。また、本実施例では除湿工程としてノックアウトドラム6により除湿するプロセス例を示したが、本方法以外にもモレキュラーシーブや活性炭等の吸湿材により水分を除去する方法も適用できる。   Since the shift reaction is a hydrolysis reaction as shown in Formula (1), a water vapor supply pipe is installed in front of the shift reactor 5 so that a predetermined amount of water vapor can be constantly supplied to the product gas. . As the H2S absorption tower 7 and the CO2 absorption tower 9, either a physical absorption tower or a chemical absorption tower can be applied. As an example of the absorbing solution, selexol, lectisol, or the like can be used for physical absorption, and methyldiethanolamine (MDEA), ammonia, or the like can be used for chemical absorption. In this embodiment, the absorption liquid that has absorbed CO2 by the CO2 absorption tower 9 is a system that regenerates by the CO2 flash drum 10. In addition to the method using the flash drum, the regeneration of the absorbing solution may employ a heating regeneration method using a regeneration tower or a regeneration method using a combination of a flash drum and a regeneration tower. Moreover, although the process example which dehumidifies with the knockout drum 6 was shown as a dehumidification process in the present Example, the method of removing a water | moisture content with moisture absorbing materials, such as a molecular sieve and activated carbon, can also be applied besides this method.

(実施例5)
本実施例では本発明に係る、水素精製システムの一例を示す。システム構成図の一例を図5に示す。図5の基本構成は実施例4と同様であり、水素精製設備11を11a〜11cのように多段構成としたことが異なる。これまで述べたように、石炭をガス化したガスを最終的にCO2分離した後の水素リッチガス中には水素以外にCO2, CH4, 及びCOが主に含まれる。それぞれのガスの沸点は上述したように、水素 -249℃、CO2 -79℃、CH4 -162℃、CO -192℃である。
(Example 5)
In this embodiment, an example of a hydrogen purification system according to the present invention is shown. An example of a system configuration diagram is shown in FIG. The basic structure of FIG. 5 is the same as that of Example 4, and the difference is that the hydrogen purification equipment 11 has a multistage structure such as 11a to 11c. As described above, the hydrogen-rich gas after the CO2 gas is finally separated into CO2 mainly contains CO2, CH4, and CO in addition to hydrogen. As described above, the boiling points of the respective gases are hydrogen -249 ° C, CO2 -79 ° C, CH4 -162 ° C, and CO -192 ° C.

第1水素精製設備11aでは液体窒素にて-80℃以下、例えば-100℃に冷却することで上記ガスの内、CO2のみが相変化(ドライアイス化)して分離される。次に第2水素精製設備11bではCH4とCOの沸点の間の温度、例えば-180℃に冷却することでCH4のみが相変化(液化)して分離される。最後に第3水素精製設備11cではCOの沸点以下であり液体窒素で冷却可能な温度、例えば-195℃に冷却し、最後のCOを分離して最終的に高純度水素を得ることができる。   In the first hydrogen refining equipment 11a, by cooling to -80 ° C. or lower, for example, −100 ° C. with liquid nitrogen, only CO 2 in the gas is phase-changed (dry ice) and separated. Next, in the second hydrogen purification facility 11b, only CH4 is phase-changed (liquefied) and separated by cooling to a temperature between the boiling points of CH4 and CO, for example, -180 ° C. Finally, the third hydrogen purification facility 11c can cool to a temperature that is lower than the boiling point of CO and can be cooled with liquid nitrogen, for example, -195 ° C., and the final CO can be separated to finally obtain high-purity hydrogen.

(実施例6)
本実施例では、化石燃料を部分酸化した後にガス中に含まれるCOをCO2へ転換するシフト触媒に関する試験例を示す。具体的には、本発明で対象としたサワーシフト触媒について、水蒸気添加量を変えた際のCO転化性能の触媒種依存性評価結果を示す。上述したように、本発明では水素の高純度化を深冷分離法により実施することを特徴としている。深冷分離する対象ガス中に水分が含まれると水素精製設備近傍の対象ガス供給管や、水素精製設備内部で水分が凍結し、配管閉塞を引き起こす恐れがある。
(Example 6)
In this example, a test example of a shift catalyst that converts CO contained in gas into CO2 after partial oxidation of fossil fuel is shown. Specifically, for the sour shift catalyst targeted in the present invention, the results of evaluating the dependence of the CO conversion performance upon changing the amount of steam added on the catalyst type are shown. As described above, the present invention is characterized in that hydrogen purification is performed by a cryogenic separation method. If water is contained in the target gas to be subjected to cryogenic separation, the water may freeze in the target gas supply pipe near the hydrogen purification facility or inside the hydrogen purification facility, which may cause blockage of the pipe.

