WO2020241153A1 - 走査ミラーおよび走査ミラーの製造方法 - Google Patents
走査ミラーおよび走査ミラーの製造方法 Download PDFInfo
- Publication number
- WO2020241153A1 WO2020241153A1 PCT/JP2020/018008 JP2020018008W WO2020241153A1 WO 2020241153 A1 WO2020241153 A1 WO 2020241153A1 JP 2020018008 W JP2020018008 W JP 2020018008W WO 2020241153 A1 WO2020241153 A1 WO 2020241153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torsion bar
- scanning mirror
- mirror
- layer
- scanning
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
Definitions
- the present invention relates to a scanning mirror and a method for manufacturing a scanning mirror.
- microscanner has a mirror portion that reflects the laser beam and a torsion bar that supports the mirror portion. By applying a twisting force to the torsion bar to rotate the mirror portion, the laser beam is scanned two-dimensionally. It has a scanning mirror configured to do so.
- a PZT (lead-zirconate-titanate) drive microscanner has been developed in which the rotation angle of the mirror portion is increased by a mechanical lever amplification function that combines a torsion bar and a cantilever (see, for example, Non-Patent Documents 1 and 2). ).
- the surface of the mirror portion and the torsion bar is subjected to plasma CVD (plasma enhanced chemical vapor deposition) to use diamond-like carbon (DLC).
- plasma CVD plasma enhanced chemical vapor deposition
- DLC diamond-like carbon
- Al 2 O 3 aluminum oxide
- ALD atomic layer deposition
- the torsion bar is oxidized and hydroxylated due to the adhesion of water and oxygen to the surface of the torsion bar made of silicon or the like. Therefore, there is a problem that the torsion bar deteriorates quickly. Further, in the scanning mirror described in Non-Patent Document 3, since a DLC film is formed on the surface of the torsion bar, the progress of oxidation and hydroxylation of the torsion bar can be delayed, but plasma CVD is used for forming the DLC film. Therefore, there is a problem that it is not possible to completely prevent the adhesion of water and oxygen to the surface of the torsion bar, and it is not possible to suppress the deterioration of the torsion bar.
- the present invention has been made in view of such problems, and a method for manufacturing a scanning mirror and a scanning mirror capable of preventing oxidation and hydroxylation of a torsion bar and suppressing deterioration of the torsion bar due to the oxidation and hydroxylation.
- the purpose is to provide.
- the scanning mirror according to the present invention has a mirror portion and a torsion bar provided to support the mirror portion and whose surface is covered with an ALD layer, and is twisted by the torsion bar. It is characterized in that the mirror portion is configured to be rotatable around an axis along the torsion bar by applying a force.
- the ALD layer can be brought into close contact with the surface of the torsion bar to cover irregularities and fine cracks at the time of forming the torsion bar.
- the ALD layer is formed by the atomic layer deposition (ALD) method, is denser than the deposition layer by plasma CVD, and has no pinholes. Therefore, in the scanning mirror according to the present invention, the ALD layer can almost completely prevent moisture and oxygen from adhering to the surface of the torsion bar. As a result, oxidation and hydroxylation of the torsion bar can be prevented, and deterioration of the torsion bar due to this can be suppressed. Further, in the scanning mirror according to the present invention, the torsional strength (torsional fracture strength) of the torsion bar can be increased by the ALD layer.
- the scanning mirror according to the present invention has a pair of electrodes whose surfaces are covered with the ALD layer, and is deformably provided so as to give a twisting force to the torsion bar by applying a voltage between the electrodes. It is preferable to have the electrostatic actuator.
- the ALD film can prevent not only the torsion bar but also the oxidation and hydroxylation of each electrode, and the deterioration of each electrode due to this can be suppressed.
- the electrostatic actuator to have a mechanical lever amplification function, it can be driven at a higher speed, a higher scan angle, and lower power consumption.
- the method for manufacturing a scanning mirror according to the present invention is configured such that the mirror portion can be rotated around an axis along the torsion bar by applying a twisting force to a torsion bar provided to support the mirror portion.
- a method for manufacturing a scanning mirror which comprises forming the mirror portion and the torsion bar, and then forming the ALD layer at least on the surface of the torsion bar by an atomic layer deposition method.
- the scanning mirror manufacturing method according to the present invention can suitably manufacture the scanning mirror according to the present invention.
- the method for manufacturing a scanning mirror according to the present invention since an ALD layer is formed on the surface of a torsion bar by an atomic layer deposition method, the formed ALD layer adheres to the surface of the torsion bar, and unevenness and fineness during formation of the torsion bar are formed. It can also cover cracks and the like.
- the formed ALD layer can almost completely prevent moisture and oxygen from adhering to the surface of the torsion bar. As a result, oxidation and hydroxylation of the torsion bar can be prevented, and deterioration of the torsion bar due to this can be suppressed. Further, the torsional strength of the torsion bar can be increased by the formed ALD layer.
- the scanning mirror has an electrostatic actuator that is deformably provided so as to apply a twisting force to the torsion bar by applying a voltage between a pair of electrodes.
- the ALD layer is formed at least on the surface of the torsion bar and the surface of each electrode of the electrostatic actuator by an atomic layer deposition method. You may.
- the formed ALD film can prevent not only the torsion bar but also the oxidation and hydroxylation of each electrode, and the deterioration of each electrode due to this can be suppressed.
- an electrostatic actuator having a mechanical lever amplification function, it is possible to manufacture a scanning mirror that can be driven at a higher speed, a higher scanning angle, and lower power consumption.
- the ALD layer may be made of any material as long as it increases the strength of the torsion bar against fatigue, and for example, aluminum oxide (Al 2 O 3). ), aluminum nitride (AlN), silicon nitride (Si 3 N 4), one kind or may comprise a plurality kinds of silicon carbide (SiC) and gallium nitride (GaN). Further, the ALD layer may be made of an insulator. In this case, by covering each electrode of the electrostatic actuator with the ALD layer, a short circuit due to contact between the electrodes can be prevented, and the electrostatic actuator can be moved. The range can be expanded. Further, when the ALD layer is made of aluminum oxide as an insulator, the dielectric constant of each electrode can be increased, and the electrostatic force generated by the electrostatic actuator can be increased.
- the mirror portion and the torsion bar are made of silicon (Si).
- the electrostatic actuator it is preferable that the electrostatic actuator is also made of silicon.
- these are MEMS produced by silicon microfabrication technology.
- the ALD layer preferably has a thickness of 0.5 nm to 200 nm. In this case, deterioration of the torsion bar and each electrode can be suppressed without hindering the movement of the torsion bar.
