WO2017006425A1 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
WO2017006425A1
WO2017006425A1 PCT/JP2015/069494 JP2015069494W WO2017006425A1 WO 2017006425 A1 WO2017006425 A1 WO 2017006425A1 JP 2015069494 W JP2015069494 W JP 2015069494W WO 2017006425 A1 WO2017006425 A1 WO 2017006425A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical device
diffraction grating
light
movable part
Prior art date
Application number
PCT/JP2015/069494
Other languages
English (en)
French (fr)
Inventor
秋山 傑
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/069494 priority Critical patent/WO2017006425A1/ja
Publication of WO2017006425A1 publication Critical patent/WO2017006425A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to an optical device.
  • a laser diode (LD) element and a collimating lens are combined with a MEMS (Micro Electro Mechanical Systems) scanner.
  • An optical device constituting a spatial optical system was required.
  • the MEMS scanner has a movable part connected to a fixed part of the outer frame by a torsion bar, and the direction of the movable part is controlled by a voltage signal applied to the MEMS scanner. By irradiating the collimated laser beam onto the surface of the movable part where the mirror is formed, the direction of the reflected laser beam can be controlled.
  • a MEMS scanner is disclosed in Non-Patent Document 1 and the like.
  • the size of the entire spatial optical system is determined by the size of the collimating lens in addition to the MEMS scanner and the optical path length in the space, and there is a limit to downsizing the apparatus. . Further, in the process of manufacturing the spatial optical system, precise optical axis alignment between the collimating lens and the MEMS scanner is required, which causes an increase in assembly product cost.
  • the present invention has been made in view of the above problems, and is an optical device that controls the direction and inputs / outputs a light beam with good directivity to / from a space, which reduces manufacturing costs and is relatively simple.
  • An object of the present invention is to provide a highly reliable optical device that realizes the miniaturization as much as possible with a simple apparatus configuration.
  • One aspect of the optical device is a thin-layered scan having a fixed part, a movable part, a connecting part for connecting the fixed part and the movable part, and controlling a tilt of the movable part with respect to the fixed part.
  • an optical device that controls a direction and inputs / outputs a light beam with good directivity to / from a space, reduces manufacturing costs, and can be miniaturized as much as possible with a relatively simple apparatus configuration. Is realized.
  • FIG. 1A is a plan view illustrating a schematic configuration of the MEMS scanner of the optical device according to the present embodiment.
  • FIG. 1B is a schematic diagram for explaining the operation principle of the optical device according to the present embodiment.
  • FIG. 2 is a schematic plan view showing the MEMS scanner of the optical output device according to the first embodiment.
  • 3 is an enlarged schematic plan view showing the vicinity of the torsion bar of the MEMS scanner in the broken line frame C of FIG. 4A is a schematic cross-sectional view taken along the broken line II in FIG.
  • FIG. 4B is an enlarged schematic plan view showing the vicinity of the torsion bar in FIG. 4A.
  • FIG. 5A is a schematic plan view showing an enlarged vicinity of a movable portion of the MEMS scanner of FIG.
  • FIG. 1A is a plan view illustrating a schematic configuration of the MEMS scanner of the optical device according to the present embodiment.
  • FIG. 1B is a schematic diagram for explaining the operation principle of the optical device according to the present embodiment.
  • FIG. 5B is a schematic cross-sectional view along the broken line II in FIG. 5A.
  • FIG. 6A is a schematic plan view showing the MEMS scanner of the optical output device according to the second embodiment.
  • 6B is an enlarged schematic plan view showing the vicinity of the movable part of the MEMS scanner of FIG. 6A.
  • FIG. 7 is a schematic plan view showing the MEMS scanner of the optical output device according to the third embodiment.
  • FIG. 8A is a schematic cross-sectional view taken along the broken line II in FIG.
  • FIG. 8B is a schematic plan view of the light receiver portion of the movable portion.
  • FIG. 8B is a schematic plan view of the light receiver portion of the movable portion.
  • FIG. 8A is a schematic cross-sectional view taken along the broken line II in FIG.
  • FIG. 8B is a schematic plan view of the light receiver portion of the movable portion.
  • FIG. 8B is a schematic plan view of the light receiver portion of the movable portion.
  • FIG. 9 is a schematic plan view showing the MEMS scanner of the optical output device according to the fourth embodiment.
  • FIG. 10 is a schematic sectional view showing the structure of the optical waveguide of the fifth embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the optical waveguide in the torsion bar in the sixth embodiment.
  • FIG. 1A is a plan view illustrating a schematic configuration of the MEMS scanner of the optical device according to the present embodiment.
  • FIG. 1B is a schematic diagram for explaining the operation principle of the optical device according to the present embodiment.
  • This optical device is a light input / output device, and includes a MEMS scanner 1 as shown in FIG. 1A.
  • the MEMS scanner 1 includes a thin-layered scanner member 11, a diffraction grating type spatial light coupler 12, an optical element 13 having a light receiving function or a light emitting function, and a diffraction grating type spatial light coupler 12 and an optical element 13. And an optical waveguide 14 to be connected.
  • the scanner member 11 includes an outer frame portion 21, an inner frame portion 22, a movable portion 23, a torsion bar 24 that connects the movable portion 23 and the inner frame portion 22, and the inner frame portion 22 and the outer frame portion 21. And a torsion bar 25 to be connected.
  • the movable portion 23 is rotatable (twisted) as indicated by an arrow A with respect to the inner frame portion 22 by a torsion bar 24.
  • the inner frame portion 22 is rotatable by a torsion bar 25 with respect to the outer frame portion 21 that is a fixed portion as indicated by an arrow B.
  • the inclination in the arrow A direction due to the rotation of the torsion bar 24 and the inclination in the arrow B direction due to the rotation of the torsion bar 24 via the inner frame portion 22 are controlled separately.
  • the rotation axes are perpendicular to each other.
  • the diffraction grating type spatial light coupler 12 is an optical input / output element, and a diffraction grating having a predetermined period is formed on the surface of the movable portion 23.
  • the optical element 13 is a laser diode, for example, as a light emitting element, and a photodiode, for example, as a light receiving element, and is integrated on, for example, the outer frame portion 21 of the scanner member 11.
  • the optical waveguide 14 is optically connected to the optical element 13 and is integrated on the outer frame portion 21 so as to pass through the movable portion 23, the torsion bar 24, the inner frame portion 22, the torsion bar 25, and the outer frame portion 21. ing.
  • the optical waveguide 14 is disposed on the torsion bars 24 and 25 along the center line of the torsion bars 24 and 25.
  • the optical components such as the diffraction grating type spatial light coupler 12, the optical element 13, and the optical waveguide 14 are all integrally formed on the scanner member 11 or hybridly mounted. Therefore, the entire apparatus becomes the same size as the MEMS scanner 1, and the apparatus configuration can be greatly reduced in size as compared with the conventional technique in which individual optical components are combined by a spatial coupling system.
  • the integral formation of the optical components such as the optical waveguide 14 on the scanner member 11 uses a wafer process that can be mass-produced at a time with high accuracy. Also for hybrid mounting, highly accurate positioning can be performed using an automated device. Therefore, the manufacturing cost of the optical device according to the present embodiment is reduced as compared with the prior art.
  • the optical element 13 includes, for example, a laser diode as a light emitting element integrated on the outer frame portion 21 of the scanner member 11.