シフト工程でのCO転化率の目標値に依存するが、90%以上の転化率を得ることを目的とした場合、式(1)のシフト反応にて反応物質である水蒸気を反応当量比以上に添加する必要がある。その結果、反応に使用されなかった水分がシフト工程から排出される。そこで、少ない水蒸気量で高いCO転化性能が得られる触媒を選定することにより、シフト工程から排出される水分を低減することができ、後段の除湿工程の負荷を下げられるだけでなく、除湿工程から排出される水分量の低減にも寄与できると考えられる。その結果、上述したような水素精製工程での凍結、配管閉塞等のトラブルを防ぐことができる。   Although it depends on the target value of CO conversion rate in the shift process, when the purpose is to obtain a conversion rate of 90% or higher, the water vapor, which is a reactant in the shift reaction of formula (1), exceeds the reaction equivalent ratio. It is necessary to add. As a result, moisture not used in the reaction is discharged from the shift process. Therefore, by selecting a catalyst that provides high CO conversion performance with a small amount of water vapor, it is possible not only to reduce the water discharged from the shift process, but also to reduce the load of the subsequent dehumidification process. It is thought that it can also contribute to the reduction of the amount of water discharged. As a result, troubles such as freezing and piping blockage in the hydrogen purification process as described above can be prevented.

試験は固定層流通式試験装置を用いた。試験装置の概略を図6に示す。本装置の基本構成は、ガス供給系(マスフローコントローラー100)、水蒸気供給系(水タンク101、プランジャポンプ102、水気化器103)、反応管106、電気炉107、トラップ槽110である。電気炉107により、反応管104での反応温度を変化させた。トラップ槽110では、ガス中の水分を凝縮させてトラップし、その後、過塩素酸マグネシウムを充填した吸湿装置114によりガス中の水分を完全に除去した。   The test used the fixed bed flow type test device. An outline of the test apparatus is shown in FIG. The basic configuration of this apparatus is a gas supply system (mass flow controller 100), a water vapor supply system (water tank 101, plunger pump 102, water vaporizer 103), reaction tube 106, electric furnace 107, and trap tank 110. The reaction temperature in the reaction tube 104 was changed by the electric furnace 107. In the trap tank 110, moisture in the gas was condensed and trapped, and then the moisture in the gas was completely removed by the moisture absorption device 114 filled with magnesium perchlorate.

生成ガスを模擬する反応ガスとして、CO、H2、CH4、CO2、N2及びH2Sを、所定流量となるようにマスフローコントローラー100によって調節して、反応管106に供給した。また、水蒸気は、水タンク101の水をプランジャポンプ102によって流量を調節し、その後、水気化器103によって気化させて、反応管106に供給した。   CO, H 2, CH 4, CO 2, N 2, and H 2 S were adjusted by the mass flow controller 100 to be a predetermined flow rate and supplied to the reaction tube 106 as reaction gases simulating the product gas. In addition, the flow rate of water in the water tank 101 was adjusted by the plunger pump 102 and then vaporized by the water vaporizer 103 and supplied to the reaction tube 106.

反応管106には、目皿を設置し、目皿上にガラスウール109を敷き、その上部に供試触媒108を充填した。また、供試触媒108の上部に整流材としてラシヒリング112を充填した。     The reaction tube 106 was provided with an eye plate, glass wool 109 was laid on the eye plate, and the test catalyst 108 was filled on the upper part. Further, a Raschig ring 112 was filled as a flow regulating material on the upper part of the test catalyst 108.

供試触媒の性能評価試験条件は以下とした。サワーシフト触媒は酸化物状態で反応管に充填されるため、使用に際しては式(5)に示す還元硫化操作によりMoを還元させることが必要となる。   The performance evaluation test conditions of the test catalyst were as follows. Since the sour shift catalyst is filled in the reaction tube in an oxide state, it is necessary to reduce Mo by a reductive sulfidation operation shown in Formula (5) when used.

