JP2013241923A - Gasification power generation system of carbon-based fuel - Google Patents

Gasification power generation system of carbon-based fuel Download PDF

Info

Publication number
JP2013241923A
JP2013241923A JP2012117119A JP2012117119A JP2013241923A JP 2013241923 A JP2013241923 A JP 2013241923A JP 2012117119 A JP2012117119 A JP 2012117119A JP 2012117119 A JP2012117119 A JP 2012117119A JP 2013241923 A JP2013241923 A JP 2013241923A
Authority
JP
Japan
Prior art keywords
water
gas
recovery unit
gasification furnace
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012117119A
Other languages
Japanese (ja)
Inventor
Fumihiko Kiso
文彦 木曽
Takuya Ishiga
琢也 石賀
Fumihiko Nagaremori
文彦 流森
Takashi Sasaki
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012117119A priority Critical patent/JP2013241923A/en
Priority to CN2013101924977A priority patent/CN103421544A/en
Publication of JP2013241923A publication Critical patent/JP2013241923A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasification power generation system of carbon-based fuel that gives a high efficiency of power generation, even when a desulfurizer using an absorbing solution is installed between a gasification furnace and a gas turbine.SOLUTION: There are provided a gasification furnace to produce a produced gas from carbon-based fuel, a heat recovering unit of the gasification furnace to recover heat of the produced gas, a cooling tower to cool the produced gas, a shift reactor to react carbon monoxide and steam in the produced gas to convert them to carbon dioxide and hydrogen, an absorbing tower to absorb hydrogen sulfide in the produced gas coming out of the shift reactor with an absorbing solution, a gas turbine to generate power using as fuel the produced gas having the hydrogen sulfide removed, a water recovery unit that is installed in an exhaust gas passage of the gas turbine and recovers water by cooling an exhaust gas, and a humidifying tower to spray water recovered in the water recovering unit to combustion air to be supplied to the gas turbine to humidify the combustion air. A cooling water supply system is installed to supply water recovered in the water recovering unit as cooling water to any one of the gasification furnace, the heat recovering unit of the gasification furnace and the cooling tower.

Description

本発明は、石炭やバイオマス、重質油などの炭素系燃料をガス化して一酸化炭素と水素を主成分とするガスを生成し、この生成ガスを燃料としてガスタービンで発電する炭素系燃料のガス化発電システムに関するものである。   The present invention is a carbon-based fuel that generates carbon-monoxide and hydrogen-based gases by gasifying carbon-based fuels such as coal, biomass, and heavy oil, and uses the generated gas as fuel to generate power in a gas turbine. The present invention relates to a gasification power generation system.

天然ガスを燃料とした発電システムとしては、天然ガスをボイラで完全燃焼し、得られ燃焼ガスとの間接熱交換で水蒸気を製造し、蒸気タービンで発電するシステムと、天然ガスをガスタービン燃焼器で燃焼し、燃焼ガスで直接ガスタービンを駆動する方法がある。   As a power generation system using natural gas as fuel, natural gas is completely burned in a boiler, steam is produced by indirect heat exchange with the resulting combustion gas, and power is generated by a steam turbine, and natural gas is used as a gas turbine combustor. In this method, the gas turbine is directly driven by the combustion gas.

ボイラを用いた間接熱交換で得られる水蒸気の温度が最高でも700℃程度であるのに対し、ガスタービン燃焼器で得られる燃焼ガスは、その倍以上の高温にすることができるため、ガスタービンを用いる発電システムの方が、発電効率を高められる可能性が大きい。   Since the temperature of water vapor obtained by indirect heat exchange using a boiler is about 700 ° C. at the maximum, the combustion gas obtained by a gas turbine combustor can be at a temperature higher than twice that of the gas turbine. There is a greater possibility that the power generation system using the power generation efficiency can be improved.

ガスタービンを用いる発電システムでは、ガスタービンを駆動した後の排ガスとの間接熱交換で水蒸気を製造し、得られた水蒸気で蒸気タービンを駆動する複合発電にすることによって、高効率化が図られている。   In a power generation system using a gas turbine, high efficiency is achieved by producing steam by indirect heat exchange with the exhaust gas after driving the gas turbine, and making the combined power generation that drives the steam turbine with the obtained steam. ing.

また、蒸気タービンを用いず、燃焼用空気に水を含ませ、この水を含んだ空気をガスタービン排ガスとの間接熱交換で昇温し、ガスタービン排ガスの持つエネルギーをガスタービン発電で回収することで、蒸気タービンを用いずに複合発電と同等の発電効率を実現するシステムが考案されている。   Also, without using a steam turbine, water is included in the combustion air, the temperature of the air containing the water is raised by indirect heat exchange with the gas turbine exhaust gas, and the energy of the gas turbine exhaust gas is recovered by gas turbine power generation. Thus, a system has been devised that achieves power generation efficiency equivalent to combined power generation without using a steam turbine.

このシステムは高湿分空気利用ガスタービンと呼ばれており、部分負荷における発電効率は、複合発電より高く、また、複合発電よりも高速負荷追従が可能とされている。   This system is called a high-humidity air-utilizing gas turbine, and the power generation efficiency at a partial load is higher than that of combined power generation, and higher-speed load tracking is possible than combined power generation.

石炭やバイオマスなどの炭素系燃料を燃料とする発電システムでも、炭素系燃料をガス化炉でガス化して一酸化炭素と水素を主成分とする生成ガスとして、生成ガス中の微粒子や硫黄化合物を除去することで、天然ガスと同様のガスタービンを用いた発電システムが適用できるようになり、ガスタービンと蒸気タービンで複合発電するシステムや、高湿分空気利用ガスタービンで発電するシステムが考案されている。   Even in power generation systems that use carbon-based fuels such as coal and biomass as fuels, carbon-based fuels are gasified in a gasification furnace to produce carbon monoxide and hydrogen as main components, and fine particles and sulfur compounds in the generated gas are used. Eliminating it makes it possible to apply a power generation system that uses a gas turbine similar to natural gas, and devised a system that combines power generation with a gas turbine and a steam turbine, and a system that generates power with a gas turbine using high humidity air. ing.

前述したように、高湿分空気利用ガスタービンは複合発電より部分負荷における発電効率が高く、負荷追従速度が速いという利点があるが、炭素系燃料をガス化して燃料とする場合、ガス化炉における発熱を、電力に変換する工夫が必要となる。   As described above, the high-humidity air-utilizing gas turbine has the advantages of higher power generation efficiency at a partial load and faster load following speed than the combined power generation. It is necessary to devise a method for converting the heat generated in to power.

炭素系燃料の発熱量のうち、70〜80%は生成ガス中の一酸化炭素、水素などの可燃成分の発熱量に変換されるが、前記発熱量の20〜30%は生成ガスの顕熱(1300℃前後)に変換されるので、複合発電を用いる場合はこの顕熱を水蒸気として回収し、蒸気タービンを駆動して電力に変換することができる。   Of the calorific value of the carbon-based fuel, 70 to 80% is converted to the calorific value of combustible components such as carbon monoxide and hydrogen in the product gas, but 20 to 30% of the calorific value is the sensible heat of the product gas. Therefore, when combined power generation is used, this sensible heat can be recovered as water vapor, and the steam turbine can be driven to convert it into electric power.

これに対して、高湿分空気利用ガスタービンを用いる場合は、蒸気タービンがないので、水蒸気として回収しても電力に変換することができない。   On the other hand, in the case of using a high-humidity air-utilizing gas turbine, since there is no steam turbine, even if it is recovered as water vapor, it cannot be converted into electric power.

そこで、例えば特開2001−115854号公報には、石炭ガスに液体の水を噴霧して水蒸気とすることで、石炭ガスの熱を水蒸気の顕熱と潜熱に変換し、ガスタービンに供給するガス化発電プラントに関する技術が開示されている。   Therefore, for example, in Japanese Patent Application Laid-Open No. 2001-115854, a gas supplied by spraying liquid water onto coal gas to form steam to convert the heat of the coal gas into sensible heat and latent heat of the steam and supply it to the gas turbine. A technology related to a power plant is disclosed.

この技術では、ガス化炉とガスタービンの間に吸収液を用いる湿式脱硫装置を設置すると、湿式脱硫装置の前までに生成ガスの温度を約40℃まで下げなければならないので、生成ガスに付与した水蒸気が凝縮し、水蒸気の持つエネルギーをガスタービンに伝えることができなくなる。   In this technology, when a wet desulfurization device using an absorbing liquid is installed between the gasification furnace and the gas turbine, the temperature of the product gas must be lowered to about 40 ° C. before the wet desulfurization device. The condensed water vapor is condensed and the energy of the water vapor cannot be transmitted to the gas turbine.

そこで、ガス化炉とガスタービンの間に設置する主に硫化水素を除去する不純物除去装置には、水蒸気が凝縮しない300℃以上で硫化水素などを吸着する吸着剤を用いる乾式法を適用している。   Therefore, a dry method using an adsorbent that adsorbs hydrogen sulfide or the like at 300 ° C. or higher where water vapor does not condense is applied to an impurity removal apparatus that mainly removes hydrogen sulfide installed between a gasification furnace and a gas turbine. Yes.

また、特開2000−213371号公報には、「ガス化炉でガス化した生成ガスをガスタービン燃焼器に供給して燃焼させると共に、燃焼用の空気を加湿して該加湿した空気をガスタービン排ガスで加熱して前記ガスタービン燃焼器に供給させてガスタービン排ガスの持つエネルギーを回収するガスタービン発電システムにおいて、」ガス化炉とガスタービンの間には脱硫装置を設置せず、ガスタービン下流に脱硫装置を設置して、大気への硫黄化合物排出を抑制する技術が開示されている。   Further, Japanese Patent Laid-Open No. 2000-213371 discloses that “a product gas gasified in a gasification furnace is supplied to a gas turbine combustor and burned, and combustion air is humidified and the humidified air is converted into a gas turbine. In the gas turbine power generation system that recovers the energy of the gas turbine exhaust gas by heating it with exhaust gas and supplying it to the gas turbine combustor, ”no desulfurization device is installed between the gasification furnace and the gas turbine. The technology which suppresses the sulfur compound discharge | release to air | atmosphere by installing a desulfurization apparatus is disclosed.

特開2001−115854号公報JP 2001-115854 A 特開2000−213371号公報JP 2000-213371 A

例えば特開2001−115854号公報に記載された技術には、炭素系燃料をガス化して高湿分空気利用ガスタービンに燃料として供給して発電する技術として、ガス化炉とガスタービンの間に不純物除去装置として高温で作動する吸着剤を用いる乾式脱硫装置を設置していた。   For example, in the technology described in Japanese Patent Application Laid-Open No. 2001-115854, as a technology for gasifying carbon-based fuel and supplying it as fuel to a high-humidity air-utilizing gas turbine, power generation is performed between a gasification furnace and a gas turbine. A dry desulfurization apparatus using an adsorbent that operates at a high temperature was installed as an impurity removal apparatus.

ところで、前記した技術においては、乾式脱硫装置として吸着剤を充填した吸着塔を二塔設置し、一方の吸着塔に生成ガスを流通して硫化水素などを吸着している間に、他方の吸着塔には生成ガスの温度より100℃程度高温の再生ガスを流通して、前記他方の吸着塔に充填した吸着剤から吸着された硫化水素などを脱着する必要がある。   By the way, in the above-described technique, two adsorption towers filled with an adsorbent are installed as a dry desulfurization apparatus, and while the produced gas is circulated through one adsorption tower and adsorbs hydrogen sulfide and the like, the other adsorption tower is adsorbed. It is necessary to circulate a regeneration gas having a temperature about 100 ° C. higher than the temperature of the product gas through the tower to desorb hydrogen sulfide adsorbed from the adsorbent packed in the other adsorption tower.

そして前記乾式脱硫装置では、生成ガス中の水蒸気の凝縮を防止するために、約400℃で生成ガス中の硫化水素などを吸着剤に吸着させると、この吸着剤を再生させる再生ガスの温度は約500℃が必要で、この約500℃の温度の再生ガスを得るためには、この再生ガスの温度よりもさらに約100℃高い熱源が必要であることから熱交換に伴う熱損失が大きくなり、ガス化した燃料を使用するガス化発電システムの発電効率が低下する課題があった。   In the dry desulfurization apparatus, when hydrogen sulfide or the like in the product gas is adsorbed to the adsorbent at about 400 ° C. in order to prevent water vapor in the product gas from condensing, the temperature of the regeneration gas for regenerating the adsorbent is About 500 ° C. is required, and in order to obtain a regeneration gas having a temperature of about 500 ° C., a heat source that is higher by about 100 ° C. than the temperature of the regeneration gas is required. There has been a problem that the power generation efficiency of a gasification power generation system using gasified fuel is lowered.

本発明の目的は、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムを提供することにある。   An object of the present invention is to use an absorbing liquid that operates at a low temperature between a gasification furnace and a gas turbine in a gasification power generation system for carbon-based fuel that generates power by gasifying a carbon-based fuel and supplying it as a fuel to a gas turbine. An object of the present invention is to provide a gasification power generation system for a carbon-based fuel that can obtain high power generation efficiency by introducing exhaust heat from a gasification furnace to a gas turbine even when a desulfurization apparatus is installed.