  • Laser light emitted from the laser diode propagates through the optical waveguide 14 and is guided to the movable portion 23 via the torsion bars 24 and 25.
  • the laser light is input to the diffraction grating type spatial light coupler 12.
  • the laser light is emitted in the vertical direction from the surface of the movable portion 23 by the action of the diffraction grating.
  • the laser beam is emitted after the beam diameter is expanded to the same size as the entire diffraction grating type spatial coupler 12. Since the size of the beam size and the divergence angle of the beam diameter are in an inversely proportional relationship, the diffraction grating type spatial coupler 12 performs the function of a collimating lens simultaneously with the optical path conversion of the laser light.
  • the inclination of the movable part 23 is controlled by the function of the MEMS scanner 1. Along with this, the direction of the laser light emitted from the diffraction grating type spatial coupler 12 is controlled. With the above operation principle, it is possible to emit laser light into the space with good directivity and to control the emission direction.
  • the optical element 13 includes, for example, optical waveguide photodiodes as light emitting elements integrated on the outer frame portion 21 of the scanner member 11.
  • the laser beam propagating from a specific direction is input to the diffraction grating type spatial light coupler 12 of the movable part 23.
  • the laser light is incident in a perpendicular direction from the surface of the movable portion 23 by the action of the diffraction grating.
  • the inclination of the movable unit 23 is controlled by the function of the MEMS scanner 1. Along with this, the direction of the laser beam incident on the diffraction grating type spatial coupler 12 is controlled.
  • the laser light incident from the diffraction grating type spatial light coupler 12 propagates through the optical waveguide 14 and enters the photodiode via the torsion bars 24 and 25. Based on the above operation principle, it is possible to perform light reception control with high directivity for laser light propagating from a specific direction.
  • optical device based on the above-described embodiment
  • 2 to 11 are merely examples, and the dimensions are not limited to these.
  • FIG. 2 is a schematic plan view showing the MEMS scanner of the optical output device according to the present embodiment.
  • the MEMS scanner 10 includes a thin-layered scanner member 31, a diffraction grating type spatial light coupler 32, a laser diode 33, and an optical waveguide 34 that optically connects the diffraction grating type spatial light coupler 32 and the laser diode 33. And have.
  • the scanner member 31 connects the outer frame portion 41, which is a fixed portion, the inner frame portion 42, the movable portion 43 in which the diffraction grating type spatial light coupler 32 is formed, and the movable portion 43 and the inner frame portion 42. It has a T-shaped torsion bar 44 and a torsion bar 45 that connects the inner frame part 42 and the outer frame part 41.
  • the optical waveguide 34 is optically connected to the laser diode 33 and is integrated on the outer frame portion 41 so as to pass through the movable portion 43, the torsion bar 44, the inner frame portion 42, the torsion bar 45, and the outer frame portion 41. ing.
  • the optical waveguide 34 is disposed on the torsion bars 44 and 45 along the center line of the torsion bars 44 and 45.
  • the MEMS scanner 10 operates using electrostatic force.
  • the inner frame portion 42 has a comb structure 46 between the outer frame portion 41 and an electrostatic force for strengthening an applied electric signal.
  • the principle of mechanical operation amplification disclosed in Non-Patent Document 1 is used. That is, the entire inner side of the comb structure 46 is held by the torsion bar 45, and the movable part 43 having an elliptical shape supported by another torsion bar 44 is further provided on the inner side.
  • This configuration has the meaning of optimizing the structures of the comb structure 46 and the actually used movable part 43, whereby a large mechanical operation can be obtained in the movable part 43.
  • a diffraction grating type spatial light coupler 32 is formed on the surface of the movable portion 43, and the optical waveguide 34 optically connected thereto is externally connected via optical wirings on the two torsion bars 44 and 45.
  • the frame portion 41 is led.
  • a bare chip of the laser diode 33 is disposed by flip chip mounting, and is optically coupled to the optical waveguide 34.
  • the laser diode 41 for example, a Fabry-Perot type laser or DFB type laser on an InP substrate that oscillates at a wavelength near 1300 nm or near 1550 nm is used.
  • FIG. 3 is an enlarged schematic plan view showing the vicinity of the torsion bar of the MEMS scanner in the broken line frame C of FIG. 4A is a schematic cross-sectional view taken along the broken line II in FIG.
  • FIG. 4B is an enlarged schematic plan view showing the vicinity of the torsion bar in FIG. 4A.
  • An example of the width and length of the torsion bars 44 and 45 is as shown in FIG.
  • An optical waveguide 34 is formed along the mechanical connection between the torsion bars 44 and 45.
  • the torsion bars 44 and 45 and the movable portion 43 are formed of, for example, crystalline silicon 47 having a thickness of about 50 ⁇ m, and the optical waveguide 34 is located above the crystalline silicon 47.
  • the core 34a of the optical waveguide 34 is made of single crystal, polycrystalline, or amorphous silicon, and has a rectangular cross-sectional shape with a width of about 500 nm and a thickness of about 220 nm.
  • the periphery of the core 34a is covered with a clad 34b made of silicon oxide (SiO 2 ).
  • the optical waveguide 34 has a small cross-sectional area in the light propagation mode, and can be bent sharply to a small bending radius.
  • the optical waveguide 34 can be bent by 90 °, for example, with a bend radius of about 5 ⁇ m and wired.
  • the core 34a of the optical waveguide 34 is disposed at a position along the horizontal center line of the torsion bars 44 and 45, as shown in FIGS. 3, 4A and 4B. This is because the closer to the center of the torsion bars 44 and 45, the smaller the distortion that occurs when the MEMS scanner 10 moves, and the influence of the propagation of light on the optical waveguide 34 due to the distortion can be reduced.
  • the outer frame portion 41 has a silicon support substrate having a thickness of about 500 ⁇ m, for example.
  • FIG. 5A is a schematic plan view showing an enlarged vicinity of a movable portion of the MEMS scanner of FIG.
  • FIG. 5B is a schematic cross-sectional view along the broken line II in FIG. 5A.
  • the movable part 43 has an elliptical shape, and the size thereof is, for example, a major axis of about 500 ⁇ m and a minor axis of about 350 ⁇ m.
  • the size of the movable part disclosed in Non-Patent Document 1 (major axis 1 mm, minor axis 1.5 mm). Is much smaller than In this embodiment, the movable portion 43 and the diffraction grating type spatial light coupler 32 are integrally formed by a wafer process.
  • the overall size of the diffraction grating of the diffraction grating type spatial light coupler 32 provided in the movable portion 43 is, for example, about 225 ⁇ m ⁇ 225 ⁇ m as shown in FIG. 5A. This is significantly larger than the size (15 ⁇ m ⁇ 15 ⁇ m) of the diffraction grating according to Non-Patent Document 2. This is because in this embodiment, the beam size is greatly expanded to reduce the divergence angle when the beam is emitted into the space.
  • the diffraction grating of the diffraction grating type spatial light coupler 32 is formed, for example, by etching and removing a silicon film having a thickness of about 220 nm at a depth of about 70 nm and a period of about 620 nm.
  • the diffraction grating type spatial light coupler 32 is formed in the same SiO 2 48 as the clad 34 b of the optical waveguide 34.
  • a light output device that controls the direction and outputs a light beam with good directivity to the space, which reduces the manufacturing cost and has a relatively simple device configuration.
  • miniaturization as much as possible is realized.