- a scanning mirror and a method for manufacturing a scanning mirror which can prevent oxidation and hydroxylation of the torsion bar and suppress deterioration of the torsion bar due to the oxidation.
- a plan view showing each part of the scanning mirror according to the embodiment of the present invention, such as a mirror part formed by processing a device layer, and (b) each applied electrode formed by processing a bundle layer are shown. It is a plan view. It is a side view which shows the manufacturing method of the scanning mirror of embodiment of this invention.
- Is It is a graph which shows the measurement result of the residual stress at the time of forming 800 atomic layers by the ALD method of the scanning mirror of embodiment of this invention. It is a graph which shows the relationship between the stress amplitude and the fatigue life of the scanning mirror (with ALD film formation) of the embodiment of this invention, and the scanning mirror without ALD film formation which is a comparative example.
- the scanning mirror according to the embodiment of the present invention is manufactured by using an SOI (Silicon on Insulator) wafer having a BOX layer made of SiO 2 between a bundle layer made of Si and a device layer.
- SOI Silicon on Insulator
- the bundle layer and the device layer are insulated by a BOX layer.
- the scanning mirror includes a support electrode 21, four beam portions 22, two connecting bars 23, a mirror portion 24, two torsion bars 25, and two application electrodes 26. have.
- the support electrode 21, each beam portion 22, each connecting bar 23, the mirror portion 24, and each torsion bar 25 are formed by processing the device layer 11.
- Each application electrode 26 is formed by processing the bundle layer 12.
- the support electrode 21 has a rectangular frame shape.
- the four beam portions 22 are formed so that a plurality of elongated rectangular plates are arranged side by side in parallel in the width direction, and the rectangular plates are alternately connected to the rectangular plates on both sides at different ends.
- the beam portions 22 are arranged side by side along a pair of long sides of the rectangular inner edge 21a of the support electrode 21, and the two are arranged on different sides from the central portion of the corresponding long sides. It extends to the end of the and is placed with a gap between it and the corresponding long side.
- Each beam portion 22 is arranged with an elongated rectangular mirror hole 22a formed between two along one long side and two along the other long side. Further, each beam portion 22 is arranged so that each rectangular plate is parallel to the short side of the inner edge 21a of the support electrode 21, and is connected to the support electrode 21 on the central portion side of the long side of the inner edge 21a. ing.
- the two connecting bars 23 are provided so as to connect the beam portions 22 facing each other with the mirror hole 22a interposed therebetween on one short side side and the other short side side of the inner edge 21a of the support electrode 21, respectively.
- Each connecting bar 23 connects each beam portion 22 to each other on each short side side of the inner edge 21a.
- the mirror portion 24 has a disk shape and is arranged in the central portion of the mirror hole 22a so as not to come into contact with each beam portion 22.
- the two torsion bars 25 are parallel to each long side of the inner edge 21a of the support electrode 21, and are provided so as to connect the central portion of each connecting bar 23 and the mirror portion 24, respectively. As a result, each torsion bar 25 supports the mirror portion 24.
- the support electrode 21, each beam portion 22, each connecting bar 23, the mirror portion 24, and each torsion bar 25 are centered on a center line parallel to each long side of the inner edge 21a of the support electrode 21.
- the shape is line-symmetrical and line-symmetrical with respect to the center line parallel to each short side of the inner edge 21a of the support electrode 21.
- each application electrode 26 is provided in a portion facing the support electrode 21 and each beam portion 22, and has a rectangular drive hole 26a corresponding to the mirror hole 22a in the center. Is formed.
- One of the applied electrodes 26 includes a region on one long side of the inner edge 21a of the support electrode 21, two beam portions 22 along the long side, and a region on one short side of the inner edge 21a of the support electrode 21. It is provided so as to face and.
- the other application electrode 26 includes a region on the other long side of the inner edge 21a of the support electrode 21, two beam portions 22 along the long side thereof, and a region on the other short side of the inner edge 21a of the support electrode 21. It is provided so as to face and.
- Each application electrode 26 is not electrically connected.
- the scanning mirror according to the embodiment of the present invention includes a support electrode 21, each beam portion 22, each connecting bar 23, each mirror portion 24 and each torsion bar 25 formed on the device layer 11, and each of the bundle layers 12 formed.
- the application electrodes 26 are arranged at intervals by the BOX layer and are insulated by the BOX layer.
- an electrostatic actuator is formed by a support electrode 21, each beam portion 22, and each application electrode 26.
- the surfaces of the support electrode 21, each beam portion 22, each connecting bar 23, the mirror portion 24, each torsion bar 25, and each application electrode 26 are covered with an ALD layer.
- the ALD layer consists of aluminum oxide insulator (Al 2 O 3), in addition to the aluminum oxide (Al 2 O 3), aluminum nitride (AlN), It may be made of silicon nitride (Si 3 N 4 ), silicon carbide (SiC), gallium nitride (GaN), or the like.
- the scanning mirror according to the embodiment of the present invention is configured such that the mirror portion 24 can be rotated as follows. That is, by grounding the support electrode 21 and applying an AC voltage shifted in phase by ⁇ to each application electrode 26, the beam portion 22 facing one application electrode 26 and the other application electrode 26 face each other.
- the beam portion 22 is deformed with a phase shift of ⁇ .
- each connecting bar 23 is deformed in the same manner, and each torsion bar 25 is given a twisting force in the same direction. Due to this twisting force, the mirror portion 24 is rotated inside the mirror hole 22a and the drive hole 26a around the axis along each torsion bar 25.
- the scanning mirror according to the embodiment of the present invention can be suitably manufactured by the method for manufacturing the scanning mirror according to the embodiment of the present invention. That is, as shown in FIG. 2, in the method for manufacturing a scanning mirror according to the embodiment of the present invention, the SOI wafer is first washed (see FIG. 2A), and a registry is applied to the surface of the device layer 11 of the SOI wafer. The polymer 31 is applied and patterning is performed by photolithography using a mask pattern (see FIG. 2B). Etching of the device layer 11 is performed by a deep RIE (Deep RIE) apparatus (see FIG. 2C). After etching, the registry polymer 31 is removed with a stripping solution (see FIG. 2D). As a result, the support electrode 21, each beam portion 22, each connecting bar 23, the mirror portion 24, and each torsion bar 25 are formed on the device layer 11.