本発明の炭素系燃料のガス化発電システムは、炭素系燃料を酸化剤でガス化して一酸化炭素と水素を主成分とする生成ガスを製造するガス化炉と、前記ガス化炉の上部に設置されガス化炉で製造された生成ガスの熱を回収する熱回収部と、前記ガス化炉の下流側に設置されガス化炉で製造された生成ガスに水を噴霧して生成ガスを冷却するとともに、水蒸気を発生させる冷却塔と、前記冷却塔の下流側に設置されガス化炉で製造された生成ガスを脱塵する脱塵設備と、前記脱塵設備の下流側に設置され脱塵設備を流下した生成ガスの熱で水洗塔を経た生成ガスを昇温する第1の熱交換器と、前記熱交換器の下流側に設置され第1の熱交換器で発生した水蒸気を付加した生成ガス中の一酸化炭素と水蒸気を反応させて二酸化炭素と水素に変換するシフト反応器と、前記シフト反応器の下流側に設置されシフト反応器を経た生成ガス中の少なくとも硫化水素を吸収液に吸収させる吸収塔と、前記吸収塔から取り出され生成ガス中の硫化水素を除去した生成ガスを前記シフト反応器を経た生成ガスと間接熱交換させて該生成ガスを昇温する前記シフト反応器の下流側に設置された第2の熱交換器と、前記第2の熱交換器で昇温した生成ガスを燃料として導いて燃焼させ燃焼ガスを発生するガスタービン燃焼器と、前記ガスタービン燃焼器で発生した燃焼ガスで駆動されるガスタービンと、前記ガスタービンによって駆動され発電を行う発電機と、前記ガスタービンから排出された排ガスの流路に設置され該ガスタービンから排出された排ガスを冷却して該排ガスに含まれた水分を回収する水回収器と、前記ガスタービンの圧縮機で加圧され前記ガスタービン燃焼器に供給される燃焼用空気に前記水回収器で回収した水分の一部を噴霧して該燃焼用空気を加湿する増湿塔を備え、更に前記水回収器で回収した水の一部を冷却水として前記水回収器から前記ガス化炉、前記ガス化炉に設けた熱回収部、及び前記ガス化炉の下流側に設置された冷却塔の何れかに供給する冷却水供給系統を配設して、この冷却水供給系統を通じて前記水回収器から冷却水を前記ガス化炉、前記熱回収部、及び前記冷却塔の何れかに供給することを特徴とする。   A gasification power generation system for a carbon-based fuel according to the present invention includes a gasification furnace that gasifies a carbon-based fuel with an oxidant to produce a product gas mainly composed of carbon monoxide and hydrogen, and an upper part of the gasification furnace. A heat recovery unit that recovers the heat of the product gas that is installed and manufactured in the gasification furnace, and cools the product gas by spraying water on the product gas that is installed downstream of the gasification furnace and manufactured in the gasification furnace In addition, a cooling tower that generates water vapor, a dust removal facility that is installed downstream of the cooling tower and that produces dust produced in a gasification furnace, and a dust removal facility that is installed downstream of the dust removal equipment A first heat exchanger that raises the temperature of the product gas that has passed through the washing tower with the heat of the product gas that has flowed down the facility, and water vapor that is installed downstream of the heat exchanger and generated by the first heat exchanger are added. Reaction of carbon monoxide and water vapor in the product gas to carbon dioxide and hydrogen A shift reactor, an absorption tower installed downstream of the shift reactor and absorbing at least hydrogen sulfide in the product gas passed through the shift reactor, and hydrogen sulfide in the product gas taken out from the absorption tower A second heat exchanger installed on the downstream side of the shift reactor that indirectly heat-exchanges the removed product gas with the product gas that has passed through the shift reactor to raise the temperature of the product gas; and the second heat A gas turbine combustor that generates combustion gas by introducing the generated gas heated by the exchanger as fuel and burns it, a gas turbine that is driven by the combustion gas generated by the gas turbine combustor, and a gas turbine that is driven by the gas turbine A generator for generating electric power and the exhaust gas discharged from the gas turbine installed in the flow path of the exhaust gas cooled to recover the moisture contained in the exhaust gas A regenerator and an increase in which the combustion air pressurized by the compressor of the gas turbine and supplied to the gas turbine combustor is sprayed with a part of the water recovered by the water recoverer to humidify the combustion air. A wet tower is provided, and a part of the water recovered by the water recovery unit is used as cooling water from the water recovery unit to the gasification furnace, a heat recovery unit provided in the gasification furnace, and a downstream side of the gasification furnace A cooling water supply system for supplying to any of the cooling towers installed in the system is provided, and the cooling water is supplied from the water recovery device through the cooling water supply system to the gasification furnace, the heat recovery unit, and the cooling tower. It supplies to either. It is characterized by the above-mentioned.

本発明によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present invention, in a gas fueled power generation system for carbon fuel that gasifies carbon fuel and supplies it as a fuel to a gas turbine for power generation, an absorbing liquid that operates at a low temperature is used between the gasification furnace and the gas turbine. Even when a desulfurization apparatus is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding exhaust heat from the gasification furnace to the gas turbine.

本発明の第1実施例である炭素系燃料のガス化発電システムの構成を示した概略系統図。1 is a schematic system diagram showing the configuration of a gasification power generation system for a carbon-based fuel according to a first embodiment of the present invention. 本発明の第2実施例である炭素系燃料のガス化発電システムの構成を示した概略系統図。The schematic system diagram which showed the structure of the gasification power generation system of the carbonaceous fuel which is 2nd Example of this invention. 図2に示した第2実施例の炭素系燃料のガス化発電システムにおいて、ガスタービン排ガスから回収した水をガス化炉熱回収部に噴霧する構成を示すガス化炉熱回収部の部分図。The partial figure of the gasification furnace heat recovery part which shows the structure which sprays the water collect | recovered from gas turbine exhaust gas to the gasification furnace heat recovery part in the gasification power generation system of the carbon-type fuel of 2nd Example shown in FIG. 本発明の第3実施例である炭素系燃料のガス化発電システムの構成を示した概略系統図。The schematic system diagram which showed the structure of the gasification power generation system of the carbonaceous fuel which is 3rd Example of this invention. 本発明の第4実施例である炭素系燃料のガス化発電システムの構成を示した概略系統図。The schematic system diagram which showed the structure of the gasification power generation system of the carbonaceous fuel which is 4th Example of this invention. 図5に示した第4実施例の炭素系燃料のガス化発電システムにおいて、ガス化炉熱回収部を水冷管で構成した構造を示すガス化炉熱回収部の部分図。FIG. 6 is a partial view of a gasification furnace heat recovery unit showing a structure in which the gasification furnace heat recovery unit is constituted by a water-cooled tube in the carbon-based fuel gasification power generation system of the fourth embodiment shown in FIG. 5. 本発明の第5実施例である炭素系燃料のガス化発電システムの構成を示した概略系統図。The schematic system diagram which showed the structure of the gasification power generation system of the carbonaceous fuel which is 5th Example of this invention. 本発明の第6実施例である炭素系燃料のガス化発電システムにおいて、ガスタービン排ガスから回収した水をガス化炉熱回収部の水冷管に供給し、この水冷管から熱回収部内の生成ガスに水を噴霧する構成を示すガス化炉熱回収部の部分図。In the carbon-based fuel gasification power generation system according to the sixth embodiment of the present invention, the water recovered from the gas turbine exhaust gas is supplied to the water cooling pipe of the gasification furnace heat recovery section, and the generated gas in the heat recovery section is supplied from this water cooling pipe. The partial view of the gasification furnace heat recovery part which shows the structure which sprays water on.

本発明の炭素系燃料のガス化発電システムの実施例について、図面を引用して以下に説明する。   Embodiments of a carbonized gasification power generation system of the present invention will be described below with reference to the drawings.

本発明の第1実施例である炭素系燃料のガス化発電システムについて図1を用いて説明する。   A carbon fuel gasification power generation system according to a first embodiment of the present invention will be described with reference to FIG.

図1に示した本実施例の炭素系燃料のガス化発電システムは、炭素系燃料として石炭1、酸化剤として酸素2を用いており、微粉砕した石炭1を窒素3で搬送してガス化炉50に供給する。   The carbonized fuel gasification power generation system of the present embodiment shown in FIG. 1 uses coal 1 as the carbon fuel and oxygen 2 as the oxidizer, and transports the finely pulverized coal 1 with nitrogen 3 for gasification. Supply to the furnace 50.

ガス化炉50には酸素2も供給されており、このガス化炉50にて石炭1と酸素2を反応させて、一酸化炭素と水素を主成分とする生成ガス20を生成する。   Oxygen 2 is also supplied to the gasification furnace 50, and the coal 1 and oxygen 2 are reacted in the gasification furnace 50 to generate a product gas 20 mainly composed of carbon monoxide and hydrogen.

生成ガス20とならなかった石炭中の灰分は、溶融したスラグ5の状態でガス化炉50から排出する。ガス化炉50で得られた生成ガス20は、ガス化炉50の上部に設けたガス化炉熱回収部51を経由して前記ガス化炉50の下流側に設置した冷却塔52に導いて冷却する。   The ash in the coal that has not become the product gas 20 is discharged from the gasification furnace 50 in the state of the molten slag 5. The product gas 20 obtained in the gasification furnace 50 is led to a cooling tower 52 installed on the downstream side of the gasification furnace 50 via a gasification furnace heat recovery section 51 provided in the upper part of the gasification furnace 50. Cooling.

前記冷却塔52では排ガスから水を回収する水回収器65で回収した水33の一部を水回収器65から冷却水供給系統aを通じて水34として冷却塔52に供給して生成ガス20に噴霧して冷却するので、水34は生成ガス20と気液接触して気化する。   In the cooling tower 52, a part of the water 33 recovered by the water recovery device 65 that recovers water from the exhaust gas is supplied from the water recovery device 65 to the cooling tower 52 as water 34 through the cooling water supply system a and sprayed on the generated gas 20. Then, the water 34 is vaporized by contacting the product gas 20 with gas and liquid.

この過程で生成ガス20の顕熱が、水蒸気の顕熱及び潜熱に変換され、生成ガス20中の水蒸気濃度は40%程度になる。生成ガス20は、前記冷却塔52から該冷却塔52の下流側に設置した脱塵装置53に供給される。   In this process, the sensible heat of the product gas 20 is converted into sensible heat and latent heat of water vapor, and the water vapor concentration in the product gas 20 becomes about 40%. The generated gas 20 is supplied from the cooling tower 52 to a dust removing device 53 installed on the downstream side of the cooling tower 52.

冷却塔52に供給する水34の量は、冷却塔52の下流側に設置した脱塵装置53の入口に設けた温度計90で検出する生成ガス20の検出温度が規定値となるように、水34の供給量を調節する流量調整弁80で制御する。   The amount of water 34 supplied to the cooling tower 52 is such that the detected temperature of the product gas 20 detected by the thermometer 90 provided at the inlet of the dust removing device 53 installed on the downstream side of the cooling tower 52 becomes a specified value. It is controlled by a flow rate adjusting valve 80 that adjusts the supply amount of water 34.

この温度計90による検出温度の規定値は、脱塵装置53の下流側に設置したシフト反応器55で求められる入口ガス温度が約300℃であることから、300℃以上の検出温度となるように設定する。   The specified value of the temperature detected by the thermometer 90 is such that the detected gas temperature is 300 ° C. or higher because the inlet gas temperature obtained by the shift reactor 55 installed on the downstream side of the dust removing device 53 is about 300 ° C. Set to.

また、生成ガス20中の水蒸気量が、生成ガス中の一酸化炭素量以上になると、その分が生成ガス20中に残存し、前記シフト反応器55の下流側に設置した吸収液を用いる吸収塔56で凝縮して発電効率が低下する。   Further, when the amount of water vapor in the product gas 20 is greater than or equal to the amount of carbon monoxide in the product gas, that amount remains in the product gas 20 and is absorbed using the absorbent installed downstream of the shift reactor 55. Condensation in the tower 56 reduces power generation efficiency.

そこで、生成ガス20中の水蒸気量が多くなりすぎないように、脱塵装置53の入口の温度の規定値を設定する。   Therefore, a prescribed value for the temperature of the inlet of the dust removing device 53 is set so that the amount of water vapor in the product gas 20 does not become excessive.

このため、脱塵装置53の入口のガス温度の規定値は、350〜400℃の範囲となる。この温度範囲の値は、生成ガス20の露点に対して十分に高い値であり、脱塵装置53における水分凝縮を防止することができる。   For this reason, the specified value of the gas temperature at the inlet of the dust removing device 53 is in the range of 350 to 400 ° C. The value in this temperature range is sufficiently high with respect to the dew point of the product gas 20, and moisture condensation in the dust removing device 53 can be prevented.

冷却塔52に供給される水34の量は、上述のように脱塵装置53の入口の生成ガス20の温度が規定値になるように増減するが、ガス化炉50に供給する石炭1の供給量とほぼ同等の量となる。   The amount of water 34 supplied to the cooling tower 52 increases and decreases so that the temperature of the product gas 20 at the inlet of the dust removing device 53 becomes a specified value as described above, but the amount of the coal 1 supplied to the gasification furnace 50 is increased. The amount is almost the same as the supply amount.

脱塵装置53では、生成ガス20中に含まれる未燃の石炭(チャー)6が除去される。このチャー6は窒素4により搬送してガス化炉50にリサイクルする。   In the dust removing device 53, unburned coal (char) 6 contained in the product gas 20 is removed. The char 6 is conveyed by nitrogen 4 and recycled to the gasification furnace 50.

脱塵装置53を経た生成ガス20は、次に脱塵装置53の下流側に設置したガスガス熱交換器70を通して該ガスガス熱交換器70の下流側に設置された水洗塔54に導かれる。   The produced gas 20 that has passed through the dust removing device 53 is then led to a water washing tower 54 that is installed on the downstream side of the gas gas heat exchanger 70 through the gas gas heat exchanger 70 installed on the downstream side of the dust removing device 53.

水洗塔54には液体の水8が供給されており、水洗塔54で生成ガス20中のハロゲンを前記水8に吸収させ、水洗塔54の下部から抜き出す。   Liquid water 8 is supplied to the washing tower 54, and the halogen in the generated gas 20 is absorbed by the water 8 in the washing tower 54 and extracted from the lower part of the washing tower 54.

水洗塔54において生成ガス20中の水蒸気の一部は凝縮するが、水洗塔54に供給した水8の一部が気化するため、水洗塔54の出口の生成ガス20中の水蒸気濃度は、水洗塔54の入口と同等の値となる。   Although a part of the water vapor in the product gas 20 is condensed in the washing tower 54, a part of the water 8 supplied to the washing tower 54 is vaporized, so the water vapor concentration in the product gas 20 at the outlet of the washing tower 54 is The value is equivalent to the entrance of the tower 54.

水洗塔54の出口の生成ガス20は、ガスガス熱交換器70で脱塵装置53を出た生成ガス20と熱交換し、約300℃に昇温して水洗塔54の下流側に設置したシフト反応器55に供給される。   The generated gas 20 at the outlet of the flush tower 54 is heat-exchanged with the produced gas 20 exiting the dust removing device 53 by the gas gas heat exchanger 70, heated to about 300 ° C. and installed on the downstream side of the flush tower 54. It is supplied to the reactor 55.

シフト反応器55の内部にはシフト反応触媒が充填されており、生成ガス20中の一酸化炭素と水蒸気がシフト反応して二酸化炭素と水素になる。このシフト反応触媒を作動させるためには、シフト反応器55の入口ガス温度は約300℃が必要である。   The shift reactor 55 is filled with a shift reaction catalyst, and carbon monoxide and water vapor in the product gas 20 undergo a shift reaction to become carbon dioxide and hydrogen. In order to operate this shift reaction catalyst, the inlet gas temperature of the shift reactor 55 needs to be about 300 ° C.

前記シフト反応器55が設置されていない場合、シフト反応器55の下流側に設置した約40℃で運用する吸収塔56で生成ガス20中の水蒸気が凝縮し、この凝縮熱は発電に寄与しないため、ガス化発電システムの発電効率が大きく低下する。   When the shift reactor 55 is not installed, the water vapor in the product gas 20 condenses in the absorption tower 56 installed at the downstream side of the shift reactor 55 and operated at about 40 ° C., and this condensation heat does not contribute to power generation. Therefore, the power generation efficiency of the gasification power generation system is greatly reduced.

一方、本実施例の炭素系燃料のガス化発電システムにおいては、シフト反応器55で生成ガス20中の水蒸気が一酸化炭素とシフト反応することで、沸点が0℃以下の二酸化炭素と水素に変換されるので、シフト反応器55の下流側に生成ガス20から硫化水素及び二酸化炭素を吸収液11に吸収する吸収塔56を設置しても、ガス化発電システムの発電効率の低下は小さく抑えられる。   On the other hand, in the gasification power generation system of the carbon-based fuel of the present embodiment, the water vapor in the product gas 20 undergoes a shift reaction with carbon monoxide in the shift reactor 55, so that the boiling point becomes carbon dioxide and hydrogen of 0 ° C. or less. Therefore, even if an absorption tower 56 that absorbs hydrogen sulfide and carbon dioxide from the product gas 20 into the absorption liquid 11 is installed downstream of the shift reactor 55, the reduction in power generation efficiency of the gasification power generation system is kept small. It is done.