  • an optical output device is illustrated as an optical device, but is different in that the configuration of the diffraction grating type spatial light coupler mounted on the movable portion of the MEMS scanner is different.
  • FIG. 6A is a schematic plan view showing the MEMS scanner of the light output device according to the present embodiment.
  • 6B is an enlarged schematic plan view showing the vicinity of the movable part of the MEMS scanner of FIG. 6A.
  • symbol is attached
  • the MEMS scanner 20 includes a thin-layered scanner member 31, diffraction grating type spatial light couplers 51 and 52, an optical branching element 53, a laser diode 33, and optical waveguides 54 and 55.
  • the scanner member 31 includes an outer frame portion 41 that is a fixed portion, an inner frame portion 42, a movable portion 43 in which diffraction grating spatial light couplers 51 and 52 are formed, a movable portion 43, and an inner frame portion 42.
  • a T-shaped torsion bar 44 to be connected and a torsion bar 45 to connect the inner frame part 42 and the outer frame part 41 are provided.
  • the diffraction grating type spatial light coupler 51 is formed with a diffraction grating having a predetermined period, and is provided on the surface of the movable portion 43.
  • the diffraction grating type spatial light coupler 52 is of a small size having a diffraction grating whose width in the longitudinal direction is narrower than that of the diffraction grating type spatial light coupler 51, and the diffraction grating type space on the surface of the movable portion 43. It is provided alongside the optical coupler 51.
  • the optical branching element 53 is arranged on the outer frame portion 41 along with the laser diode 33, and branches the laser light output from the laser diode 33 into two optical waveguides 54 and 55.
  • An optical switch can be used instead of the optical branching element 53.
  • the optical waveguide 54 optically connects the diffraction grating type spatial light coupler 51 and the laser diode 33 via an optical branching element 53, and includes a movable part 33, a torsion bar 44, an inner frame part 42, and a torsion bar 45. And the outer frame portion 41 so as to pass through.
  • the optical waveguide 55 optically connects the diffraction grating type spatial light coupler 52 and the laser diode 33 via an optical branching element 53, and includes a movable part 33, a torsion bar 44, an inner frame part 42, and a torsion bar 45. And the outer frame portion 41 so as to pass through.
  • the optical waveguides 54 and 55 are disposed on the torsion bars 44 and 45 along the center line of the torsion bars 44 and 45.
  • the optical waveguides 54 and 55 for guiding the laser light emitted from the laser diode are wired to the movable portion 43 through the optical branching element 53.
  • Optical waveguides 54 and 55 are wired to the movable portion 43 from upper and lower torsion bars 44 and 45, respectively.
  • the optical waveguide 54 is connected to a diffraction grating type spatial light coupler 51 having a relatively large size as in the first embodiment.
  • the optical waveguide 55 is connected to a small diffraction grating type spatial light coupler 52 having an overall size of, for example, about 15 ⁇ m ⁇ 15 ⁇ m.
  • the small diffraction grating type spatial light coupler 52 has a larger light divergence angle than a large one, and the center intensity of the beam is weak for a certain distance.
  • optical axis alignment between the two optical output devices is performed. It becomes easy. That is, when roughly aligning the optical axis, it is performed using a wide laser beam emitted from a small diffraction grating spatial light coupler 52, and then a large diffraction grating spatial light coupler 51 having a small divergence angle. Use to adjust the optical axis.
  • a light output device that controls the direction and outputs a light beam with good directivity to the space, which reduces the manufacturing cost and has a relatively simple device configuration.
  • miniaturization as much as possible is realized.
  • an optical output device is illustrated as an optical device, but is different in that a photoreceiver is mounted on the movable part of the MEMS scanner together with a diffraction grating type spatial light coupler.
  • FIG. 7 is a schematic plan view showing the MEMS scanner of the optical output device according to the present embodiment.
  • symbol is attached
  • the MEMS scanner 30 includes at least one, in this case, three surface-type light receivers 61, 62, and 63 in addition to the configuration of the MEMS scanner 10 of the first embodiment.
  • the light receivers 61 to 63 are disposed in the blank portion on the movable portion 43, that is, in the vicinity of the diffraction grating type spatial light coupler 32, and are electrically connected to the electrical wirings 64 and 65, respectively.
  • the electrical wirings 64 and 65 are formed so as to pass through the torsion bar 44, the inner frame part 42, the torsion bar 45, and the outer frame part 41, and are electrically connected to electrode pads 66 and 67 arranged on the outer frame part 41. Has been.
  • the light receivers 61 to 63 By providing the light receivers 61 to 63, when two optical output devices are combined to perform transmission / reception communication, or when tracking a laser beam between two optical output devices, between the two optical output devices
  • the optical axis can be easily aligned.
  • the light receivers 61 to 63 receive the laser beam propagating through the space and convert it into an electric signal, and the electric signal is sent to the electrode pads 66 and 67 via the electric wirings 64 and 65 formed on the torsion bars 44 and 45. Is output. By measuring the unbalance between the three output electrical signals, the optical axis can be easily aligned.
  • FIG. 8A is a schematic cross-sectional view taken along the broken line II in FIG.
  • FIG. 8B is a schematic plan view of the light receiver portion of the movable portion. Since the structure of the optical waveguide 34 is the same as that of the first embodiment, the illustration is omitted.
  • electric wirings 64 and 65 are formed on the upper portion of the clad 34 b of the optical waveguide 34.
  • the electrical wirings 64 and 65 are made of, for example, aluminum and have a width of about 5 ⁇ m and a thickness of about 1 ⁇ m, for example.
  • the light receivers 61 to 63 are formed in SiO 2 48 similar to the clad 34 b, a germanium light receiving layer 72 is formed on the p + silicon layer 71, and the germanium light receiving layer 72 is formed.
  • An n + SiGe layer 73 is formed and configured.
  • An electrical wiring 64 serving as a signal wiring is connected on the p + silicon layer 71, and an electrical wiring 65 serving as a ground (ground) wiring is connected on the n + SiGe layer 73.
  • a light output device that controls the direction and outputs a light beam with good directivity to the space, which reduces the manufacturing cost and has a relatively simple device configuration.
  • miniaturization as much as possible is realized.
  • the diffraction grating type spatial light coupler 32 is not disposed in the movable portion 43, and instead, the surface type light receiver shown in the present embodiment has the same size as the movable portion 43.
  • One or a plurality of optical input devices may be arranged. With this configuration, the sensitivity can be improved by increasing the light receiving area. Even in this case, it is possible to align the optical axes when performing optical transmission / reception by using a plurality of light receivers based on the difference in relative light reception intensity between them. Even when there is a single light receiver, the photocurrent becomes the largest when the MEMS scanner is directed in the direction of the laser beam, so that the optical axes for optical transmission and reception can be aligned.
  • FIG. 9 is a schematic plan view showing the MEMS scanner of the light output device according to the present embodiment.
  • symbol is attached
  • the MEMS scanner 40 includes a heater wire 81 in addition to the configuration of the MEMS scanner 10 of the first embodiment.
  • the heater wire 81 is arranged in a meandering manner so as to surround the outer periphery of the diffraction grating type spatial light coupler 32 on the movable portion 43, and is electrically connected to, for example, electrical wirings 82 and 83 formed of aluminum as a material.