- Deep RIE deep RIE
- the registry polymer 31 is applied to the surface of the bundle layer 12 of the SOI wafer, patterned by photolithography (see FIG. 2E), and the bundle layer 12 is etched by deep RIE. After that (see FIG. 2 (f)), the registry polymer 31 is removed (see FIG. 2 (g)). As a result, each application electrode 26 is formed. Next, the BOX layer 13 in the range of the mirror hole 22a is etched with the etching solution (see FIG. 2H). Then, the ALD layer 27 is formed so as to cover the entire exposed surface by the atomic layer deposition method (see FIG. 2 (i)).
- the thickness of the bundle layer 12 of the SOI wafer is 200 ⁇ m
- the thickness of the BOX layer 13 is 1 ⁇ m
- the thickness of the device layer 11 is 90 ⁇ m.
- Registry Polymer 31 is OFPR 800-LB 200cp.
- the deep digging RIE apparatus is manufactured by STS, and the etching gas of the deep digging RIE is SF 6 gas, and the passivation gas is C 4 F 8 gas.
- the stripping solution is "EKC265 (registered trademark)" manufactured by DuPont.
- the etching solution of the BOX layer 13 is an HF solution having a concentration of 49%.
- the ALD layer 27 is made of aluminum oxide (Al 2 O 3 ).
- the scanning mirror according to the embodiment of the present invention can be manufactured as MEMS by the silicon microfabrication technique using the method for manufacturing the scanning mirror according to the embodiment of the present invention.
- the surfaces of the torsion bar 25, the support electrode 21, and each application electrode 26 are covered with the ALD layer 27, so that the ALD layer 27 is brought into close contact with the surfaces thereof to form them. It can also cover irregularities and fine cracks of time. Further, in the scanning mirror of the embodiment of the present invention, the ALD layer 27 can almost completely prevent moisture and oxygen from adhering to the surfaces of the torsion bar 25, the support electrode 21, and each application electrode 26.
- the torsional strength of the torsion bar 25 can be increased by the ALD layer 27.
- the electrostatic actuator composed of the support electrode 21, each beam portion 22, and each applied electrode 26 has a mechanical lever amplification function, so that the scanning mirror has a higher speed and a higher scanning angle. , Can be driven with low power consumption.
- the ALD layer 27 is made of aluminum oxide as an insulator, it is possible to prevent a short circuit due to contact between the support electrode 21 and each beam portion 22 and each applied electrode 26. , The movable range of the electrostatic actuator can be further expanded.
- the ALD layer 27 is made of aluminum oxide, the dielectric constant of the support electrode 21 and each applied electrode 26 can be increased, and the electrostatic force generated by the electrostatic actuator can be increased. Further, by driving the mirror unit 24 at the resonance frequency, the rotation angle of the mirror unit 24 can be further increased.
- the scanning mirror according to the embodiment of the present invention shown in FIG. 1 was manufactured by the method for manufacturing the scanning mirror according to the embodiment of the present invention shown in FIG.
- Three types of scanning mirrors in which 10 atomic layers, 400 layers, and 800 atomic layers were formed by the ALD method were manufactured. Theoretically, since one layer is 1 angstrom (0.1 nm), the thickness of the ALD layer 27 of each scanning mirror is 1 nm, 40 nm, and 80 nm, respectively.
- the scanning mirror manufactured the length l a of one of the beam portion 22 is 14,210Myuemu, width b a of the beam portion 22 is 140 .mu.m, the torsion bar from the connecting end of the respective beam portions 22 of the connecting bar 23 500 ⁇ m length l c to the connection portion 25, the width b c of the connecting bar 23 is 90 [mu] m.
- the manufacturing error of the scanning mirror was on the order of 0.1 ⁇ m.
- the scanning mirror before the formation of the ALD layer 27 was measured with an LVD (Laser Doppler Vibrometer; manufactured by Polytech), and found that the resonance frequency was 43.3 Hz, the displacement of the end of the mirror portion 24 was 1,163 mm, and the optical scanning angle was 0.533. It was deg.
- the three types of manufactured scanning mirrors were cross-sectionally observed with a scanning electron microscope (SEM) and the surface roughness was measured with a surface roughness measuring machine (manufactured by Zygo Corporation).
- the residual stress of the scanning mirror having 800 atomic layers was measured by a Raman spectroscope.
- the cross-sectional observation result of the SEM is shown in FIG. 3, the surface shape measurement result is shown in FIG. 4, and the residual stress measurement result is shown in FIG.
- the ALD layer 27 (between the circles in the figure) having a thickness of about 80 nm could be confirmed. However, as shown in FIGS. 3 (b) and 3 (c), the ALD layer 27 could not be clearly confirmed in the scanning mirrors having 10 and 400 atomic layers.
- each scanning mirror has fine irregularities with a height difference of several nm or less, but it was confirmed that the overall surface irregularities were within the range of about 5 nm.
- a scanning mirror in which an ALD layer made of an Al 2 O 3 film was formed was manufactured by the method for manufacturing a scanning mirror according to the embodiment of the present invention shown in FIG.
- the layer thickness of the ALD layer is 2.64 nm.
- An experiment was conducted in which a constant stress was repeatedly applied to this scanning mirror using a fatigue test device and the presence or absence of fracture within the measurement time was examined.
- the results of the experiment in which the applied stress is changed are plotted in a graph showing the relationship between the stress amplitude and the fatigue life (number of repetitions), and are shown in FIG.
- the same experiment was performed on a scanning mirror in which the ALD layer was not formed, and the results are also shown in FIG.