前記シフト反応器55を出た生成ガス20は、シフト反応器55の下流側に設置したガスガス熱交換器71と冷却器72に順次通ガスされ、シフト反応器55の下流側に設置された吸収塔56に供給される。   The product gas 20 exiting the shift reactor 55 is sequentially passed through a gas gas heat exchanger 71 and a cooler 72 installed on the downstream side of the shift reactor 55, and an absorption installed on the downstream side of the shift reactor 55. It is supplied to the tower 56.

吸収塔56にはメチルジエタノールアミンなどの吸収液11を流して、この吸収液11に生成ガス20に含まれた硫化水素を吸収させ、吸収塔56の下部から硫化水素を吸収した吸収液11を抜き出す。   The absorption liquid 56 such as methyldiethanolamine is allowed to flow through the absorption tower 56, the hydrogen sulfide contained in the product gas 20 is absorbed into the absorption liquid 11, and the absorption liquid 11 that has absorbed the hydrogen sulfide is extracted from the lower part of the absorption tower 56. .

ここで、吸収塔56に供給される吸収液11であるアルカリ性のアミン吸収液は、硫化水素だけでなく、二酸化炭素も吸収することができるが、二酸化炭素はガスタービン燃焼器60で燃焼反応には寄与しないものの、ガスタービン62を駆動する媒体にはなるので、ガス化発電システムの発電効率を高めるためには二酸化炭素は除去しない方が望ましい。   Here, the alkaline amine absorption liquid as the absorption liquid 11 supplied to the absorption tower 56 can absorb not only hydrogen sulfide but also carbon dioxide. However, the carbon dioxide undergoes a combustion reaction in the gas turbine combustor 60. However, in order to increase the power generation efficiency of the gasification power generation system, it is desirable not to remove carbon dioxide.

そこで、吸収塔56に供給される吸収液11には二酸化炭素の吸収を阻害する物質を添加し、硫化水素を選択的に吸収するようにしたものを用いる。   Therefore, the absorption liquid 11 supplied to the absorption tower 56 is added with a substance that inhibits the absorption of carbon dioxide and selectively absorbs hydrogen sulfide.

そして吸収塔56を出た生成ガス20は、ガスガス熱交換器71でシフト反応器55の出口の生成ガス20との熱交換で昇温した後に、ガスタービン燃焼器60に燃料として供給する。   The product gas 20 exiting the absorption tower 56 is heated by heat exchange with the product gas 20 at the outlet of the shift reactor 55 in the gas gas heat exchanger 71 and then supplied to the gas turbine combustor 60 as fuel.

ガスタービン燃焼器60には、水9の噴霧及び増湿塔64によって加湿した圧縮空気22も供給して燃料の生成ガス21と燃焼反応させ、高温の燃焼ガスを生成する。   The gas turbine combustor 60 is also supplied with the spray of water 9 and the compressed air 22 humidified by the humidifying tower 64 to cause a combustion reaction with the fuel generated gas 21 to generate a high-temperature combustion gas.

この加湿した圧縮空気22は、以下のようにして得られる。すなわち、ガスタービン圧縮機61の入口で空気6に約2重量%の水9を噴霧して圧縮機61で圧縮し、得られた圧縮空気をさらに増湿塔64に導いて水と接触させて10重量%前後の水を含む圧縮空気22とし、ガスタービン排ガスと熱交換するガスガス熱交換73により昇温した後に、前記ガスタービン燃焼器60にガスタービン燃焼用の空気として導くことによって加湿した圧縮空気22を得ている。   This humidified compressed air 22 is obtained as follows. That is, about 2% by weight of water 9 is sprayed on the air 6 at the inlet of the gas turbine compressor 61 and compressed by the compressor 61. The obtained compressed air is further guided to the humidification tower 64 and brought into contact with water. Compressed air 22 containing about 10% by weight of water, heated by gas gas heat exchange 73 that exchanges heat with gas turbine exhaust gas, and then humidified by introducing it into the gas turbine combustor 60 as gas turbine combustion air Air 22 is obtained.

ガスタービン燃焼器60で燃焼して生成した高温の燃焼ガスはガスタービン62を駆動し、ガスタービン62の回転軸に連結された発電機63を回転させることで、電力が得られる。   The high-temperature combustion gas generated by combustion in the gas turbine combustor 60 drives the gas turbine 62 and rotates the generator 63 connected to the rotating shaft of the gas turbine 62, thereby obtaining electric power.

ガスタービン62から排出した排ガスは前記ガスガス熱交換器73に導いて、排ガスの持つ顕熱の一部を前述した圧縮空気22の昇温に用いる。   The exhaust gas discharged from the gas turbine 62 is guided to the gas gas heat exchanger 73, and a part of the sensible heat of the exhaust gas is used for raising the temperature of the compressed air 22 described above.

前記ガスガス熱交換器73を経た排ガスは次に凝縮熱交換器74に導びかれ、前記水回収器65で回収した水30をこの凝縮熱交換器74に供給して前記凝縮熱交換器74に流入した排ガスとの間接熱交換で排ガスを冷却し、この排ガスに含まれた水分を凝縮させる。   The exhaust gas that has passed through the gas-gas heat exchanger 73 is then led to a condensation heat exchanger 74, and the water 30 recovered by the water recovery unit 65 is supplied to the condensation heat exchanger 74 to the condensation heat exchanger 74. The exhaust gas is cooled by indirect heat exchange with the inflowing exhaust gas, and moisture contained in the exhaust gas is condensed.

すなわち、排ガスが持つ顕熱と水蒸気の潜熱が、前記凝縮熱交換器74を経由して前記水回収器65から冷却水供給系統aを通じてガス化炉50、ガス化炉熱回収部51、或いは冷却塔52に供給される水に付与される。   That is, the sensible heat and the latent heat of water vapor contained in the exhaust gas are passed through the condensation heat exchanger 74 from the water recovery unit 65 through the cooling water supply system a, the gasification furnace 50, the gasification furnace heat recovery unit 51, or the cooling. It is given to the water supplied to the tower 52.

このため、従来は温度レベルが低く、発電効率向上のために使うことのできなかったこれらの熱を、ガス化炉50で得られた生成ガス20に付与してガスタービンによる発電に使うことで、ガス化発電システムの発電効率向上を図ることが可能となった。   For this reason, the heat level that has been low in the past and could not be used to improve power generation efficiency is applied to the generated gas 20 obtained in the gasification furnace 50 and used for power generation by the gas turbine. It has become possible to improve the power generation efficiency of the gasification power generation system.

前記凝縮熱交換器74を経た排ガスと凝縮した水は水回収器65に導かれて排ガスと水を分離し、この水回収器65で分離した排ガス23は煙突66から大気に放出される。   The exhaust gas that has passed through the condensation heat exchanger 74 and the condensed water are guided to the water recovery unit 65 to separate the exhaust gas and water, and the exhaust gas 23 separated by the water recovery unit 65 is discharged from the chimney 66 to the atmosphere.

また、水回収器65で排ガスと分離して回収された水30の一部はガスタービン圧縮空気の増湿のための増湿塔64の供給水32として供給されると共に、前記水回収器65で分離して回収された水30の一部はガス化炉50で得られた生成ガス20を冷却するために噴霧する水34として冷却塔52に供給されるように構成している。   A part of the water 30 separated and recovered from the exhaust gas by the water recovery unit 65 is supplied as the supply water 32 of the humidification tower 64 for increasing the humidity of the gas turbine compressed air, and the water recovery unit 65 A part of the water 30 separated and recovered in step (b) is supplied to the cooling tower 52 as water 34 to be sprayed to cool the product gas 20 obtained in the gasification furnace 50.

このように水を循環利用することで水消費量が抑えられる。ただし、水の循環利用で微量成分が濃縮するので、水回収器65で分離した微量成分を含む一部の水31は循環利用せず、排水処理を施す。そして、微量成分を含まない水10を、水回収器65の水位のレベルが一定になるように外部から水回収器65に供給するように構成している。   Thus, water consumption can be suppressed by circulating water. However, since trace components are concentrated by circulating water, a part of the water 31 containing the trace components separated by the water recovery unit 65 is not recycled and is subjected to wastewater treatment. And it is comprised so that the water 10 which does not contain a trace component may be supplied to the water collection | recovery device 65 from the outside so that the level of the water level of the water collection | recovery device 65 may become fixed.

上記した本実施例の炭素系燃料のガス化発電システムによる付加的な効果を列挙すると次に通りとなる。   The additional effects of the above-described carbon-based fuel gasification power generation system of the present embodiment are listed as follows.

本実施例の炭素系燃料のガス化発電システムでは、ガス化炉の下流にシフト反応器を設置し、シフト反応器で生成ガス中の一酸化炭素と水蒸気を反応させて二酸化炭素と水素とした後に吸収液を用いる吸収塔に導き、生成ガス中の硫化水素を除去するため、不純物除去装置として約40℃で生成ガス中の硫化水素などを吸収する湿式脱硫装置が適用可能となる。   In the carbon fuel gasification power generation system of this example, a shift reactor is installed downstream of the gasification furnace, and carbon monoxide and water vapor in the product gas are reacted in the shift reactor to form carbon dioxide and hydrogen. A wet desulfurization apparatus that absorbs hydrogen sulfide or the like in the product gas at about 40 ° C. can be applied as an impurity removal apparatus because it is led to an absorption tower that uses an absorption liquid later to remove hydrogen sulfide in the product gas.

また本実施例の炭素系燃料のガス化発電システムでは、湿式脱硫装置は吸収液中の硫化水素を減圧して約100℃とすることで再生することができるため、乾式脱硫装置によるガス精製より熱損失が小さく、高効率発電が可能となる。   Further, in the carbon fuel gasification power generation system of the present embodiment, the wet desulfurization apparatus can be regenerated by reducing the hydrogen sulfide in the absorbing liquid to about 100 ° C. Therefore, the gas purification by the dry desulfurization apparatus is used. Heat loss is small and highly efficient power generation is possible.

また本実施例の炭素系燃料のガス化発電システムでは、湿式脱硫装置によるガス精製で用いる吸収液は液体であるため、ハンドリングが容易であり、固体の吸着剤を用いる乾式ガス精製を適用する場合よりも運用性を高めることができ、吸収液の寿命は吸着剤よりも長いことから、廃棄物の少ない環境に優しい設備とすることができた。   Also, in the carbon fuel gasification power generation system of the present embodiment, the absorption liquid used in the gas purification by the wet desulfurization apparatus is a liquid, so that it is easy to handle and applies dry gas purification using a solid adsorbent. Therefore, the life of the absorbing solution is longer than that of the adsorbent, so that it was possible to make an environment-friendly facility with little waste.

また本実施例の炭素系燃料のガス化発電システムでは、天然ガスを燃料とする場合と同じ材料のガスタービンが適用可能となる。   In the carbon-based fuel gasification power generation system of this embodiment, a gas turbine made of the same material as that used when natural gas is used as fuel can be applied.

また本実施例の炭素系燃料のガス化発電システムでは、ガスタービン排ガスから回収した水をガスタービンにリサイクルする系統における炭酸カルシウムや硫酸カルシウムの析出を抑制する回収水からイオンを除去する設備の設置が不要となる。   Moreover, in the gasification power generation system of the carbon-based fuel of this embodiment, installation of equipment for removing ions from the recovered water that suppresses the precipitation of calcium carbonate and calcium sulfate in the system that recycles the water recovered from the gas turbine exhaust gas to the gas turbine. Is no longer necessary.

本実施例によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present embodiment, in a carbonized fuel gasification power generation system in which carbonaceous fuel is gasified and supplied to the gas turbine as fuel to generate electric power, an absorbing liquid that operates at a low temperature is provided between the gasification furnace and the gas turbine. Even when the desulfurization apparatus to be used is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding the exhaust heat of the gasification furnace to the gas turbine.

次に本発明の第2実施例である炭素系燃料のガス化発電システムについて図2を用いて説明する。   Next, a carbonized gasification power generation system according to a second embodiment of the present invention will be described with reference to FIG.

図2に示した本実施例の炭素系燃料のガス化発電システムは、図1に示した第1実施例の炭素系燃料のガス化発電システムと基本的な構成は同じであるので、両者に共通した構成は説明を省略し、相違する構成について以下に説明する。   The carbonized fuel gasification power generation system of the present embodiment shown in FIG. 2 has the same basic configuration as the carbon fuel gasification power generation system of the first embodiment shown in FIG. Descriptions of common configurations are omitted, and different configurations are described below.

図2に示した本実施例の炭素系燃料のガス化発電システムでは、ガス化炉50に設けたガス化炉熱回収部51の下流側には冷却塔52が備えられておらず、ノックアウトドラム57がガス化炉熱回収部51の下流側で、脱塵装置53の上流側となる位置に設置されている。   In the carbonized fuel gasification power generation system of this embodiment shown in FIG. 2, the cooling tower 52 is not provided downstream of the gasification furnace heat recovery section 51 provided in the gasification furnace 50, and a knockout drum is provided. 57 is installed on the downstream side of the gasification furnace heat recovery section 51 and on the upstream side of the dust removing device 53.

更に、前記水回収器65とガス化炉50の上部に設けたガス化炉熱回収部51との間に水回収器65で分離して回収された水30の一部を導く冷却水供給系統a2が配設されている。   Further, a cooling water supply system for guiding a part of the water 30 separated and recovered by the water recovery unit 65 between the water recovery unit 65 and the gasification furnace heat recovery unit 51 provided at the upper part of the gasification furnace 50. a2 is disposed.

水回収器65で分離して回収された水30は、ガスタービン圧縮空気の増湿のための増湿塔64への供給水32と、ガス化炉50で得られた生成ガス20へ噴霧する水33に用いるだけでなく、前記水回収器65で排ガスと分離して回収された水30の一部の水34を、水回収器65から前記冷却水供給系統a2を通じてガス化炉50の上部に設けたガス化炉熱回収部51に供給し、この水回収器65に複数段に分けて噴霧する噴霧水34として噴霧し、ガス化炉50で生成した生成ガス20と水34を接触させるように構成している。   The water 30 separated and recovered by the water recovery unit 65 is sprayed on the supply water 32 to the humidification tower 64 for increasing the humidity of the gas turbine compressed air and the product gas 20 obtained in the gasification furnace 50. Not only the water 33 but also a part of the water 30 recovered from the exhaust gas separated by the water recovery unit 65 from the water recovery unit 65 through the cooling water supply system a2 to the upper part of the gasifier 50. The water is supplied to the gasifier heat recovery section 51 provided in the gas generator and sprayed as spray water 34 to be sprayed in a plurality of stages on the water recovery device 65 to bring the product gas 20 generated in the gasifier 50 and the water 34 into contact with each other. It is configured as follows.

冷却水供給系統a2を通じて供給し、ガス化炉熱回収部51に複数段に分けて噴霧する水34の供給量は、脱塵装置53の入口に設けた温度計90で検出する検出温度が規定値となるように、この温度計90の検出温度に基づいて冷却水供給系統a2に設置した流量調整弁80の開度を調節し、ガス化炉熱回収部51に複数段に分けて噴霧する水34の供給量を制御する。   The supply amount of the water 34 supplied through the cooling water supply system a2 and sprayed into the gasifier heat recovery section 51 in a plurality of stages is determined by the detection temperature detected by the thermometer 90 provided at the inlet of the dust removing device 53. Based on the temperature detected by the thermometer 90, the opening degree of the flow rate adjustment valve 80 installed in the cooling water supply system a2 is adjusted so as to be a value, and sprayed into the gasifier heat recovery unit 51 in a plurality of stages. The supply amount of water 34 is controlled.