  • the electrical wirings 82 and 83 are formed so as to pass through the torsion bar 44, the inner frame part 42, the torsion bar 45, and the outer frame part 41, and are electrically connected to electrode pads 84 and 85 disposed on the outer frame part 41. Has been.
  • a light output device that controls the direction and outputs a light beam with good directivity to the space, which reduces the manufacturing cost and has a relatively simple device configuration.
  • miniaturization as much as possible is realized.
  • the current flowing from the electrode pads 84 and 85 to the heater wire 81 is controlled.
  • the temperature of the movable portion 43 including the diffraction grating type spatial light coupler 32 can be changed, and the direction and shape of the laser beam emitted from the diffraction grating type spatial light coupler 32 can be controlled at a low speed.
  • By performing fine adjustment using the heater wire 81 it becomes possible to obtain a uniform operation in which optical axis alignment during transmission / reception and variation among individuals are absorbed.
  • FIG. 10 is a schematic cross-sectional view showing the structure of the optical waveguide of this example.
  • symbol is attached
  • the core 92 of the optical waveguide 91 is made of a dielectric material SiON or SiN.
  • the cladding 93 outside the core 92 is formed using SiO 2 as a material, as in the first embodiment. Since silicon absorbs visible light, the light output device of the first embodiment provided with an optical waveguide using silicon as a core material is applied to near infrared light having a wavelength of 1.1 ⁇ m or more.
  • the core 92 of this embodiment has little material absorption even at the wavelength of visible light, and can propagate light. For this reason, in this embodiment, by combining with a laser diode that emits visible light, it can be applied to a small laser display or the like.
  • the outer frame portion 41 of the scanner member 31 it is preferable to arrange laser diodes of three wavelengths on the outer frame portion 41 of the scanner member 31 corresponding to the three primary colors of light.
  • the three colors of light are respectively guided to the outer frame portion 41 by the optical waveguide 91 and connected to the output diffraction grating type spatial light coupler.
  • the three diffraction grating type spatial light couplers are designed so that the period and the overall size are changed in accordance with the wavelength, and the three colors of light all emit laser beams of the same size in the same direction. It is.
  • the optical waveguide 91 having the SiON or SiN core 92 has a larger bending radius than the optical waveguide having the Si core. Therefore, it is not preferable to use a T-shaped torsion bar for using the principle of mechanical operation amplification as in the first embodiment because there is no space for bending the optical waveguide. In this case, a MEMS scanner having a simpler torsion bar may be applied.
  • a light output device that controls the direction and outputs a light beam with good directivity to the space, which reduces the manufacturing cost and has a relatively simple device configuration.
  • miniaturization as much as possible is realized.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the optical waveguide in the torsion bar in the present embodiment.
  • symbol is attached
  • the optical waveguide 34 (having the core 34a and the clad 34b) is formed on the crystalline silicon 47, and the outer periphery of the crystalline silicon 47 and the optical waveguide 34 is the outer periphery of the deposited silicon. Covered with a layer 94.
  • the outer peripheral layer 94 is made of polycrystalline or amorphous silicon, and has a thickness of, for example, about 1 ⁇ m.
  • the outer peripheral layer 94 By forming the outer peripheral layer 94, the outer periphery of the torsion bars 44 and 45 to which distortion is strongly applied when the MEMS scanner is moved is reinforced.
  • the deposited silicon 94 is formed only in the portions of the torsion bars 44 and 45, and is not formed in other portions including the movable portion 43.
  • the MEMS scanner has been described as an electrostatic type using a comb drive, but an electromagnetic induction type or a piezo type may be used.
  • the MEMS scanner and the optical element have been described with respect to materials containing silicon elements, other materials such as GaAs, InP, polymer, resin, and the like may be used.
