WO2020241340A1 - 新規な人工タンパク質触媒 - Google Patents
新規な人工タンパク質触媒 Download PDFInfo
- Publication number
- WO2020241340A1 WO2020241340A1 PCT/JP2020/019593 JP2020019593W WO2020241340A1 WO 2020241340 A1 WO2020241340 A1 WO 2020241340A1 JP 2020019593 W JP2020019593 W JP 2020019593W WO 2020241340 A1 WO2020241340 A1 WO 2020241340A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- complex
- protein
- composition
- complex according
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/242—Gold; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/244—Lanthanides; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/61—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/66—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/003—Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/165—Polymer immobilised coordination complexes, e.g. organometallic complexes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2265—Carbenes or carbynes, i.e.(image)
- B01J31/2269—Heterocyclic carbenes
- B01J31/2273—Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2265—Carbenes or carbynes, i.e.(image)
- B01J31/2278—Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/765—Serum albumin, e.g. HSA
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/79—Transferrins, e.g. lactoferrins, ovotransferrins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/10—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/50—Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
- B01J2231/54—Metathesis reactions, e.g. olefin metathesis
- B01J2231/543—Metathesis reactions, e.g. olefin metathesis alkene metathesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/50—Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
- B01J2231/54—Metathesis reactions, e.g. olefin metathesis
- B01J2231/546—Metathesis reactions, e.g. olefin metathesis alkyne metathesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/02—Compositional aspects of complexes used, e.g. polynuclearity
- B01J2531/0286—Complexes comprising ligands or other components characterized by their function
- B01J2531/0291—Ligands adapted to form modular catalysts, e.g. self-associating building blocks as exemplified in the patent document EP-A-1 479 439
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/10—Complexes comprising metals of Group I (IA or IB) as the central metal
- B01J2531/18—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2540/00—Compositional aspects of coordination complexes or ligands in catalyst systems
- B01J2540/60—Groups characterized by their function
- B01J2540/64—Solubility enhancing groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2540/00—Compositional aspects of coordination complexes or ligands in catalyst systems
- B01J2540/60—Groups characterized by their function
- B01J2540/66—Linker or spacer groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2540/00—Compositional aspects of coordination complexes or ligands in catalyst systems
- B01J2540/60—Groups characterized by their function
- B01J2540/68—Associating groups, e.g. with a second ligand or a substrate molecule via non-covalent interactions such as hydrogen bonds
Definitions
- the present invention relates to a novel artificial protein catalyst.
- In vivo synthetic chemotherapy is a concept in which a non-active or non-toxic raw material or reagent is introduced into the body, and the raw material or reagent is activated by a catalyst at a specific place in the body to exert an effect. Under such circumstances, there is increasing interest in the development of new catalysts applicable to therapeutic applications (Non-Patent Document 1).
- metal catalysts such as gold (Au), palladium (Pd), and ruthenium (Ru) are thiols present in the intracellular range of 0.5 to 10 mM and in plasma in the range of about 2 to 20 ⁇ M. It is known to rapidly deactivate when exposed to the contained glutathione (GSH).
- Au gold
- Pd palladium
- Ru ruthenium
- Non-Patent Document 2 ⁇ 17).
- An object of the present invention is to provide a novel artificial protein catalyst that enables protection of a catalyst from in vivo substances and has potential usefulness for in vivo synthetic chemotherapy.
- HSA Human serum albumin
- the present inventors considered selecting HSA as a protein and accommodating a metal catalyst in the hydrophobic binding pocket of HSA. Then, when ruthenium, which is a metal catalyst, was used as a catalyst and the metal catalyst was fixed to albumin drug binding site I, which is known to bind (interact) with coumarin derivatives (warfarin, etc.), 20 mM GSH under in vitro conditions. We have found that the catalytic activity of bound ruthenium can be protected even in the presence of, and have completed the present invention.
- the present invention includes the following features: [1] A complex of a protein and a catalyst selected from a metal catalyst or an organic catalyst.
- the protein is a protein having a hydrophobic spot in its three-dimensional structure.
- the complex houses the catalyst in the hydrophobic spot so that the catalyst is not or substantially not exposed to a hydrophilic environment. Complex.
- the protein is a natural or artificial protein, Complex.
- the complex according to [1] or [2].
- the proteins include human serum albumin (HSA), immunoglobulin G (IgG), immunoglobulin A (IgA), transferase, antitrypsin, haptoglobin, ⁇ 1-acid glycoprotein, Myoferlin, Trk receptor, and estrogen receptor. , And selected from the group consisting of folic acid receptors, Complex.
- the metal catalyst includes a boron catalyst, a magnesium catalyst, an aluminum catalyst, a silicon catalyst, a calcium catalyst, a scandium catalyst, a titanium catalyst, a vanadium catalyst, a chromium catalyst, a manganese catalyst, an iron catalyst, a cobalt catalyst, a nickel catalyst, a copper catalyst, and a zinc catalyst.
- Complex Ittium catalyst, zirconium catalyst, niobium catalyst, molybdenum catalyst, ruthenium catalyst, rhodium catalyst, palladium catalyst, silver catalyst, indium catalyst, tin catalyst, barium catalyst, hafnium catalyst, tungsten catalyst, renium catalyst, osmium catalyst, iridium catalyst, platinum catalyst , Gold catalyst, and lanthanoid Lewis acid catalyst.
- the lanthanoid Lewis acid catalyst is selected from the group consisting of an itribium catalyst, a lanthanum catalyst, a cerium catalyst, a samarium catalyst, a europium catalyst, a gadolinium catalyst, a terbium catalyst, a thulium catalyst, and a lutetium catalyst.
- the complex according to any one of [1] to [5].
- the protein is human serum albumin
- the catalyst is a metal catalyst, Complex.
- the metal catalyst is a ruthenium catalyst, Complex.
- the complex according to any one of [6] to [8].
- the metal catalyst is attached to the hydrophobic spot via a ligand for human serum albumin. Complex.
- the ligands are warfarin, azapropazone, acenocoumarol, phenylbutazone, salicylate, indomethacin, phenytoin, tolbutamide, chlorpropamide, iofenoxate, yodipamide, sulfadimethoxyn, phenoproxone, glibenclamide, sulfathiazole, tenoxicam, From the group consisting of camptothecin, baldidendeazi,dinllatan, diadereal,minllatan, diadereal,minllatan, diaderealtan, prodan, bilirubin, eicosanoid, and carboxy-methyl-propyl-franpropanoate (urine tolbutazone), and coumarin. Selected, Complex.
- the linker is an alkyl chain or a polyethylene glycol (PEG) chain having an amino group and a carboxyl group at both ends. Complex.
- the complex according to any one of [1] to [13].
- the protein further comprises a portion that interacts with a target site in vivo. Complex.
- the protein is human serum albumin, Complex.
- composition according to [18] which is a pharmaceutical composition further containing a pharmaceutically acceptable carrier.
- composition according to [19] Used in combination with a prodrug that can be activated by the complex, Composition.
- composition [21] The composition according to [19]. Further comprising a prodrug that can be activated by the complex. Composition.
- composition according to [19]. Used to selectively tag specific cells, Composition.
- composition according to [22] Administered in combination with chemicals that are tagged on the cells, Composition.
- composition according to [18] Used as a biosensor, Composition.
- composition according to [18] Used as a biosensor to detect ethylene, Composition.
- a pharmaceutical composition containing a prodrug can be activated by the complex according to any one of [1] to [17].
- the pharmaceutical composition is used in combination with the complex according to any one of [1] to [17].
- Pharmaceutical composition is used in combination with the complex according to any one of [1] to [17].
- a combination drug The first drug containing the complex according to any one of [1] to [17] and A combination drug comprising a second agent comprising a prodrug that can be activated by the complex.
- a novel artificial protein catalyst that enables protection of the catalyst from in vivo substances is provided.
- FIG. 1 shows the fluorescence assay results of the product obtained by the reaction of ruthenium catalysts Ru1-3, 6 with HSA.
- FIG. 2 shows a saturated bond curve when the reaction with ruthenium catalysts Ru1-3 and 6 was carried out after the reaction between HSA and warfarin or ibuprofen.
- FIG. 3 shows an experimental system for testing the catalytic ability of the alb-Ru complex used in the examples of the present application.
- FIG. 4 shows the evaluation results of the catalytic ability of the alb-Ru complex under different conditions.
- FIG. 5 shows the evaluation results of the catalytic ability of the alb-Ru complex under different conditions.
- FIG. 6 shows the Michaelis-Menten kinetic parameters of substrate 1a-e in the presence or absence of GSH with respect to ArM activity (artificial metal enzyme activity).
- FIG. 7 shows molecular modeling of the ruthenium catalyst Ru1-3, 6 when docked with human serum albumin (PDB: 1H9Z).
- FIG. 8 is the result of cell imaging showing that GArM-Ru1 (2,3-Sia) accumulates better in SW620 human colon adenocarcinoma cells.
- FIG. 9 shows a comparison between SW620 human colon adenocarcinoma cells, HeLa human cervical cancer-derived cells and A549 human alveolar basal epithelial adenocarcinoma cells with respect to the accumulation of GArM-Ru1 (2,3-Sia).
- FIG. 10 shows kinetic experiments on activation of prodrugs 1 g and 1 h by the GArM-Ru complex.
- FIG. 11 shows a comparison of the cell growth inhibitory effects of prodrugs, prodrugs and alb-Ru1, or prodrugs and GArM-Ru1 on cancer cell lines.
- FIG. 12 shows a synthesis scheme for an ArmM ethylene probe (AEP).
- FIG. 13 shows the observed fluorescence intensities of the alb-Ru compound compared to the AEP probe.
- FIG. 14 shows a comparison of CD spectra to examine changes in the folding structure of various protein compounds in this study.
- FIG. 15 shows the results of observing changes in ethylene production expressed in various organelles (outer pericarp, ovary, pillar axis) at different developmental stages (immature and mature) of kiwifruit using AEP. Shown. The number of samples was the outer pericarp (
- FIG. 16 shows the fluorescence intensity of the epidermis on which AEP (100 ⁇ M) was applied, an imaging image of wild-type Col-0 (b) under a bright-field microscope (magnification 40 times), and ACC (an ethylene biosynthesis accelerator). The result of detection by further adding 1 mM) is shown.
- FIG. 16 shows the fluorescence intensity of the epidermis on which AEP (100 ⁇ M) was applied, an imaging image of wild-type Col-0 (b) under a bright-field microscope (magnification 40 times), and ACC (an ethylene biosynthesis accelerator). The result of detection by
- FIG. 18 shows a comparison of the flow cytometry results of HeLa cells treated with GArM and HeLa cells not treated.
- FIG. 19 shows a comparison of the flow cytometry results of mouse peritoneal macrophages treated with GArM and mouse peritoneal macrophages not treated.
- FIG. 20 shows a comparison of flow cytometric results of GAArM-treated HeLa cells and mouse peritoneal macrophages and non-GArM-treated HeLa cells and mouse peritoneal-derived macrophages. The values of Q3 in the upper left figure and the lower left figure are 99.09% and 43.06%, respectively.
- FIG. 21 shows the results of the cell adhesion assay performed in Example 8.
- the present invention relates to a novel artificial protein catalyst.
- the artificial protein catalyst according to the present invention is a complex of a protein and a catalyst selected from a metal catalyst or an organic catalyst (hereinafter, also referred to as "complex of the present invention").
- the complex of the present invention can be characterized by a configuration in which the catalyst is contained within the hydrophobic spot of a protein having a hydrophobic spot within its conformation so that it is not or substantially not exposed to a hydrophilic environment. .. That is, the complex of the present invention can protect the catalyst from in vivo substances by avoiding exposure or substantial exposure of the catalyst to the hydrophilic environment.
- the complex of the present invention may contain the catalyst in only one of the hydrophobic spots present in the protein, or may contain the catalyst in a plurality of (or all) locations.
- the complex of the present invention also has a configuration that avoids exposure or substantial exposure of the catalyst to the hydrophilic environment, while still promoting the reaction of interest to the catalyst. It can also be characterized by obtaining. That is, in a preferred embodiment, the complex of the present invention can exert a desired activity in vivo while protecting the catalyst from substances in vivo.
- substantially the catalyst is not exposed to the hydrophilic environment means that exposure to the hydrophilic environment is permitted to the extent that protection of the catalyst from the hydrophilic environment is recognized.
- Protection of the catalyst from the hydrophilic environment is recognized means that the activity of the catalyst contained in the complex of the present invention is longer in the same environment as compared with the case where the free catalyst is exposed to the in vivo environment. It refers to being maintained at, and can be evaluated, for example, by turnover (TON). The extent to which exposure is acceptable may vary depending on the type of catalyst used, the type of protein used in combination, and the like.