このノックアウトドラム57の設置によって、ガス化炉50の起動時や停止時など、ガス化炉50で生成した生成ガス20のガス温度が低く、ガス化炉熱回収部51にガス化炉熱回収部51に噴霧した水34の一部が気化せずに生成ガス20中に同伴した場合でも、液体の水を生成ガス20から分離して脱塵装置53に流入するのを防止している。   By installing the knockout drum 57, the gas temperature of the product gas 20 generated in the gasification furnace 50 is low, such as when the gasification furnace 50 is started or stopped, and the gasification furnace heat recovery part 51 is connected to the gasification furnace heat recovery part 51. Even when part of the water 34 sprayed on 51 is entrained in the product gas 20 without being vaporized, liquid water is separated from the product gas 20 and prevented from flowing into the dust removing device 53.

本実施例の炭素系燃料のガス化発電システムでは、水回収器65でガスタービン排ガスから回収した水30の一部を、噴霧水34としてガス化炉50に設けたガス化炉熱回収部51に複数段に分けて噴霧し、ガス化炉50で生成した生成ガス20と噴霧した水34を接触させるように構成しているので、生成ガス20が局所的に低温になることが防止できる。   In the carbonized fuel gasification power generation system of this embodiment, a part of the water 30 recovered from the gas turbine exhaust gas by the water recovery unit 65 is used as the spray water 34 in the gasifier heat recovery section 51 provided in the gasifier 50. Since the product gas 20 generated in the gasification furnace 50 and the sprayed water 34 are brought into contact with each other, the product gas 20 can be prevented from being locally lowered in temperature.

また、ガス化炉熱回収部51に噴霧水34を複数段に分けて噴霧して生成ガス20に局所的な低温部位を発生させないことで、噴霧した水34を速やかに気化させ、生成ガス20中の未反応の石炭(チャー6)が液体の水の介在により凝集することを防止している。   Further, the sprayed water 34 is sprayed in a plurality of stages on the gasification furnace heat recovery section 51 to prevent the generated gas 20 from generating a local low-temperature portion, whereby the sprayed water 34 is quickly vaporized, and the generated gas 20 Unreacted coal (char 6) therein is prevented from agglomerating due to the interposition of liquid water.

ガス化炉3上部に設けたガス化炉熱回収部51に複数段に分けて水34を噴霧するために、本実施例の炭素系燃料のガス化発電システムでは、図3に部分図として示したように、生成ガス温度制御手段を構成する複数段の円管状の水噴霧用ヘッダー76をガス化炉熱回収部51の外周側に設け、これらの各段の水噴霧用ヘッダー76から放射状にガス化炉50のガス化炉熱回収部51に水34を供給する水噴霧用配管77をそれぞれ設置し、この水噴霧用配管77の先端に水噴霧ノズルを接続してガス化炉熱回収部51の内部に水34を噴霧する。   The carbonized fuel gasification power generation system of the present embodiment is shown as a partial view in FIG. 3 in order to spray water 34 in a plurality of stages on the gasifier heat recovery section 51 provided at the upper part of the gasifier 3. As described above, a plurality of stages of tubular water spray headers 76 constituting the product gas temperature control means are provided on the outer peripheral side of the gasifier heat recovery section 51, and radially from the water spray headers 76 of these stages. A water spray pipe 77 for supplying water 34 to the gasifier heat recovery section 51 of the gasification furnace 50 is installed, and a water spray nozzle is connected to the tip of the water spray pipe 77 to connect the water spray nozzle to the gasifier heat recovery section. Water 34 is sprayed inside 51.

そして、ガス化炉熱回収部51の内部に複数段に分けて噴霧される水34の噴霧量は制御装置98によって制御される。   The spray amount of the water 34 sprayed in a plurality of stages inside the gasifier heat recovery section 51 is controlled by the control device 98.

ここで、ガス化炉熱回収部51に複数段に分けて設けた水噴霧用ヘッダー76からそれぞれの水噴霧用配管77を通じてガス化炉熱回収部51内に噴霧する水34の噴霧量は、ガス化炉熱回収部51の出口に設けた温度計97で検出した生成ガス20の温度に基づいて前記制御装置98で噴霧水34の噴霧量を演算し、この制御装置98からの指令信号に基づいて前記複数段の水噴霧用ヘッダー76に供給される水34の供給量を制御する流量調整弁86〜89の開度を調節することで、複数段の水噴霧用ヘッダー76から水噴霧用配管77を通じてガス化炉熱回収部51に噴霧する水34の噴霧量を各段ごとに可変として、ガス化炉熱回収部51出口の生成ガス20の温度を制御する。   Here, the spray amount of water 34 sprayed into the gasifier heat recovery section 51 from the water spray headers 76 provided in the gasifier heat recovery section 51 in a plurality of stages through the respective water spray pipes 77 is as follows. Based on the temperature of the product gas 20 detected by the thermometer 97 provided at the outlet of the gasification furnace heat recovery section 51, the control device 98 calculates the spray amount of the spray water 34, and outputs a command signal from the control device 98. Based on the adjustment of the opening degree of the flow rate adjusting valves 86 to 89 for controlling the supply amount of the water 34 supplied to the plurality of stages of water spray headers 76, the plurality of stages of water spray headers 76 can be used for water spraying. The temperature of the product gas 20 at the outlet of the gasifier heat recovery section 51 is controlled by changing the spray amount of the water 34 sprayed to the gasifier heat recovery section 51 through the pipe 77 for each stage.

上記した生成ガス温度制御手段が必要な理由は、シフト反応器55の入口の水蒸気/一酸化炭素比はシフト反応触媒の性能によって決まる範囲に制御する必要があるので、石炭1の炭種とガス化炉3の運転条件が決まれば増減できる水34の供給量が決まり、制御可能な生成ガス20の温度範囲が決まるので、設計炭と大きく性状の異なる炭種を使用する場合には、脱塵装置53入口の生成ガス20のガス温度が設定温度よりも高すぎたり、低すぎたりする可能性があるからである。   The product gas temperature control means described above is necessary because the steam / carbon monoxide ratio at the inlet of the shift reactor 55 needs to be controlled within a range determined by the performance of the shift reaction catalyst. If the operating conditions of the converter 3 are determined, the amount of water 34 that can be increased or decreased is determined, and the temperature range of the controllable product gas 20 is determined. This is because the gas temperature of the product gas 20 at the inlet of the apparatus 53 may be too high or too low than the set temperature.

この生成ガス20の温度を制御する生成ガス温度制御手段を設置したことによって、設計炭と大きく性状の異なる石炭1の炭種でも、脱塵装置53入口の生成ガス20の温度を適切な範囲に制御することが可能となる。   By installing the generated gas temperature control means for controlling the temperature of the generated gas 20, the temperature of the generated gas 20 at the inlet of the dust removing device 53 is set to an appropriate range even for the coal type of coal 1 whose properties are significantly different from the designed coal. It becomes possible to control.

次に、この生成ガス温度制御手段による制御方法について具体的に説明する。前記複数段の水噴霧用ヘッダー76の各段から水噴霧用配管77を通じてガス化炉熱回収部51内に複数段に分けて噴霧される水34の噴霧量が等しい条件から、温度計97で検出したガス化炉熱回収部51出口の生成ガス温度20が設定値よりも低下した場合には、制御装置98で演算した指令信号によって前記ガス化炉熱回収部51の最下段への水噴霧量を制御する流量調整弁A86の開度を大きくして該熱回収部51の最下段への水34の噴霧量を多くなるように調節し、ガス化炉熱回収部51の最上段への水噴霧量を制御する流量調整弁D89の開度を小さくして該熱回収部51の最上段への水34の噴霧量を少なくなるように調節して、前記熱回収部51の最下部における生成ガス20の温度低下を大きくする。   Next, the control method by the generated gas temperature control means will be specifically described. Under the condition that the spray amount of the water 34 sprayed in a plurality of stages into the gasifier heat recovery part 51 from each stage of the plurality of stages of the water spray header 76 through the water spray pipe 77 is equal, the thermometer 97 When the detected generated gas temperature 20 at the outlet of the gasifier heat recovery section 51 is lower than the set value, water spray is applied to the lowermost stage of the gasifier heat recovery section 51 according to a command signal calculated by the control device 98. The amount of water 34 sprayed onto the lowermost stage of the heat recovery unit 51 is adjusted to be increased by increasing the opening of the flow rate adjustment valve A86 for controlling the amount, and the gasification furnace heat recovery unit 51 is supplied to the uppermost stage. The flow rate adjustment valve D89 that controls the amount of water spray is decreased so that the amount of water 34 sprayed on the uppermost stage of the heat recovery unit 51 is reduced. Increase the temperature drop of the product gas 20.

この熱回収部51における熱回収量は、生成ガス20の温度とガス化炉熱回収部51の壁面温度に比例するので、熱回収部51の最下部の生成ガス20の温度低下が大きくなると、熱回収部51における熱回収量が減少し、これに伴って熱回収部51の出口の生成ガス20の温度を上昇させることができる。   Since the heat recovery amount in the heat recovery unit 51 is proportional to the temperature of the product gas 20 and the wall temperature of the gasifier heat recovery unit 51, when the temperature drop of the lowermost product gas 20 of the heat recovery unit 51 increases, The amount of heat recovered in the heat recovery unit 51 is reduced, and accordingly, the temperature of the product gas 20 at the outlet of the heat recovery unit 51 can be increased.

また逆に、前記複数段の水噴霧用ヘッダー76の各段から水噴霧用配管77を通じてガス化炉熱回収部51内に複数段に分けて噴霧される水34の噴霧量が等しい条件から、温度計97で検出したガス化炉熱回収部51出口の生成ガス温度20が設定値よりも上昇した場合には、制御装置98で演算した指令信号によって前記ガス化炉熱回収部51の最下段への水噴霧量を制御する流量調整弁A86の開度を小さくして該熱回収部51の最下段への水34の噴霧量を少なくなるように調節し、ガス化炉熱回収部51の最上段への水噴霧量を制御する流量調整弁D89の開度を大きくして該熱回収部51の最上段への水34の噴霧量を多くなるように調節して、前記熱回収部51の最下部における生成ガス20の温度を上昇させる。   Conversely, from the condition that the spray amount of the water 34 sprayed in a plurality of stages from the respective stages of the plurality of stages of the water spray headers 76 into the gasifier heat recovery section 51 through the water spray pipe 77 is equal, When the generated gas temperature 20 at the outlet of the gasifier heat recovery section 51 detected by the thermometer 97 rises above the set value, the lowest stage of the gasifier heat recovery section 51 according to a command signal calculated by the control device 98. The flow rate adjustment valve A86 for controlling the amount of water sprayed on the water is adjusted so that the amount of water 34 sprayed on the lowermost stage of the heat recovery unit 51 is reduced, and the gasifier heat recovery unit 51 The opening degree of the flow rate adjusting valve D89 that controls the amount of water sprayed to the uppermost stage is increased to adjust the amount of water 34 sprayed to the uppermost stage of the heat recovery unit 51 to be increased. The temperature of the product gas 20 in the lowermost part is raised.

前記熱回収部51の最下段の生成ガス20の温度が上昇すると、この部位から上の熱回収部51における熱回収量が増加するので、熱回収部51の出口の生成ガス20の温度を低下させることができる。   When the temperature of the product gas 20 at the lowermost stage of the heat recovery unit 51 rises, the amount of heat recovery in the heat recovery unit 51 above this part increases, so the temperature of the product gas 20 at the outlet of the heat recovery unit 51 decreases. Can be made.

このように、生成ガス温度制御手段による制御方法を適用することによって、前記複数段の水噴霧用ヘッダー76の各段から水噴霧用配管77を通じてガス化炉熱回収部51内に複数段に分けて噴霧される水34の噴霧量を増減させて、熱回収部51の出口の生成ガス20の温度を制御して設定温度に維持する。   In this way, by applying the control method using the product gas temperature control means, the gas spray furnace heat recovery section 51 is divided into a plurality of stages from each stage of the plurality of stages of the water spray header 76 through the water spray pipe 77. Then, the spray amount of the water 34 sprayed is increased or decreased to control the temperature of the product gas 20 at the outlet of the heat recovery unit 51 to maintain the set temperature.

本実施例の炭素系燃料のガス化発電システムにおける付加的な効果として、小型のノックアウトドラムを設置するだけで大型の冷却塔を設置する必要がないので、ガス化発電システムの機器構成を簡素化することが可能となる。   As an additional effect of the carbonized fuel gasification power generation system of this embodiment, it is not necessary to install a large cooling tower just by installing a small knockout drum, so the equipment configuration of the gasification power generation system is simplified. It becomes possible to do.

本実施例によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present embodiment, in a carbonized fuel gasification power generation system in which carbonaceous fuel is gasified and supplied to the gas turbine as fuel to generate electric power, an absorbing liquid that operates at a low temperature is provided between the gasification furnace and the gas turbine. Even when the desulfurization apparatus to be used is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding the exhaust heat of the gasification furnace to the gas turbine.

次に本発明の第3実施例である炭素系燃料のガス化発電システムについて図4を用いて説明する。   Next, a carbonized gasification power generation system according to a third embodiment of the present invention will be described with reference to FIG.

図4に示した本実施例の炭素系燃料のガス化発電システムは、図1に示した第1実施例の炭素系燃料のガス化発電システムと基本的な構成は同じであるので、両者に共通した構成は説明を省略し、相違する構成について以下に説明する。   The gasification power generation system of the carbon fuel of this embodiment shown in FIG. 4 has the same basic configuration as the gasification power generation system of the carbon fuel of the first embodiment shown in FIG. Descriptions of common configurations are omitted, and different configurations are described below.

地球温暖化防止のため、火力発電所からの二酸化炭素排出を削減することが求められている。図1に示した第1実施例の炭素系燃料のガス化発電システムでは、吸収塔56で硫化水素を選択的に除去する実施例の場合を示したが、地球温暖化防止の観点からは、吸収塔56で硫化水素だけでなく、二酸化炭素も回収することが望ましい。この場合の例を本実施例の炭素系燃料のガス化発電システムに示す。   In order to prevent global warming, it is required to reduce carbon dioxide emissions from thermal power plants. In the carbonized fuel gasification power generation system of the first embodiment shown in FIG. 1, the case of the embodiment in which hydrogen sulfide is selectively removed by the absorption tower 56 has been shown. From the viewpoint of preventing global warming, It is desirable to collect not only hydrogen sulfide but also carbon dioxide in the absorption tower 56. An example of this case is shown in the carbonized fuel gasification power generation system of this embodiment.

図4に示した本実施例の炭素系燃料のガス化発電システムでは、吸収塔56で用いるメチルジエタノールアミンなどのアルカリ性の吸収液11は、酸性ガスである硫化水素と二酸化炭素の両方を吸収することができる。このため、吸収塔56に供給された吸収液11は生成ガス20と接触し、生成ガス20中の硫化水素と二酸化炭素を吸収する。   In the carbonized fuel gasification power generation system of this embodiment shown in FIG. 4, the alkaline absorbent 11 such as methyldiethanolamine used in the absorption tower 56 absorbs both hydrogen sulfide and carbon dioxide, which are acidic gases. Can do. For this reason, the absorbing liquid 11 supplied to the absorption tower 56 comes into contact with the product gas 20 and absorbs hydrogen sulfide and carbon dioxide in the product gas 20.