  • GaAs is suitable for processing, and is suitable because all of the optical waveguide, the light emitting element, and the light receiving element can be formed monolithically.
  • the first to sixth embodiments can be implemented in combination as appropriate.
  • the third embodiment (and / or the fourth embodiment) is combined with the second embodiment, and light receivers 61, 62, 63 (around the diffraction grating type spatial light couplers 51, 52 in the movable portion 43 ( And / or heater wires 81) can be provided.
  • light receivers 61, 62, 63 around the diffraction grating type spatial light couplers 51, 52 in the movable portion 43 ( And / or heater wires 81) can be provided.
  • an optical device that controls a direction and inputs / outputs a light beam with good directivity to / from a space, reduces manufacturing costs, and can be miniaturized as much as possible with a relatively simple apparatus configuration. Is realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光デバイスは、固定部(21)と、可動部(23)と、固定部(21)と可動部(23)とを連結し、可動部(23)の固定部(21)に対する傾きを制御するための連結部(24,25)とを有する薄層状の走査手段(11)と、可動部(23)に集積された光入出力素子(12)と、光入出力素子(12)と光学的に接続され、可動部(23)、連結部(24,25)及び固定部(21)を通るように集積された光導波路(14)と、固定部(21)に集積され、光導波路(14)と光学的に接続された光素子(13)とを備えて構成されており、方向を制御して指向性の良い光ビームを空間に対して入出力する光デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。

Description

光デバイス
 本発明は、光デバイスに関するものである。
 従来、方向を制御して指向性の良い光ビームを空間に対して入出力するためには、例えばMEMS(Micro Electro Mechanical Systems)スキャナに対してレーザダイオード(LD)素子及びコリメートレンズ等を組み合わせて空間光学系を構成する光デバイスが必要であった。MEMSスキャナは、トーションバーにより外枠の固定部に接続された可動部を有し、この可動部の向きをMEMSスキャナに与える電圧信号により制御される。ミラーが形成された可動部の表面に、コリメートされたレーザビームを照射することにより、反射されたレーザビームの方向を制御することができる。このようなMEMSスキャナについては、非特許文献1等に開示されている。
特開2009-230055号公報 特開2004-264703号公報
A. Arslan他"Comb-Actuated Resonant Torsional Microscanner With Mechanical Amplification"、Journal of Microelectromechanical Systems、19号4巻、936-943ページ、2010年 D. Taillaert他、"Compact efficient broadband grating coupler for silicon-on-insulator waveguides"、 Optics Letters、29号、23巻、2749-2751ページ
 しかしながら、MEMSスキャナを用いた従来の光デバイスでは、MEMSスキャナに加えてコリメートレンズ等の大きさと、空間における光路長とにより空間光学系全体の大きさが決まり、装置の小型化に限界があった。また、空間光学系の作製過程では、コリメートレンズとMEMSスキャナの間の精密な光軸位置合わせ等が必要となり、組み立て製品コスト増大の要因となっていた。
 本発明は、上記の課題に鑑みてなされたものであり、方向を制御して指向性の良い光ビームを空間に対して入出力する光デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化を実現する信頼性の高い光デバイスを提供することを目的とする。
 光デバイスの一態様は、固定部と、可動部と、前記固定部と前記可動部とを連結し、前記可動部の前記固定部に対する傾きを制御するための連結部とを有する薄層状の走査部材と、前記可動部に集積された光入出力素子と、前記可動部、前記連結部及び前記固定部を通るように集積され、前記光入出力素子と光学的に接続された光導波路とを含む。
 本発明によれば、方向を制御して指向性の良い光ビームを空間に対して入出力する光デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。
図1Aは、本実施形態による光デバイスのMEMSスキャナの概略構成を示す平面図である。 図1Bは、本実施形態による光デバイスの動作原理を説明するための模式図である。 図2は、第1の実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。 図3は、図2の破線枠C内におけるMEMSスキャナのトーションバー近傍を拡大して示す概略平面図である。 図4Aは、図2の破線I-Iに沿った概略断面図である。 図4Bは、図4Aのトーションバー近傍を拡大して示す概略平面図である。 図5Aは、図2のMEMSスキャナの可動部近傍を拡大して示す概略平面図である。 図5Bは、図5Aの破線I-Iに沿った概略断面図である。 図6Aは、第2の実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。 図6Bは、図6AのMEMSスキャナの可動部近傍を拡大して示す概略平面図である。 図7は、第3の実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。 図8Aは、図7の破線I-Iに沿った概略断面図である。図8Bは、可動部の受光器部分の概略平面図である。 図8Bは、可動部の受光器部分の概略平面図である。 図9は、第4の実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。 図10は、第5の実施例の光導波路の構造を示す概略断面図である。 図11は、第6の実施例において、トーションバーにおける光導波路の構造を示す概略断面図である。
 以下、光デバイスの実施形態について、図面を参照しながら詳細に説明する。
 図1Aは、本実施形態による光デバイスのMEMSスキャナの概略構成を示す平面図である。図1Bは、本実施形態による光デバイスの動作原理を説明するための模式図である。
 この光デバイスは、光の入出力デバイスであり、図1Aに示すように、MEMSスキャナ1を備えて構成されている。MEMSスキャナ1は、薄層状のスキャナ部材11と、回折格子型空間光結合器12と、受光機能又は発光機能を有する光素子13と、回折格子型空間光結合器12と光素子13とを光学的に接続する光導波路14とを有している。
 スキャナ部材11は、外枠部21と、内枠部22と、可動部23と、可動部23と内枠部22とを連結するトーションバー24と、内枠部22と外枠部21とを連結するトーションバー25とを有している。可動部23は、トーションバー24により内枠部22に対して矢印Aのように回動(捩れ動作)自在とされている。内枠部22は、トーションバー25により固定部である外枠部21に対して矢印Bのように回動自在とされている。可動部23は、トーションバー24の回動による矢印A方向の傾きと、内枠部22を介したトーションバー24の回動による矢印B方向の傾きとが別個に制御されることになる。矢印Aの回動と矢印Bの回動とでは、その回動軸が互いに垂直方向とされている。
 回折格子型空間光結合器12は、光入出力素子であって、所定周期の回折格子が形成されており、可動部23の表面に設けられている。
 光素子13は、発光素子としては例えばレーザダイオード、受光素子としては例えばフォトダイオードであり、スキャナ部材11の例えば外枠部21上に集積されている。
 光導波路14は、光素子13と光学的に接続され、可動部23、トーションバー24、内枠部22、トーションバー25、及び外枠部21を通るように、外枠部21上に集積されている。光導波路14は、トーションバー24,25上において当該トーションバー24,25の中心線に沿って配置されている。
 本実施形態による光デバイスでは、回折格子型空間光結合器12、光素子13、光導波路14等の光学部品は、全てスキャナ部材11上に一体形成又はハイブリッド実装等により配置される。従って、装置全体がMEMSスキャナ1と同等のサイズとなり、個別の光部品を空間結合系により組み合わせた従来技術と比較すると、装置構成の大幅な小型化が実現される。また、光導波路14等の光学部品のスキャナ部材11への一体形成は、高精度で一度に大量生産可能なウェハプロセスを用いる。ハイブリッド実装についても、高精度な位置決めを自動化された装置を用いて行うことができる。従って、本実施形態による光デバイスでは、その製造コストは従来技術に比較して低減される。
 以下、図1Bを用いて、本実施形態による光デバイスの動作原理について説明する。