- substantially the catalyst is not exposed to a hydrophilic environment means that the relative solvent accessible surface area (SASA) of the catalyst when housed in the hydrophobic spot of the protein is 5.0 or less.
- SASA solvent accessible surface area
- Preferred 4.0 or less more preferably 3.5 or less, more preferably 3.0 or less, more preferably 2.5 or less, more preferably 2.0 or less, more preferably 1.5 or less, more. It is preferably 1.0 or less, more preferably 0.9 or less, more preferably 0.8 or less, more preferably 0.7 or less, more preferably 0.6 or less, more preferably 0.5 or less, and more preferably. It means that it is 0.4 or less, more preferably 0.3 or less, more preferably 0.2 or less, or more preferably 0.1 or less.
- substantially the catalyst is not exposed to the hydrophilic environment is 50% or more, preferably 55% or more, more preferably 60% or more, more preferably 60% or more of the total surface area of the catalyst. 65% or more, more preferably 70% or more, more preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 95% or more, more preferably 96. It means that% or more, more preferably 97% or more, more preferably 98% or more, or more preferably 99% or more is contained inside the hydrophobic spot of the protein.
- the proteins that can be used in the complex of the present invention are not limited as long as they have one or more hydrophobic spots that allow accommodation of the catalyst, and natural or artificial proteins can be used.
- artificial proteins include mutant proteins in which mutations are artificially introduced into a part of natural proteins.
- the protein used in the complex of the present invention is a protein for which a ligand that binds or interacts with any of its hydrophobic spots is readily available.
- Such proteins may be preferred in that they facilitate ligand-mediated catalytic complexation.
- the proteins used in the complex of the invention are human serum albumin (HSA), immunoglobulin G (IgG), immunoglobulin A (IgA), transferrin, antitrypsin, haptoglobin, and ⁇ 1- It is a protein selected from acidic glycoproteins and the like. These proteins are considered suitable for drug delivery systems because they are proteins that can move freely in the blood.
- the protein used in the complex of the invention is a protein selected from Myoferlin, Trk receptor, estrogen receptor, folic acid receptor and the like. Since these proteins are known to be highly expressed in cancer cells, it is possible to produce a complex capable of directly killing cancer by coordinating a ligand and a metal to the protein. It is believed that there is.
- the organic catalyst or metal catalyst that can be used in the composite of the present invention is not particularly limited and can be arbitrarily selected by those skilled in the art.
- the organocatalyst or metal catalyst that can be used in the complex of the present invention is one that has the activity of converting a given prodrug into an active form.
- the organic catalyst used in the complex of the present invention is not limited to, but is not limited to, a proline derivative, an interphase transfer catalyst based on a quaternary ammonium salt derivative, a thiourea derivative, a thiazolium salt or an imidazolium.
- a proline derivative an interphase transfer catalyst based on a quaternary ammonium salt derivative
- a thiourea derivative a thiazolium salt or an imidazolium
- Examples thereof include N-heterocyclic carben derivatives obtained from salts, cyclic ketone derivatives, 4-dimethylaminopyridine derivatives, and secondary amines typified by amino acids.
- the metal catalyst used in the composite of the present invention includes, but is not limited to, a boron catalyst, a magnesium catalyst, an aluminum catalyst, a silicon catalyst, a calcium catalyst, a scandium catalyst, a titanium catalyst, a vanadium catalyst, and chromium.
- lanthanoid Lewis acid catalyst examples include, but are not limited to, itribium catalyst, lanthanum catalyst, cerium catalyst, samarium catalyst, europium catalyst, gadolinium catalyst, terbium catalyst, thulium catalyst, and lutetium catalyst. Can be done.
- a method of binding the catalyst in the hydrophobic spot via a ligand that interacts with or binds to the hydrophobic spot can be mentioned.
- a linker such as a peptide, a hydrocarbon chain, or PEG can be appropriately used for linking the ligand and the catalyst (for example, a metal catalyst).
- the length of the linker used should be such that the catalyst is housed in a hydrophobic spot and is not or substantially not exposed from the hydrophilic environment.
- the linker used when the linker used is too long for the size of the hydrophobic spot, the ligand interacting with it, and the catalyst used, when binding the catalyst to the hydrophobic spot via the linker and ligand.
- the catalyst may not fit within the hydrophobic spot, and some or all of it may be exposed to the hydrophilic environment from the hydrophobic spot, resulting in insufficient protection against the hydrophilic environment.
- Another means of accommodating the catalyst in the hydrophobic spot of the protein is, for example, on the side chain functional groups of cysteine or lysine (thiol and amino groups, respectively) present in or proximal to the hydrophobic pocket of the protein.
- a method of allowing maleimide or succinimide to act to activate and covalently bond with a catalyst can be mentioned.
- Yet another means of accommodating the catalyst in the hydrophobic spots of the protein is to introduce mutations at specific positions in the amino acid sequences that make up the hydrophobic pocket to introduce double bonds or azides, metathesis or click.
- a method of carrying out a reaction and covalently bonding with a catalyst can be mentioned (Young TS, Ahmad I, Block A, Schultz PG., Expanding the biochemical repertoire of the methylotropic yearast Pichia pastoris. Pichia pastoris. : 2643-53 .; Wang L, Schultz PG., Expanding the genetic code., Angew Chem Int Ed Engl. 2004. 44 (1): 34-66.).
- the catalyst for example, a metal catalyst
- a catalyst having a linker such as a peptide or PEG can be used.
- the complex of the invention is modified to interact with a target site in vivo.
- the complex of the present invention can be guided to a desired site in the living body / or can target the desired site.
- "interacting with a target site in vivo" means accumulating or typically binding to the target site with a significantly stronger directivity compared to other sites in the body. obtain.
- the target site may be a specific organ or organ, a specific cell tumor, or the like.
- a sugar chain modification can be mentioned.
- an asparagine-linked sugar chain (N-linked sugar chain) can be used for protein modification, and its orientation to a specific organ can be changed according to the cluster and / or the number of bonds of the sugar chain.
- N-linked sugar chain an asparagine-linked sugar chain
- its orientation to a specific organ can be changed according to the cluster and / or the number of bonds of the sugar chain.
- the complex of the present invention has enhanced directivity toward the target site. Can be done.
- the sugar chain modification uses, for example, a plurality of sugar chains (for example, 5 to 30) having sialic acid, galactosamine, galactose, or mannose at the non-reducing end, which interact with various types of cancer. be able to.
- a sugar chain having fucose can be used as the sugar chain modification.
- the plurality of sugar chains to be modified may be of the same type or of a plurality of types, and the size of each sugar chain can be in the range of 1 sugar to 25 sugars.
- non-reducing ends of sialic acid, galactosamine, galactose, or mannose that selectively migrate to specific organs such as, for example, liver, pancreas, intestinal tract, gallbladder, bladder, or brain.
- a plurality of sugar chains (for example, 5 to 30) can be used.
- the plurality of sugar chains to be modified may be of the same type or of a plurality of types, and the size of each sugar chain shall be in the range of 1 sugar to 25 sugars. Can be done.
- the modification site is typically the protein surface of the complex.
- a method for modifying a specific site on the protein surface is known to those skilled in the art, and any method may be used.
- sugar chain modification can be introduced into the protein surface by the click reaction described in International Publication No. 2008/0967060, Japanese Patent No. 6327547, International Publication No. 2017/002918 and the like. ..
- the complex of the present invention further comprises a moiety that interacts with a target site in vivo.
- interacting with a target site can mean accumulating or typically binding to a target site with significantly stronger directivity as compared to other sites.
- the target site may be a specific organ or organ, a specific cell tumor, or the like.
- the "part that interacts with the target site in the living body” may be an antibody or a fragment thereof, a peptide ligand or a fragment thereof, DNA or RNA, or a pNA (peptide nucleic acid) or a fragment thereof.
- the "part that interacts with the target site in vivo” may be produced, for example, as a fusion protein with a protein used in the complex, or the protein used in the complex and the "target in vivo".
- the “parts that interact with the site” may be prepared separately and bound (eg, covalently) by means known to those skilled in the art.
- the present invention relates to an artificial metal enzyme (ArM) which is a complex of a protein and a metal catalyst.
- ArM artificial metal enzyme
- the ArM of the present invention is a composite of HSA and a metal catalyst, wherein the metal catalyst is HSA so that the metal catalyst is not or substantially not exposed to a hydrophilic environment. It is characterized by being housed in a hydrophobic spot of.
- the metal catalyst used together with HSA can be appropriately selected by those skilled in the art depending on, for example, the type of prodrug to be activated.
- the metal catalyst used with HSA is ruthenium.
- the hydrophobic spots of the HSA containing the metal catalyst are not particularly limited, and one hydrophobic spot may contain the metal catalyst, or a plurality of hydrophobic spots contain the metal catalyst. May be good.
- Hydrophobic spots of HSA can include albumin drug binding site I and albumin drug binding site II.
- the complex of the invention houses a metal catalyst at albumin drug binding site I of HSA.
- the metal catalyst can be accommodated in the hydrophobic spot of HSA by connecting the metal catalyst and the ligand for HSA and binding the metal catalyst in the hydrophobic spot via the ligand.
- the ligands that can be used for this purpose can vary depending on the hydrophobic spots that house the metal catalyst. For example, when a metal catalyst is contained in the albumin drug binding site I of HSA, warfarin, azapropazone, acenocoumarol, phenylbutazone, salicylate, indomethacin, phenytoin, tolbutamide, chlorpropamide, and iophenoki are used as the ligands.
- a metal catalyst is contained in albumin drug-binding site II of HSA, diazepam, ketoprofen, clofibrate, ibuprofen, iopanoate, azidodeoxytimidin, flufenamate, as the ligands, are used.
- the hydrophobic spot of HSA is the drug binding site I, and a coumarin derivative, such as 7-dimethylaminocoumarin, is used as the ligand to accommodate ruthenium at the site.
- the connection between the metal catalyst and the ligand may be carried out via a linker.
- the linker typically, an Arikil chain or a polyethylene glycol (PEG) chain having an amino group and a carboxy group at both ends can be used.
- the alkyl chain linker is, for example, -NH- (CH 2 ) x- CO- (in the formula, x is an integer and is not limited as long as it does not interfere with the desired linker function. For example, it can be an integer of 1 to 15), -NH- (CH 2 CH 2 O) y -CH 2- CO- (in the formula, y is an integer, as long as it does not interfere with the desired linker function.
- z is an integer.
- z is an integer.
- the length of the linker used is such that the metal catalyst is housed in the hydrophobic spot of the HSA and is not or substantially not exposed to the hydrophilic environment. It should be noted that this is the case.
- ruthenium is accommodated at albumin drug binding site I of HSA using coumarin or a derivative thereof (eg, 7-dimethylaminocoumarin, 7-diethylaminocoumarin (DEAC)) as a ligand, "substantially exposed to a hydrophilic environment”. "Not” means that the exposed area of ruthenium to the hydrophilic environment can be 40% or less, preferably 35% or less of the total surface area of ruthenium.
- substantially not exposed to a hydrophilic environment can mean that the SASA of ruthenium when housed in albumin drug binding site I of HSA is 3.0 or less, preferably 1.0 or less.
- An exemplary linker used in this case is -NH- (CH 2 CH 2 O) y- CH 2- CO-, in which y is an integer of 1 to 6, preferably 1 to 3. Can be an integer of.
- the surface of HSA is modified with a sugar chain.
- the content of sugar chain modification can change depending on the target in vivo.
- the modification position on the HSA surface is not particularly limited as long as the sugar chain can be introduced, and an example includes the lysine residue at position 30 on the HSA surface.
- the complex of the present invention can activate the prodrug in vivo depending on the type of catalyst contained in the complex.
- the complex of the present invention can accumulate at a specific position in the living body and activate the prodrug in a regioselective manner, depending on the type of catalyst contained in the complex.
- the present invention relates to a composition comprising the complex of the present invention in another aspect.
- composition of the present invention is, in one embodiment, a pharmaceutical composition used in combination with a prodrug that can be activated by the complex of the present invention.
- the pharmaceutical composition of the invention may be in single agent form further comprising a pharmaceutically acceptable carrier and optionally a prodrug that can be activated by the complex of the invention.
- examples of the prodrug that can be used in the present invention and can be activated by the complex of the present invention include, but are not limited to, various anticancer agents, and specifically, mitomycin. C, doxorubicin, taxol, endoxyphen and the like can be exemplified.