吸収塔56で生成ガス20中の硫化水素と二酸化炭素を吸収した吸収液11は、吸収塔56から再生塔58に導かれて、前記再生塔58にて吸収液11の温度を上げることで、この吸収液11から該吸収液11に吸収した硫化水素と二酸化炭素を脱離させる。   The absorption liquid 11 that has absorbed the hydrogen sulfide and carbon dioxide in the product gas 20 by the absorption tower 56 is led from the absorption tower 56 to the regeneration tower 58, and the temperature of the absorption liquid 11 is increased in the regeneration tower 58. Hydrogen sulfide and carbon dioxide absorbed in the absorbing liquid 11 are desorbed from the absorbing liquid 11.

本実施例の炭素系燃料のガス化発電システムでは、吸収液11に吸収した硫化水素と二酸化炭素を脱離させるために再生塔58を用いたが、吸収液11の温度を上げるとともに減圧する方法でも、吸収液11から該吸収液11に吸収した硫化水素と二酸化炭素を分離することができる。   In the carbonized fuel gasification power generation system of the present embodiment, the regeneration tower 58 is used to desorb the hydrogen sulfide and carbon dioxide absorbed in the absorbing liquid 11. However, the method of increasing the temperature of the absorbing liquid 11 and reducing the pressure is used. However, it is possible to separate hydrogen sulfide and carbon dioxide absorbed in the absorbent 11 from the absorbent 11.

本実施例の炭素系燃料のガス化発電システムでは、再生塔58の出口には、再生塔58で該吸収液11から分離した硫化水素と二酸化炭素の混合ガス40が得られるが、二酸化炭素を固定するためには二酸化炭素の純度を上げる必要がある。   In the gasification power generation system of the carbon-based fuel of this embodiment, a mixed gas 40 of hydrogen sulfide and carbon dioxide separated from the absorbent 11 in the regeneration tower 58 is obtained at the outlet of the regeneration tower 58. In order to fix it, it is necessary to raise the purity of carbon dioxide.

そのために、硫化水素と二酸化炭素の混合ガス40を、再生塔58の下流側に設置した二酸化炭素/硫化水素分離器59に導く。   For this purpose, the mixed gas 40 of hydrogen sulfide and carbon dioxide is led to a carbon dioxide / hydrogen sulfide separator 59 installed on the downstream side of the regeneration tower 58.

前記二酸化炭素/硫化水素分離器59には、例えば硫化水素を吸着する吸着剤を充填した吸着塔を用いることができる。この吸着塔を2塔以上設置し、一つの吸着塔で硫化水素を吸着している間に、別の吸着塔に空気を流通して、吸着剤から硫化水素を脱着させるとともに、空気中の酸素と反応させて二酸化硫黄41とする。   For the carbon dioxide / hydrogen sulfide separator 59, for example, an adsorption tower filled with an adsorbent for adsorbing hydrogen sulfide can be used. While two or more of these adsorption towers are installed and hydrogen sulfide is adsorbed in one adsorption tower, air is circulated to another adsorption tower to desorb hydrogen sulfide from the adsorbent and oxygen in the air. To make sulfur dioxide 41.

この二酸化硫黄は石膏法で石膏として回収する。すなわち、二酸化硫黄を含むガスを石灰石スラリーと反応させてガス中の硫黄を固体の石膏として固定し、石灰石スラリーから分離する。   This sulfur dioxide is recovered as gypsum by the gypsum method. That is, the gas containing sulfur dioxide is reacted with the limestone slurry to fix the sulfur in the gas as solid gypsum and separate from the limestone slurry.

二酸化炭素/硫化水素分離器59で得られた純度の高い二酸化炭素42は、前記二酸化炭素/硫化水素分離器59の下流側に設置した圧縮機67に供給して圧縮し、別設された図示していない二酸化炭素貯蔵器に供給して液体として貯蔵する。   The high-purity carbon dioxide 42 obtained by the carbon dioxide / hydrogen sulfide separator 59 is supplied to a compressor 67 installed on the downstream side of the carbon dioxide / hydrogen sulfide separator 59 for compression and separately provided. Supply to a carbon dioxide reservoir not shown and store as a liquid.

更に、二酸化炭素/硫化水素分離器59の下流側に設置した圧縮機67とガス化炉50との間に前記二酸化炭素/硫化水素分離器59で得られた二酸化炭素を二酸化炭素に供給する二酸化炭素供給系統bが配設されている。   Further, the carbon dioxide obtained in the carbon dioxide / hydrogen sulfide separator 59 is supplied between the compressor 67 installed on the downstream side of the carbon dioxide / hydrogen sulfide separator 59 and the gasifier 50 and supplied to the carbon dioxide. A carbon supply system b is provided.

そして、前記二酸化炭素/硫化水素分離器59で得られた4MPa程度の圧力となった二酸化炭素42の一部を抜き出し、二酸化炭素/硫化水素分離器59とガス化炉50との間に配設した二酸化炭素供給系統bを通じて、この二酸化炭素42を前記二酸化炭素/硫化水素分離器59からガス化炉50に供給し、石炭1やチャー6の搬送、ガス化炉50の冷却、ガス化炉50に設置する圧力計等の圧端パージに用いる。   A part of the carbon dioxide 42 having a pressure of about 4 MPa obtained by the carbon dioxide / hydrogen sulfide separator 59 is extracted and disposed between the carbon dioxide / hydrogen sulfide separator 59 and the gasifier 50. The carbon dioxide 42 is supplied from the carbon dioxide / hydrogen sulfide separator 59 to the gasifier 50 through the carbon dioxide supply system b, and the coal 1 and char 6 are transported, the gasifier 50 is cooled, and the gasifier 50 is supplied. Used for pressure end purge of pressure gauges installed in

本実施例の炭素系燃料のガス化発電システムにおける付加的な効果として、二酸化炭素/硫化水素分離器59で純度の高い二酸化炭素を分離できるので、水分等を除去する前処理を行わずに分離した二酸化炭素を圧縮機で圧縮できて、二酸化炭素をガス化発電システムの系内に有効に活用することが可能となる。   As an additional effect in the gasification power generation system of the carbon-based fuel of this embodiment, high-purity carbon dioxide can be separated by the carbon dioxide / hydrogen sulfide separator 59, so that the separation is performed without performing pretreatment to remove moisture and the like. The compressed carbon dioxide can be compressed by the compressor, and the carbon dioxide can be effectively used in the gasification power generation system.

本実施例によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present embodiment, in a carbonized fuel gasification power generation system in which carbonaceous fuel is gasified and supplied to the gas turbine as fuel to generate electric power, an absorbing liquid that operates at a low temperature is provided between the gasification furnace and the gas turbine. Even when the desulfurization apparatus to be used is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding the exhaust heat of the gasification furnace to the gas turbine.

次に本発明の第4実施例である炭素系燃料のガス化発電システムについて図5を用いて説明する。   Next, a carbonized gasification power generation system according to a fourth embodiment of the present invention will be described with reference to FIG.

図5に示した本実施例の炭素系燃料のガス化発電システムは、図1に示した第1実施例の炭素系燃料のガス化発電システムと基本的な構成は同じであるので、両者に共通した構成は説明を省略し、相違する構成について以下に説明する。   The carbonized fuel gasification power generation system of this embodiment shown in FIG. 5 has the same basic configuration as the carbonization fuel gasification power generation system of the first embodiment shown in FIG. Descriptions of common configurations are omitted, and different configurations are described below.

図5に示した本実施例の炭素系燃料のガス化発電システムは、ガスタービン排ガスから回収した水30の一部をガス化炉50の水冷壁や、ガス化炉熱回収部51で昇温した後に、ガス化炉50の下流で生成ガス20中に噴霧する構成を示している。   The carbonized fuel gasification power generation system of this embodiment shown in FIG. 5 raises the temperature of a part of the water 30 recovered from the gas turbine exhaust gas by the water cooling wall of the gasification furnace 50 or the gasification furnace heat recovery unit 51. After that, a configuration is shown in which the product gas 20 is sprayed downstream of the gasification furnace 50.

ガスタービンと蒸気タービンを持つ複合発電を用いて発電する場合、ガス化炉50の水冷壁や、ガス化炉熱回収部51にボイラ水を供給してガス化炉排熱で水蒸気を製造し、この水蒸気を蒸気タービンに供給して電力を得ている。   When generating power using a combined power generation having a gas turbine and a steam turbine, steam is produced by supplying boiler water to the water cooling wall of the gasification furnace 50 or the gasification furnace heat recovery unit 51 and exhausting heat from the gasification furnace, This steam is supplied to the steam turbine to obtain electric power.

しかしながら、本実施例の炭素系燃料のガス化発電システムは蒸気タービンを備えていないので、ガス化炉50の水冷壁や、ガス化炉熱回収部51で水蒸気を製造しても、この水蒸気の一部はユーティリティーとして使用するが、大部分は電力に変換されないので、ガス化発電システムの発電効率が低下する。   However, since the gasification power generation system of the carbon-based fuel of the present embodiment does not include a steam turbine, even if steam is produced by the water cooling wall of the gasification furnace 50 or the gasification furnace heat recovery unit 51, Some are used as utilities, but most are not converted to electricity, reducing the power generation efficiency of the gasification power generation system.

そこで、本実施例の炭素系燃料のガス化発電システムでは、水回収器65とガス化炉50の上部に設けたガス化炉熱回収部51との間に、水回収器65で回収した水30の一部の水33をガス化炉熱回収部51に供給する冷却水供給系統a2を配設している。   Therefore, in the gasification power generation system for carbon-based fuel of the present embodiment, the water recovered by the water recovery unit 65 is between the water recovery unit 65 and the gasification furnace heat recovery unit 51 provided on the upper side of the gasification furnace 50. A cooling water supply system a <b> 2 that supplies a part of the water 33 to the gasifier heat recovery unit 51 is disposed.

そして、水回収器65でガスタービンの排ガスから回収された水30の一部の水33を、図5及び図6に示すように、水回収器65から冷却水供給系統a2を通じてガス化炉50の上部に設けたガス化炉熱回収部51に供給し、このガス化炉熱回収部51で生成ガス20の熱を水33に回収する。   Then, as shown in FIGS. 5 and 6, a part of the water 33 recovered from the exhaust gas of the gas turbine by the water recovery unit 65 is converted into a gasification furnace 50 from the water recovery unit 65 through the cooling water supply system a2. Is supplied to a gasifier heat recovery section 51 provided on the upper portion of the gas generator, and the heat of the generated gas 20 is recovered in the water 33 by the gasifier heat recovery section 51.

冷却水供給系統a2を通じて供給され、前記ガス化炉熱回収部51で生成ガス20の熱を回収して昇温した水33は、このガス化炉熱回収部51から脱塵装置53の下流側に設置した水洗塔54に供給する昇温水供給系統bから分岐して冷却塔52に供給され、噴霧水34として冷却塔52を流下する生成ガス20に噴霧するように構成している。   The water 33 supplied through the cooling water supply system a2 and heated by recovering the heat of the product gas 20 in the gasifier heat recovery section 51 is downstream from the gasifier heat recovery section 51 in the dust removing device 53. The temperature rising water supply system b that is supplied to the water washing tower 54 installed in the water is branched and supplied to the cooling tower 52, and sprayed onto the product gas 20 flowing down the cooling tower 52 as spray water 34.

冷却塔52に噴霧する噴霧水34の噴霧量は流量調整弁80によって調節される。   The spray amount of the spray water 34 sprayed on the cooling tower 52 is adjusted by a flow rate adjusting valve 80.

ガス化炉50の上部に設けたガス化炉熱回収部51の構造は、図6に示すように、鉛直方向に立てた水冷管78を並べて円筒状とした構造、或いは水冷管78を螺旋状に巻いて円筒状とした構造を採用する。   As shown in FIG. 6, the structure of the gasification furnace heat recovery unit 51 provided on the upper part of the gasification furnace 50 is a structure in which water cooling pipes 78 arranged in a vertical direction are arranged in a cylindrical shape, or the water cooling pipes 78 are spiral. Adopted a cylindrical structure wound around.

水回収器65から前記ガス化炉熱回収部51に供給する水33の供給量は、ガス化炉熱回収部51を構成する材料が高温にならないように設定し、配管上に設定した流量計92の指示値が規定値になるように、流量調整弁82を操作することによって制御する。   The amount of water 33 supplied from the water recovery unit 65 to the gasification furnace heat recovery unit 51 is set so that the material constituting the gasification furnace heat recovery unit 51 does not reach a high temperature, and the flow meter set on the pipe Control is performed by operating the flow rate adjustment valve 82 so that the indicated value 92 becomes a specified value.

このように一定量の水33を前記ガス化炉熱回収部51に流通させ、前記ガス化炉熱回収部51を経た水33の全量を噴霧水34として流量調整弁80を介して冷却塔52に噴霧すると、ガス化炉50の運転条件によっては脱塵装置53前の生成ガス20のガス温度が規定値を下回る。   In this way, a certain amount of water 33 is circulated to the gasifier heat recovery unit 51, and the total amount of water 33 that has passed through the gasifier heat recovery unit 51 is sprayed water 34 via the flow rate adjustment valve 80, and the cooling tower 52. When the gas is sprayed, the gas temperature of the product gas 20 before the dedusting device 53 falls below a specified value depending on the operating conditions of the gasifier 50.

そこで、脱塵装置53入口に設置した温度計90の指示値が規定値になるように、前記ガス化炉熱回収部51から冷却塔52への水34の供給量は流量調整弁80で制御する。   Therefore, the supply amount of water 34 from the gasifier heat recovery section 51 to the cooling tower 52 is controlled by the flow rate adjusting valve 80 so that the indicated value of the thermometer 90 installed at the inlet of the dust removing device 53 becomes a specified value. To do.

そして、ガス化炉熱回収部51と脱塵装置53の下流側に設置した水洗塔54との間に昇温水供給系統bを配設して、ガス化炉熱回収部51で昇温され冷却塔52に供給されない余剰の水24を、この昇温水供給系統bを通じて水洗塔54へ供給するように構成している。   Then, a heated water supply system b is disposed between the gasifier heat recovery section 51 and the flush tower 54 installed on the downstream side of the dust removing device 53, and the temperature is raised and cooled by the gasifier heat recovery section 51. Excess water 24 that is not supplied to the tower 52 is supplied to the flush tower 54 through the heated water supply system b.

本実施例によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present embodiment, in a carbonized fuel gasification power generation system in which carbonaceous fuel is gasified and supplied to the gas turbine as fuel to generate electric power, an absorbing liquid that operates at a low temperature is provided between the gasification furnace and the gas turbine. Even when the desulfurization apparatus to be used is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding the exhaust heat of the gasification furnace to the gas turbine.

次に本発明の第5実施例である炭素系燃料のガス化発電システムについて図7を用いて説明する。   Next, a carbonized gasification power generation system according to a fifth embodiment of the present invention will be described with reference to FIG.