 [光出力デバイスの場合]
 光出力デバイスでは、光素子13は、発光素子として例えばレーザダイオードがスキャナ部材11の外枠部21上に集積されている。
 レーザダイオードが出射するレーザ光は、光導波路14を伝搬し、トーションバー24,25を介して、可動部23に導かれる。可動部23において、レーザ光は回折格子型空間光結合器12に入力する。回折格子型空間光結合器12では、レーザ光は回折格子の作用により可動部23の表面から垂直な方向に出射される。その際、レーザ光は、回折格子型空間結合器12の全体と同程度のサイズまでビーム径が拡げられてから出射される。ビームサイズの大きさとビーム径の拡がり角とは反比例の関係にあるため、回折格子型空間結合器12はレーザ光の光路変換と同時にコリメートレンズの機能も果たしている。
 可動部23の傾きは、MEMSスキャナ1の機能により制御される。これに伴って、回折格子型空間結合器12から出射されるレーザ光の方向が制御される。以上の動作原理により、レーザ光を指向性良く空間に放出し、且つその出射方向を制御することができる。
 [光入力デバイスの場合]
 光入力デバイスでは、光素子13は、発光素子として例えば光導波路型のフォトダイオードがスキャナ部材11の外枠部21上に集積されている。
 特定の方向から伝搬してきたレーザ光は、可動部23の回折格子型空間光結合器12に入力する。回折格子型空間光結合器12では、レーザ光は回折格子の作用により可動部23の表面から垂直な方向に入射する。可動部23の傾きは、MEMSスキャナ1の機能により制御される。これに伴って、回折格子型空間結合器12に入射するレーザ光の方向が制御される。
 回折格子型空間光結合器12から入射したレーザ光は、光導波路14を伝搬し、トーションバー24,25を介して、フォトダイオードに入力する。以上の動作原理により、特定の方向から伝搬してきたレーザ光を指向性良く受光制御することができる。
 以下、上述の実施形態に基づいた光デバイスの具体的な諸実施例について説明する。なお、図2~図11に記載された各構成部材の寸法は一例に過ぎず、これらに限定されるものではない。
 (第1の実施例)
 本実施例では、光デバイスとして光出力デバイスを例示する。図2は、本実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。
 MEMSスキャナ10は、薄層状のスキャナ部材31と、回折格子型空間光結合器32と、レーザダイオード33と、回折格子型空間光結合器32とレーザダイオード33とを光学的に接続する光導波路34とを有している。スキャナ部材31は、固定部である外枠部41と、内枠部42と、回折格子型空間光結合器32が形成された可動部43と、可動部43と内枠部42とを連結するT字状のトーションバー44と、内枠部42と外枠部41とを連結するトーションバー45とを有している。
 光導波路34は、レーザダイオード33と光学的に接続され、可動部43、トーションバー44、内枠部42、トーションバー45、及び外枠部41を通るように、外枠部41上に集積されている。光導波路34は、トーションバー44,45上において当該トーションバー44,45の中心線に沿って配置されている。
 MEMSスキャナ10は、静電力を利用して動作する。図2の破線枠D内に示すように、内枠部42は、外枠部41との間に、与えられた電気信号に対して静電力を強めるためのコム構造46を有する。本実施例では、例えば非特許文献1に開示された機械動作増幅の原理を利用する。即ち、コム構造46の内側全体がトーションバー45によって保持されており、その更に内側に別のトーションバー44に支持された楕円形の可動部43を有する。この構成は、コム構造46と実際に利用する可動部43の構造をそれぞれ最適化する意味があり、これにより大きな機械的な動作を可動部43において得ることができる。可動部43の表面には、回折格子型空間光結合器32が形成されており、これと光学的に接続された光波路34は、2つのトーションバー44,45上の光配線を介して外枠部41まで導かれている。
 外枠部41は、レーザダイオード33のベアチップがフリップチップ実装により配置され、光導波路34に光結合されている。レーザダイオード41としては、例えば波長1300nm付近又は1550nm付近でレーザ発振する、InP基板上のファブリペロー型レーザ又はDFB型レーザが用いられる。
 図3は、図2の破線枠C内におけるMEMSスキャナのトーションバー近傍を拡大して示す概略平面図である。図4Aは、図2の破線I-Iに沿った概略断面図である。図4Bは、図4Aのトーションバー近傍を拡大して示す概略平面図である。
 トーションバー44,45の幅、長さの一例は、図3に記載の通りである。トーションバー44,45の機械的な接続に沿って光導波路34が形成されている。
 図4A及び図4Bに示すように、トーションバー44,45及び可動部43は、例えば厚み50μm程度の結晶シリコン47により形成されており、光導波路34は結晶シリコン47の上部に位置する。光導波路34のコア34aは、単結晶、多結晶、又はアモルファスのシリコンからなり、幅500nm程度、厚み220nm程度の矩形の断面形状を有する。コア34aの周囲は、シリコン酸化物(SiO)のクラッド34bにより覆われている。この光導波路34は、光伝搬モードの断面積が小さく、小さい曲げ半径に急峻に曲げることができる。そのため、特にトーションバー44がT字状に接続された部分等の比較的狭い領域において、例えば5μm程度の曲げ半径により、低損失にて光導波路34を例えば90°曲げて配線することができる。
 また、光導波路34のコア34aは、図3、図4A及び図4Bに示すように、トーションバー44,45の水平方向の中心線に沿った位置に配置されている。これは、トーションバー44,45の中心に近い程、MEMSスキャナ10が可動する際に生じる歪みが小さくなり、光導波路34において光の伝搬が歪により受ける影響を小さくすることができるためである。外枠部41は、図4Aに示すように、例えば厚み500μm程度シリコン支持基板を有している。
 図5Aは、図2のMEMSスキャナの可動部近傍を拡大して示す概略平面図である。図5Bは、図5Aの破線I-Iに沿った概略断面図である。
 可動部43は楕円形状とされており、そのサイズは例えば長径が500μm程度、短径が350μm程度であり、非特許文献1に開示された可動部のサイズ(長径1mm、短径1.5mm)に比較すると大幅に小さい。本実施例では、可動部43と回折格子型空間光結合器32は、ウェハプロセスにより一体形成される。これにより、可動部43と当該可動部43から出射するビームとの間の位置関係が高精度に決まり、可動部43に光軸ずれを吸収するための遊びの領域を設ける必要がないためである。可動部43に設けられた回折格子型空間光結合器32の回折格子の全体サイズは、図5Aに示すように例えば225μm×225μm程度である。これは、非特許文献2による回折格子のサイズ(15μm×15μm)に比較して大幅に大きい。これは、本実施例では、ビームサイズを大きく広げることにより、空間へ出射した際の拡がり角を小さくするためである。図5Bに示すように、回折格子型空間光結合器32の回折格子は、たとえば厚み220nm程度のシリコン膜を、深さ70nm程度で620nm程度の周期にエッチング除去することで形成される。回折格子型空間光結合器32は、光導波路34のクラッド34bと同様のSiO48内に形成される。
 以上説明したように、本実施例によれば、方向を制御して指向性の良い光ビームを空間に対して出力する光出力デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。
 (第2の実施例)
 本実施例では、第1の実施例と同様に、光デバイスとして光出力デバイスを例示するが、MEMSスキャナの可動部に搭載された回折格子型空間光結合器の構成が異なる点で相違する。図6Aは、本実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。図6Bは、図6AのMEMSスキャナの可動部近傍を拡大して示す概略平面図である。なお、第1の実施例と対応する構成部材等については、同じ符号を付して詳しい説明を省略する。
 MEMSスキャナ20は、薄層状のスキャナ部材31と、回折格子型空間光結合器51,52と、光分岐素子53と、レーザダイオード33と、光導波路54,55とを有している。スキャナ部材31は、固定部である外枠部41と、内枠部42と、回折格子型空間光結合器51,52が形成された可動部43と、可動部43と内枠部42とを連結するT字状のトーションバー44と、内枠部42と外枠部41とを連結するトーションバー45とを有している。
 回折格子型空間光結合器51は、所定周期の回折格子が形成されており、可動部43の表面に設けられている。回折格子型空間光結合器52は、回折格子型空間光結合器51の回折格子よりも長手方向の幅が狭い回折格子を有する小サイズのものであり、可動部43の表面に回折格子型空間光結合器51と並んで設けられている。
 光分岐素子53は、外枠部41上にレーザダイオード33と並んで配置されており、レーザダイオード33から出力されたレーザ光を2本の光導波路54,55に分岐するためのものである。光分岐素子53の代わりに光スイッチを用いることもできる。
 光導波路54は、回折格子型空間光結合器51とレーザダイオード33とを光分岐素子53を介して光学的に接続しており、可動部33、トーションバー44、内枠部42、トーションバー45、及び外枠部41を通るように、外枠部41上に集積されている。光導波路55は、回折格子型空間光結合器52とレーザダイオード33とを光分岐素子53を介して光学的に接続しており、可動部33、トーションバー44、内枠部42、トーションバー45、及び外枠部41を通るように、外枠部41上に集積されている。光導波路54,55は、トーションバー44,45上において当該トーションバー44,45の中心線に沿って配置されている。
 本実施例では、レーザダイオードから出射されたレーザ光を導光する光導波路54,55は、光分岐素子53を経て、可動部43に配線されている。可動部43には、上下のトーションバー44,45の夫々から光導波路54,55が配線されている。光導波路54は、第1の実施例と同様に比較的大きいサイズの回折格子型空間光結合器51に接続されている。一方、光導波路55は、全体サイズが例えば15μm×15μm程度の小型の回折格子型空間光結合器52に接続されている。小型の回折格子型空間光結合器52は、大型のものに比べると光の拡がり角が大きく、一定の距離に対してビームの中心強度は弱くなる。