- the pharmaceutical composition of the present invention is, in another embodiment, a form of a combination drug in which the complex of the present invention and the prodrug that can be activated by the complex are provided as separate agents.
- the first drug containing the complex of the present invention and the second drug containing a prodrug that can be activated by the complex can be administered to the subject simultaneously or at different times. ..
- composition of the invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising a prodrug that can be activated by the complex of the invention and any pharmaceutically acceptable carrier. It can be characterized by being used in combination with the complex.
- the pharmaceutical composition of the present invention can be used to selectively tag specific cells in a living body.
- "tagging" is a non-toxic chemical substance that can be administered endogenously or externally, that can disrupt cell function (eg, an adhesion inhibitor) or that can elicit an immunological response.
- Such chemicals are in vivo or in vitro chemicals that are converted from inactive to active by any metal catalyst, or in vivo or in vitro chemicals whose function is enhanced by any metal catalyst. possible.
- Such a technique in therapeutic applications is called selective cell tagging (SeCT), which significantly damages surrounding tissues, as opposed to conventional chemotherapy, which removes cancer cells directly with highly cytotoxic agents.
- cRGD-PE cRGD-propargyl ester
- the composition of the present invention can be used as a biosensor in another embodiment.
- a linker for example, a coumarin derivative
- the complex or composition of the present invention can be designed as an appropriate biosensor according to the type of the substance to be detected.
- the composition of the invention is used as a biosensor for detecting ethylene in plants.
- first and second may be used to describe various elements, but these elements should not be limited by those terms. These terms are used only to distinguish one element from the other, for example, the first element is referred to as the second element, and similarly, the first element is the second element. Is possible without departing from the scope of the present invention.
- Example 1 Production of alb-Ru A drug-binding site of albumin for the design of a biocompatible artificial metal enzyme (ArM) capable of preventing exposure of a metal catalyst to a solvent (having a binding pocket).
- I drug site I
- a metal catalyst was immobilized on a drug binding site I, which is known to bind (interact) with a coumarin derivative (warfarin, etc.) (Guman, J .; Zunszain, PA; Petitpas). , I .; Catalystcharya, A.A .; Otagiri, M .; Curry, SJ Mol. Biol. 2005, 353, 38-52).
- Coumarin-Ru complexes Ru1-3, 6 having different PEG linker lengths were used for fixing the metal catalyst.
- Ruthenium complex III is a known technique (Lo, C .; Ringenberg, MR; Gnandt, D .; Wilson, Y .; Ward, TR ChemComm 2011, 47, 12065-12067; Kajetanowicz, A .; Chatterjee. , A .; Reuter, R .; Ward, TR Catal. Lett. 2014, 144, 373-379; Zhao, J .; Kajetanowicz, A .; Ward, TR Org. Biomol. Chem. 2015 , 13,5652-5655). Hydrochloric acid gas is bubbled into a solution of ruthenium complex III (80.0 mg, 0.106 mmol) in dichloromethane (3 mL) at 25 ° C.
- Hydrochloric acid gas is prepared by dropping concentrated sulfuric acid into ammonium chloride. After stirring for 45 minutes, dichloromethane (1 mL) is added to the reaction with a syringe and stirred at the same temperature. After an additional 15 minutes, the reaction is concentrated under reduced pressure to give amine IV, which is used in the next reaction without purification.
- the production of alb-Ru was carried out by reacting the ruthenium catalysts Ru1-3 and 6 with human serum albumin (HAS) to form an alb-Ru complex.
- the composition of the reaction solution contained 30 ⁇ M human serum albumin (hereinafter referred to as HSA; 167 ⁇ L of 50 nmol, 300 ⁇ M stock solution (aqueous solution) was used) and catalysts (Ru1-3, 6) at various concentrations.
- HSA human serum albumin
- catalysts for example, 37 ⁇ M Ru1 (using 167 ⁇ L of 62 nmol and 370 ⁇ M stock solution (dioxane solution)) was used.
- the total reaction volume was 1670 ⁇ L with PBS buffer (pH 7.4) containing 10% dioxane.
- the reaction mixture was gently mixed and incubated at 37 ° C. for 1 hour.
- the reaction solution was then washed with PBS buffer using an Amicon® ultracentrifugation filter (30 kDa) and concentrated.
- the concentrated alb-Ru solution was then diluted with PBS buffer to give 1000 ⁇ L as a 50 ⁇ M stock solution.
- Example 2 Verification of reactivity of alb-Ru Next, the ability of the alb-Ru complex to catalyze ring-closing metathesis (RCM) of olefins 1a to 1d and enyne 1e was examined (FIG. 3). In addition, since alb-Ru1 to 3 and 6 have different PEG linker lengths, the effective size and compatibility of the hydrophobic binding pockets were also verified.
- RCM ring-closing metathesis
- the reaction solution basically contained 1ae and album-Ru complex (that is, Ru1 to 3,6) as substrates in a 1: 9 dioxane: PBS buffer solution (pH 7.4).
- the reaction was incubated at 37 ° C. for 2 hours, then quenched with dodecane thiol, further diluted with methanol, the samples were filtered, HPLC analyzed and the turnover (TON) to each product 2a-e was performed. Calculated.
- TON turnover
- Example 3 Verification of biocompatibility of alb-Ru After confirming that the alb-Ru complex exhibits activity to catalyze ring-closing metathesis and enyne cross metathesis, the action of glutathione is then evaluated. We aimed to prove biocompatibility. For this study, compound 1d was selected as the model substrate.
- FIG. 4 shows an experiment performed at a physiologically appropriate GSH concentration (200 ⁇ M, 10 equivalents relative to alb-Ru1).
- substrate 1d was incubated with 10 mol% alb-Ru1 complex at 37 ° C. for 2 hours.
- the yield of 2d was about 2% with 1: 8: 1 fetal bovine serum / DMEM medium / dioxane and about 1% with 1: 8: 1 normal rat serum / PBS buffer / dioxane.
- the recovered starting material 1d was approximately 8% and 3%, respectively, the low production yields are likely due to the capture or degradation of the substrate by proteins normally present in serum.
- prodrug therapy which is particularly beneficial for the development of drug candidates at risk of side effects, such as anticancer therapy based on cytotoxic molecules.
- glycoalbumin bound to specific complex N-glycan aggregates provides different cognitive and binding properties between different cancer cells. It has been found that it can be demonstrated.
- gold-catalyzed glycoalbumin has an N-glycan structure for protein labeling based on propargyl esters. Localized to specific organs of live mice and showed in vivo catalytic activity (Tsubokura, K .; Vong, KHK; Pradipta, A.R .; Ogura, A .; Urano, S.
- glucosylated ArM (GARM) -Ru1 (2,3-Sia) on which the ruthenium catalyst Ru1 was immobilized was prepared, and then the targeting ability (targeting ability) to SW620 human colon adenocarcinoma cells was evaluated by a binding experiment. did.
- GArM-Ru1 (2,3-Sia) cancer cells were seeded at a density of 10 4 cells / well in clear bottom 96 well plate, and cultured overnight. Then, the medium is removed, and the final concentration of [1] GArM-Ru1 (2,3-Sia), [2] alb-Ru, [3] GA (2,3-Sia), or [4] Ru1 is obtained.
- Umberiprenin known as a natural product extracted from plants of the genus Ferula, has been shown to have cytotoxic activity against various cancer cell lines (Shakeri, A .; Iranshahy, M .; Iranshahi, M.J. Asian.Nat.Prod.Res.2014,16,884-889; Rashidi, M .; Khalilnezhad, A .; Amani, D .; Jameshidi, H .; Bengalnejad, A .; A.J. Cell. Physiol. 2018, 233, 8908-8918; Jun, M .; Bay, AF; Moyer, J .; Webb, A .; Carrico-Moniz, D. Bioorganic Med.
- Coumarin precursor is usually known that the RCM reaction is inferior in aqueous conditions, very little reactive coumarin derivative 1g (k cat / K M ⁇ 1) was unexpected.
- precursor 1g the results of binding experiments have shown that a very low binding affinity (K D about 129MyuM) to albumin.
- significantly higher activity of a hydrophobic prodrug 1h (at least 1500-fold compared to 1g higher k cat / K M), probably due to the long alkyl chain moiety of 1h to facilitate entry to the hydrophobic binding pocket To do.
- Cell viability measurements were performed using CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS) from Promega. Cultured cells in 96-well microplates Falcon (TM), seeded at a density of about 10 3 cells / well, and cultured overnight. The medium was then removed and compounds of various concentrations were added. DMSO was used to lyse the compound and the DMSO concentration was 1% upon addition to the cells. After 96 hours of incubation, the cell culture was replaced with 85 ⁇ L of fresh medium. Then, 15 ⁇ L of MTS reagent was added, and the mixture was incubated at 37 ° C. for 2.5 hours, and then the absorbance was measured at 490 nm.
- MTS CellTiter 96® Aqueous One Solution Cell Proliferation Assay
- FIG. 12 describes a synthesis scheme for an ArmM ethylene probe (AEP).
- AEP ArmM ethylene probe
- the fluorescence emitted by 7-diethylaminocoumarin (DEAC) itself is highly sensitive to the polarity of the surrounding solvent, and the quantum yield of DEAC-Ru is from a polar environment (10% dioxane / water) to a non-polar environment.
- the change to the bottom (60% dioxane / water) increases about 20 times. Therefore, in this synthesis, AEP was synthesized based on the reaction between a DABCYL inactivating agent (quencher) containing an olefin and album-Ru.
- quencher DABCYL inactivating agent
- Preparation of AEP alb-Ru was prepared by mixing a 30 ⁇ M HSA solution (50 nmol, 167 ⁇ L from a 300 ⁇ M aqueous solution) and a 37 ⁇ M DEAC-Ru solution (62 nmol, 167 ⁇ L from a 370 ⁇ M dioxane solution).
- the reaction solution was a PBS buffer solution having a pH of 7.4 containing 10% dioxane, and the total volume was 1670 ⁇ L. After initiation of the reaction with the addition of HSA, the reaction solution was gently stirred and incubated at 37 ° C. for 1 hour.
- the reaction solution was then concentrated using an Amicon Ultra Centrifugal Filter (30 kDa) and washed 3 times with PBS buffer. Water was added to the concentrated alb-Ru solution and diluted to 50 ⁇ L to obtain a 1 mM stock solution.
- a mixed solution of 100 ⁇ M alb-Ru solution (50 nmol, 50 ⁇ L from 1 ⁇ M aqueous solution) and 500 ⁇ M DABCYL quencher solution (250 nmol, 555 ⁇ M DMSO: water 1: 8 solution to 450 ⁇ L) was prepared. The reaction solution was gently stirred and incubated at 37 ° C. for 5 minutes.
- reaction solution was then concentrated using an Amicon Ultra Centrifugal Filter (30 kDa) and washed 3 times with PBS buffer. Water was added to the concentrated AEP solution to dilute it to 500 ⁇ L to obtain a 100 ⁇ M stock solution.
- the fluorescence intensity of the protein complex was measured using a JASCO FP-6500 Spectrofluorometer with a JASCO FMP-963 microplate reader.
- alb-Ru and AEP were prepared in an aqueous solution at a concentration of 10 ⁇ M.
- CD circular dichroism
- the RuQ complex (DEAC-Ru-DABCYL complex) present in the albumin binding pocket has significantly lower fluorescence intensity due to the quencher, which is compared with the fluorescence intensity of alb-Ru and the AEP probe in FIG. Is also clear. Furthermore, since these circular dichroisms (CDs) completely overlapped, it was confirmed that no significant structural modification of the protein was observed (Fig. 14).
- AEP Detection of Ethylene by AEP
- the mechanism of ethylene detection by AEP is to replace ethylene with a DABCYL quencher by reacting it with a ruthenium catalyst in AEP and activate it into a fluorescent signal. Therefore, in this example, AEP was used for the detection of ethylene in fruits and plants.
- Kiwifruit imaging Immature or aged kiwifruit was purchased at a grocery store. Kiwifruit fragments were prepared by cutting the kiwifruit into pieces approximately 2.0 cm x 4.5 cm with a kitchen knife in order to obtain fragments containing the outer pericarp, ovary, and pillar axis. To track ethylene production, 170 ⁇ L of AEP (400 ⁇ M solution) was poured into the center of a 10 cm petri dish. Subsequently, the sample was allowed to act on the AEP solution. Samples were incubated at room temperature and imaging was performed at specific times (after 1, 24 hours). For imaging, Keyence BZ-X710 All-in-one Fluorescence Spec.