図7に示した本実施例の炭素系燃料のガス化発電システムは、図1に示した第1実施例の炭素系燃料のガス化発電システムと基本的な構成は同じであるので、両者に共通した構成は説明を省略し、相違する構成について以下に説明する。   The carbon-based fuel gasification power generation system of this embodiment shown in FIG. 7 has the same basic configuration as the carbon-based fuel gasification power generation system of the first embodiment shown in FIG. Descriptions of common configurations are omitted, and different configurations are described below.

図7に示した本実施例の炭素系燃料のガス化発電システムは、前記水回収器65とガス化炉50の水冷壁との間に水回収器65で分離して回収された水30の一部を導く冷却水供給系統a3が配設されている。   The carbonized fuel gasification power generation system of the present embodiment shown in FIG. 7 includes the water 30 separated and recovered by the water recovery unit 65 between the water recovery unit 65 and the water cooling wall of the gasification furnace 50. A cooling water supply system a3 for guiding a part thereof is provided.

そして、ガスタービンの水回収器65で排ガスから回収された水30の一部を、冷却水供給系統a3を通じてガス化炉50の水冷壁に供給し、このガス化炉50の水冷壁で生成ガス20によって昇温した水33の一部を、このガス化炉50の水冷壁から冷却塔52に供給して噴霧水34として噴霧するように構成している。冷却塔52に噴霧する噴霧水34の噴霧量は流量調整弁80によって調節される。   A part of the water 30 recovered from the exhaust gas by the water recovery unit 65 of the gas turbine is supplied to the water cooling wall of the gasification furnace 50 through the cooling water supply system a3, and the generated gas is generated at the water cooling wall of the gasification furnace 50 A part of the water 33 heated by 20 is supplied from the water cooling wall of the gasification furnace 50 to the cooling tower 52 and sprayed as spray water 34. The spray amount of the spray water 34 sprayed on the cooling tower 52 is adjusted by a flow rate adjusting valve 80.

前記ガス化炉50の水冷壁も、熱回収部51と同様に、鉛直方向に立てた水冷管を並べて円筒状とした構造や、水冷管を螺旋状に巻いて円筒状とした構造とし、必要に応じて耐火材を施工して、ガス化炉50内の高温から金属材料を保護する構造とする。   Similarly to the heat recovery unit 51, the water cooling wall of the gasification furnace 50 has a cylindrical structure in which water cooling pipes arranged in a vertical direction are arranged, or a cylindrical structure in which the water cooling pipes are spirally wound. According to the construction, a refractory material is constructed to protect the metal material from the high temperature in the gasification furnace 50.

冷却水供給系統a3を通じて水回収器65からガス化炉50の水冷壁に供給する水30の供給量はガス化炉50の水冷壁の材料を保護するために、前記冷却水供給系統a3に流量計92及び流量調整弁82を設けて規定量の水30の供給量が流れるように設定し、前記冷却水供給系統a3に設置した流量計92の流量検出値が規定値になるように、流量調整弁82の開度を調節して水30の供給量を制御する。   The amount of water 30 supplied from the water collector 65 to the water cooling wall of the gasification furnace 50 through the cooling water supply system a3 flows to the cooling water supply system a3 in order to protect the material of the water cooling wall of the gasification furnace 50. A meter 92 and a flow rate adjusting valve 82 are provided so that the supply amount of the specified amount of water 30 flows, and the flow rate detection value of the flow meter 92 installed in the cooling water supply system a3 is set to a specified value. The supply amount of the water 30 is controlled by adjusting the opening of the adjustment valve 82.

このように冷却水供給系統a3を通じて一定量の水30の供給量をガス化炉50の水冷壁に流通させ、該ガス化炉50の水冷壁から昇温した冷却水34を冷却塔52に噴霧させると、ガス化炉50の運転条件によっては脱塵装置53の入口のガス温度が規定値を下回る可能性がある。   In this way, a constant amount of water 30 is circulated through the cooling wall of the gasification furnace 50 through the cooling water supply system a3, and the cooling water 34 heated from the water cooling wall of the gasification furnace 50 is sprayed on the cooling tower 52. Then, depending on the operating conditions of the gasification furnace 50, the gas temperature at the inlet of the dust removing device 53 may be lower than the specified value.

そこで、脱塵装置53の入口に温度計90を設置し、この温度計90の検出温度が規定値になるように、ガス化炉50の水冷壁から冷却塔52に供給される昇温した冷却水34の供給量を流量調整弁80で制御するようにして、ガス化炉50の運転条件に拘わらず脱塵装置53の入口のガス温度が規定値を常に満たすようにした。   Therefore, a thermometer 90 is installed at the inlet of the dust removing device 53, and the temperature-increased cooling supplied from the water-cooled wall of the gasification furnace 50 to the cooling tower 52 so that the detected temperature of the thermometer 90 becomes a specified value. The supply amount of the water 34 is controlled by the flow rate adjusting valve 80 so that the gas temperature at the inlet of the dust removing device 53 always satisfies the specified value regardless of the operating conditions of the gasifier 50.

そして、ガス化炉50の水冷壁と脱塵装置53の下流側に設置した水洗塔54との間に昇温水供給系統bを配設して、ガス化炉50の水冷壁で昇温され冷却塔52に供給されない余剰の水24を、前記昇温水供給系統bを通じて脱塵装置53の下流側に設置した水洗塔54へ供給するように構成した。   A heated water supply system b is disposed between the water cooling wall of the gasification furnace 50 and the water washing tower 54 installed on the downstream side of the dust removing device 53, and the temperature is raised and cooled by the water cooling wall of the gasification furnace 50. Excess water 24 not supplied to the tower 52 is supplied to the water washing tower 54 installed on the downstream side of the dust removing device 53 through the heated water supply system b.

また、水回収器65でガスタービンの排ガスから回収された水を、図5に示した第4実施例では冷却水供給系統aを通じてガス化炉熱回収部51のみに供給し、図7に示した第5実施例では冷却水供給系統a3を通じてガス化炉5の水冷壁のみに供給しているが、冷却水供給系統a及び冷却水供給系統a3の双方を配設して水回収器65から排ガスから回収された水をガス化炉熱回収部51とガス化炉5の水冷壁との両方に供給するように構成しても良い。   Further, in the fourth embodiment shown in FIG. 5, water recovered from the exhaust gas of the gas turbine by the water recovery unit 65 is supplied only to the gasifier heat recovery section 51 through the cooling water supply system a, and is shown in FIG. In the fifth embodiment, only the water cooling wall of the gasification furnace 5 is supplied through the cooling water supply system a3. However, both the cooling water supply system a and the cooling water supply system a3 are provided and the water collector 65 is used. You may comprise so that the water collect | recovered from waste gas may be supplied to both the gasifier heat recovery part 51 and the water cooling wall of the gasifier 5. FIG.

本実施例によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present embodiment, in a carbonized fuel gasification power generation system in which carbonaceous fuel is gasified and supplied to the gas turbine as fuel to generate electric power, an absorbing liquid that operates at a low temperature is provided between the gasification furnace and the gas turbine. Even when the desulfurization apparatus to be used is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding the exhaust heat of the gasification furnace to the gas turbine.

次に本発明の第6実施例である炭素系燃料のガス化発電システムについて図8を用いて説明する。   Next, a carbonized fuel gasification power generation system according to a sixth embodiment of the present invention will be described with reference to FIG.

図8に示した本実施例の炭素系燃料のガス化発電システムは、図1に示した第1実施例の炭素系燃料のガス化発電システムと基本的な構成は同じであるので、両者に共通した構成は説明を省略し、相違する構成について以下に説明する。   The carbonized fuel gasification power generation system of this embodiment shown in FIG. 8 has the same basic configuration as the carbonization fuel gasification power generation system of the first embodiment shown in FIG. Descriptions of common configurations are omitted, and different configurations are described below.

図8に示した本実施例の炭素系燃料のガス化発電システムにおいて、図5に示した実施例4では、水回収器65でガスタービンの排ガスから回収した水30の一部である水33を、該水回収器65から冷却水供給系統a2を通じてガス化炉熱回収部51の水冷管78に供給して生成ガス20の熱で昇温させ、昇温した水33をガス化炉熱回収部51から水洗塔54に供給する昇温水供給系統bから分岐して冷却塔52に供給し、噴霧水34として冷却塔52を流下する生成ガス20に噴霧する実施例を示したが、ガス化炉熱回収部51の水冷管78に孔を開け、冷却水供給系統a2を通じてガス化炉熱回収部51に供給する水33をガス化炉熱回収部51内の生成ガス20に噴霧するようにしても良い。   In the carbon-based fuel gasification power generation system of the present embodiment shown in FIG. 8, in the fourth embodiment shown in FIG. 5, the water 33 that is a part of the water 30 recovered from the exhaust gas of the gas turbine by the water recovery device 65. Is supplied from the water recovery unit 65 to the water cooling pipe 78 of the gasification furnace heat recovery section 51 through the cooling water supply system a2 to raise the temperature with the heat of the product gas 20, and the water 33 thus heated is recovered in the gasification furnace heat recovery. Although the example which sprays on the product gas 20 which branches from the temperature rising water supply system b supplied to the flush tower 54 from the part 51, is supplied to the cooling tower 52, and flows down the cooling tower 52 as the spray water 34 was shown, gasification is shown. A hole is formed in the water cooling pipe 78 of the furnace heat recovery section 51 so that the water 33 supplied to the gasification furnace heat recovery section 51 through the cooling water supply system a2 is sprayed on the generated gas 20 in the gasification furnace heat recovery section 51. May be.

この場合、ガス化炉熱回収部51の水冷管78の孔に噴霧ノズルを埋め込み、噴霧ノズルから水33を微細な水滴としてガス化炉熱回収部51内の生成ガス20と接触させることが望ましい。   In this case, it is desirable to embed a spray nozzle in the hole of the water cooling pipe 78 of the gasification furnace heat recovery unit 51 and bring the water 33 from the spray nozzle into contact with the product gas 20 in the gasification furnace heat recovery unit 51 as fine water droplets. .

前記ガス化炉熱回収部51の水冷管78に孔を開け、ガス化炉熱回収部51で水33を噴霧させる場合には、図8に示した本実施例の炭素系燃料のガス化発電システムのように、ガス化炉50に供給する水として水回収器65で回収した水の一部を水回収器65から導いて貯留するタンク67を設け、このタンク67からポンプ68で昇圧してガス化炉熱回収部51の水冷管78に水33を供給する供給配管を配設する。   When a hole is formed in the water cooling pipe 78 of the gasifier heat recovery section 51 and the water 33 is sprayed by the gasifier heat recovery section 51, the gasification power generation of the carbon-based fuel of this embodiment shown in FIG. As in the system, a tank 67 is provided for storing a part of the water recovered by the water recovery unit 65 as water to be supplied to the gasification furnace 50 from the water recovery unit 65. The tank 67 is pressurized by the pump 68 from the tank 67. A supply pipe for supplying water 33 to the water cooling pipe 78 of the gasifier heat recovery section 51 is provided.

また、ガス化炉熱回収部51の水冷管78から生成ガス20によって昇温した昇温水24をタンク67に戻す複数の戻り配管を設置する。   In addition, a plurality of return pipes are provided for returning the heated water 24 heated by the generated gas 20 from the water cooling pipe 78 of the gasifier heat recovery section 51 to the tank 67.

ガス化炉熱回収部51の水冷管78には、ガス化炉熱回収部51を構成する材料が高温にならないように水を流す必要がある。そこで、ガス化炉熱回収部51の水冷管78から昇温水24をタンク67に戻す前記複数の戻り配管に、昇温水24の温度を計測する温度計95、96と、昇温水24の流量を調節する流量調整弁84、85をそれぞれ設置し、前記温度計95、96で検出した昇温水24の温度の検出温度に基づいて流量調整弁84、85の開度を操作して昇温水24の流量を調節する第2の制御装置99を設置している。   Water needs to flow through the water cooling pipe 78 of the gasification furnace heat recovery unit 51 so that the material constituting the gasification furnace heat recovery unit 51 does not reach a high temperature. Therefore, thermometers 95 and 96 for measuring the temperature of the heating water 24 and the flow rate of the heating water 24 are connected to the plurality of return pipes for returning the heating water 24 from the water cooling pipe 78 of the gasification furnace heat recovery section 51 to the tank 67. The flow rate adjusting valves 84 and 85 to be adjusted are installed, respectively, and the opening degree of the flow rate adjusting valves 84 and 85 is operated based on the detected temperature of the temperature rising water 24 detected by the thermometers 95 and 96. A second control device 99 for adjusting the flow rate is installed.

そして、前記温度計95、96で検出した昇温水24の検出温度が高い場合には、第2の制御装置99によって流量調整弁84、85の開度を大きくなるように操作してタンク67からガス化炉熱回収部51の水冷管78に供給する水33の循環量を増やし、昇温水24の温度上昇を抑える。   When the detected temperature of the heated water 24 detected by the thermometers 95 and 96 is high, the second control device 99 is operated to increase the opening degree of the flow rate adjusting valves 84 and 85 from the tank 67. The circulation amount of the water 33 supplied to the water cooling pipe 78 of the gasification furnace heat recovery unit 51 is increased, and the temperature rise of the heated water 24 is suppressed.

また、前記温度計95、96で検出した昇温水24の検出温度が低い場合には、第2の制御装置99によって流量調整弁84、85の開度を小さくなるように操作してタンク67からガス化炉熱回収部51の水冷管78に供給する水33の循環量を減らし、昇温水24の温度を上昇させる。   When the detected temperature of the heated water 24 detected by the thermometers 95 and 96 is low, the second control device 99 is operated to reduce the opening of the flow rate adjusting valves 84 and 85 from the tank 67. The circulation amount of the water 33 supplied to the water cooling pipe 78 of the gasification furnace heat recovery unit 51 is reduced, and the temperature of the heated water 24 is increased.

ガス化炉熱回収部51の出口の生成ガス20の温度を規定値に維持するためには、ガス化炉熱回収部51に噴霧される冷却水33の噴霧量を増減する必要がある。そのために、ポンプ68の出口側の供給配管に圧力を計測する圧力計94を設置し、この圧力計94で検出した生成ガス20の圧力の設定値を、ガス化炉熱回収部51の下流側に設置したノックアウトドラム59の上流に設置した温度計90で検出した生成ガス20の温度が規定値を維持するように、温度計90で検出した生成ガス20の検出温度に基づき第2の制御装置99によってポンプ68の圧力の設定を調節する。   In order to maintain the temperature of the product gas 20 at the outlet of the gasification furnace heat recovery unit 51 at a specified value, it is necessary to increase or decrease the spray amount of the cooling water 33 sprayed on the gasification furnace heat recovery unit 51. For this purpose, a pressure gauge 94 for measuring pressure is installed in the supply pipe on the outlet side of the pump 68, and the set value of the pressure of the generated gas 20 detected by the pressure gauge 94 is set on the downstream side of the gasifier heat recovery section 51. The second control device based on the detected temperature of the product gas 20 detected by the thermometer 90 so that the temperature of the product gas 20 detected by the thermometer 90 installed upstream of the knock-out drum 59 installed at 1 is maintained at a specified value. 99 adjusts the pressure setting of the pump 68.