 本実施例では、光出力デバイスを2つ組み合わせて、送受信の通信を行う場合、又は、2つの光出力デバイス間でレーザビームのトラッキングを行う場合に、2つの光出力デバイス間における光軸合わせが容易になる。即ち、大まかに光軸を合わせる場合には、小型の回折格子型空間光結合器52から出射される広いレーザビームを用いて行い、その後、大型の拡がり角の小さい回折格子型空間光結合器51を用いて光軸合わせをする。
 以上説明したように、本実施例によれば、方向を制御して指向性の良い光ビームを空間に対して出力する光出力デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。
 (第3の実施例)
 本実施例では、第1の実施例と同様に、光デバイスとして光出力デバイスを例示するが、MEMSスキャナの可動部に、回折格子型空間光結合器と共に受光器が搭載される点で相違する。図7は、本実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。なお、第1の実施例と対応する構成部材等については、同じ符号を付して詳しい説明を省略する。
 MEMSスキャナ30は、第1の実施例のMEMSスキャナ10の構成に加えて、少なくとも1つ、ここでは3つの面型の受光器61,62,63を備えている。受光器61~63は、可動部43上の余白部分、即ち回折格子型空間光結合器32の近傍に配置されており、それぞれ電気配線64,65と電気的に接続されている。電気配線64,65は、トーションバー44、内枠部42、トーションバー45、外枠部41を通るように形成され、外枠部41上に配置された電極パッド66,67に電気的に接続されている。
 受光器61~63を設けることにより、光出力デバイスを2つ組み合わせて、送受信の通信を行う場合、又は、2つの光出力デバイス間でレーザビームのトラッキングを行う場合に、2つの光出力デバイス間における光軸合わせが容易になる。受光器61~63は、空間を伝搬してきたレーザビームを受けて電気信号に変換し、トーションバー44,45上に形成された電気配線64,65を介して、電極パッド66,67に電気信号を出力する。出力された3つの電気信号の間のアンバランスを測定することにより、光軸合わせを容易に行うことができる。
 図8Aは、図7の破線I-Iに沿った概略断面図である。図8Bは、可動部の受光器部分の概略平面図である。
 光導波路34の構造は、第1の実施例と同様であるため、図示を省略している。図8Aに示すように、光導波路34のクラッド34bの上部に電気配線64,65が形成されている。電気配線64,65は、例えばアルミニウムを材料として、例えば幅5μm程度、厚み1μm程度に形成される。
 受光器61~63は、図8Bに示すように、クラッド34bと同様のSiO48内に形成されており、pシリコン層71上にゲルマニウム受光層72が形成され、ゲルマニウム受光層72上にnSiGe層73が形成されて構成されている。pシリコン層71上には信号配線となる電気配線64が接続され、nSiGe層73上には接地(グランド)配線となる電気配線65が接続されている。
 以上説明したように、本実施例によれば、方向を制御して指向性の良い光ビームを空間に対して出力する光出力デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。
 なお、可動部43に回折格子型空間光結合器32を配置せず、その替わりに本実施例で示した面型の受光器を、合計の大きさが可動部43と同程度となるように、1つ又は複数個配置し、光入力デバイスとしても良い。この構成により、受光面積が大きくなることにより感度の向上が得られる。この場合でも、複数個の受光器により、それらの間の相対的な受光強度差から、光送受信を行う際の光軸合わせが可能である。受光器が単一の場合でも、レーザビームの飛来方向にMEMSスキャナが向いている時に最も光電流が大きくなるので、光送受信の光軸合わせが可能となる。
 (第4の実施例)
 本実施例では、第1の実施例と同様に、光デバイスとして光出力デバイスを例示するが、MEMSスキャナの可動部に、回折格子型空間光結合器と共にヒータ線が配置されている点で相違する。図9は、本実施例による光出力デバイスのMEMSスキャナを示す概略平面図である。なお、第1の実施例と対応する構成部材等については、同じ符号を付して詳しい説明を省略する。
 MEMSスキャナ40は、第1の実施例のMEMSスキャナ10の構成に加えて、ヒータ線81を備えている。ヒータ線81は、可動部43上で回折格子型空間光結合器32の外周を囲むように蛇行して配置されており、例えばアルミニウムを材料として形成された電気配線82,83と電気的に接続されている。電気配線82,83は、トーションバー44、内枠部42、トーションバー45、外枠部41を通るように形成され、外枠部41上に配置された電極パッド84,85に電気的に接続されている。
 以上説明したように、本実施例によれば、方向を制御して指向性の良い光ビームを空間に対して出力する光出力デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。
 更に本実施例では、電極パッド84,85からヒータ線81に流す電流が制御される。これにより、回折格子型空間光結合器32を含む可動部43の温度を変化させ、回折格子型空間光結合器32から出射するレーザビームの方向及び形状を、低速で制御することができる。ヒータ線81を用いた微調整を行うことにより、送受信の際の光軸合わせや、個体間のバラツキを吸収した均一な動作を得ることが可能となる。
 (第5の実施例)
 本実施例では、第1の実施例と同様に、光デバイスとして光出力デバイスを例示するが、光導波路の構成が異なる点で相違する。図10は、本実施例の光導波路の構造を示す概略断面図である。なお、第1の実施例と対応する構成部材等については、同じ符号を付して詳しい説明を省略する。
 本実施例では、光導波路91のコア92が、誘電体材料のSiON又はSiNを材料として形成されている。コア92の外側のクラッド93は、第1の実施例と同様にSiOを材料として形成されている。シリコンは可視光を吸収するため、コアの材料にシリコンを用いた光導波路を備えた第1の実施例の光出力デバイスは、波長1.1μm以上の近赤外光に対して適用される。一方、本実施例のコア92は、可視光の波長でも材料の吸収が少なく、光を伝搬することができる。そのため、本実施例では可視光の光を出射するレーザダイオードと組み合わせることで、小型のレーザ・ディスプレイ等の用途に適用することができる。
 この場合、光の3原色に対応して、3つの波長のレーザダイオードをスキャナ部材31の外枠部41に配置することが好適である。3色の光はそれぞれ、外枠部41に光導波路91により導かれ、それぞれ出射用の回折格子型空間光結合器に接続される。3つの回折格子型空間光結合器は、波長に合わせてその周期と全体の大きさを変化させ、3色の光が全て同じ方向に同じサイズのレーザビームを出射するように設計することが好適である。
 SiON又はSiNのコア92を有する光導波路91は、Siのコアを有する光導波路と比較すると曲げ半径が大きくなる。そのため、第1の実施例のような機械動作増幅の原理を用いるためのT字状のトーションバーを用いることは、光導波路を曲げるスペースがなくなるために好ましくない。この場合には、より単純な構造のトーションバーを有するMEMSスキャナを適用すると良い。
 以上説明したように、本実施例によれば、方向を制御して指向性の良い光ビームを空間に対して出力する光出力デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。
 (第6の実施例)
 本実施例では、第1の実施例と同様に、光デバイスとして光出力デバイスを例示するが、光導波路の構成が異なる点で相違する。図11は、本実施例において、トーションバーにおける光導波路の構造を示す概略断面図である。なお、第1の実施例と対応する構成部材等については、同じ符号を付して詳しい説明を省略する。
 本実施例では、トーションバー44,45において、結晶シリコン47上に光導波路34(コア34a及びクラッド34bを有する。)が形成されており、結晶シリコン47及び光導波路34の外周が堆積シリコンの外周層94で覆われている。外周層94は、多結晶又はアモルファス状のシリコンからなり、例えば1μm程度の厚みに形成されている。
 外周層94を形成することにより、MEMSスキャナの可動時に歪が強く加わるトーションバー44,45の外周が補強される。堆積シリコン94はトーションバー44,45の部分のみに形成され、可動部43を含む他の部分には形成しない。
 第1~第6の実施例では、MEMSスキャナについて、コムドライブを用いた静電方式のものとして説明したが、電磁誘導方式、ピエゾ方式のものを用いても良い。また、MEMSスキャナ、光素子についてはシリコン元素を含む材料系のものについて説明したが、他の材料、例えばGaAsやInPやポリマ、樹脂等を用いても良い。特にGaAsは加工にも適しており、且つ、光導波路、発光素子、受光素子を全てモノリシックに形成することができるために好適である。
 また、第1~第6の実施例を適宜組み合わせて実施することも可能である。例えば第2の実施例に第3の実施例(及び/又は第4の実施例)を組み合わせ、可動部43において回折格子型空間光結合器51,52の周囲に受光器61,62,63(及び/又はヒータ線81)を配することができる。更に、これらの組み合わせに第5の実施例又は第6の実施例を付加すること等も可能である。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本発明によれば、方向を制御して指向性の良い光ビームを空間に対して入出力する光デバイスであって、製造コストを低減し、比較的簡素な装置構成で可及的な小型化が実現される。

Claims (10)

  1.  固定部と、可動部と、前記固定部と前記可動部とを連結し、前記可動部の前記固定部に対する傾きを制御するための連結部とを有する薄層状の走査部材と、
     前記可動部に集積された光入出力素子と、