- Arabidopsis thaliana was grown in soil at 23 degrees Celsius with a light intensity of 85 ⁇ mol m- 2 s- 1 . A photoperiod was applied that brightened for 10 hours and darkened for 14 hours. To track ethylene production, leaves were first taken from plants for 4-6 weeks. The clear epidermis was then peeled from the leaves using forceps and placed on a 96-well clear bottom plate. After adding water (100 ⁇ L), the samples were incubated for 12 hours at room temperature to rule out the effects of wound stress.
- the Col-0 ecotype of Arabidopsis thaliana was used as a wild-type model plant.
- a wide variety of plant variants such as acs1 / 2/6/4/5/9/7/11 and eto1-1 were also used.
- the mutant acs 1/2/6/4/5/9/7/11 is a mutant in which eight ACS genes are knocked out, and the amount of ethylene does not increase even when a pathogen invades. This is because ACS plays an important role in the ethylene biosynthetic pathway.
- eto1-1 which overproduces ethylene, was used.
- ETO1 ethylene-overexpression protein 1
- proteasome-dependent degradation is suppressed and ACS activity is positively regulated. This is based on the interaction between the C-terminus of Type II ACS and ETO1.
- FIG. 17 An imaging image of Col-0 incubated at room temperature with or without AEP is shown in FIG. As quantified in FIG. 17, a significant increase in fluorescence intensity was observed, confirming that AEP can be used to detect ethylene in the epidermis of Arabidopsis thaliana. As a positive control, it was compared to Col-0 (ethylene product) exogenously stimulated by ACC. As expected, it showed a higher increase in fluorescence intensity compared to wild-type Col-0.
- glucosylated ArM can be used for selective cell tagging (SeCT) therapy to disrupt cancer cell adhesion at the single cell level, mimicking the dissemination process of micrometastases. I examined whether. Specifically, it was examined whether it can be achieved by selectively accumulating a GArM complex targeting HeLa in cancer cells and then selectively tagging surface proteins with cRGD.
- the number of bound sugar chains was confirmed using MALDI-TOF-MS (possive mode), whereby the molecular weight of sugar chain albumin (85.8 kDa) in which 6.2 molecules of sugar chains were bound per molecule of albumin. was detected.
- a PBS buffer solution (60.6 ⁇ L, pH 7.4) of a sugar chain albumin solution (66.7 nmol) is mixed with a DMSO solution (6.1 ⁇ L) of a coumarin-gold complex (66.7 nmol). added.
- the solution was gently stirred and incubated at 37 ° C. for 1 hour, then the solution was concentrated using an Amicon ultracentrifugal filter (30 kDa) and washed with PBS buffer to give the desired GARM complex.
- HeLa cancer cells are known to overexpress RGD-specific integrins ( ⁇ 5 ⁇ 1 , ⁇ v ⁇ 3 , ⁇ v ⁇ 5 ), HeLa cells were selected as a model in this study. HeLa cells used were those provided by the Cell Culture Development Office of RIKEN.
- HeLa cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin-streptomycin.
- DMEM Dulbecco's Modified Eagle's Medium
- FBS heat-inactivated fetal bovine serum
- HeLa-Luc cell lines were generated by stable transfection of HeLa cells with firefly luciferase and puromycin acetyltransferase cultured in DMEM containing 10% FBS and 0.01% puromycin.
- HeLa-V cell lines were generated by stable transfection of HeLa cells with DMEM-cultured firefly luciferase and Venus (V) containing 10% FBS, 1% penicillin-streptomycin, and 0.8% geneticin. All cell lines were grown in a 37 ° C.
- mice were collected from the abdominal cavity of BALB / c-nu / nu mice.
- Flow cytometry and cell sorting were performed by a general method using Sony SH800 Cell Sorter (Sony Corporation).
- Adhering cells were quantified using the commercially available MTS assay, CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega).
- the HeLa cells used in this experiment were made serum-free 16 hours before the experiment by exchanging the growth medium with DMEM (serum-free). Subsequently, cells were subcultured to a concentration of a stock solution of 6x10 5 call / mL, to remove residual trypsin by further centrifugation. HeLa cells (360 ⁇ L from cell stock solution), cRGD-PE (0, 160, 320, 640, 1280, 2560, 5120, 10240 ⁇ M from stock solution 45 ⁇ L), and GARM (400 ⁇ M PBS buffered 45 ⁇ L).
- the PBS buffer solution was intermittently pipette up and down to remove non-specific binding cells.
- 100 ⁇ L DMEM (10% FBS + 1% penicillin-streptomycin) and 20 ⁇ L MTS reagent were added. After incubating at 37 ° C. for 4 hours, the absorbance at the end point at 490 nm was obtained using a SpectraMax iD3 multi-mode microplate reader (Molecular Devices, USA).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
[1] タンパク質と金属触媒または有機触媒から選択される触媒との複合体であって、
前記タンパク質は、その立体構造内に疎水性スポットを有するタンパク質であり、
前記複合体は、前記触媒が親水性環境に暴露されないまたは実質的に暴露されないように、前記触媒を前記疎水性スポット内に収容する、
複合体。
前記タンパク質は、天然のまたは人工のタンパク質である、
複合体。
前記タンパク質は、ヒト血清アルブミン(HSA)、免疫グロブリンG(IgG)、免疫グロブリンA(IgA)、トランスフェリン、アンチトリプシン、ハプトグロビン、α1-酸性糖タンパク質、ミオフェルリン(Myoferlin)、Trk受容体、エストロゲン受容体、および葉酸受容体からなる群より選択される、
複合体。
前記金属触媒は、ホウ素触媒、マグネシウム触媒、アルミニウム触媒、ケイ素触媒、カルシウム触媒、スカンジウム触媒、チタン触媒、バナジウム触媒、クロム触媒、マンガン触媒、鉄触媒、コバルト触媒、ニッケル触媒、銅触媒、亜鉛触媒、イットリウム触媒、ジルコニウム触媒、ニオブ触媒、モリブデン触媒、ルテニウム触媒、ロジウム触媒、パラジウム触媒、銀触媒、インジウム触媒、スズ触媒、バリウム触媒、ハフニウム触媒、タングステン触媒、レニウム触媒、オスミウム触媒、イリジウム触媒、白金触媒、金触媒、およびランタノイドルイス酸触媒からなる群より選択される、
複合体。
前記ランタノイドルイス酸触媒は、イットリビユム触媒、ランタン触媒、セリウム触媒、サマリウム触媒、ユーロピウム触媒、ガドリニウム触媒、テルビウム触媒、ツリウム触媒、およびルテチウム触媒からなる群より選択される、
複合体。
前記タンパク質は、ヒト血清アルブミンであり、
前記触媒が金属触媒である、
複合体。
前記金属触媒は、ルテニウム触媒である、
複合体。
前記ヒト血清アルブミンの疎水性スポットは、アルブミン薬物結合サイトI(drug site I)である、
複合体。
前記金属触媒は、ヒト血清アルブミンに対するリガンドを介して前記疎水性スポットに結合している、
複合体。
前記リガンドは、ワルファリン、アザプロパゾン、アセノクマロール、フェニルブタゾン、サリチル酸塩、インドメタシン、フェニトイン、トルブタミド、クロルプロパミド、イオフェノキサート、ヨジパミド、スルファジメトキシン、フェノプロクソモン、グリベンクラミド、スルファチアゾール、テノキシカム、カンプトテシン、バルジデンデアジ、アンデレラタン、ジアデレアル、アンデレラタン、ジアデレアル、アンデレラタン、ジアデレアルタン、プロダン、ビリルビン、エイコサノイド、およびカルボキシ-メチル-プロピル-フランプロパノエート(尿毒症毒素)、およびクマリンからなる群より選択される、
複合体。
前記金属触媒は、前記リガンドに結合したリンカーを介して前記疎水性スポットに結合している、
複合体。
前記リンカーは、両末端にアミノ基およびカルボキシル基を有する、アルキル鎖またはポリエチレングリコール(PEG)鎖である、
複合体。
前記リンカーは、C1~C3アルキルまたは重合度1~3のPEG鎖である
複合体。
前記タンパク質の表面が生体内の標的部位と相互作用するように修飾される、
複合体。
前記修飾は、糖鎖による修飾である、
複合体。
前記タンパク質が、生体内の標的部位と相互作用する部分をさらに含む、
複合体。
前記タンパク質は、ヒト血清アルブミンである、
複合体。
前記複合体によって活性化され得るプロドラッグと組み合わせて使用される、
組成物。
前記複合体によって活性化され得るプロドラッグをさらに含む、
組成物。
特定の細胞を選択的にタギングするために用いられる、
組成物。
前記細胞にタギングされる化学物質と組み合わせて投与される、
組成物。
バイオセンサーとして使用される、
組成物。
エチレンを検出するためのバイオセンサーとして使用される、
組成物。
前記プロドラッグは、[1]から[17]のいずれかに記載の複合体によって活性化され得るものであり、
前記医薬組成物は、[1]から[17]のいずれかに記載の複合体と組み合わせて使用される、
医薬組成物。
[1]から[17]のいずれかに記載の複合体を含む第1の薬剤と、
前記複合体によって活性化され得るプロドラッグを含む第2の薬剤と
を含む、組み合わせ医薬。
金属触媒の溶媒中への暴露を防止することができる(結合ポケットを有する)生体適合性人工金属酵素(ArM)の設計のために、アルブミンの薬物結合サイトI(drug site I)(偽活性部位としての疎水性結合ポケット)を利用した。その目標を達成するために、クマリン誘導体(ワルファリンなど)の結合(相互作用)が知られている薬物結合サイトIに、金属触媒を固定した(Ghuman,J.;Zunszain,P.A.;Petitpas,I.;Bhattacharya,A.A.;Otagiri,M.;Curry,S.J.Mol.Biol.2005,353,38-52)。金属触媒の固定には、異なるPEGリンカー長を有するクマリン-Ru錯体Ru1~3、6を用いた。
一般手順Bに従って、ルテニウム錯体III(80.1mg、0.106mmol)、カルボン酸IIa(42.4mg、0.117mmol)、HCTU(57.6mg、0.139mmol)およびN、N-ジイソプロピルエチルアミン(137mg、1.06mmol)から得られる反応物を、シリカゲルフラッシュカラムクロマトグラフィー(cyclohexane/EtOAc/CHCl3/MeOH=40/40/15/5)による精製後に、目的のクマリン-Ru錯体Ru1(37.7mg、35.6%)を緑色固体として得る。
1H-NMR(400MHz,CDCl3,δ)1.24-1.27(m,12H),2.37-2.51(br m,18H),3.47(q,4H,J=7.1Hz),3.53-3.71(m,6H),3.79(m,1H),3.93(d,1H,J=15.3Hz),3.99(d,1H,J=15.3Hz),4.05(dd,1H,J1=J2=10.0Hz),4.33(dd,1H,J1=J2=10.0Hz),4.75-4.84(br m,1H),4.89(sept,1H,J=6.1Hz),6.50(d,1H,J=2.3Hz),6.66(dd,1H,J1=2.3Hz,J2=9.1Hz),6.78(d,1H,J=7.7Hz),6.85(dd,1H,J1=J2=7.7Hz),6.91(dd,1H,J1=1.7Hz,J2=7.7Hz),7.02(s,overlapped,2H),7.04(s,1H),7.07(s,1H),7.42(d,1H,J=9.1Hz),7.48(ddd,1H,J1=1.7Hz,J2=J3=7.7Hz),8.67(s,1H),9.09(s,1H),16.50(s.1H);
HRMS(ESI)m/z 964.3355(964.3359 calcd for C50H61ClN5O6Ru,[M-Cl]+).
一般手順Bに従って、ルテニウム錯体III(80.1mg、0.106mmol)、カルボン酸IIb(47.4mg、0.117mmol)、HCTU(57.1mg、0.138mmol)およびN、N-ジイソプロピルエチルアミン(137mg、1.06mmol)から得られる反応物を、シリカゲルフラッシュカラムクロマトグラフィー(cyclohexane/EtOAc/CHCl3/MeOH=40/40/15/5)による精製後、目的のクマリン-Ru錯体Ru2(27.9mg、25.2%)を緑色固体として得た。
1H-NMR(400MHz,CDCl3,δ)1.22-1.26(m,12H),2.26-2.46(br m,18H),3.38-3.54(m,4H),3.61-3.70(m,10H),3.74-3.82(m,1H),3.97(s,2H),4.11(dd,1H,J1=J2=10.3Hz),4.28(dd,1H,J1=J2=10.3Hz),4.66-4.75(br m,1H),4.88(sept,1H,J=6.1Hz),6.47(d,1H,J=2.3Hz),6.65(dd,1H,J1=2.3Hz,J2=9.0Hz),6.77(d,1H,J=7.6Hz),6.83(dd,1H,J1=J2=7.6Hz),6.89(dd,1H,J1=1.9Hz,J2=7.6Hz),6.98-7.01(br m,4H),7.43(d,1H,J=9.0Hz),7.47(ddd,1H,J1=1.9Hz,J2=J3=7.6Hz),8.67(s,1H),9.05(s,1H),16.47(s.1H);
HRMS(ESI) m/z 1008.3613(1008.3622 calcd for C52H65ClN5O7Ru, [M-Cl]+).