すなわち、温度計90で検出したガス化炉熱回収部51の下流側でノックアウトドラム59の上流側の生成ガス20の検出温度が低い場合は、前記第2の制御装置99からの指令信号に基づいてポンプ68の圧力の設定値を下げて、ガス化炉熱回収部51の水冷管78に流れる水33の量を減少させ、ガス化炉熱回収部51から生成ガス20に噴霧される水33の噴霧量が減るようにする。   That is, when the detected temperature of the product gas 20 on the downstream side of the gasification furnace heat recovery unit 51 detected by the thermometer 90 is low on the upstream side of the knockout drum 59, it is based on the command signal from the second control device 99. Thus, the set value of the pressure of the pump 68 is lowered to reduce the amount of water 33 flowing through the water cooling pipe 78 of the gasifier heat recovery section 51, and the water 33 sprayed from the gasifier heat recovery section 51 to the product gas 20. Try to reduce the amount of spray.

また、温度計90で検出したガス化炉熱回収部51の下流側でノックアウトドラム59の上流側の生成ガス20の検出温度が高い場合は、第2の制御装置99からの指令信号に基づいてポンプ68の圧力の設定値を上げて、ガス化炉熱回収部51の水冷管78に流れる水33の量を増加させ、ガス化炉熱回収部51から生成ガス20に噴霧される水33の噴霧量が増えるようにして、温度計90で検出したガス化炉熱回収部51の出口での生成ガス20の温度が規定値を維持するように制御する。   Further, when the detected temperature of the product gas 20 upstream of the knockout drum 59 on the downstream side of the gasifier heat recovery section 51 detected by the thermometer 90 is high, based on the command signal from the second control device 99. The set value of the pressure of the pump 68 is increased to increase the amount of water 33 flowing through the water cooling pipe 78 of the gasifier heat recovery unit 51, and the water 33 sprayed on the product gas 20 from the gasifier heat recovery unit 51 is increased. Control is performed so that the temperature of the product gas 20 at the outlet of the gasifier heat recovery section 51 detected by the thermometer 90 is maintained at a specified value as the spray amount increases.

ポンプ68出口の水33の圧力を調整するために、ポンプ68の出口からタンク67に戻る第2の配管を設け、この第2の配管に流量調整弁83を設置する。   In order to adjust the pressure of the water 33 at the outlet of the pump 68, a second pipe returning from the outlet of the pump 68 to the tank 67 is provided, and a flow rate adjusting valve 83 is installed in the second pipe.

そして、圧力計94で検出したポンプ68出口の水33の圧力が設定値より高い場合には、圧力計94で検出した検出圧力に基づき制御装置99から出力された指令信号によってこの流量調整弁83の開度が大きくなるように調節し、また、圧力計94で検出したポンプ68出口の水33の圧力が設定値より低い場合には、制御装置99から出力された指令信号によってこの流量調整弁83の開度が小さくなるように調節する制御を行う。   When the pressure of the water 33 at the outlet of the pump 68 detected by the pressure gauge 94 is higher than the set value, the flow rate adjusting valve 83 is generated by a command signal output from the control device 99 based on the detected pressure detected by the pressure gauge 94. When the pressure of the water 33 at the outlet of the pump 68 detected by the pressure gauge 94 is lower than the set value, the flow rate adjusting valve is controlled by a command signal output from the control device 99. Control to adjust the opening of 83 to be small is performed.

上記した本実施例の炭素系燃料のガス化発電システムによる付加的な効果として、制御装置によってガス化発電システムの信頼性を向上させることが可能となる。   As an additional effect of the above-described carbon-based fuel gasification power generation system of the present embodiment, the control device can improve the reliability of the gasification power generation system.

本実施例によれば、炭素系燃料をガス化してガスタービンに燃料として供給して発電する炭素系燃料のガス化発電システムにおいて、ガス化炉とガスタービンの間に低温で作動する吸収液を用いる脱硫装置を設置した場合でも、ガス化炉の排熱をガスタービンまで導いて高い発電効率を得ることを可能にした炭素系燃料のガス化発電システムが実現できる。   According to the present embodiment, in a carbonized fuel gasification power generation system in which carbonaceous fuel is gasified and supplied to the gas turbine as fuel to generate electric power, an absorbing liquid that operates at a low temperature is provided between the gasification furnace and the gas turbine. Even when the desulfurization apparatus to be used is installed, it is possible to realize a gasification power generation system for carbon-based fuel that can obtain high power generation efficiency by guiding the exhaust heat of the gasification furnace to the gas turbine.

本発明は石炭やバイオマスなどの炭素系燃料を原料として発電する炭素系燃料のガス化発電システムに適用可能であり、特に、炭素系燃料をガス化してガスタービンを用いて発電する炭素系燃料のガス化発電システムに適用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a gasification power generation system for carbon-based fuel that generates power using carbon-based fuel such as coal or biomass, and in particular, carbon-based fuel generated by gasifying carbon-based fuel and generating power using a gas turbine. Applicable to gasification power generation system.

a:冷却水供給系統、a2:冷却水供給系統、a3:冷却水供給系統、b:昇温水供給系統、c:二酸化炭素供給系統、1:石炭(炭素系燃料)、2:酸素(酸化剤)、3:石炭搬送ガス、4:チャー搬送ガス、5:スラグ、6:チャー、7:空気、8:水洗塔洗浄水、9:ガスタービン空気への噴霧水 、10:水回収器への供給水、11:吸収液、50:ガス化炉、51:ガス化炉熱回収部、52:冷却器、53:脱塵装置、54:水洗塔、55:シフト反応器、56:吸収塔、57:ノックアウトドラム、58:再生塔、59:二酸化炭素/硫化水素分離器、60:ガスタービン燃焼器、61:ガスタービン圧縮機、62:ガスタービン、63:ガスタービン発電機、64:増湿塔、65:水回収塔、66:煙突、70〜74:熱交換器、75:回収水の流通配管、76:水噴霧用ヘッダー、77:水噴霧用配管、78:水冷管、80〜89:流量調整弁、90:温度計、91:水回収塔レベル計、92:流量計、93:水タンクのレベル計、94:圧力計、95〜97:温度計、98、99:制御装置。   a: cooling water supply system, a2: cooling water supply system, a3: cooling water supply system, b: heated water supply system, c: carbon dioxide supply system, 1: coal (carbon fuel), 2: oxygen (oxidant) 3) Coal carrier gas, 4: Char carrier gas, 5: Slag, 6: Char, 7: Air, 8: Washing tower washing water, 9: Spray water for gas turbine air, 10: Water recovery device Feed water, 11: Absorption liquid, 50: Gasification furnace, 51: Gasification furnace heat recovery section, 52: Cooler, 53: Dedusting device, 54: Flushing tower, 55: Shift reactor, 56: Absorption tower, 57: Knockout drum, 58: Regeneration tower, 59: Carbon dioxide / hydrogen sulfide separator, 60: Gas turbine combustor, 61: Gas turbine compressor, 62: Gas turbine, 63: Gas turbine generator, 64: Humidification Tower, 65: water recovery tower, 66: chimney, 70-74: heat exchange 75: Water recovery distribution pipe, 76: Water spray header, 77: Water spray pipe, 78: Water cooling pipe, 80-89: Flow rate adjusting valve, 90: Thermometer, 91: Water recovery tower level meter, 92 : Flow meter, 93: Water tank level meter, 94: Pressure gauge, 95-97: Thermometer, 98, 99: Control device.

Claims (13)