Figure 2017048087
Figure 2017048087

N2を流通させながら、触媒が180℃になるまで昇温した。その後、7vol%H2/N2ガスに切り換え、200℃まで昇温した。温度が安定した後、H2Sを3vol%になるように調節して供給した。触媒層出口でH2Sが検出されたことを確認したら1℃/minで320℃まで昇温し、320℃にて45分間保持した後、還元硫化処理を終了した。 While circulating N 2 , the temperature was raised until the catalyst reached 180 ° C. Then, switching to 7vol% H2 / N 2 gas, the temperature was raised to 200 ° C.. After the temperature was stabilized, H2S was adjusted to 3 vol% and supplied. When it was confirmed that H2S was detected at the catalyst layer outlet, the temperature was raised to 320 ° C. at 1 ° C./min and maintained at 320 ° C. for 45 minutes, and then the reduction sulfurization treatment was terminated.

試験用ガスはCO 60vol%, H2 20vol%, CO2 5vol%, CH4 1vol%, N2 14vol%の五種混合ガス、10%H2S/N2balanceガスを用いた。触媒充填量はwetガス基準の空間速度(SV;Space velocity)にて1400h-1になるように充填した。また、反応物質であるH2OはH2O/CO(モル比)が1.2、1.5、1.8mol/molになるように調整して供給した。また、反応温度は触媒入口温度で各条件共に250℃とした。触媒層出口ガスをサンプリングし、ガスクロマトグラフにてCO濃度を測定し、式(6)によりCO転化率を算出した。   The test gas used was a mixed gas of 5 kinds of CO 60 vol%, H2 20 vol%, CO2 5 vol%, CH4 1 vol%, N2 14 vol%, and 10% H2S / N2balance gas. The catalyst charge was 1400h-1 at a space velocity (SV) based on wet gas. Further, H2O as a reactant was supplied after adjusting so that H2O / CO (molar ratio) was 1.2, 1.5, and 1.8 mol / mol. The reaction temperature was 250 ° C. for each condition at the catalyst inlet temperature. The catalyst layer outlet gas was sampled, the CO concentration was measured with a gas chromatograph, and the CO conversion rate was calculated by the equation (6).

Figure 2017048087
Figure 2017048087

供試触媒として、Ni/Mo/TiO2触媒とCo/Mo/Al2O3触媒の性能を比較した。各触媒は以下の手順で調製した。まず、担体成分としてチタニア(TiO2)とアルミナ(Al2O3)を選定し、七モリブデン酸アンモニウム四水和物と硝酸ニッケル六水和物及び硝酸コバルト六水和物を担体金属成分:Mo:M=1:0.05:0.05の金属モル比となるように混合し、さらに蒸留水を加え、自動乳鉢にて30分間湿式混練した。尚、上記MはNi又はCoを示す。次に、120℃で2時間乾燥後、500℃で1時間焼成した。焼成後の触媒は乳鉢にて破砕し、加圧プレス機にて500kgfで2分間加圧成型する。最後に、成型後の触媒を10-20meshに整粒して供試触媒を得た。   The performances of Ni / Mo / TiO2 catalyst and Co / Mo / Al2O3 catalyst were compared as test catalysts. Each catalyst was prepared by the following procedure. First, titania (TiO2) and alumina (Al2O3) are selected as support components, ammonium heptamolybdate tetrahydrate, nickel nitrate hexahydrate and cobalt nitrate hexahydrate are supported metal components: Mo: M = 1 The mixture was mixed so that the metal molar ratio was 0.05: 0.05, further distilled water was added, and wet kneading was performed for 30 minutes in an automatic mortar. The above M represents Ni or Co. Next, after drying at 120 ° C. for 2 hours, baking was performed at 500 ° C. for 1 hour. The calcined catalyst is crushed in a mortar and pressure-molded at 500 kgf for 2 minutes with a pressure press. Finally, the molded catalyst was sized to 10-20 mesh to obtain a test catalyst.