一般手順Bに従って、ルテニウム錯体III(28.8mg、38.1μmol)、カルボン酸IIc(18.9mg、42.0μmol)、HCTU(21.3mg、51.5μmol)およびN、N-ジイソプロピルエチルアミン(49.7μg、385μmol)から得られる反応物を、シリカゲルフラッシュカラムクロマトグラフィー(cyclohexane/EtOAc/CHCl3/MeOH=40/40/15/5)による精製後、目的のクマリン-Ru錯体Ru3(12.0mg、28.9%)を緑色の固体として得た。
1H-NMR(400MHz,CDCl3,δ)1.22-1.28(m,12H),2.34-2.44(br m,18H),3.46(q,4H,J=7.2Hz),3.55-3.70(m,14H),3.71-3.80(m,1H),3.95(s,2H),4.04(dd,1H,J1=J2=10.7Hz),4.27(dd,1H,J1=J2=10.7Hz),4.57-4.65(m,1H),4.89(sept,1H,J=6.2Hz),6.47(d,1H,J=2.3Hz),6.65(dd,1H,J1=2.3Hz,J2=8.8Hz),6.79(d,1H,J=7.7Hz),6.84(dd,1H,J1=J2=7.6Hz),6.89(dd,1H,J1=1.9Hz,J2=7.6Hz),7.01-7.05(br m,4H),7.42(d,1H,J=8.8Hz),7.47(ddd,1H,J1=1.9Hz,J2=J3=7.6Hz),8.67(s,1H),8.98(s,1H),16.47(s.1H);
HRMS(ESI) m/z 1088.3661(1088.3648 calcd for C54H70Cl2N5O8Ru,[M+H]+).
一般手順Bに従って、ルテニウム錯体III(80.4mg、0.106mmol)、カルボン酸IId(69.9mg、0.117mmol)、HCTU(57.5mg、0.139mmol)およびN、N-ジイソプロピルエチルアミン(137mg、1.06mmol) シリカゲルフラッシュカラムクロマトグラフィー(cyclohexane/EtOAc/CHCl3/MeOH=20/20/55/5)による精製後、目的のクマリン-Ru錯体Ru6(34.4mg、26.3%)を緑色の固体として得た。
1H-NMR(400MHz,CDCl3,δ)1.21-1.30(m,12H),2.37-2.45(br m,18H),3.45(q,4H,J=7.3Hz),3.56-3.68(m,31H),3.99(dd,1H,J1=J2=10.5Hz),4.25(dd,1H,J1=J2=10.5Hz),4.53-4.62(br m,1H),4.91(sept,1H,J=6.1Hz),6.49(d,1H,J=2.3Hz),6.64(dd,1H,J1=2.3Hz,J2=8.8Hz),6.80(d,1H,J=7.6Hz),6.86(dd,1H,J=7.6Hz),6.90(dd,1H,J1=1.9Hz,J2=7.6Hz),7.03-7.07(br m,4H),7.42(d,1H,J=8.8Hz),7.48(ddd,1H,J1=1.9Hz,J2=J3=7.6Hz),8.68(s,1H),9.00(s,1H),16.47(s.1H);
HRMS(ESI) m/z 1234.4603(1234.4593 calcd for C61H84Cl2N5O11Ru,[M+H]+).
alb-Ruの製造は、ルテニウム触媒Ru1-3、6と、ヒト血清アルブミン(HAS)とを反応して、alb-Ru錯体を形成することによって行った。
反応液の組成は、30μMのヒト血清アルブミン(以下、HSAとする。50nmol、300μMストック溶液(水溶液)を167μL使用)と、様々な濃度の触媒(Ru1-3、6)を含んだ。触媒は、例えば、37μMのRu1(62nmol、370μMストック溶液(ジオキサン溶液)を167μL使用)を使用した。総反応容量は、10%ジオキサンを含むPBS緩衝液(pH7.4)で1670μLとした。HSA添加による反応開始後、反応混合物は穏やかに混合し、37℃で1時間インキュベートした。そして、反応溶液は、Amicon(登録商標)の超遠心フィルター(30kDa)を用いて、PBS緩衝液で洗浄し、濃縮した。次いで、濃縮したalb-Ru溶液はPBS緩衝液で希釈し、50μMストック溶液として、1000μLを得た。
対照(リガンドのみ、あるいはHSAのみ)と比較し、alb-Ru複合体形成の指標と考えられる、有意に高い蛍光レベルが検出された。
次に、alb-Ru複合体の、オレフィン1a~1dおよびエンイン1eの閉環メタセシス(RCM)を触媒する能力を調べた(図3)。また、alb-Ru1~3、6は、異なるPEGリンカー長を有するため、併せて、疎水性結合ポケットの有効サイズおよび適合性も検証した。
alb-Ru複合体が閉環メタセシス、およびエンイン交差メタセシスを触媒する活性を示すことを確認した後、次いで、グルタチオンの作用を評価することによって、生体適合性の証明を目指した。この研究のために、化合物1dをモデル基質として選択した。
アルブミンの薬物結合サイトIの疎水性結合ポケットにおける侵入および立体配座の程度を予測するために、AutoDockToolsのGUIインタフェースでAutodock 4.2(Morris,G.M.;Huey,R.;Lindstrom,W.;Sanner,M.F.;Belew,R.K.;Goodsell,D.S.;Olson,A.J.J.Comput.Chem.2009,30,2785-2791.)を用いて、化合物Ru1-3,6を、ヒト血清アルブミン(PDB:1H9Z)にドッキングする分子モデリングの研究を行った。その結果は、アルブミンの薬物結合サイトIの結合ポケットが、比較的短いPEGリンカー長を有するクマリン-ルテニウム触媒(例えば、Ru1)の結合を収容するのに十分な深さであるという根本的仮説を裏づける。しかしながら、図7に示されるように、PEGリンカー長が徐々に長くなると(例えば、Ru6)、結合ポケットの外側にルテニウム部分が押し出され、溶液中の生体分子へのその露出を増加させる。
治療用ArMの開発を推進させるために考慮すべきもう1つの側面は、体内の特定の臓器/細胞への局在化を促進するためのターゲティング方法論の必要性である。
設定した特定の濃度(SW620ヒト結腸腺癌細胞では32μM;HeLaヒト子宮頸癌由来細胞およびA549ヒト肺胞基底上皮腺癌細胞では64μM)のプロドラッグ1hを使用し、添加するGArM-Ru1の量を変化させることで、細胞傷害性試験を行った。
糖鎖によるターゲティング効果を説明するために、対照として、糖鎖のないalb-Ru1を用いて、同様な条件下での実験を行った。これらの結果から、3つの癌細胞株すべてにおいて、プロドラッグ1hとGArM-Ru1の混合物は、細胞増殖を有意に減少(<5%)し、その効果はプロドラッグ1hとGArM-Ru1の対応する濃度での効果を超えていた(図11)。別の重要な観察は、プロドラッグ1hとalb-Ru1の混合物の細胞傷害活性は、はるかに有効性が低いことであった。このことは、糖鎖によるターゲティング(標的化)が、細胞表面や細胞内への金属触媒の局在化に重要であることを示唆する。
7-ジエチルアミノクマリン(DEAC)自体が発する蛍光は、周囲の溶媒の極性に高い感受性を有しており、DEAC-Ruの量子収率は、極性環境下(10%ジオキサン/水)から非極性環境下(60%ジオキサン/水)への変化により、約20倍に増加する。そこで、本合成では、オレフィンを含むDABCYL失活剤(クエンチャー)と、alb-Ruとの反応に基づいて、AEPを合成した。
30μM HSA溶液(50nmol、300μM水溶液から167μL)と37μM DEAC-Ru溶液(62nmol、370μMジオキサン溶液から167μL)を混合させることにより、alb-Ruを調製した。反応溶液は10%ジオキサンを含むpH7.4のPBS緩衝溶液で、全量を1670μLとした。HSA添加による反応開始後、反応溶液を穏やかに撹拌し、37度で1時間インキュベートした。続いてアミコンウルトラ遠心式フィルター(30kDa)を用いて反応溶液を濃縮し、PBS緩衝溶液で3回洗浄した。濃縮したalb-Ru溶液に水を加えて50μLに薄め、1mMのストック溶液を得た。AEP溶液を調製するために、100μM alb-Ru溶液(50nmol、1μM水溶液から50μL)と500μM DABCYLクエンチャー溶液(250nmol、555μMのDMSO:水=1:8溶液から450μL)の混合溶液を作製した。反応溶液を穏やかに撹拌し、37度で5分間インキュベートした。続いてアミコンウルトラ遠心式フィルター(30kDa)を用いて反応溶液を濃縮し、PBS緩衝溶液で3回洗浄した。濃縮したAEP溶液に水を加えて500μLに薄め、100μMのストック溶液を得た。
アルブミンの結合ポケットの中に存在するRuQ複合体(DEAC-Ru-DABCYL complex)は、クエンチャーのため蛍光強度は著しく低く、これは図13でalb-RuとAEPプローブの蛍光強度を比較しても明らかである。さらに、これらの円偏光二色性(CD)が完全に重なったことから、タンパク質の大きな構造変性は見られないことが確認された(図14)。
AEPによるエチレンの検出メカニズムは、エチレンをAEP中のルテニウム触媒と反応させることにより、DABCYLクエンチャーに置き換えて、蛍光シグナルに活性化することによる。そこで、本実施例では、果物および植物におけるエチレンの検出にAEPを用いた。
未熟な、あるいは熟成したキウイフルーツは食料品店で購入した。外側の果皮や子房室、柱軸を含む断片を得るため、キウイフルーツをキッチンナイフでおよそ2.0cm x 4.5cmの大きさに切ることにより、キウイフルーツの断片を準備した。エチレン生産を追跡するため、10cmのシャーレの中心に170μLのAEP(400μM溶液)を注いだ。続いて、サンプルをAEP溶液の上に作用させた。サンプルを室温でインキュベートして、イメージングを特定の時間(1、24時間後)に行った。イメージングでは、ET-EBFP2/Coumarin/Attenuated DAPI Filter Set Cat#49021(Chroma Technology Corp.)を備えたKeyence BZ-X710 All-in-one Fluorescence Microscope(登録商標)を用いた。明視野像(カラー)は25分の1秒、蛍光画像は3.5分の1秒の露出設定で得られた。複数のイメージング画像は4倍率で得て、画像結合と分析はBZ-X Analyzerソフトウェア(Keyence)を用いて行った。
シロイヌナズナは23度の土で85μmol m-2s-1の光強度で育てた。10時間明るく、14時間暗くする光周性を適用した。エチレン生産を追跡するため、まず4-6週間の植物から葉を取り入れた。続いて鉗子を用いて、葉から透明な表皮の皮を剥がし、96ウェルの透明底プレートに置いた。水(100μL)を加えた後、傷のストレスの効果を除外するために室温で12時間、サンプルをインキュベートした。実験の条件により、1mMのACC溶液(55mMの水溶液を2μL)、4.8μMのflg22、あるいはelf18溶液(5μM、100μMの水溶液)、OD600=0.02のPseudomonas細菌溶液(2μLのOD600=1.0の標準溶液)など、様々な溶液を必要に応じて添加した。ACCとPseudomonas細菌を含む実験では、室温で12時間のインキュベートを適用した。一方で、PAMPを含む実験では室温で6時間のインキュベートを行なった。続いて、これらの溶液を表皮の皮のサンプルから完全に取り除き、100μMのAEP溶液(ストック溶液から50μL)を添加した。30分後、溶液を完全に取り除いて水で洗浄後、ET-EBFP2/Coumarin/Attenuated DAPI Filter Set Cat#49021(Chroma Technology Corp.)を取り付けたKeyence BZ-X710 All-in-one Fluorescence Microscope(登録商標)を用いてイメージングを行った。イメージング画像は20倍率、40倍率で得られ、明視野像(モノクロ)は400分の1秒、蛍光画像は30分の1秒の露出設定で得られた。複数のイメージング画像は4倍率で得て、分析はBZ-X Analyzerソフトウェア(Keyence)を用いて行った。
果物でのエチレンの空間的検出
一般的にクリマクテリック型果実は、熟成の過程において自己触媒型エチレン(システム2)の生産が進む。傷によるストレスや病原体感染などの外的な刺激も同様である。この研究ではまず初めに、内因性のエチレンをAEPプローブによって調べた。熟成の間、キウイフルーツでは外側の果皮でACSアイソジーンのアップレギュレーションを介してエチレン生産量が増加することが報告されている。AEPを用いたキウイフルーツのイメージング実験では、異なる発達段階(未熟成と熟成)における様々な小器官(外側の果皮や子房室、柱軸)に発現するエチレン生産量の変化を観測することに焦点を当てた。図15にまとめているように、果実が未熟成から熟成するにつれ、外側の果皮に著しい蛍光強度の増大が観測された。一方、キウイフルーツの子房室と柱軸における蛍光強度の変化はそれほど観測されなかった。これらの結果より、果物の熟成と熟成期間におけるエチレンの発現を検出するのにAEPの使用は有望な手段であることが明らかにされた。
植物中のAEP検出の効果を調査するために、小さな顕花植物であるシロイヌナズナ(アブラナ科)をモデル植物として選んだ。AEPによりエチレンの発生を検出できることを確実に示すため、エチレン生成を制御することが知られている低分子とエチレン生成に携わる様々な植物変異体を用いて比較実験を行った。
多くの研究において、環状Arg-Gly-Asp(cRGD)ペンタペプチドが、がん細胞表面上に過剰発現されたαvβ3およびαvβ5インテグリンを阻害し、細胞外マトリックスへの接着を防止するのに効果的であることが報告されている(J.S.Desgrosellier, D.A.Cheresh,Integrins in cancer: Biological implications and therapeutic opportunities. Nat.Rev.Cancer 10,9-22(2010).;M.Pfaff, K.Tangemann, B.Muller, M.Gurrath, G.Muller, H.Kessler, R.Timpl, J.Engel, Selective recognition of cyclic RGD peptides of NMR defined conformation by αIIbβ3,αvβ3,and α5β1 integrins. J.Biol.Chem.269,20233-20238(1994).;およびM.Aumailley, M.Gurrath, G.Muller, J.Calvete,R.Timpl,H.Kessler,Arg-Gly-655 Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of 656 cell adhesion to vitronectin and laminin fragment P1. FEBS Lett.291,50-54 657(1991).)。また、血管内皮細胞上に発現されたインテグリンに対するRGDベースのアンタゴニストが、血管新生の阻害によって腫瘍の退行を促進することが示されている(P.C.Brooks, A.M.P.Montgomery, M.Rosenfeld, R.A.Reisfeld, T.Hu,G.Klier, D.A.Cheresh, Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels.Cell 79,1157-1164(1994).;およびD.G.Stupack, D.A.Cheresh,Integrins and angiogenesis.Curr.Top.Dev.Biol.64,207-238(2004).)。
本実施例では、グルコシル化ArM(GArM)が、微小転移の播種プロセスを模倣する、単一細胞レベルでのがん細胞の接着を破壊するための選択的細胞タギング(SeCT)療法に使用し得るかを検討した。具体的に、HeLaを標的とするGArM複合体を癌細胞に選択的に蓄積した後、表面タンパク質にcRGDを選択的にタグ付けすることで、できるかについて検証した。
cRGD-PEの調製に用いたスキームは下記のとおりであった:
標準的な固相ペプチド合成手法によって合成した。固相担体から切り離した後、混合物を直接、40分間にわたる20-80%アセトニトリル水溶液(0.1%TFA)の線形勾配条件の逆相HPLCにより精製した。収量:2.92g,89%,ESI-HRMS m/z calcd for C53H83N9O14S([M+H]+)1102.5853,found 1102.5859.