炭素系燃料を酸化剤でガス化して一酸化炭素と水素を主成分とする生成ガスを製造するガス化炉と、
前記ガス化炉の上部に設置されガス化炉で製造された生成ガスの熱を回収する熱回収部と、
前記ガス化炉の下流側に設置されガス化炉で製造された生成ガスに水を噴霧して生成ガスを冷却するとともに、水蒸気を発生させる冷却塔と、
前記冷却塔の下流側に設置されガス化炉で製造された生成ガスを脱塵する脱塵設備と、
前記脱塵設備の下流側に設置され脱塵設備を流下した生成ガスの熱で水洗塔を経た生成ガスを昇温する第1の熱交換器と、
前記熱交換器の下流側に設置され第1の熱交換器で発生した水蒸気を付加した生成ガス中の一酸化炭素と水蒸気を反応させて二酸化炭素と水素に変換するシフト反応器と、
前記シフト反応器の下流側に設置されシフト反応器を経た生成ガス中の少なくとも硫化水素を吸収液に吸収させる吸収塔と、
前記吸収塔から取り出され生成ガス中の硫化水素を除去した生成ガスを前記シフト反応器を経た生成ガスと間接熱交換させて該生成ガスを昇温する前記シフト反応器の下流側に設置された第2の熱交換器と、
前記第2の熱交換器で昇温した生成ガスを燃料として導いて燃焼させ燃焼ガスを発生するガスタービン燃焼器と、
前記ガスタービン燃焼器で発生した燃焼ガスで駆動されるガスタービンと、
前記ガスタービンによって駆動され発電を行う発電機と、
前記ガスタービンから排出された排ガスの流路に設置され該ガスタービンから排出された排ガスを冷却して該排ガスに含まれた水分を回収する水回収器と、
前記ガスタービンの圧縮機で加圧され前記ガスタービン燃焼器に供給される燃焼用空気に前記水回収器で回収した水分の一部を噴霧して該燃焼用空気を加湿する増湿塔を備え、
更に前記水回収器で回収した水の一部を冷却水として前記水回収器から前記ガス化炉、前記ガス化炉に設けた熱回収部、及び前記ガス化炉の下流側に設置された冷却塔の何れかに供給する冷却水供給系統を配設して、この冷却水供給系統を通じて前記水回収器から冷却水を前記ガス化炉、前記熱回収部、及び前記冷却塔の何れかに供給することを特徴とする炭素系燃料のガス化発電システム。
A gasification furnace for producing a product gas mainly composed of carbon monoxide and hydrogen by gasifying carbon-based fuel with an oxidant;
A heat recovery unit that is installed at the top of the gasification furnace and recovers the heat of the produced gas produced in the gasification furnace;
A cooling tower that is installed downstream of the gasification furnace and sprays water on the produced gas produced in the gasification furnace to cool the produced gas, and generates steam.
Dedusting equipment for dedusting the product gas installed in the gasification furnace installed downstream of the cooling tower;
A first heat exchanger that is installed on the downstream side of the dust removal equipment and heats the product gas that has flowed down the dust removal equipment to raise the temperature of the product gas that has passed through the washing tower;
A shift reactor installed downstream of the heat exchanger to convert carbon monoxide and water vapor in the product gas added with water vapor generated in the first heat exchanger to convert it into carbon dioxide and hydrogen;
An absorption tower that is installed on the downstream side of the shift reactor and absorbs at least hydrogen sulfide in the product gas that has passed through the shift reactor, into an absorption liquid;
Installed on the downstream side of the shift reactor where the product gas taken out of the absorption tower and from which hydrogen sulfide in the product gas has been removed is indirectly heat-exchanged with the product gas that has passed through the shift reactor to raise the temperature of the product gas. A second heat exchanger;
A gas turbine combustor for generating combustion gas by introducing and burning the generated gas heated in the second heat exchanger as fuel;
A gas turbine driven by combustion gas generated in the gas turbine combustor;
A generator for generating electricity driven by the gas turbine;
A water recovery unit that is installed in a flow path of exhaust gas discharged from the gas turbine and recovers moisture contained in the exhaust gas by cooling the exhaust gas discharged from the gas turbine;
A humidification tower is provided for humidifying the combustion air by spraying a part of the water recovered by the water recovery unit onto the combustion air pressurized by the compressor of the gas turbine and supplied to the gas turbine combustor. ,
Furthermore, a part of the water recovered by the water recovery unit is used as cooling water from the water recovery unit to the gasification furnace, a heat recovery unit provided in the gasification furnace, and cooling installed downstream of the gasification furnace A cooling water supply system for supplying to any one of the towers is disposed, and cooling water is supplied from the water recovery device to any of the gasification furnace, the heat recovery unit, and the cooling tower through the cooling water supply system. A carbonized gasification power generation system characterized by:
請求項1に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収した水の一部を冷却水として前記冷却水供給系統を通じて該水回収器から前記ガス化炉の水冷壁に供給することを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 1,
A carbonized fuel gasification power generation system, wherein a part of the water recovered by the water recovery unit is supplied as cooling water from the water recovery unit to a water cooling wall of the gasification furnace through the cooling water supply system.
請求項1に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収した水の一部を冷却水として前記冷却水供給系統を通じて該水回収器から前記ガス化炉に設けた熱回収部に供給することを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 1,
Gasification of carbon-based fuel characterized in that a part of water recovered by the water recovery unit is supplied as cooling water from the water recovery unit to a heat recovery unit provided in the gasification furnace through the cooling water supply system. Power generation system.
請求項1に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収した水の一部を冷却水として前記冷却水供給系統を通じて該水回収器から前記冷却塔に供給することを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 1,
A carbonized fuel gasification power generation system, wherein a part of the water recovered by the water recovery unit is supplied as cooling water from the water recovery unit to the cooling tower through the cooling water supply system.
請求項2に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収され前記ガス化炉の水冷壁に供給された水をこのガス化炉の水冷壁で生成ガスとの間接熱交換によって昇温し、
前記ガス化炉の水冷壁から前記脱塵装置の下流側に設置した水洗塔に至る昇温水供給系統を配設して該ガス化炉の水冷壁で昇温した昇温水の一部をこの昇温水供給系統を通じて前記水洗塔に流下させることを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 2,
The temperature of the water recovered by the water recovery device and supplied to the water cooling wall of the gasification furnace is increased by indirect heat exchange with the product gas at the water cooling wall of the gasification furnace,
A heated water supply system is arranged from the water cooling wall of the gasifier to a water washing tower installed downstream of the dust removing device, and a part of the heated water heated by the water cooling wall of the gasifier is A carbonized fuel gasification power generation system, which flows down to the washing tower through a hot water supply system.
請求項3に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収され前記ガス化炉の熱回収部に供給された水をこのガス化炉の熱回収部で生成ガスとの間接熱交換によって昇温し、
前記ガス化炉の熱回収部から前記脱塵装置の下流側に設置した水洗塔に至る昇温水供給系統を配設して該ガス化炉の熱回収部で昇温した昇温水の一部をこの昇温水供給系統を通じて前記水洗塔に流下させることを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 3,
The temperature of the water recovered by the water recovery unit and supplied to the heat recovery unit of the gasifier is increased by indirect heat exchange with the product gas in the heat recovery unit of the gasifier,
A part of the heated water heated by the heat recovery part of the gasification furnace is provided by arranging a temperature rising water supply system from the heat recovery part of the gasification furnace to the washing tower installed downstream of the dust removing device. A carbonized fuel gasification power generation system characterized in that it is caused to flow down to the washing tower through the temperature rising water supply system.
請求項4に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収され前記ガス化炉の下流側に設置した前記冷却塔に供給した水をこの冷却塔で生成ガスとの間接熱交換によって昇温して水蒸気を生成し、この生成した水蒸気を生成ガスと共に前記冷却塔の下流側に流下させることを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of carbon fuel according to claim 4,
The water recovered by the water recovery unit and supplied to the cooling tower installed on the downstream side of the gasification furnace is heated by indirect heat exchange with the generated gas in the cooling tower to generate water vapor. Is flown down to the downstream side of the cooling tower together with the product gas.
請求項1乃至請求項7のいずれか1項に記載の炭素系燃料のガス化発電システムにおいて、
前記吸収塔の下流側に設置され該吸収塔で硫化水素及び二酸化炭素を吸収した吸収液から硫化水素及び二酸化炭素を分離して吸収液を再生する再生塔と、
前記再生塔の下流側に設置され該再生塔で吸収液から分離した硫化水素及び二酸化炭素から二酸化炭素と硫化水素を分離する二酸化炭素/硫化水素分離器と、
前記二酸化炭素/硫化水素分離器から前記ガス化炉に至る二酸化炭素供給系統を配設し、
前記二酸化炭素/硫化水素分離器で分離した二酸化炭素をこの二酸化炭素供給系統を通じて前記ガス化炉に供給することを特徴とする炭素系燃料のガス化発電システム。
In the gasification power generation system of the carbon fuel according to any one of claims 1 to 7,
A regeneration tower that is installed downstream of the absorption tower and separates the hydrogen sulfide and carbon dioxide from the absorption liquid that has absorbed hydrogen sulfide and carbon dioxide in the absorption tower to regenerate the absorption liquid;
A carbon dioxide / hydrogen sulfide separator that is installed downstream of the regeneration tower and separates carbon dioxide and hydrogen sulfide from hydrogen sulfide and carbon dioxide separated from the absorbent in the regeneration tower;
Disposing a carbon dioxide supply system from the carbon dioxide / hydrogen sulfide separator to the gasifier;
A carbon fuel gasification power generation system, wherein carbon dioxide separated by the carbon dioxide / hydrogen sulfide separator is supplied to the gasification furnace through the carbon dioxide supply system.
請求項1乃至請求項8のいずれか1項に記載の炭素系燃料のガス化発電システムにおいて、
前記ガス化炉の下流側に設置した前記脱塵設備の入口に生成ガスの温度を検出する温度計を設置し、
前記冷却水供給系統に冷却水の供給量を調節する流量調整弁を設置し、
前記温度計で検出した生成ガスの温度に基づいて前記流量調整弁による冷却水の供給量を調節して、前記冷却水供給系統を通じて前記水回収器から冷却水を前記ガス化炉、前記熱回収部、及び前記冷却塔の何れかに供給する冷却水の供給量を制御したことを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon fuel according to any one of claims 1 to 8,
Install a thermometer that detects the temperature of the product gas at the entrance of the dedusting facility installed downstream of the gasification furnace,
A flow rate adjusting valve for adjusting the cooling water supply amount is installed in the cooling water supply system,
The amount of cooling water supplied by the flow rate adjusting valve is adjusted based on the temperature of the product gas detected by the thermometer, and the cooling water is supplied from the water recovery unit through the cooling water supply system to the gasification furnace and the heat recovery. And a supply amount of cooling water supplied to any one of the cooling towers is controlled.
請求項3に記載の炭素系燃料のガス化発電システムにおいて、
前記水回収器で回収した水の一部を冷却水として該水回収器から前記ガス化炉に設けた熱回収部に供給する冷却水供給系統を複数に分岐させて前記ガス化炉の熱回収部に複数段に分割して供給する分岐配管を配設し、
これらの分岐配管に前記ガス化炉の熱回収部に冷却水を噴霧するノズルを設けると共に、複数段に分割した各分岐配管に流量調整弁をそれぞれ設置し、
前記ガス化炉の熱回収部出口に生成ガスの温度を検出する温度計を設置し、
前記温度計で検出したガス化炉の熱回収部出口の生成ガスの検出温度に基づいて分岐配管に設置した前記流量調整弁の開度を操作する制御装置を設置し、
前記温度計で検出したガス化炉の熱回収部出口での生成ガスの検出温度に基づいてこの制御装置によって前記流量調整弁の開度を調節してこれらの分岐配管に設けたノズルから前記ガス化炉の熱回収部に噴霧する冷却水の噴霧量を調節して前記ガス化炉の熱回収部出口に生成ガスの温度を制御することを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 3,
A part of the water recovered by the water recovery unit is used as cooling water, and a cooling water supply system that supplies the water recovery unit from the water recovery unit to a heat recovery unit provided in the gasification furnace is branched into a plurality of heat recoverys of the gasification furnace. A branch pipe that is divided and supplied in multiple stages is arranged in the section,
These branch pipes are provided with nozzles for spraying cooling water on the heat recovery section of the gasification furnace, and each flow control valve is installed in each branch pipe divided into a plurality of stages,
Install a thermometer that detects the temperature of the product gas at the outlet of the heat recovery section of the gasifier,
A control device for operating the opening of the flow rate adjusting valve installed in the branch pipe based on the detected temperature of the generated gas at the outlet of the heat recovery unit of the gasification furnace detected by the thermometer,
Based on the detected temperature of the generated gas at the outlet of the heat recovery section of the gasification furnace detected by the thermometer, the opening of the flow rate adjusting valve is adjusted by the control device based on the detected temperature of the generated gas from the nozzle provided in these branch pipes A carbonized fuel gasification power generation system, wherein the temperature of the generated gas is controlled at an outlet of the heat recovery unit of the gasification furnace by adjusting an amount of cooling water sprayed on the heat recovery unit of the gasification furnace.
請求項3の炭素系燃料のガス化発電システムにおいて、
前記ガス化炉熱回収部を複数の水冷管を用いた水冷壁構造で構成し、
これらの水冷管に冷却水の一部をガス化炉熱回収部を流下する生成ガスに噴霧する孔或いはノズルを設け、
前記水回収器から供給した冷却水を前記ガス化炉熱回収部で生成ガスの熱によって昇温させ、このガス化炉熱回収部で昇温した昇温水を前記水冷管に設けた孔或いはノズルから生成ガスに噴霧するように構成したことを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 3,
The gasifier heat recovery unit is configured with a water-cooled wall structure using a plurality of water-cooled tubes,
These water-cooled pipes are provided with holes or nozzles for spraying part of the cooling water to the product gas flowing down the gasifier heat recovery section,
The cooling water supplied from the water recovery unit is heated by the heat of the product gas in the gasification furnace heat recovery unit, and a hole or nozzle provided in the water cooling pipe with the temperature increase water raised in the gasification furnace heat recovery unit A gasification power generation system for carbon-based fuel, characterized in that it is sprayed onto the product gas.
請求項3の炭素系燃料のガス化発電システムにおいて、
ガスタービンの排ガスから水回収器で回収した水の一部を貯留するタンクと、
このタンクで貯留した水をガス化炉の熱回収部に導く供給配管と、
前記供給配管に設けられタンクで貯留した水を前記ガス化炉の熱回収部に供給するポンプと、
前記ガス化炉の熱回収部からタンクに水を戻す戻り配管と、
前記戻り配管に設けられ該戻り配管を通じて前記ガス化炉の熱回収部とタンクとの間を流れる水の流量を調節する流量調整弁と、
前記ガス化炉の熱回収部の出口に設置されこのガス化炉の熱回収部の出口での生成ガスの温度を検出する温度計と、
この温度計で検出したガス化炉の熱回収部の出口での生成ガスの温度に基づいて前記流量調整弁による水の流量を調節する第2の制御装置を設置し、
前記温度計で検出したガス化炉の熱回収部出口での生成ガスの検出温度に基づいてこの第2の制御装置によって前記流量調整弁の開度を調節して前記ガス化炉の熱回収部出口での生成ガスの温度を制御することを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon-based fuel according to claim 3,
A tank for storing a part of the water recovered from the exhaust gas of the gas turbine by the water recovery device;
A supply pipe for guiding the water stored in this tank to the heat recovery section of the gasifier,
A pump that is provided in the supply pipe and supplies water stored in a tank to a heat recovery unit of the gasification furnace;
A return pipe for returning water from the heat recovery section of the gasifier to the tank;
A flow rate adjusting valve that is provided in the return pipe and adjusts the flow rate of water flowing between the heat recovery section of the gasifier and the tank through the return pipe;
A thermometer that is installed at the outlet of the heat recovery unit of the gasifier and detects the temperature of the product gas at the outlet of the heat recovery unit of the gasifier;
A second control device for adjusting the flow rate of water by the flow rate adjustment valve based on the temperature of the product gas at the outlet of the heat recovery unit of the gasification furnace detected by the thermometer;
Based on the detected temperature of the product gas at the outlet of the heat recovery unit of the gasifier detected by the thermometer, the second control device adjusts the opening of the flow rate adjusting valve to adjust the heat recovery unit of the gasifier. A carbonized gasification power generation system characterized by controlling the temperature of a product gas at an outlet.
請求項1乃至請求項8のいずれか1項に記載の炭素系燃料のガス化発電システムにおいて、
ガスタービンから排出する排ガスを熱源としてガスタービン燃焼器に供給するガスタービン燃焼用の空気と熱交換してガスタービン燃焼用の空気を加熱するガスガス熱交換器と、
前記ガスガス熱交換器を経た排ガスを冷却して前記排ガスに含まれた水分を凝縮する凝縮熱交換器を設置し、
前記凝縮熱交換器で凝縮した排ガス中の水分を前記水回収器に供給するようにしたことを特徴とする炭素系燃料のガス化発電システム。
The gasification power generation system of the carbon fuel according to any one of claims 1 to 8,
A gas gas heat exchanger that heats the gas turbine combustion air by exchanging heat with the gas turbine combustion air supplied to the gas turbine combustor using the exhaust gas discharged from the gas turbine as a heat source;
Installing a condensation heat exchanger that cools the exhaust gas that has passed through the gas gas heat exchanger and condenses the moisture contained in the exhaust gas;
A carbonized fuel gasification power generation system characterized in that water in exhaust gas condensed by the condensation heat exchanger is supplied to the water recovery unit.
JP2012117119A 2012-05-23 2012-05-23 Gasification power generation system of carbon-based fuel Pending JP2013241923A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012117119A JP2013241923A (en) 2012-05-23 2012-05-23 Gasification power generation system of carbon-based fuel
CN2013101924977A CN103421544A (en) 2012-05-23 2013-05-22 Gasification and generation system of carbon fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117119A JP2013241923A (en) 2012-05-23 2012-05-23 Gasification power generation system of carbon-based fuel

Publications (1)

Publication Number Publication Date
JP2013241923A true JP2013241923A (en) 2013-12-05

Family

ID=49646941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117119A Pending JP2013241923A (en) 2012-05-23 2012-05-23 Gasification power generation system of carbon-based fuel

Country Status (2)

Country Link
JP (1) JP2013241923A (en)
CN (1) CN103421544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823074A (en) * 2016-05-06 2016-08-03 碧海舟(北京)节能环保装备有限公司 Oxygen-enriched and energy-saving combustion system capable of achieving zero emission of nitrogen oxides
JP2021032189A (en) * 2019-08-28 2021-03-01 三菱パワー株式会社 Gasification power generating system for carbon-based fuel
WO2024224544A1 (en) * 2023-04-27 2024-10-31 三菱重工業株式会社 Gasification furnace system and method for operating gasification furnace system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681316B2 (en) * 2016-11-18 2020-04-15 日立造船株式会社 Method and apparatus for removing acid component at high temperature in gasification power generation system
CN107586569A (en) * 2017-10-26 2018-01-16 航天长征化学工程股份有限公司 High-temperature crude synthesis gas cooling and purifying device
CN109179325B (en) * 2018-09-26 2020-11-20 上海柯来浦能源科技有限公司 Device and method for high-temperature smelting of metal and nonmetal
WO2022029886A1 (en) * 2020-08-04 2022-02-10 積水化学工業株式会社 Gas production device, gas production system, iron production system, chemical product production system, and gas production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196016B (en) * 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process
GB9105095D0 (en) * 1991-03-11 1991-04-24 H & G Process Contracting Improved clean power generation
JP2000213371A (en) * 1999-01-25 2000-08-02 Hitachi Ltd Gas turbine generating method and generating apparatus
JP2001115854A (en) * 1999-10-14 2001-04-24 Hitachi Ltd Gasification power generating plant
AU2003298266A1 (en) * 2002-11-08 2004-06-07 Alstom Technology Ltd Gas turbine power plant and method of operating the same
JP4436068B2 (en) * 2003-04-30 2010-03-24 株式会社クリーンコールパワー研究所 Coal gasification plant, coal gasification method, coal gasification power plant, and expansion facility for coal gasification plant
DE102008063055A1 (en) * 2008-12-23 2010-08-05 Uhde Gmbh Process for using the gas from a gasifier synthesis gas
JP5193160B2 (en) * 2009-11-10 2013-05-08 株式会社日立製作所 Gasification power generation system with carbon dioxide separation and recovery device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823074A (en) * 2016-05-06 2016-08-03 碧海舟(北京)节能环保装备有限公司 Oxygen-enriched and energy-saving combustion system capable of achieving zero emission of nitrogen oxides
JP2021032189A (en) * 2019-08-28 2021-03-01 三菱パワー株式会社 Gasification power generating system for carbon-based fuel
CN112443398A (en) * 2019-08-28 2021-03-05 三菱动力株式会社 Gasification power generation system for carbon-based fuel
US11274574B2 (en) 2019-08-28 2022-03-15 Mitsubishi Power, Ltd. Carbon-based fuel gasification power generation system
JP7140726B2 (en) 2019-08-28 2022-09-21 三菱重工業株式会社 Carbon-based fuel gasification power generation system
DE102020210802B4 (en) 2019-08-28 2024-01-25 Mitsubishi Heavy Industries, Ltd. System for producing energy by gasification of carbon-based fuel
CN112443398B (en) * 2019-08-28 2024-03-15 三菱重工业株式会社 Gasification power generation system for carbon-based fuel
WO2024224544A1 (en) * 2023-04-27 2024-10-31 三菱重工業株式会社 Gasification furnace system and method for operating gasification furnace system

Also Published As

Publication number Publication date
CN103421544A (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP2013241923A (en) Gasification power generation system of carbon-based fuel
US11433350B2 (en) Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method
JP2011001953A (en) System for cooling gas turbine intake air
JP2011102538A (en) Gasification power generation system equipped with carbon dioxide separation and recovery device
US20140026751A1 (en) System and method for capturing carbon dioxide from flue gas
JP6307238B2 (en) CO shift reactor and method of operating the CO shift reactor
JP5448961B2 (en) Coal gasification combined power plant
JP5292333B2 (en) CO2 recovery method and CO2 recovery device
JP5432098B2 (en) Oxyfuel boiler
JP7028600B2 (en) Methane production system and methane production method
AU2013237711B2 (en) Gasification system for carbon containing fuel
JP6000148B2 (en) Gasification combined power generation system and operation method of gasification combined power generation system
WO2011105176A1 (en) Chemical loop reaction system and power generation system using same
JP7140726B2 (en) Carbon-based fuel gasification power generation system
JP2011105843A (en) Gasification system and method for operating the same
JP6162468B2 (en) Coal gasification system and coal gasification power generation system
WO2000043658A1 (en) Gas turbine generating method and generator
JP7086675B2 (en) Gasifier system
JP5398755B2 (en) CO2 recovery method and CO2 recovery device
WO2020066459A1 (en) Gas turbine device, gas turbine facility, and method for operating gasification facility and gas turbine device
CN102906394B (en) Gasification power generation plant
JP2014015499A (en) Gasification method and system of the same, and coal gasification composite electricity generation method and system of the same
JP6957198B2 (en) Gasification furnace equipment and gasification combined cycle equipment equipped with this
JP5514133B2 (en) CO2 recovery method and CO2 recovery device
JP5465028B2 (en) Coal gasification system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141218