- the data marked with ⁇ in FIG. 6 is a scanning mirror that did not break within the measurement time, and indicates that the fatigue life is larger than the plotted value. As shown in FIG. 6, it was confirmed that the logarithmic value of the fatigue life decreased as the stress amplitude applied increased. Further, in the region of stress amplitude where the scanning mirror shown in FIG. 6 is usually used, the scanning mirror having the ALD layer film formation is a scanning mirror having no ALD layer film formation even if the layer thickness is as thin as 2.64 nm. It was confirmed that the fatigue life was extended by an order of magnitude or more.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Micromachines (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
【課題】トーションバーの酸化や水酸化を防ぐことができ、それによるトーションバーの劣化を抑えることができる走査ミラーおよび走査ミラーの製造方法を提供する。 【解決手段】走査ミラーは、トーションバー25が、ミラー部24を支持するよう設けられ、表面がALD層27で覆われている。走査ミラーは、トーションバー25に捩れ力を与えることにより、トーションバー25に沿った軸を中心としてミラー部24を回動可能に構成されている。走査ミラーは、ミラー部24とトーションバー25とを形成した後、少なくともトーションバー25の表面に、原子層堆積法によりALD層27を形成することにより製造される。
Description
本発明は、走査ミラーおよび走査ミラーの製造方法に関する。
従来、レーザプロジェクタやレーザディスプレイ、光コヒーレンストモグラフィ(OCT;Optical Coherence Tomography)の機能を備えたOCTプローブなどのデバイスでは、小型化や携帯の容易化等を図るため、微細加工技術により製造されたMEMS(Micro Electro Mechanical Systems)のマイクロスキャナを用いたものが開発されている(例えば、特許文献1乃至4参照)。このマイクロスキャナは、レーザ光を反射するミラー部と、そのミラー部を支持するトーションバーとを有し、トーションバーに捩れ力を与えてミラー部を回動させることにより、レーザ光を2次元走査するよう構成された走査ミラーを有している。
このようなMEMSマイクロスキャナを高性能化するためには、走査ミラーをより高速、高スキャン角、低消費電力で駆動する必要がある。そこで、トーションバーとカンチレバーとを組み合わせた機械てこ増幅機能により、ミラー部の回転角を大きくしたPZT(lead-zirconate-titanate)駆動マイクロスキャナが開発されている(例えば、非特許文献1または2参照)。
また、トーションバーのねじり強度を高めて耐久性を向上させるために、ミラー部やトーションバーの表面を、プラズマCVD(plasma enhanced chemical vapor deposition)を用いて、ダイヤモンドライクカーボン(DLC;diamond-like carbon)膜で覆った構造が提案されている(非特許文献3参照)。この構造によれば、ねじり強度を11.1~30.0%向上させることができる。
なお、多結晶シリコン膜の表面やポリマー層の表面に、原子層堆積(ALD;Atomic layer deposition)法により酸化アルミニウム(Al2O3)層を形成し、その酸化アルミニウム層による効果や影響を調べる研究が行われている(例えば、非特許文献4または5参照)。しかし、これらは、走査ミラーのトーションバーの表面に酸化アルミニウム層を形成したものではない。
S. Gu-Stoppel, D. Kaden, H. J. Quenzer, U. Hofmann, W. Benecke, "High speed piezoelectric microscanners with large deflection using mechanical leverage amplification", Procedia Engineering, 2012, 47, p.56-59
S. Gu-Stoppel, T. Giese, H. J. Quenzer, U. Hofmann, W. Benecke, "PZT-Actuated and -Sensed Resonant Micromirrors with Large Scan Angles Applying Mechanical Leverage Amplification for Biaxial Scanning", Micromachines, 2017, 8, 215
W. Zhang, K. Obitani, Y. Hirai, T. Tsuchiya, O. Tabata, "Fracture strength of silicon torsional mirror resonators fully coated with submicrometer-thick PECVD DLC film", Sensors and Actuators A: Physical, 2019, 286, p.28-34
M. Budnitzki, O. Pierron, "The influence of nanoscale atomic-layer-deposited alumina coating on the fatigue behavior of polycrystalline silicon thin films", Applied Physics Letters, 2009, 94, 141906
P. F. Carcia, R. S. McLean, M. H. Reilly, "Permeation measurements and modeling of highly defective Al2O3 thin films grown by atomic layer deposition on polymers", Applied Physics Letters, 2010, 97, 221901
特許文献1乃至4や非特許文献1、2に記載のような従来の走査ミラーでは、シリコン等から成るトーションバーの表面に水分や酸素が付着することにより、トーションバーの酸化や水酸化が進むため、トーションバーの劣化が早いという課題があった。また、非特許文献3に記載の走査ミラーでは、トーションバーの表面にDLC膜を形成するため、トーションバーの酸化や水酸化の進行を遅らせることはできるが、DLC膜の形成にプラズマCVDを用いているため、トーションバーの表面への水分や酸素の付着を完全に防ぐことはできず、トーションバーの劣化を抑えることはできないという課題があった。
本発明は、このような課題に着目してなされたもので、トーションバーの酸化や水酸化を防ぐことができ、それによるトーションバーの劣化を抑えることができる走査ミラーおよび走査ミラーの製造方法を提供することを目的とする。
上記目的を達成するために、本発明に係る走査ミラーは、ミラー部と、前記ミラー部を支持するよう設けられ、表面がALD層で覆われたトーションバーとを有し、前記トーションバーに捩れ力を与えることにより、前記トーションバーに沿った軸を中心として前記ミラー部を回動可能に構成されていることを特徴とする。
本発明に係る走査ミラーは、トーションバーの表面をALD層で覆うことにより、トーションバーの表面にALD層を密着させて、トーションバー形成時の凹凸や微細亀裂なども覆うことができる。また、ALD層は、原子層堆積(ALD;Atomic layer deposition)法により形成され、プラズマCVDによる堆積層などよりも緻密であり、ピンホールも存在しない。このため、本発明に係る走査ミラーは、ALD層により、トーションバーの表面に水分や酸素が付着するのを、ほぼ完全に防ぐことができる。これにより、トーションバーの酸化や水酸化を防ぐことができ、それによるトーションバーの劣化を抑えることができる。また、本発明に係る走査ミラーは、ALD層により、トーションバーのねじり強度(torsional fracture strength)を高めることもできる。