化合物I(90.1mg,0.0833mmol)とEDC(17.6mg,0.0916mmol)を塩化メチレン(0.5mL)に溶かした。続いて溶液を室温で3.5時間撹拌した。ワークアップのため、塩化メチレンを加えて有機層を水/飽和食塩水で洗浄、硫化マグネシウムで乾燥し、減圧下で濃縮した。得られた残渣の質量分析により、目的物の生成を確認した。ESI-HRMS m/z calcd for C53H81N9O13S ([M+H]+)1084.5747,found 1084.5744.
続いてこの得られた保護されたペプチドをTFA/塩化メチレン(1:1)の溶液に2時間溶かすことにより、脱保護を行った。混合物を減圧下で濃縮し、直接、40分間にわたる20-80%アセトニトリル水溶液(0.1%TFA)の線形勾配条件の逆相HPLCにより精製した。収量:54.5mg,77%(2工程収率).ESI-HRMS m/z calcd for C27H41N9O8([M+H]+)620.3151,found 620.3169.
アジピン酸(1.0g,6.84mmol)のDMF(20mL)溶液を撹拌し、N-ヒドロキシスクシンイミド(3.0g,27.4mmol)とEDC(5.14g,27.4mmol)を加えた。溶液を室温で24時間撹拌した後、反応混合物を減圧下で濃縮し、粗生成物を200mLのアセトンに溶かして250mLの1M塩酸水溶液を滴下した。2時間後、白色沈殿物を濾取し、水とアセトンで洗浄して目的物を得た(1.75g,77%)。1H NMR(500MHz,CDCl3,25℃) δ2.84(s,4H),2.83(s,4H),2.67(t,J=3.5Hz,4H),1.89(t,J=3.5Hz,4H);13C NMR(125MHz,CDCl3,25℃) 169.4,168.4,30.7,25.9,23.9.ESI-HRMS m/z calcd for C14H17N2O8([M+H]+)341.0979,found 341.0973.
化合物II(28.8mg,0.034mmol)と化合物III(23.2mg,0.068mmol)のDMF(680mL)溶液を撹拌し、DIEA(16.8μL,0.10mmol)を加えた。溶液を室温で24時間撹拌した後、混合物を直接、化合物Iの調製に用いたものと同じ条件の逆相HPLCで精製し、目的化合物を得た(14.0mg,43%)。1H NMR(500MHz,CD3OD,25℃) δ7.00(d,J=6.5Hz,2H),6.68(d,J=6.5Hz,2H),4.74(t,J=7.0Hz,1H),4.41(q,J=7.0Hz,1H),4.26-4.30(m,2H),3.91-3.86(m,1H),3.22-3.18(m,1H),3.14-3.10(m,1H),3.09(t,J=6.5Hz,2H),2.91-2.85(m,2H),2.84-2.78(m,5H),2.59(t,J=9.5Hz,2H),2.64-2.60(m,1H),2.58(dd,J=16.5,9.0Hz,1H),2.19(t,J=7.0Hz,2H),2.22(t,J=7.0Hz,2H),1.92-1.82(m,1H),1.74-1.60(m,6H),1.57-1.44(m,3H),1.44-1.32(m,2H),1.09-0.90(m,2H);ESI-HRMS m/z calcd for C37H53N10O13 ([M+H]+)845.3788,found 845.3769.
化合物IV(4.2mg,3.9μmol)と化合物V(1.1mg,7.8μmol)のDMF(200μL)溶液を撹拌し、DIEA(3.3μL,19.6μmol)を加えた。溶液を室温で24時間撹拌した後、混合物を直接、化合物Iの調製に用いたものと同じ条件の逆相HPLCで精製し、cRGD-PEを得た(3.2mg,85%)。δ1H NMR(500MHz,CD3OD,25℃) 7.02(d,J=7.0Hz,2H),6.71(d,J=7.0Hz,2H),4.76(t,J=7.5Hz,1H),4.75(s,2H),4.44(t,J=7.5Hz,1H),4.29-4.20(m,2H),3.98(s,2H),3.91(dd,J=9.5,3.0Hz,1H),3.25-3.20(m,1H),3.18-3.11(m,1H),3.11(t,J=7.0Hz,2H),2.96(s,1H),2.88(d,J=8.0Hz,2H),2.85(dd,J=16.5,8.0Hz,1H),2.58(dd,J=16.5,8.0Hz,1H),2.29(t,J=7.0Hz,2H),2.22(t,J=7.0Hz,2H),1.92-1.84(m,1H),1.74-1.60(m,6H),1.59-1.42(m,3H),1.41(t,J=8.0Hz,2H),1.09-0.80(m,2H);ESI-HRMS m/z calcd for C38H55N10O12([M+H]+)843.3995,found 843.4006.
以前に報告された手法を用いて、末端がα(2,3)-シアル酸の糖鎖-アルデヒドプローブ(R.Sibgatullina, K.Fujiki, T.Murase, T.Yamamoto, T.Shimoda, A.Kurbangalieva, K.Tanaka, Highly reactive “RIKEN click” probe for glycoconjugation on lysines. Tetrahedron Lett.58,1929-1933 (2017).)、およびクマリンに結合した金触媒(K.Tsubokura, K.K.Vong, A.R.Pradipta, A.Ogura, S.Urano, T.Tahara, S.Nozaki, H.Onoe, Y.Nakao, R.Sibgatullina, A.Kurbangalieva, Y.Watanabe, K.Tanaka, In vivo gold complex catalysis within live mice.Angew.Chem.Int.Ed.56,3579-3584(2017).)を合成した。
HeLa癌細胞は、RGD特異的なインテグリン(α5β1、αvβ3、αvβ5)を過剰発現していることが知られているため、本研究において、HeLa細胞をモデルとして選択した。HeLa細胞は、理化学研究所の細胞培養開発室から提供されたものを用いた。
GArMがHeLa細胞に対し、より選択的にターゲティングできるかを確かめるために、一連のフローサイトメトリー研究を行った。クマリン誘導体の蛍光強度はアルブミンに結合すると増加することが知られているので、フローサイトメトリーにおけるλEx=405nm/λEm=470nmで測定した蛍光強度は、クマリンを結合したGArM複合体が細胞に結合したかどうかの指標となる。
インテグリンに基づく細胞接着を妨害するSeCT標識試薬(GArM/cRGD-PE)の能力は、in vitroの細胞接着アッセイにより確認した。細胞接着アッセイは、R&D System(ミネアポリス、アメリカ合衆国)から購入したヒト由来フィブロネクチンコーティング96ウェルマイクロプレート(Human Fibronectin Coated 96-Well Microplates)を用いて行った。
Claims (27)
- タンパク質と金属触媒または有機触媒から選択される触媒との複合体であって、
前記タンパク質は、その立体構造内に疎水性スポットを有するタンパク質であり、
前記複合体は、前記触媒が親水性環境に暴露されないまたは実質的に暴露されないように、前記触媒を前記疎水性スポット内に収容する、
複合体。 - 請求項1に記載の複合体であって、
前記タンパク質は、天然のまたは人工のタンパク質である、
複合体。 - 請求項1または2に記載の複合体であって、
前記タンパク質は、ヒト血清アルブミン(HSA)、免疫グロブリンG(IgG)、免疫グロブリンA(IgA)、トランスフェリン、アンチトリプシン、ハプトグロビン、α1-酸性糖タンパク質、ミオフェルリン(Myoferlin)、Trk受容体、エストロゲン受容体、および葉酸受容体からなる群より選択される、
複合体。 - 請求項1から3のいずれか1項に記載の複合体であって、
前記金属触媒は、ホウ素触媒、マグネシウム触媒、アルミニウム触媒、ケイ素触媒、カルシウム触媒、スカンジウム触媒、チタン触媒、バナジウム触媒、クロム触媒、マンガン触媒、鉄触媒、コバルト触媒、ニッケル触媒、銅触媒、亜鉛触媒、イットリウム触媒、ジルコニウム触媒、ニオブ触媒、モリブデン触媒、ルテニウム触媒、ロジウム触媒、パラジウム触媒、銀触媒、インジウム触媒、スズ触媒、バリウム触媒、ハフニウム触媒、タングステン触媒、レニウム触媒、オスミウム触媒、イリジウム触媒、白金触媒、金触媒、およびランタノイドルイス酸触媒からなる群より選択される、
複合体。 - 請求項4に記載の複合体であって、
前記ランタノイドルイス酸触媒は、イットリビユム触媒、ランタン触媒、セリウム触媒、サマリウム触媒、ユーロピウム触媒、ガドリニウム触媒、テルビウム触媒、ツリウム触媒、およびルテチウム触媒からなる群より選択される、
複合体。 - 請求項1から5のいずれか1項に記載の複合体であって、
前記タンパク質は、ヒト血清アルブミンであり、
前記触媒が金属触媒である、
複合体。 - 請求項6に記載の複合体であって、
前記金属触媒は、ルテニウム触媒である、
複合体。 - 請求項6または7に記載の複合体であって、
前記ヒト血清アルブミンの疎水性スポットは、アルブミン薬物結合サイトI(drug site I)である、
複合体。 - 請求項6から8のいずれか1項に記載の複合体であって、
前記金属触媒は、ヒト血清アルブミンに対するリガンドを介して前記疎水性スポットに結合している、
複合体。 - 請求項9に記載の複合体であって、
前記リガンドは、ワルファリン、アザプロパゾン、アセノクマロール、フェニルブタゾン、サリチル酸塩、インドメタシン、フェニトイン、トルブタミド、クロルプロパミド、イオフェノキサート、ヨジパミド、スルファジメトキシン、フェノプロクソモン、グリベンクラミド、スルファチアゾール、テノキシカム、カンプトテシン、バルジデンデアジ、アンデレラタン、ジアデレアル、アンデレラタン、ジアデレアル、アンデレラタン、ジアデレアルタン、プロダン、ビリルビン、エイコサノイド、およびカルボキシ-メチル-プロピル-フランプロパノエート(尿毒症毒素)、およびクマリンからなる群より選択される、
複合体。 - 請求項9または10に記載の複合体であって、
前記金属触媒は、前記リガンドに結合したリンカーを介して前記疎水性スポットに結合している、
複合体。 - 請求項11に記載の複合体であって、
前記リンカーは、両末端にアミノ基およびカルボキシル基を有する、アルキル鎖またはポリエチレングリコール(PEG)鎖である、
複合体。 - 請求項12に記載の複合体であって、
前記リンカーは、C1~C3アルキルである
複合体。 - 請求項1から13のいずれか1項に記載の複合体であって、
前記タンパク質の表面が生体内の標的部位と相互作用するように修飾される、
複合体。 - 請求項14に記載の複合体であって、
前記修飾は、糖鎖による修飾である、
複合体。 - 請求項1から13のいずれか1項に記載の複合体であって、
前記タンパク質が、生体内の標的部位と相互作用する部分をさらに含む、
複合体。 - 請求項14または15に記載の複合体であって、
前記タンパク質は、ヒト血清アルブミンである、
複合体。 - 請求項1から17のいずれか1項に記載の複合体を含む組成物。
- 薬学的に許容される担体をさらに含む医薬組成物である、請求項18に記載の組成物。
- 請求項19に記載の組成物であって、
前記複合体によって活性化され得るプロドラッグと組み合わせて使用される、
組成物。 - 請求項19に記載の組成物であって、
前記複合体によって活性化され得るプロドラッグをさらに含む、
組成物。 - 請求項19に記載の組成物であって、
特定の細胞を選択的にタギングするために用いられる、
組成物。 - 請求項22に記載の組成物であって、
前記細胞にタギングされる化学物質と組み合わせて投与される、
組成物。 - 請求項18に記載の組成物であって、
バイオセンサーとして使用される、
組成物。 - 請求項18に記載の組成物であって、
エチレンを検出するためのバイオセンサーとして使用される、
組成物。 - プロドラッグを含む医薬組成物であって、
前記プロドラッグは、請求項1から17のいずれか1項に記載の複合体によって活性化され得るものであり、
前記医薬組成物は、請求項1から17のいずれか1項に記載の複合体と組み合わせて使用される、
医薬組成物。 - 組み合わせ医薬であって、
請求項1から17のいずれか1項に記載の複合体を含む第1の薬剤と、
前記複合体によって活性化され得るプロドラッグを含む第2の薬剤と
を含む、組み合わせ医薬。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080052407.2A CN114206388A (zh) | 2019-05-24 | 2020-05-18 | 新的人工蛋白质催化剂 |
AU2020285197A AU2020285197A1 (en) | 2019-05-24 | 2020-05-18 | Novel artificial protein catalyst |
EP20812900.7A EP3978023A4 (en) | 2019-05-24 | 2020-05-18 | Novel artificial protein catalyst |
KR1020217040992A KR20220012277A (ko) | 2019-05-24 | 2020-05-18 | 신규 인공 단백질 촉매 |
JP2021522230A JPWO2020241340A1 (ja) | 2019-05-24 | 2020-05-18 | |
CA3141707A CA3141707A1 (en) | 2019-05-24 | 2020-05-18 | Novel artificial protein catalyst |
US17/612,780 US20220241765A1 (en) | 2019-05-24 | 2020-05-18 | Novel artificial protein catalyst |
SG11202112867VA SG11202112867VA (en) | 2019-05-24 | 2020-05-18 | Novel artificial protein catalyst |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019097739 | 2019-05-24 | ||
JP2019-097739 | 2019-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241340A1 true WO2020241340A1 (ja) | 2020-12-03 |
Family
ID=73552346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019593 WO2020241340A1 (ja) | 2019-05-24 | 2020-05-18 | 新規な人工タンパク質触媒 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20220241765A1 (ja) |
EP (1) | EP3978023A4 (ja) |
JP (1) | JPWO2020241340A1 (ja) |
KR (1) | KR20220012277A (ja) |
CN (1) | CN114206388A (ja) |
AU (1) | AU2020285197A1 (ja) |
CA (1) | CA3141707A1 (ja) |
SG (1) | SG11202112867VA (ja) |