調製した触媒にてCO転化性能の添加水蒸気量依存性を評価した結果を図7に示す。Co/Mo/Al2O3触媒に比べて、Ni/Mo/TiO2触媒のCO転化率は各H2O/CO比条件にて一律高いことが確認された。従って、Ni/Mo/TiO2をシフト反応工程に適用した方が同等のCO転化性能が得られる水蒸気添加量を低減することができ、その結果、シフト工程出口に含まれる水分量を低減できる。従って、本発明に適用する触媒としてはNi/Mo/TiO2が好適であると判断される。   FIG. 7 shows the results of evaluating the dependency of the CO conversion performance on the amount of added water vapor with the prepared catalyst. Compared to the Co / Mo / Al2O3 catalyst, it was confirmed that the CO conversion of the Ni / Mo / TiO2 catalyst was uniformly high under each H2O / CO ratio condition. Therefore, when the Ni / Mo / TiO2 is applied to the shift reaction step, the amount of water vapor added to obtain the same CO conversion performance can be reduced, and as a result, the amount of water contained in the shift step outlet can be reduced. Therefore, it is judged that Ni / Mo / TiO2 is suitable as the catalyst applied to the present invention.

1…圧縮機、2…空気分離設備、3…ガス化炉、4…水洗塔、5…シフト反応器、6…ノックアウトドラム、7…H2S吸収塔、8…H2S再生塔、9…CO2吸収塔、10…CO2フラッシュドラム、11…水素精製設備、12…熱交換器、13…ガス加熱器、100…マスフローコントローラー、101…水タンク、102…プランジャポンプ、103…水気化器、104…ラインヒーター、105…マントルヒーター、106…反応管、107…電気炉、108…供試触媒、109…ガラスウール、110…トラップ槽、111…水分除去装置、112…ラシヒリング DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Air separation equipment, 3 ... Gasification furnace, 4 ... Water washing tower, 5 ... Shift reactor, 6 ... Knockout drum, 7 ... H2S absorption tower, 8 ... H2S regeneration tower, 9 ... CO2 absorption tower DESCRIPTION OF SYMBOLS 10 ... CO2 flash drum, 11 ... Hydrogen purification equipment, 12 ... Heat exchanger, 13 ... Gas heater, 100 ... Mass flow controller, 101 ... Water tank, 102 ... Plunger pump, 103 ... Water vaporizer, 104 ... Line heater , 105 ... Mantle heater, 106 ... Reaction tube, 107 ... Electric furnace, 108 ... Test catalyst, 109 ... Glass wool, 110 ... Trap tank, 111 ... Moisture removal device, 112 ... Raschig ring

Claims (12)