本発明に係る走査ミラーは、表面が前記ALD層で覆われた1対の電極を有し、各電極の間に電圧を印加することにより、前記トーションバーに捩れ力を与えるよう変形可能に設けられた静電アクチュエータを有することが好ましい。この場合、ALD膜により、トーションバーだけでなく、各電極の酸化や水酸化も防ぐことができ、それによる各電極の劣化を抑えることができる。また、静電アクチュエータを機械てこ増幅機能を有する構成にすることにより、より高速、高スキャン角、低消費電力で駆動することができる。
本発明に係る走査ミラーの製造方法は、ミラー部を支持するよう設けられたトーションバーに捩れ力を与えることにより、前記トーションバーに沿った軸を中心として前記ミラー部を回動可能に構成された走査ミラーの製造方法であって、前記ミラー部と前記トーションバーとを形成した後、少なくとも前記トーションバーの表面に、原子層堆積法により前記ALD層を形成することを特徴とする。
本発明に係る走査ミラーの製造方法は、本発明に係る走査ミラーを好適に製造することができる。本発明に係る走査ミラーの製造方法は、トーションバーの表面に、原子層堆積法によりALD層を形成するため、形成したALD層がトーションバーの表面に密着し、トーションバー形成時の凹凸や微細亀裂なども覆うことができる。本発明に係る走査ミラーの製造方法では、形成したALD層により、トーションバーの表面に水分や酸素が付着するのを、ほぼ完全に防ぐことができる。これにより、トーションバーの酸化や水酸化を防ぐことができ、それによるトーションバーの劣化を抑えることができる。また、形成したALD層により、トーションバーのねじり強度を高めることもできる。
本発明に係る走査ミラーの製造方法で、前記走査ミラーは、1対の電極の間に電圧を印加することにより、前記トーションバーに捩れ力を与えるよう変形可能に設けられた静電アクチュエータを有し、前記ミラー部と前記トーションバーと前記静電アクチュエータとを形成した後、少なくとも前記トーションバーの表面と前記静電アクチュエータの各電極の表面とに、原子層堆積法により前記ALD層を形成してもよい。この場合、形成したALD膜により、トーションバーだけでなく、各電極の酸化や水酸化も防ぐことができ、それによる各電極の劣化を抑えることができる。また、機械てこ増幅機能を有する静電アクチュエータを形成することにより、より高速、高スキャン角、低消費電力で駆動可能な走査ミラーを製造することができる。
本発明に係る走査ミラーおよび走査ミラーの製造方法で、前記ALD層は、トーションバーの疲労に対する強度を高めるものであれば、いかなる材料から成っていてもよく、例えば、酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、窒化ケイ素(Si3N4)、炭化ケイ素(SiC)および窒化ガリウム(GaN)のうちのいずれか1種類、または複数種類から成っていてもよい。また、前記ALD層は、絶縁体から成っていてもよく、この場合、静電アクチュエータの各電極をALD層で覆うことにより、電極同士の接触による短絡を防ぐことができ、静電アクチュエータの可動範囲を拡げることができる。また、ALD層が絶縁体の酸化アルミニウムから成るときには、各電極の誘電率を高めることができ、静電アクチュエータで発生する静電力を大きくすることができる。
本発明に係る走査ミラーおよび走査ミラーの製造方法で、前記ミラー部と前記トーションバーとは、シリコン(Si)製であることが好ましい。また、静電アクチュエータを有する場合には、静電アクチュエータもシリコン製であることが好ましい。特に、本発明に係る走査ミラーでは、これらが、シリコンの微細加工技術により製造されたMEMSであることが好ましい。また、本発明に係る走査ミラーの製造方法では、これらを、シリコンの微細加工技術により製造することが好ましい。
本発明に係る走査ミラーおよび走査ミラーの製造方法で、前記ALD層は、0.5nm乃至200nmの厚みを有していることが好ましい。この場合、トーションバーの動きをほとんど阻害することなく、トーションバーや各電極の劣化を抑えることができる。
本発明によれば、トーションバーの酸化や水酸化を防ぐことができ、それによるトーションバーの劣化を抑えることができる走査ミラーおよび走査ミラーの製造方法を提供することができる。
以下、図面に基づいて、本発明の実施の形態について説明する。
図1乃至図6は、本発明の実施の形態の走査ミラーおよび走査ミラーの製造方法を示している。
本発明の実施の形態の走査ミラーは、Si製のバンドル層とデバイス層との間に、SiO2製のBOX層を有するSOI(Silicon on Insulator)ウエハを用いて製造されている。SOIウエハは、バンドル層とデバイス層とが、BOX層により絶縁されている。
図1乃至図6は、本発明の実施の形態の走査ミラーおよび走査ミラーの製造方法を示している。
本発明の実施の形態の走査ミラーは、Si製のバンドル層とデバイス層との間に、SiO2製のBOX層を有するSOI(Silicon on Insulator)ウエハを用いて製造されている。SOIウエハは、バンドル層とデバイス層とが、BOX層により絶縁されている。
図1に示すように、本発明の実施の形態の走査ミラーは、支持電極21と4つの梁部22と2つのコネクティングバー23とミラー部24と2つのトーションバー25と2つの印加電極26とを有している。支持電極21、各梁部22、各コネクティングバー23、ミラー部24および各トーションバー25は、デバイス層11を加工して形成されている。各印加電極26は、バンドル層12を加工して形成されている。
図1(a)に示すように、支持電極21は、矩形枠状を成している。4つの梁部22は、それぞれ複数の細長い矩形板を幅方向で平行に並べて配置し、各矩形板が両隣の矩形板とそれぞれ異なる端部で互い違いに接続するよう形成されている。各梁部22は、支持電極21の矩形状の内縁21aの1対の長辺に沿って、それぞれ2つずつ並んで配置されており、その2つが対応する長辺の中央部からそれぞれ異なる側の端部まで伸びて、対応する長辺との間に隙間をあけて配置されている。各梁部22は、一方の長辺に沿った2つと、他方の長辺に沿った2つとの間に、細長い矩形状のミラー用孔22aをあけて配置されている。また、各梁部22は、各矩形板が支持電極21の内縁21aの短辺に対して平行になるよう配置されており、内縁21aの長辺の中央部側で、支持電極21に接続されている。
2つのコネクティングバー23は、それぞれ支持電極21の内縁21aの一方の短辺側および他方の短辺側で、ミラー用孔22aを挟んで対向する梁部22を接続するよう設けられている。各コネクティングバー23は、それぞれ内縁21aの各短辺側で、各梁部22同士を接続している。ミラー部24は、円板状を成し、ミラー用孔22aの中央部に、各梁部22に接触しないよう配置されている。2つのトーションバー25は、支持電極21の内縁21aの各長辺と平行を成し、それぞれ各コネクティングバー23の中央部とミラー部24とを接続するよう設けられている。これにより、各トーションバー25は、ミラー部24を支持している。
図1(a)に示すように、支持電極21、各梁部22、各コネクティングバー23、ミラー部24および各トーションバー25は、支持電極21の内縁21aの各長辺に平行な中心線に対して線対称、かつ、支持電極21の内縁21aの各短辺に平行な中心線に対して線対称な形状を成している。
図1(b)に示すように、各印加電極26は、支持電極21および各梁部22に対向する部分に設けられており、中央にミラー用孔22aに対応する矩形状の駆動用孔26aが形成されている。一方の印加電極26は、支持電極21の内縁21aの一方の長辺側の領域と、その長辺に沿った2つの梁部22と、支持電極21の内縁21aの一方の短辺側の領域とに対向するよう設けられている。他方の印加電極26は、支持電極21の内縁21aの他方の長辺側の領域と、その長辺に沿った2つの梁部22と、支持電極21の内縁21aの他方の短辺側の領域とに対向するよう設けられている。各印加電極26は、電気的に接続されていない。
本発明の実施の形態の走査ミラーは、デバイス層11に形成された支持電極21、各梁部22、各コネクティングバー23、ミラー部24および各トーションバー25と、バンドル層12に形成された各印加電極26とが、BOX層により間隔を開けて配置され、かつ、BOX層により絶縁されている。なお、本発明の実施の形態の走査ミラーは、支持電極21、各梁部22および各印加電極26により、静電アクチュエータを形成している。
本発明の実施の形態の走査ミラーは、支持電極21、各梁部22、各コネクティングバー23、ミラー部24、各トーションバー25、および、各印加電極26の表面が、ALD層で覆われている。図1に示す具体的な一例では、ALD層は、絶縁体の酸化アルミニウム(Al2O3)から成っているが、酸化アルミニウム(Al2O3)の他にも、窒化アルミニウム(AlN)、窒化ケイ素(Si3N4)、炭化ケイ素(SiC)、窒化ガリウム(GaN)などから成っていてもよい。
図1に示すように、本発明の実施の形態の走査ミラーは、以下のようにして、ミラー部24を回動可能に構成されている。すなわち、支持電極21を接地し、各印加電極26に、それぞれπだけ位相をずらした交流電圧を印加することにより、一方の印加電極26に対向する梁部22と、他方の印加電極26に対向する梁部22とが、位相がπずれた変形を行う。これにより、各コネクティングバー23が同じように変形し、各トーションバー25に同じ方向の捻れ力を与える。この捻れ力により、各トーションバー25に沿った軸を中心として、ミラー用孔22aおよび駆動用孔26aの内側で、ミラー部24を回動させるようになっている。
本発明の実施の形態の走査ミラーは、本発明の実施の形態の走査ミラーの製造方法により、好適に製造することができる。すなわち、図2に示すように、本発明の実施の形態の走査ミラーの製造方法では、まず、SOIウエハの洗浄を行い(図2(a)参照)、SOIウエハのデバイス層11の表面にレジストリポリマー31を塗布し、マスクパターンを用いて、フォトリソグラフィによりパターニングを行う(図2(b)参照)。深掘りRIE(Deep RIE)装置により、デバイス層11のエッチングを行う(図2(c)参照)。エッチングの後、レジストリポリマー31を、剥離液により除去する(図2(d)参照)。これにより、デバイス層11に、支持電極21、各梁部22、各コネクティングバー23、ミラー部24および各トーションバー25を形成する。
次に、同様にして、SOIウエハのバンドル層12の表面に、レジストリポリマー31を塗布して、フォトリソグラフィによりパターニングを行い(図2(e)参照)、深掘りRIEによりバンドル層12のエッチングを行った後(図2(f)参照)、レジストリポリマー31を除去する(図2(g)参照)。これにより、各印加電極26を形成する。次に、エッチング液を用いて、ミラー用孔22aの範囲のBOX層13をエッチングする(図2(h)参照)。その後、原子層堆積法により、露出面全体を覆うようALD層27を形成する(図2(i)参照)。
なお、図2に示す具体的な一例では、SOIウエハのバンドル層12の厚みは 200μm、BOX層13の厚みは 1μm、デバイス層11の厚みは 90μmである。レジストリポリマー31は、OFPR 800-LB 200cp である。深掘りRIE装置はSTS社製であり、深掘りRIEのエッチングガスはSF6ガス、パッシベーションガスはC4F8ガスである。剥離液は、デュポン社製「EKC265(登録商標)」である。BOX層13のエッチング液は、濃度49%のHF溶液である。ALD層27は、酸化アルミニウム(Al2O3)製である。
このように、本発明の実施の形態の走査ミラーは、本発明の実施の形態の走査ミラーの製造方法を用いて、シリコンの微細加工技術によりMEMSとして製造することができる。本発明の実施の形態の走査ミラーは、トーションバー25や支持電極21、各印加電極26の表面をALD層27で覆うことにより、それらの表面にALD層27を密着させて、それらを形成した時の凹凸や微細亀裂なども覆うことができる。また、本発明の実施の形態の走査ミラーは、ALD層27により、トーションバー25や支持電極21、各印加電極26の表面に水分や酸素が付着するのを、ほぼ完全に防ぐことができる。これにより、トーションバー25や支持電極21、各印加電極26の酸化や水酸化を防ぐことができ、それらの劣化を抑えることができる。また、本発明の実施の形態の走査ミラーは、ALD層27により、トーションバー25のねじり強度を高めることもできる。
本発明の実施の形態の走査ミラーは、支持電極21、各梁部22および各印加電極26により構成される静電アクチュエータが、機械てこ増幅機能を有しているため、より高速、高スキャン角、低消費電力で駆動することができる。また、本発明の実施の形態の走査ミラーは、ALD層27が絶縁体の酸化アルミニウム製であるため、支持電極21や各梁部22と各印加電極26との接触による短絡を防ぐことができ、静電アクチュエータの可動範囲をさらに拡げることができる。また、ALD層27が酸化アルミニウム製であるため、支持電極21や各印加電極26の誘電率を高めることができ、静電アクチュエータで発生する静電力を大きくすることができる。また、ミラー部24を共振周波数で駆動させることにより、ミラー部24の回転角をさらに大きくすることができる。
図2に示す本発明の実施の形態の走査ミラーの製造方法により、図1に示す本発明の実施の形態の走査ミラーを製造した。ALD法により原子層を10層、400層、800層成膜した、3種類の走査ミラーを製造した。理論的には、1層が1オングストローム(0.1nm)であるため、各走査ミラーのALD層27の厚みは、それぞれ1nm、40nm、80nmとなる。また、製造した各走査ミラーは、1つの梁部22の長さlaが 14,210μm、梁部22の幅baが 140μm、各コネクティングバー23の各梁部22との接続端から各トーションバー25との接続部までの長さlcが 500μm、各コネクティングバー23の幅bcが 90μmである。
なお、走査ミラーの製作誤差は、0.1μm オーダーであった。また、ALD層27の形成前の走査ミラーは、LVD(Laser Doppler Vibrometer;Polytech社製)で測定したところ、共振周波数が 43.3 Hz、ミラー部24の端の変位が 1,163 mm、光学走査角が 0.533 degであった。
製造した3種類の走査ミラーについて、走査型電子顕微鏡(SEM)による断面観察、および、表面粗さ測定機(Zygo Corporation製)による表面粗さの測定を行った。また、原子層が800層の走査ミラーについて、ラマン分光器による残留応力の測定を行った。SEMの断面観察結果を図3に、表面形状の測定結果を図4に、残留応力の測定結果を図5に示す。
図3(a)に示すように、原子層が800層の走査ミラーでは、厚みが約80nmのALD層27(図中の○印の間)を確認することができた。しかし、図3(b)および(c)に示すように、原子層が10層および400層の走査ミラーでは、ALD層27をはっきりと確認することはできなかった。
図4に示すように、各走査ミラーは、高低差が数nm以下の細かい凹凸が認められるが、全体的な表面の凹凸は約5nm程度の範囲に収まっていることが確認された。これらの表面形状から、各走査ミラーの表面粗さの算術平均粗さRaを求めると、原子層が800層の走査ミラーは、Ra=0.00066であり、400層の走査ミラーは、Ra=0.00068であり、10層の走査ミラーは、Ra=0.00796であった。この結果から、ALD層27を厚くするほど、表面粗さが小さくなり、より平坦に近くなることが確認された。なお、図4には、比較例として、原子層の成膜前の走査ミラーの表面形状も示しており、その算術平均粗さは、Ra=0.00042であった。
図5に示すように、原子層が800層の走査ミラーでは、残留応力が分布していることが確認された。この残留応力は、ALD法により原子層を成膜する時の温度差により発生したと考えられる。
図2に示す本発明の実施の形態の走査ミラーの製造方法により、Al2O3膜から成るALD層を成膜した走査ミラーを製造した。ALD層の層厚は、2.64nmである。この走査ミラーに対して、疲労試験装置を用いて、一定の応力を繰り返し負荷し、測定時間内での破壊の有無を調べる実験を行った。負荷する応力を変えて実験を行った結果を、応力振幅と疲労寿命(繰り返し数)との関係を示すグラフにプロットし、図6に示す。なお、比較のため、ALD層を成膜していない走査ミラーに対しても同様の実験を行い、その結果も図6に示す。
図6中の→が付いているデータは、測定時間内に破壊しなかった走査ミラーであり、疲労寿命がプロットした値より大きいことを示している。図6に示すように、疲労寿命の対数値は、負荷する応力振幅の増加とともに減少することが確認された。また、図6に示す走査ミラーが通常用いられる応力振幅の領域において、ALD層の成膜を有する走査ミラーは、その層厚が2.64nmと薄くても、ALD層の成膜がない走査ミラーと比べて、疲労寿命が1桁、またはそれ以上延びていることが確認された。
11 デバイス層
12 バンドル層
13 BOX層
21 支持電極
21a 内縁
22 梁部
22a ミラー用孔