TW (1) | TW202110482A (ja) |
WO (1) | WO2020241340A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176961A1 (ja) * | 2023-02-20 | 2024-08-29 | 国立研究開発法人理化学研究所 | K-Ras遺伝子変異がんを認識するタンパク質 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116174044B (zh) * | 2023-02-21 | 2024-07-02 | 集美大学 | 一种蛋白质构架的人工金属酶的新制备方法和用途 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6327547B2 (ja) | 1979-12-28 | 1988-06-03 | Nippon Denso Co | |
WO2008096760A1 (ja) | 2007-02-05 | 2008-08-14 | Osaka University | 新規ヘキサトリエン-β-カルボニル化合物 |
JP2017002918A (ja) | 2015-06-04 | 2017-01-05 | Ntn株式会社 | 電動式直動アクチュエータおよび電動式ブレーキ装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE450099A (ja) * | 1942-04-10 | |||
US7879335B1 (en) * | 1999-08-20 | 2011-02-01 | Sloan-Kettering Institute For Cancer Research | Glycoconjugates, glycoamino acids, intermediates thereto, and uses thereof |
GB0130778D0 (en) * | 2001-12-21 | 2002-02-06 | Catalyst Biomedica Ltd | Novel compounds |
AU2003255192A1 (en) * | 2002-10-31 | 2005-02-24 | Swinburne University Of Technology | Micro/Nano-Structures Fabricated by Laser Ablation for Micro-Array Applications |
CN1942588B (zh) * | 2003-03-05 | 2013-06-12 | 海洋酶公司 | 可溶性透明质酸酶糖蛋白(sHASEGP)、制备它们的方法、它们的用途和包含它们的药物组合物 |
JP2009263273A (ja) * | 2008-04-24 | 2009-11-12 | Japan Science & Technology Agency | 組換えヒト血清アルブミン−金属ポルフィリン錯体と人工酸素運搬体 |
CN100585388C (zh) * | 2008-05-26 | 2010-01-27 | 湖南大学 | 采用双色流式细胞术检测结核杆菌的方法 |
CA2785738A1 (en) * | 2009-12-30 | 2011-07-07 | Avila Therapeutics, Inc. | Ligand-directed covalent modification of protein |
WO2013038395A1 (en) * | 2011-09-16 | 2013-03-21 | Universidade De Lisboa | Transition metal complexes for pharmaceutical applications |
CN103463643B (zh) * | 2013-08-23 | 2015-11-18 | 广西师范大学 | 人血清白蛋白-钌无机药物复合物的制备及其应用 |
EP3148572A4 (en) * | 2014-05-27 | 2017-12-27 | Pharmakea, Inc. | Compositions and methods of delivery of deubiquitinase inhibitors |
US9814759B2 (en) * | 2014-07-02 | 2017-11-14 | Cheer Global Ltd. | Pharmaceutical composition comprising recombinant hemoglobin protein or subunit-based therapeutic agent for cancer targeting treatment |
TWI757238B (zh) * | 2015-06-30 | 2022-03-11 | 日商糖鎖工學研究所股份有限公司 | 白蛋白-糖鏈複合物 |
US10093906B2 (en) * | 2016-02-02 | 2018-10-09 | California Institute Of Technology | Cytochrome C protein variants for catalyzing carbon-silicon bond formation |
DE102016125516B4 (de) * | 2016-12-22 | 2022-03-31 | Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) | Ganzzell-basierte Biohybridkatalysator-Systeme |
CN108822267B (zh) * | 2018-03-23 | 2022-12-16 | 清华大学 | pH响应性蛋白高分子两亲体的制备及其应用 |
CN108226473B (zh) * | 2018-04-27 | 2020-09-11 | 中国科学院青岛生物能源与过程研究所 | 一种基于过渡金属催化氧化还原荧光调控体系在生物蛋白标记物检测中的应用 |
TWI834673B (zh) * | 2018-06-04 | 2024-03-11 | 美商杜夫特學院信託管理公司 | 經腫瘤微環境活化之藥物-結合子共軛物及與其相關之用途 |
-
2020
- 2020-05-18 JP JP2021522230A patent/JPWO2020241340A1/ja active Pending
- 2020-05-18 AU AU2020285197A patent/AU2020285197A1/en active Pending
- 2020-05-18 CN CN202080052407.2A patent/CN114206388A/zh active Pending
- 2020-05-18 KR KR1020217040992A patent/KR20220012277A/ko unknown
- 2020-05-18 SG SG11202112867VA patent/SG11202112867VA/en unknown
- 2020-05-18 WO PCT/JP2020/019593 patent/WO2020241340A1/ja unknown
- 2020-05-18 CA CA3141707A patent/CA3141707A1/en active Pending
- 2020-05-18 EP EP20812900.7A patent/EP3978023A4/en active Pending
- 2020-05-18 US US17/612,780 patent/US20220241765A1/en active Pending
- 2020-05-18 TW TW109116361A patent/TW202110482A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6327547B2 (ja) | 1979-12-28 | 1988-06-03 | Nippon Denso Co | |
WO2008096760A1 (ja) | 2007-02-05 | 2008-08-14 | Osaka University | 新規ヘキサトリエン-β-カルボニル化合物 |
JP2017002918A (ja) | 2015-06-04 | 2017-01-05 | Ntn株式会社 | 電動式直動アクチュエータおよび電動式ブレーキ装置 |
Non-Patent Citations (48)
Title |
---|
BARTHOMEUF, C.LIM, S.IRANSHAHI, M.CHOLLET, P., PHYTOMEDICINE, vol. 15, 2008, pages 103 - 111 |
BRAY, T. L.SALJI, M.BROMBIN, A.PEREZ-LOPEZ, A. M.RUBIO-RUIZ, B.GALBRAITH, L. C. A.PATTON, E. E.LEUNG, H. Y.UNCITI-BROCETA, A., CHEM. SCI., vol. 9, 2018, pages 7354 - 7361 |
CARLSSON, S.OBERG, C. T.CARLSSON, M. C.SUNDIN, A.NILSSON, U. J.SMITH, D.CUMMINGS, R. D.ALMKVIST, J.KARLSSON, A.LEFFLER, H., GLYCOBIOLOGY, vol. 17, 2007, pages 663 - 676 |
CLAVADETSCHER, J.HOFFMANN, S.LILIENKAMPF, A.MACKAY, L.YUSOP, R. M.RIDER, S. A.MULLINS, J. J.BRADLEY, M., ANGEW. CHEM. INT. ED. ENGL., vol. 55, 2016, pages 15662 - 15666 |
D. G. STUPACKD. A. CHERESH: "Integrins and angiogenesis", CURR. TOP. DEV. BIOL., vol. 64, 2004, pages 207 - 238 |
DESTITO, P.SOUSA-CASTILLO, A.COUCEIRO, J. R.LOPEZ, F.CORREA-DUARTE, M. A.MASCARENAS, J. L., CHEM. SCI., vol. 10, 2019, pages 2598 - 2603 |
EDA S. ET AL.: "Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes", NATURE CATALYSIS, vol. 2, no. 9, 1 July 2019 (2019-07-01), pages 780 - 792, XP055766460 * |
EDA, SHOHEI: "Development of protein metathesis catalyst aiming to therapeutic in vivo synthetic chemistry", 98TH SPRING 2018 ANNUAL MEETING OF CSJ DVD, 20 March 2018 (2018-03-20), JP, pages 4D3-44, XP009531933 * |
GHOLAMI, O.JEDDI-TEHRANI, M.IRANSHAHI, M.ZARNANI, A. H.ZIAI, S. A., IRAN J. PHARM. RES., vol. 12, 2013, pages 371 - 376 |
GHOLAMI, O.JEDDI-TEHRANI, M.IRANSHAHI, M.ZARNANI, A. H.ZIAI, S. A., IRAN J. PHARM. RES., vol. 13, 2014, pages 1387 - 1392 |
GHUMAN, J.ZUNSZAIN, P. A.PETITPAS, I.BHATTACHARYA, A. A.OTAGIRI, M.CURRY, S., J. MOL. BIOL., vol. 353, 2005, pages 38 - 52 |
J. S. DESGROSELLIERD. A. CHERESH: "Integrins in cancer: Biological implications and therapeutic opportunities", NAT. REV. CANCER, vol. 10, 2010, pages 9 - 22, XP055016659, DOI: 10.1038/nrc2748 |
JUN, M.BACAY, A. F.MOYER, J.WEBB, A.CARRICO-MONIZ, D., BIOORGANIC MED. CHEM. LETT., vol. 24, 2014, pages 4654 - 4658 |
K. TSUBOKURAK. K. VONGA. R. PRADIPTAA. OGURAS. URANOT. TAHARAS. NOZAKIH. ONOEY. NAKAOR. SIBGATULLINA: "In vivo gold complex catalysis within live mice", ANGEW. CHEM. INT. ED., vol. 56, 2017, pages 3579 - 3584, XP055766458, DOI: 10.1002/anie.201610273 |
KAJETANOWICZ, A.CHATTERJEE, A.REUTER, R.WARD, T. R., CATAL. LETT., vol. 144, 2014, pages 373 - 379 |
LAHM, H.ANDRE, S.HOEFLICH, A.FISCHER, J. R.SORDAT, B.KALTNER, H.WOLF, E.GABIUS, H.-J., J. CANCER RES. CLIN. ONCOL., vol. 127, 2001, pages 375 - 386 |
LATYPOVA, L. ET AL., ADV. SCI., 2017, pages 1700147 |
LI, J.YU, J.ZHAO, J.WANG, J.ZHENG, S.LIN, S.CHEN, L.YANG, M.JIA, S.ZHANG, X., NAT. CHEM., vol. 6, 2014, pages 352 - 361 |
LIU, Y.PUJALS, S.STALS, P. J. M.PAULOHRL, T.PRESOLSKI, S. I.MEIJER, E. W.ALBERTAZZI, L.PALMANS, A. R. A., J. AM. CHEM. SOC., vol. 140, 2018, pages 3423 - 3433 |
LO, C.RINGENBERG, M. R.GNANDT, D.WILSON, Y.WARD, T. R., CHEMCOMM, vol. 47, 2011, pages 12065 - 12067 |
M. AUMAILLEYM. GURRATHG. MULLERJ. CALVETER. TIMPLH. KESSLER: "Arg-Gly-655 Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of 656 cell adhesion to vitronectin and laminin fragment PI", FEBS LETT, vol. 291, no. 50-54, 1991, pages 657 |