化石燃料を酸素により部分酸化することでガス化するガス化工程と、ガス化ガスの精製工程と、ガス化ガスに含まれるCOをシフト触媒により水蒸気と反応させて水素とCO2へ転換するシフト工程と、シフト後ガス中に含まれるH2Sを除去する脱硫工程と、前記シフト工程で生成した水素とCO2を分離するCO2分離工程とCO2分離後のガスを精製して水素を高純度化する水素精製工程を備える水素製造方法において、
前記水素精製工程では冷熱媒体を用いた深冷分離法にて水素リッチガス中の水素以外のガス成分を相変化させて分離し、高純度水素に精製することを特徴とする水素製造方法。
Gasification process to gasify fossil fuel by partial oxidation with oxygen, gasification gas purification process, shift process to convert CO contained in gasification gas to water vapor by shift catalyst and convert to hydrogen and CO2 And a desulfurization process that removes H2S contained in the gas after the shift, a CO2 separation process that separates the hydrogen and CO2 produced in the shift process, and a hydrogen purification that purifies the gas after the CO2 separation and purifies the hydrogen. In a hydrogen production method comprising a process,
In the hydrogen purification step, a hydrogen production method is characterized in that a gas component other than hydrogen in the hydrogen-rich gas is phase-separated and separated into a high purity hydrogen by a cryogenic separation method using a cold medium.
請求項1において、前記ガス化工程の前段に深冷分離により空気を分離する空気分離工程を備え、空気分離工程で生成したO2をガス化工程に助燃剤として供給し、且つ、空気分離工程で生成した液体窒素を冷熱媒体として前記水素精製工程に供給することを特徴とする水素製造方法。   2. The air separation step according to claim 1, further comprising an air separation step of separating air by cryogenic separation before the gasification step, supplying O2 generated in the air separation step as a combustion aid to the gasification step, A method for producing hydrogen, characterized in that the produced liquid nitrogen is supplied as a cooling medium to the hydrogen purification step. 請求項1のいずれかにおいて、LNG冷熱回収工程を備え、LNGを気化する際に発生する冷熱を水素精製工程に供給することを特徴とする水素製造方法。   2. The hydrogen production method according to claim 1, further comprising an LNG cold heat recovery step, wherein cold heat generated when LNG is vaporized is supplied to the hydrogen purification step. 請求項1〜3のいずれかにおいて、前記シフト工程の後段に除湿工程を備えることを特徴とする水素製造方法。   4. The hydrogen production method according to claim 1, further comprising a dehumidifying step after the shift step. 請求項1〜4のいずれかにおいて、前記シフト工程で使用するシフト触媒は少なくともNi, Mo, Tiを含むことを特徴とする水素製造方法。   5. The hydrogen production method according to claim 1, wherein the shift catalyst used in the shift step contains at least Ni, Mo, and Ti. 請求項1〜5のいずれかにおいて、前記CO2分離工程及び/又は前記水素精製工程から排出されたCO2を、化石燃料をガス化工程に供給する際の搬送ガスとして使用するCO2リサイクル工程を備えることを特徴とする水素製造方法。   6. The method according to claim 1, further comprising a CO2 recycling step in which CO2 discharged from the CO2 separation step and / or the hydrogen purification step is used as a carrier gas when supplying fossil fuel to the gasification step. A method for producing hydrogen. 化石燃料を酸素により部分酸化することでガス化するガス化炉と、ガス化ガスの精製設備と、ガス化ガスに含まれるCOをシフト触媒により水蒸気と反応させて水素とCO2へ転換するシフト反応器と、シフト後ガス中に含まれるH2Sを除去する脱硫設備と、前記シフト工程で生成した水素とCO2を分離するCO2分離設備とCO2分離後のガスを精製して水素を高純度化する水素精製設備を備える水素製造装置において、
前記水素精製設備では冷熱媒体を用いた深冷分離法にて水素リッチガス中の水素以外のガス成分を相変化させて分離し、高純度水素に精製することを特徴とする水素製造装置。
Gasification furnace that gasifies fossil fuel by partial oxidation with oxygen, gasification gas purification equipment, and shift reaction in which CO contained in gasification gas is reacted with water vapor by a shift catalyst to convert it into hydrogen and CO2. , A desulfurization facility that removes H2S contained in the gas after the shift, a CO2 separation facility that separates the hydrogen and CO2 generated in the shift step, and a hydrogen that purifies the gas after the CO2 separation and purifies the hydrogen. In a hydrogen production apparatus equipped with a purification facility,
In the hydrogen purification equipment, a hydrogen production apparatus characterized in that a gas component other than hydrogen in the hydrogen-rich gas is phase-separated and separated into a high-purity hydrogen by a cryogenic separation method using a cold medium.
請求項7において、前記ガス化炉の前段に深冷分離により空気を分離する空気分離設備を備え、空気分離設備で生成したO2をガス化炉に助燃剤として供給し、且つ、空気分離設備で生成した液体窒素を冷熱媒体として前記水素精製設備に供給することを特徴とする水素製造装置。   The gas separation furnace according to claim 7, further comprising an air separation facility for separating air by cryogenic separation at a stage preceding the gasification furnace, supplying O2 generated by the air separation facility to the gasification furnace as a combustor, A hydrogen production apparatus, wherein the produced liquid nitrogen is supplied to the hydrogen purification facility as a cold medium. 請求項7において、LNG冷熱回収設備を備え、LNGを気化する際に発生する冷熱を水素精製設備に供給することを特徴とする水素製造装置。   8. The hydrogen production apparatus according to claim 7, further comprising an LNG cold energy recovery facility, wherein cold energy generated when LNG is vaporized is supplied to the hydrogen purification facility. 請求項7において、前記シフト反応器の後段に除湿設備を備えることを特徴とする水素製造装置。   The hydrogen production apparatus according to claim 7, further comprising a dehumidifying facility at a subsequent stage of the shift reactor. 請求項7〜10のいずれかにおいて、前記シフト反応器に充填するシフト触媒は少なくともNi, Mo, Tiを含むことを特徴とする水素製造装置。   11. The hydrogen production apparatus according to claim 7, wherein the shift catalyst charged in the shift reactor contains at least Ni, Mo, and Ti. 請求項7〜11のいずれかにおいて、前記CO2分離設備及び/又は前記水素精製設備から排出されたCO2を、化石燃料をガス化工程に供給する際の搬送ガスとして使用するCO2リサイクル管を備えることを特徴とする水素製造装置。   The CO2 recycling pipe according to any one of claims 7 to 11, wherein CO2 discharged from the CO2 separation facility and / or the hydrogen purification facility is used as a carrier gas when supplying fossil fuel to a gasification step. A hydrogen production apparatus characterized by
JP2015173431A 2015-09-03 2015-09-03 Method and apparatus for producing hydrogen from fossil fuel Pending JP2017048087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173431A JP2017048087A (en) 2015-09-03 2015-09-03 Method and apparatus for producing hydrogen from fossil fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173431A JP2017048087A (en) 2015-09-03 2015-09-03 Method and apparatus for producing hydrogen from fossil fuel