23 コネクティングバー
24 ミラー部
25 トーションバー
26 印加電極
26a 駆動用孔
27 ALD層
31 レジストリポリマー
12 バンドル層
13 BOX層
21 支持電極
21a 内縁
22 梁部
22a ミラー用孔
23 コネクティングバー
24 ミラー部
25 トーションバー
26 印加電極
26a 駆動用孔
27 ALD層
31 レジストリポリマー
Claims (8)
- ミラー部と、
前記ミラー部を支持するよう設けられ、表面がALD層で覆われたトーションバーとを有し、
前記トーションバーに捩れ力を与えることにより、前記トーションバーに沿った軸を中心として前記ミラー部を回動可能に構成されていることを
特徴とする走査ミラー。 - 表面が前記ALD層で覆われた1対の電極を有し、各電極の間に電圧を印加することにより、前記トーションバーに捩れ力を与えるよう変形可能に設けられた静電アクチュエータを有することを特徴とする請求項1記載の走査ミラー。
- 前記ALD層は、絶縁体から成ることを特徴とする請求項1または2記載の走査ミラー。
- 前記ALD層は、酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、窒化ケイ素(Si3N4)、炭化ケイ素(SiC)および窒化ガリウム(GaN)のうちのいずれか1種類、または複数種類から成ることを特徴とする請求項1乃至3のいずれか1項に記載の走査ミラー。
- 前記ミラー部と前記トーションバーとは、シリコン(Si)製であることを特徴とする請求項1乃至4のいずれか1項に記載の走査ミラー。
- 前記ALD層は、0.5nm乃至200nmの厚みを有していることを特徴とする請求項1乃至5のいずれか1項に記載の走査ミラー。
- ミラー部を支持するよう設けられたトーションバーに捩れ力を与えることにより、前記トーションバーに沿った軸を中心として前記ミラー部を回動可能に構成された走査ミラーの製造方法であって、
前記ミラー部と前記トーションバーとを形成した後、少なくとも前記トーションバーの表面に、原子層堆積法により前記ALD層を形成することを
特徴とする走査ミラーの製造方法。 - 前記走査ミラーは、1対の電極の間に電圧を印加することにより、前記トーションバーに捩れ力を与えるよう変形可能に設けられた静電アクチュエータを有し、
前記ミラー部と前記トーションバーと前記静電アクチュエータとを形成した後、少なくとも前記トーションバーの表面と前記静電アクチュエータの各電極の表面とに、原子層堆積法により前記ALD層を形成することを
特徴とする請求項7記載の走査ミラーの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/417,981 US20220066198A1 (en) | 2019-05-25 | 2020-04-27 | Scanning mirror and manufacturing method for scanning mirror |
JP2020545752A JP6795165B1 (ja) | 2019-05-25 | 2020-04-27 | 走査ミラーおよび走査ミラーの製造方法 |
EP20814367.7A EP3978987A4 (en) | 2019-05-25 | 2020-04-27 | SCANNING MIRROR AND MANUFACTURING METHOD FOR A SCANNING MIRROR |
CN202080007573.0A CN113227874A (zh) | 2019-05-25 | 2020-04-27 | 扫描镜及扫描镜的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019098158 | 2019-05-25 | ||
JP2019-098158 | 2019-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241153A1 true WO2020241153A1 (ja) | 2020-12-03 |
Family
ID=73552548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018008 WO2020241153A1 (ja) | 2019-05-25 | 2020-04-27 | 走査ミラーおよび走査ミラーの製造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113227874A (ja) |
WO (1) | WO2020241153A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5321740B2 (ja) | 1974-06-24 | 1978-07-04 | ||
JPS5640420B1 (ja) | 1970-03-26 | 1981-09-21 | ||
JPS6018926B2 (ja) | 1978-08-12 | 1985-05-13 | 岩崎通信機株式会社 | 光信号観測装置 |
JP2002040353A (ja) * | 2000-07-25 | 2002-02-06 | Miyota Kk | ガルバノ装置の製造方法及びガルバノ装置 |
JP3934578B2 (ja) | 2003-06-09 | 2007-06-20 | ペンタックス株式会社 | 走査ミラー、ビーム走査型プローブ |
US20070211257A1 (en) * | 2006-03-09 | 2007-09-13 | Kearl Daniel A | Fabry-Perot Interferometer Composite and Method |
WO2017006425A1 (ja) * | 2015-07-07 | 2017-01-12 | 富士通株式会社 | 光デバイス |
JP2017171664A (ja) * | 2011-05-24 | 2017-09-28 | バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー | 有機アミノシラン前駆体、並びにその製造方法及び使用方法 |
US20180186625A1 (en) * | 2016-12-30 | 2018-07-05 | Texas Instruments Incorporated | Dielectric cladding of microelectromechanical systems (mems) elements for improved reliability |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7553686B2 (en) * | 2002-12-17 | 2009-06-30 | The Regents Of The University Of Colorado, A Body Corporate | Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechanical devices |
JP2008168438A (ja) * | 2007-01-09 | 2008-07-24 | Seiko Epson Corp | 静電アクチュエータ、液滴吐出ヘッド及びそれらの製造方法並びに液滴吐出装置 |
JP6459392B2 (ja) * | 2014-10-28 | 2019-01-30 | ミツミ電機株式会社 | 光走査装置 |
JP2017102232A (ja) * | 2015-12-01 | 2017-06-08 | セイコーエプソン株式会社 | 光学デバイス、画像表示装置、およびヘッドマウントディスプレイ |
-
2020
- 2020-04-27 CN CN202080007573.0A patent/CN113227874A/zh active Pending
- 2020-04-27 WO PCT/JP2020/018008 patent/WO2020241153A1/ja unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5640420B1 (ja) | 1970-03-26 | 1981-09-21 | ||
JPS5321740B2 (ja) | 1974-06-24 | 1978-07-04 | ||
JPS6018926B2 (ja) | 1978-08-12 | 1985-05-13 | 岩崎通信機株式会社 | 光信号観測装置 |
JP2002040353A (ja) * | 2000-07-25 | 2002-02-06 | Miyota Kk | ガルバノ装置の製造方法及びガルバノ装置 |