M. PFAFFK. TANGEMANNB. MULLERM. GURRATHG. MULLERH. KESSLERR. TIMPL: "J. Engel, Selective recognition of cyclic RGD peptides of NMR defined conformation by aIIbp3, avp3, and α5β1 integrins", J. BIOL. CHEM., vol. 269, 1994, pages 20233 - 20238, XP002036951 |
MILLER, M. A.ASKEVOLD, B.MIKULA, H.KOHLER, R. H.PIROVICH, D.WEISSLEDER, R., NAT. COMMUN., vol. 8, 2017, pages 15906 |
MORRIS, G. M.HUEY, R.LINDSTROM, W.SANNER, M. F.BELEW, R. K.GOODSELL, D. S.OLSON, A. J., J. COMPUT. CHEM., vol. 30, 2009, pages 2785 - 2791 |
OGURA, A. ET AL., CHEM. COMMUN., vol. 54, 2018, pages 8693 - 8696 |
OGURA, A.URANO, S.TAHARA, T.NOZAKI, S.SIBGATULLINA, R.VONG, K.SUZUKI, T.DOHMAE, N.KURBANGALIEVA, A.WATANABE, Y., CHEMCOMM, vol. 54, 2018, pages 8693 - 8696 |
P. C. BROOKSA. M. P. MONTGOMERYM. ROSENFELDR. A. REISFELDT. HUG. KLIERD. A. CHERESH: "Integrin avp3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels", CELL, vol. 79, 1994, pages 1157 - 1164 |
PEREZ-LOPEZ, A. M.RUBIO-RUIZ, B.SEBASTIAN, V.HAMILTON, L.ADAM, C.BRAY, T. L.IRUSTA, S.BRENNAN, P. M.LLOYD-JONES, G. C.SIEGER, D., ANGEW. CHEM. INT. ED. ENGL., vol. 56, 2017, pages 12548 - 12552 |
PETERS, T., JR. ADV. PROTEIN CHEM., vol. 37, 1985, pages 161 - 245 |
R. SIBGATULLINAK. FUJIKIT. MURASET. YAMAMOTOT. SHIMODAA. KURBANGALIEVAK. TANAKA: "Highly reactive ''RIKEN click'' probe for glycoconjugation on lysines", TETRAHEDRON LETT, vol. 58, 2017, pages 1929 - 1933 |
RASHIDI, M.KHALILNEZHAD, A.AMANI, D.JAMSHIDI, H.MUHAMMADNEJAD, A.BAZI, A.ZIAI, S. A., J. CELL. PHYSIOL., vol. 233, 2018, pages 8908 - 8918 |
REBELEIN, J. G.WARD, T. R., CURR. OPIN. BIOTECHNOL., vol. 53, 2018, pages 106 - 114 |
See also references of EP3978023A4 |
SHAKERI, A.IRANSHAHY, M.IRANSHAHI, M. J., ASIAN. NAT. PROD. RES., vol. 16, 2014, pages 884 - 889 |
STREU, C.MEGGERS, E., ANGEW. CHEM. INT. ED. ENGL., vol. 45, 2006, pages 5645 - 5648 |
TANAKA, K. ET AL., ANGEW. CHEM. INT. ED., vol. 49, 2010, pages 8195 - 8200 |
TOMAS-GAMASA, M.MARTINEZ-CALVO, M.COUCEIRO, J. R.MASCARENAS, J. L., NAT. COMMUN., vol. 7, 2016, pages 12538 |
TONGA, G. Y.JEONG, Y.DUNCAN, B.MIZUHARA, T.MOUT, R.DAS, R.KIM, S. T.YEH, Y.-C.YAN, B.HOU, S., NAT. CHEM., vol. 7, 2015, pages 597 - 603 |
TSUBOKURA K. ET AL.: "In vivo gold complex catalysis within live mice", ANGEW CHEM INT ED., vol. 56, no. 13, 20 March 2017 (2017-03-20), pages 3579 - 3584, XP055766458 * |
UNCITI-BROCETA, A.JOHANSSON, E. M. V.YUSOP, R. M.SANCHEZ-MARTIN, R. M.BRADLEY, M., NAT. PROTOC., vol. 7, 2012, pages 1207 - 1218 |
VIDAL, C.TOMAS-GAMASA, M.DESTITO, P.LOPEZ, F.MASCARENAS, J. L., NAT. COMMUN., vol. 9, 2018, pages 1913 |
VOLKER, T.DEMPWOLFF, F.GRAUMANN, P. L.MEGGERS, E., ANGEW. CHEM. INT. ED. ENGL., vol. 53, 2014, pages 10536 - 10540 |
VONG K. ET AL.: "An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves", NATURE COMMUNICATIONS, vol. 10, no. 1, 5746, 17 December 2019 (2019-12-17), pages 1 - 15, XP055766462 * |
WANG LSCHULTZ PG: "Expanding the genetic code", ANGEW CHEM INT ED ENGL, vol. 44, no. 1, 2004, pages 34 - 66 |
WEISS, J. T.DAWSON, J. C.MACLEOD, K. G.RYBSKI, W.FRASER, C.TORRES-SANCHEZ, C.PATTON, E. E.BRADLEY, M.CARRAGHER, N. O.UNCITI-BROCET, NAT. COMMUN., vol. 5, 2014, pages 3277 |
YOUNG TSAHMAD IBROCK ASCHULTZ PG: "Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris", BIOCHEMISTRY, vol. 48, no. 12, 2009, pages 2643 - 53, XP002631536, DOI: 10.1021/BI802178K |
YUSOP, R. M.UNCITI-BROCETA, A.JOHANSSON, E. M. V.SANCHEZ-MARTIN, R. M.BRADLEY, M., NAT. CHEM., vol. 3, 2011, pages 239 - 243 |
ZHAO, J.KAJETANOWICZ, A.WARD, T. R., ORG. BIOMOL. CHEM., vol. 13, 2015, pages 5652 - 5655 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176961A1 (ja) * | 2023-02-20 | 2024-08-29 | 国立研究開発法人理化学研究所 | K-Ras遺伝子変異がんを認識するタンパク質 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020241340A1 (ja) | 2020-12-03 |
US20220241765A1 (en) | 2022-08-04 |
AU2020285197A1 (en) | 2021-12-16 |
EP3978023A1 (en) | 2022-04-06 |
EP3978023A4 (en) | 2023-06-28 |
TW202110482A (zh) | 2021-03-16 |
CN114206388A (zh) | 2022-03-18 |
KR20220012277A (ko) | 2022-02-03 |
SG11202112867VA (en) | 2021-12-30 |
CA3141707A1 (en) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7041187B2 (ja) | 細胞透過性ペプチド、それを含んだコンジュゲート、及びそれを含んだ組成物 | |
JP7007423B2 (ja) | 細胞透過性ペプチド、それを含んだコンジュゲート、及びそれを含んだ組成物 | |
Jha et al. | CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes | |
Ribeiro-Viana et al. | BODIPY-labeled DC-SIGN-targeting glycodendrons efficiently internalize and route to lysosomes in human dendritic cells | |
WO2020241340A1 (ja) | 新規な人工タンパク質触媒 | |
Chang et al. | Bioorthogonal PROTAC prodrugs enabled by on-target activation | |
JP6574175B2 (ja) | 細胞透過性ペプチド、及びそれを含むコンジュゲート | |
JP5816878B2 (ja) | 組織特異的なペプチド模倣リガンドを用いる標的化送達 | |
CN113599504B (zh) | 一种无载体蛋白质胞内递送前药及其制备方法与应用 | |
Wu et al. | Effects of glycosylation and D-amino acid substitution on the antitumor and antibacterial activities of bee venom peptide HYL | |
Kitagishi et al. | Intracellular delivery of adamantane-tagged small molecule, proteins, and liposomes using an octaarginine-conjugated β-cyclodextrin | |
Chang et al. | Synthesis and Evaluation of a Photoactive Probe with a Multivalent Carbohydrate for Capturing Carbohydrate–Lectin Interactions | |
JP2013503904A5 (ja) | ||
Miller et al. | Synthesis of neoglycopeptides via click chemistry | |
JP2024512074A (ja) | 免疫調節剤 | |
EP2665736B1 (en) | Corona-like (guanidyl)-oligosaccharidic derivatives as cell-penetrating enhancers for intracellular delivery of colloidal therapeutic systems | |
Hayakawa et al. | Synthetic human NOTCH1 EGF modules unraveled molecular mechanisms for the structural and functional roles of calcium ions and O-glycans in the ligand-binding region | |
Le et al. | Direct Cytosolic Delivery of Proteins and CRISPR-Cas9 Genome Editing by Gemini Amphiphiles via Non-Endocytic Translocation Pathways | |
Oyama et al. | Late-stage peptide labeling with near-infrared fluorogenic nitrobenzodiazoles by manganese-catalyzed C–H activation | |
US20150196657A1 (en) | Dendritic Polypeptide-Based Nanocarriers for the Delivery of Therapeutic Agents | |
Khatri et al. | Design, Synthesis, and Biomedical Applications of Glycotripods for Targeting Trimeric Lectins | |
Wu et al. | Discovery of novel HER2 targeting peptide-camptothecin conjugates with effective suppression for selective cancer treatment | |
WO2019202049A1 (en) | Cell penetrating peptides | |
Sturzu et al. | Synthesis of a novel curcumin derivative as a potential imaging probe in alzheimer’s disease imaging | |
Khaleel et al. | A Review on Peptide Synthesis: Therapeutic agents, stabilizing agents and its applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20812900 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021522230 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3141707 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217040992 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020285197 Country of ref document: AU Date of ref document: 20200518 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020812900 Country of ref document: EP Effective date: 20220103 |