Publications (1)

Publication Number Publication Date
JP2017048087A true JP2017048087A (en) 2017-03-09

Family

ID=58279092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173431A Pending JP2017048087A (en) 2015-09-03 2015-09-03 Method and apparatus for producing hydrogen from fossil fuel

Country Status (1)

Country Link
JP (1) JP2017048087A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279574A (en) * 2018-09-30 2019-01-29 中石化宁波工程有限公司 A kind of insulation of mating coal water slurry gasification and isothermal CO converter technique
CN114588734A (en) * 2022-01-28 2022-06-07 杨光华 Method for purifying yellow phosphorus tail gas of electric furnace
WO2023139259A1 (en) * 2022-01-24 2023-07-27 Topsoe A/S Effective use of cryogenic separation section in syngas manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279574A (en) * 2018-09-30 2019-01-29 中石化宁波工程有限公司 A kind of insulation of mating coal water slurry gasification and isothermal CO converter technique
CN109279574B (en) * 2018-09-30 2022-03-22 中石化宁波工程有限公司 Heat insulation and isothermal CO conversion process matched with coal water slurry gasification
WO2023139259A1 (en) * 2022-01-24 2023-07-27 Topsoe A/S Effective use of cryogenic separation section in syngas manufacture
CN114588734A (en) * 2022-01-28 2022-06-07 杨光华 Method for purifying yellow phosphorus tail gas of electric furnace
CN114588734B (en) * 2022-01-28 2023-09-29 杨光华 Method for purifying yellow phosphorus tail gas of electric furnace

Similar Documents

Publication Publication Date Title
JP6956665B2 (en) Method of methaneization of carbon dioxide in combustion exhaust gas and methane production equipment
TWI523687B (en) Conversion catalyst, gas purification plant gas refining methods and gas refining equipment
EP2407421B1 (en) A method and apparatus for producing power and hydrogen
JP5705156B2 (en) Gas purification method and coal gasification plant
JP6263029B2 (en) Methane production method, methane production apparatus, and gasification system using the same
US8551416B2 (en) System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S
JP2012522090A (en) Method for producing purified synthesis gas
JP2012521956A (en) Method for producing purified synthesis gas
Hao et al. Elevated temperature pressure swing adsorption using LaNi4. 3Al0. 7 for efficient hydrogen separation
JP5535990B2 (en) Shift catalyst, gas purification method and equipment
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
KR101632888B1 (en) Energy reduction high efficiency water gas shift reaction system
WO2019073722A1 (en) Methane production system and methane production method
JP2013087021A (en) Carbon dioxide recovery system for plant generating syngas from fossil fuel
JP5514133B2 (en) CO2 recovery method and CO2 recovery device
MX2013010818A (en) Process and system for removing sulfur from sulfur-containing gaseous streams.
AU2021314142B2 (en) Methane reformer for the production of hydrogen and a hydrocarbon fuel
Sakib et al. Optimization of Carbon Capture in Hydrogen Production Via Steam Reforming: A Simulation-based Case Study
KR20140000643A (en) Production apparatus of high purity gas and the production method thereby
JP6293472B2 (en) Hydrogen production apparatus and hydrogen production method
Monteleone et al. Fuel gas clean-up and conditioning

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113