JP3934578B2 (ja) | 2003-06-09 | 2007-06-20 | ペンタックス株式会社 | 走査ミラー、ビーム走査型プローブ |
US20070211257A1 (en) * | 2006-03-09 | 2007-09-13 | Kearl Daniel A | Fabry-Perot Interferometer Composite and Method |
JP2017171664A (ja) * | 2011-05-24 | 2017-09-28 | バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー | 有機アミノシラン前駆体、並びにその製造方法及び使用方法 |
WO2017006425A1 (ja) * | 2015-07-07 | 2017-01-12 | 富士通株式会社 | 光デバイス |
US20180186625A1 (en) * | 2016-12-30 | 2018-07-05 | Texas Instruments Incorporated | Dielectric cladding of microelectromechanical systems (mems) elements for improved reliability |
Non-Patent Citations (5)
Title |
---|
M. BUDNITZKIO. PIERRON: "The influence of nanoscale atomic-layer-deposited alumina coating on the fatigue behavior of polycrystalline silicon thin films", APPLIED PHYSICS LETTERS, vol. 94, 2009, pages 141906, XP012120750, DOI: 10.1063/1.3112565 |
P. F. CARCIAR. S. MCLEANM. H. REILLY: "Permeation measurements and modeling of highly defective AI2O thin films grown by atomic layer deposition on polymers", APPLIED PHYSICS LETTERS, vol. 97, 2010, pages 221901, XP012137908, DOI: 10.1063/1.3519476 |
S. GU-STOPPELD. KADENH. J. QUENZERU. HOFMANNW. BENECKE: "High speed piezoelectric microscanners with large deflection using mechanical leverage amplification", PROCEDIA ENGINEERING, vol. 47, 2012, pages 56 - 59 |
S. GU-STOPPELT. GIESEH. J. QUENZERU. HOFMANNW. BENECKE: "PZT-Actuated and -Sensed Resonant Micromirrors with Large Scan Angles Applying Mechanical Leverage Amplification for Biaxial Scanning", MICROMACHINES, vol. 8, 2017, pages 215, XP055825956, DOI: 10.3390/mi8070215 |
W. ZHANGK. OBITANIY. HIRAIT. TSUCHIYAO. TABATA: "Fracture strength of silicon torsional mirror resonators fully coated with submicrometer-thick PECVD DLC film", SENSORS AND ACTUATORS A: PHYSICA, vol. 286, 2019, pages 28 - 34 |
Also Published As
Publication number | Publication date |
---|---|
CN113227874A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11950052B2 (en) | Acoustic transducer with gap-controlling geometry and method of manufacturing an acoustic transducer | |
US8426235B2 (en) | Method for manufacturing capacitive electromechanical transducer | |
KR101414531B1 (ko) | 전기기계 변환장치 및 그 제조방법 | |
US7172917B2 (en) | Method of making a nanogap for variable capacitive elements, and device having a nanogap | |
US8631711B2 (en) | MEMS composite transducer including compliant membrane | |
EP3203298B1 (en) | Mirror drive device and drive method therefor | |
US20120270352A1 (en) | Fabricating mems composite transducer including compliant membrane | |
JP5896665B2 (ja) | 電気機械変換装置の製造方法 | |
US11235352B2 (en) | Capacitive micromachined ultrasonic transducer and manufacturing method thereof | |
WO2020241153A1 (ja) | 走査ミラーおよび走査ミラーの製造方法 | |
JP6795165B1 (ja) | 走査ミラーおよび走査ミラーの製造方法 | |
JP2005342817A (ja) | 中空構造素子およびその製造方法ならびに電子機器 | |
JPH06267926A (ja) | エッチング工程およびこれを用いた静電マイクロスイッチ | |
JP4446038B2 (ja) | トーションバーを用いた静電駆動型マイクロミラーデバイス | |
Piekarski et al. | Fabrication of suspended piezoelectric microresonators | |
JP2009198493A (ja) | 角速度検出装置 | |
Chen et al. | E-beam evaporated polysilicon for lead zirconate titanate-based micro-actuators | |
JPH04296604A (ja) | 走査型トンネル顕微鏡及びその製造方法 | |
Jiang et al. | Dry release fabrication and testing of SiC electrostatic cantilever actuators | |
JP2006042005A (ja) | 電気機械共振器 | |
JP2001001300A (ja) | 微細梁構造およびその製造方法 | |
JPH07322649A (ja) | マイクロアクチュエータ装置及びその製造方法 | |
Faizan et al. | Acoustic Actuation of Suspended Graphene For Linear Excitation of 2D NEMS | |
JP2018186409A (ja) | 静電容量型トランスデューサ、及びその製造方法 | |
JP2018110282A (ja) | 静電容量型トランスデューサ、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020545752 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20814367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020814367 Country of ref document: EP Effective date: 20220103 |