     前記可動部、前記連結部及び前記固定部を通るように集積され、前記光入出力素子と光学的に接続された光導波路と
     を含むことを特徴とする光デバイス。
  2.  前記光導波路は、そのコアが前記連結部の中心線に沿って配置されていることを特徴とする請求項1に記載の光デバイス。
  3.  前記固定部に集積され、前記光導波路と光学的に接続された、受光機能又は発光機能を有する光素子を更に含むことを特徴とする請求項1又は2に記載の光デバイス。
  4.  前記光素子は、レーザダイオード及びフォトディテクタのうちの少なくともいずれか一方であることを特徴とする請求項3に記載の光デバイス。
  5.  前記光入出力素子は、所定の周期の回折格子を有する回折格子型空間光結合器であることを特徴とする請求項1~4のいずれか1項に記載の光デバイス。
  6.  前記光入出力素子は、前記回折格子の長手方向の幅の相異なる複数の前記回折格子型空間光結合器であることを特徴とする請求項5に記載の光デバイス。
  7.  前記可動部に、前記光入出力素子の外周を囲むように配されたヒータ線を更に含むことを特徴とする請求項1~6のいずれか1項に記載の光デバイス。
  8.  前記可動部に集積された受光器と、
     前記固定部に配された電極パッドと、
     前記可動部上、前記連結部上及び前記固定部上を通るように配され、前記受光器と前記電極パッドとを電気的に接続する配線と
     を更に含むことを特徴とする請求項1~7のいずれか1項に記載の光デバイス。
  9.  前記連結部における前記光導波路は、シリコン、シリコン窒化物、及びシリコン酸窒化物から選ばれた1種からなるコアと、前記コアの周囲を覆うシリコン酸化物からなるクラッドとを有することを特徴とする請求項1~8のいずれか1項に記載の光デバイス。
  10.  前記連結部における前記光導波路は、前記クラッドの周囲を覆うシリコンからなる外周層を更に有することを特徴とする請求項9に記載の光デバイス。
PCT/JP2015/069494 2015-07-07 2015-07-07 光デバイス WO2017006425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069494 WO2017006425A1 (ja) 2015-07-07 2015-07-07 光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069494 WO2017006425A1 (ja) 2015-07-07 2015-07-07 光デバイス

Publications (1)

Publication Number Publication Date
WO2017006425A1 true WO2017006425A1 (ja) 2017-01-12

Family

ID=57685178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069494 WO2017006425A1 (ja) 2015-07-07 2015-07-07 光デバイス

Country Status (1)

Country Link
WO (1) WO2017006425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795165B1 (ja) * 2019-05-25 2020-12-02 国立大学法人東北大学 走査ミラーおよび走査ミラーの製造方法
WO2020241153A1 (ja) * 2019-05-25 2020-12-03 国立大学法人東北大学 走査ミラーおよび走査ミラーの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317838A (ja) * 1989-06-15 1991-01-25 Fuji Xerox Co Ltd 光学ヘッド
JPH05297313A (ja) * 1992-04-17 1993-11-12 Canon Inc 半導体レーザ偏向素子
JP2001500629A (ja) * 1996-09-19 2001-01-16 ザ マイクロオプティカル コーポレーション コンパクトディスプレイシステム
JP2007292919A (ja) * 2006-04-24 2007-11-08 Konica Minolta Holdings Inc 光走査装置
JP2009223979A (ja) * 2008-03-18 2009-10-01 Sanyo Electric Co Ltd 光ピックアップ、光学的記録再生装置および電子機器
JP2014182224A (ja) * 2013-03-18 2014-09-29 Oki Electric Ind Co Ltd 光素子
JP2015509216A (ja) * 2012-02-03 2015-03-26 マイクロン テクノロジー, インク. 液晶を使用した、光ファイバのチップへのアクティブアライメント

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317838A (ja) * 1989-06-15 1991-01-25 Fuji Xerox Co Ltd 光学ヘッド
JPH05297313A (ja) * 1992-04-17 1993-11-12 Canon Inc 半導体レーザ偏向素子
JP2001500629A (ja) * 1996-09-19 2001-01-16 ザ マイクロオプティカル コーポレーション コンパクトディスプレイシステム
JP2007292919A (ja) * 2006-04-24 2007-11-08 Konica Minolta Holdings Inc 光走査装置
JP2009223979A (ja) * 2008-03-18 2009-10-01 Sanyo Electric Co Ltd 光ピックアップ、光学的記録再生装置および電子機器
JP2015509216A (ja) * 2012-02-03 2015-03-26 マイクロン テクノロジー, インク. 液晶を使用した、光ファイバのチップへのアクティブアライメント
JP2014182224A (ja) * 2013-03-18 2014-09-29 Oki Electric Ind Co Ltd 光素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6795165B1 (ja) * 2019-05-25 2020-12-02 国立大学法人東北大学 走査ミラーおよび走査ミラーの製造方法
WO2020241153A1 (ja) * 2019-05-25 2020-12-03 国立大学法人東北大学 走査ミラーおよび走査ミラーの製造方法
CN113227874A (zh) * 2019-05-25 2021-08-06 国立大学法人东北大学 扫描镜及扫描镜的制造方法

Similar Documents

Publication Publication Date Title
CN112673274B (zh) Lidar输出信号的导引中的相位控制
JP7425000B2 (ja) Lidar出力信号の方向を調整するための光学スイッチング
US20210351562A1 (en) Optical device having a substrate and a laser unit that emits light into the substrate
CN110678774B (zh) 测距传感器
WO2018003852A1 (ja) 光偏向デバイスおよびライダー装置
CN112740062A (zh) 光学传感器芯片
US11353561B2 (en) Distance measuring sensor
US10345540B2 (en) Method and system for coupling a light source assembly to an optical integrated circuit
EP2626731B1 (en) An optical coupling arrangement
US9703046B2 (en) Active optical coupling system and photonic integrated circuit
US9632281B2 (en) Free space grating coupler
US10613281B2 (en) Method and system for coupling a light source assembly to an optical integrated circuit
WO2017006425A1 (ja) 光デバイス
US11474316B2 (en) Integrated device for optically coupling a flared laser source and a waveguide
US20230019946A1 (en) Optical device for heterodyne interferometry
US9664866B2 (en) Optical transmission module and manufacturing method thereof
WO2020245867A1 (ja) 光ファイバ接続構造
US10241274B2 (en) Dispersion-compensative optical assembly
US20190033539A1 (en) Optical module and method for manufacturing the optical module
JP2019117394A (ja) 光通信装置、及び光通信装置の製造方法
US11435525B2 (en) Semiconductor device and method of manufacturing the same
JP2022144256A (ja) 光走査装置、物体検出装置及び移動体
WO2021009911A1 (ja) 光導波路素子のアライメント方法
JP6286989B2 (ja) 光導波路型モジュールおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP